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Abstract This paper analyzes a model of economy–environment coevolution
in which economic activities induce the genetic evolution of a biological
species. This model is applied to the problem of pesticide resistance manage-
ment. Just as in Munro (Environ Resour Econ, 9:429–449, 1997), we consider
three main types of interactions: (1) a large pest population reduces economic
revenues, (2) economic activities select for resistant genes and (3) the spread
of resistant genes affects the size of the pest population. The model differs
from Munro in that it includes evolutionary modeling of economic strategies.
Economic agents are assumed to be boundedly rational, i.e they cannot com-
pute the optimal level of pesticide use that minimizes resistance among pests.
Economic evolution represents the change in the distribution of pesticide
strategies in the population of economic agents and is modeled by a replicator
dynamics equation. The interactions between economic evolution of pesticide
strategies, pest population dynamics and genetic evolution of resistance of
pests are studied in a system of three differential equations. We explore the
dynamics and stability properties of the system using numerical simulations.
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1 Introduction

The concept of coevolution was first introduced in biology by Ehrlich and
Raven (1964) to define the simultaneous reciprocal evolution of interacting
populations. They observed that the patterns of evolution between plants and
butterflies were closely interrelated. As plants developed toxic chemicals to
prevent attacks from butterflies, the insects adapted by creating resistance
to these chemicals. Examples of these patterns of coevolution abound in the
biological world. Three main types of interactions are generally observed
(Roughgarden 1979):

1. Parasitic relationships. In this case, one species benefits at the expense
of the other. The butterflies-plants relationship described by Ehrlich and
Raven (1964) is an example of a parasitic relationship.

2. Commensal relationships. One species benefits from another at negligible
harm to the other species. An example is the presence of harmless bacteria
living in human organisms (Hooper and Gordon 2001).

3. Mutualistic relationships. Both species benefit from one another. Fig trees,
for instance, provide food for wasps, while the latter act as pollinators for
the figs. As a result, the reproductive characteristics of the two species are
intrinsically linked to one another (Herre 1989).

Models of coevolution in biology fuse population dynamics models with
equations describing changes in gene frequencies. These models usually in-
clude a set of two differential equations for each interacting species. One equa-
tion represents population dynamics while the other reflects gene frequency
changes (Levin and Udovic 1977; Roughgarden 1979; May and Anderson
1983). The idea behind this modeling approach is that numerical abundance
of one species selects for the genetic characteristics of the other species,
and conversely. Coevolutionary models are nowadays very sophisticated and
include stochastic elements to describe sequences of mutations (Dieckmann
et al. 1995; Dieckmann and Law 1996). Questions addressed by models of
coevolution in biology relate to the final equilibrium configuration of eco-
logical communities and the dynamics of coevolution, e.g. the presence of
time lags in the adaptive response from one species to another. In recent
years, the concept of coevolution has been transferred from the biologi-
cal sphere to a large range of applications in socioeconomic contexts. For
instance, the coevolution analogy has been used to describe the complex
interactions between genes and culture (Lumsden and Wilson 1981), behavior
and institutions (van den Bergh and Stagl 2003) and technology and industry
(David and Rothwell 1996). In environmental economics, Norgaard (1984,
1994) was the first to suggest the use of coevolution to describe environment-
economy interactions, although in a somewhat loose interpretation. In his
view, development is shaped by a process of coevolution between several
subsystems, namely, knowledge, values, organizations, technology, and the
environment, so that each of these subsystems creates selective pressure on
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the others. As an illustration, Norgaard (1994) explains the current lock-in of
fossil fuel technologies as the result of a coevolution of urbanization, technical
progress and the development of the car industry.

Another example of environment–economy interaction is the coevolving
pattern of human activity and climate change (Schneider and Londer 1984).
By altering the composition of the atmosphere, human activity induces climate
change, which forces society to adapt by way of the improved management of
natural resources. Climate change in combination with intensive grazing, for
instance, can cause desertification in certain areas, which, in turn, can force
humans to migrate or to adopt cultures adapted to arid climates.

Using a strict definition, environment–economy coevolution refers to the
fact that economic activities select for genetic traits of biological species. A
well-studied example of such coevolution is the impact of fishing activities
on the genetic evolution of fish (Stokes et al. 1993; Heino 1997). The choice
of fishing gear and fishing mesh sizes selects for size and swimming abilities
among the various species of fishes (Policansky 1993). In turn, these genetic
changes force fishermen to adapt and modify their fishing strategies.

The objective of the present paper is to present a model of environment–
economy coevolution, which reflects the impact of economic activities on
the biological evolution of species, and vice versa. Using a coevolutionary
framework may prove particularly useful in situations in which regulation is
difficult, due for instance to the presence of bounded rationality. In these sit-
uations, environmental change cannot be perfectly anticipated, and economic
activities are adaptive rather than optimal responses to this change. Although
the concept of coevolution has been repeatedly mentioned in the literature, so
far there has been little attempt explicitly to formalize it in a coevolutionary
model. The present model of coevolution is applied to the problem of pesticide
resistance management.

Pesticide resistance has become a subject of major concern. The National
Research Council (1986) records that, between 1950 and 1980, nearly 500 pest
species of agricultural importance have developed resistance to the principal
classes of pesticides. This evolution, described in Fig. 1, is a direct consequence
of the widespread use of intensive pesticide treatment in agriculture. Today,
the spread of pesticide resistance poses major threats to agricultural yields. As
an example, Tyler Miller (1992) states that, between 1940 and 1984, crop losses
due to pests increased from 7 to 13%, although there was a 12-fold increase in
pesticide use within the same period.

Economic models have treated the issue of pesticide resistance management
in optimization models within the neoclassical economic tradition. Regev et al.
(1983) derive the optimal dosage of pesticide under a constraint of decreasing
pesticide susceptibility among pests, modeled as a non-renewable resource.
This modeling choice eludes the issue of reversible resistance and is not based
on a formal ecological theory. A similar approach of modeling resistance was
used by Laxminarayan (2001) and Brown and Layton (1996) in dealing with
antibiotic resistance. Munro (1997) offers a more satisfactory way to model
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Fig. 1 Increase in number of
cases of resistant species
(reproduced from American
National Research Council
(1986))

pest resistance using sound ecological-genetic modeling. The main intuition
in his model is that economic activities reduce the fitness of genes, which
confers susceptibility to pests, so that genes carrying resistant traits tend to be
selected. Resistance allows the pest population to be less affected by pesticide
use, so that the population of pests eventually recovers as more pests become
resistant. Munro compares the optimal pesticide dosage of a myopic agent,
who only understands pest population dynamics, but not genetic evolution,
with that of a farsighted agent, who takes both pest population dynamics and
genetic evolution into account when solving the optimization problem. He
finds that the equilibrium obtained in the latter case exhibits a lower level
of resistance and a lower pest population for the same level of pesticide use.
Nevertheless, this model assumes perfect rationality of economic agents and
is thus not a model of coevolution, since economic activities are not truly
“evolving”.

The model presented in this paper takes Munro’s (1997) analysis as a
starting point for the ecological side of the coevolutionary framework. Just as
in Munro, we consider a situation in which a large area of land is used for the
production of a crop. This crop is subject to a pest, whose presence reduces
the yield of the crop. A population of individual farmers obtains revenues
from harvesting the crop. The farmers use pesticides to limit pest nuisance
and thus to increase crop yields and revenues. Nevertheless, intensive use of
pesticides favors the development of resistant strains in the genetic structure of
the pest. As resistance spreads, pesticides become less effective, and the pest
population may eventually recover. In short, three main types of interactions
must be considered: (1) a large pest population reduces economic revenues;
(2) economic activities select for resistant genes; and (3) the spread of resistant
genes affects the size of the pest population.

The model differs from Munro, however, in that it includes evolution-
ary modeling of economic strategies. Economic agents are assumed to be
boundedly rational, i.e. they are not capable of anticipating any aspect of
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biological and ecological evolution and thus cannot compute the optimal level
of pesticide use that minimizes resistance. Economic evolution represents the
change in the distribution of pesticide strategies in the population of economic
agents. In this model, economic and ecological evolution are combined in a
system of differential equations. This makes the model truly “coevolutionary”.

The analysis is organized as follows. Section 2 describes the model by pre-
senting its three main building blocks: namely, genetic evolution of resistance;
pest population dynamics; and economic evolution of agricultural pesticide
strategies. Section 3 studies the steady states and discusses some general as-
pects of the dynamics of the coevolutionary system. Section 4 presents further
results on possible forms of dynamic behavior using a numerical illustration.
Section 5 draws policy implications from the analysis. Section 6 summarizes
the main results and concludes.

2 Description of the model

2.1 Selection of resistant genes

This section models the evolution of genetic traits that make the pest either
susceptible or resistant to pesticide use. The formalization of the ecological
side of the model closely follows Munro’s (1997) analysis. In turn, it is based
on modeling in population genetics, a field of research in evolutionary biology
concerned with the study of the collection of genes belonging to all members
of a population, known as the “gene pool” (Roughgarden 1979).

We assume that pests affecting the crop are organisms whose reproduction
is characterized by diploid inheritance. This means that the genetic structure of
each pest is composed of pairs of chromosomes, one from each parent. Given
matching chromosomes, we assume that there are only two types of genes: a
gene A that confers susceptibility to pests, and a gene a that confers resistance.
As a result, there are thus only three possible genotypes, or genetic structures,
in the pest population: AA, Aa and aa.

Further, the A gene is assumed to be dominant, implying that the presence
of one A gene in the genotype of a pest is sufficient to make the organism
susceptible to pesticide. In contrast, the gene a is recessive, meaning that the
expression of resistance at the organism level requires the presence of a genes
on every chromosome. In other words, organisms of genotypes AA and Aa are
susceptible to pesticide use, while organisms of genotype aa are resistant to it.

The fraction of genes A and a in the gene pool is denoted by p and
q (= 1 − p), respectively. The fitness of an organism can be defined as the
contribution which an individual makes to the next generation’s gene pool,
generally measured in number of offspring. For now, however, we ignore
the effects of pesticide use on biological fitness. These will be introduced in
Section 2.3. The fitness of a susceptible organism is WA, while the fitness of
a resistant organism is Wa. Given that, without pesticide use, A genes are
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dominant, we have WA > Wa. In addition, since each organism is composed
of one pair of chromosomes, the proportion of genotype AA in the gene pool
is p2, the proportion of genotype Aa is 2pq, and the proportion of genotype
aa is q2. Obviously, we have p2 + 2pq + q2 = 1. The average fitness over all
genotypes in the gene pool is then:

W̄ = p2WA + 2pqWA + q2Wa

= p(2 − p)WA + q2Wa. (1)

The dynamics of the proportion of susceptible pests p can be described as
follows:

ṗ =
(

WA

W̄
− 1

)
p. (2)

This equation says that p increases when the fitness of genes A is above the
average fitness.

2.2 Dynamics of the size of the pest population

This section formalizes the link between genetic evolution and the dynamics
of the pest population. Following Munro (1997), we use tools from population
ecology and evolutionary theory to model the fact that the evolution of the
genetic distribution in the gene pool has an impact on pest population size.

Munro (1997) applies Roughgarden’s (1979) analysis and assumes that the
fitness of a gene is equal to: (1 + the individual’s contribution to population
growth). The individual’s contribution to growth, or fitness, corresponds to
the expected number of offspring produced by an individual. The formulation
(1 + the individual’s contribution to growth) reflects the fact that the number
of offspring exceeds direct replacement. In addition, it is assumed that an
individual’s contribution to growth follows a logistic form. Fitness of genes is
then:

WA = 1 + rA

(
1 − N

K

)

Wa = 1 + ra

(
1 − N

K

)
, (3)

where N is the size of the pest population, ri (i = A, a) is the contribution to
growth (rA > ra) in the absence of density effects, and K > 0 is the (assumed)
identical carrying capacity.

Pest population size grows with average fitness as follows:

Ṅ = (W̄ − 1)N. (4)

Substituting for WA and Wa, defined by Eq. 3, into Eq. 1, average fitness
becomes:

W̄ = p2

(
1 + rA − rA

N
K

)
+ 2pq

(
1 + rA − rA

N
K

)
+ q2

(
1 + ra − ra

N
K

)
. (5)
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Next, the evolution of pest population size can be obtained by substituting
Eq. 5 into Eq. 4. We get:

Ṅ = p2 N
(

1 + rA − rA
N
K

)
+ 2pqN

(
1 + rA − rA

N
K

)

+ q2 N
(

1 + ra − ra
N
K

)
− N, (6)

which can be simplified as:

Ṅ = N
[

r − rN
K

]
. (7)

Here, r is the average value of ri, (i = A, a), with weighing as follows:

r = p(2 − p)rA + q2ra. (8)

Equations 7 and 8 formalize the links between genetic evolution and popula-
tion dynamics.

2.3 Evolution of agricultural pesticide strategies

In this section, the economic evolution of agricultural pesticide strategies
is introduced into the model, using elements from the field of evolutionary
economics. The modeling of the evolution of economic strategies is an inno-
vative element. In contrast with Munro (1997), the evolutionary perspective
is applied here not only to natural phenomena, but also to economic ones.
This is motivated by the fact that, since agents are boundedly rational, they
cannot calculate the optimal level of pesticide that maximizes their long-run
discounted profits. Instead, economic agents adapt their decisions to changes
occuring in the environment.

We consider a population of economic agents, or “farmers”, composed of
a fixed number m of individuals. Farmers choose between two predetermined
strategies: an “intensive” strategy that makes use of a high level of pesticides
xI , and a “biological” strategy that makes use of a low level of pesticides xB

(xI > xB).1 Obviously, additional strategies corresponding to a wider range of
pesticide use could be implemented in this model, but, for simplicity, we limit
our analysis to only two strategies.

In Munro (1997), individual revenues are a function of the pest population
only. Here, we assume that revenues are affected by both the pest popula-
tion size and individual’s pesticide use. This corresponds to a more realistic

1In contrast with its common use in agriculture, the term “biological” does not necessarily refer
here to a zero pesticide use strategy.
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situation in which the agents enjoy direct (short-run) benefits from the use
of pesticides, as well as indirect (long-run) ones from the effects of total
pesticide use on the pest population size.2 Further, we neglect the free-rider
problem by assuming that the agents do not exhibit strategic behavior. In other
words, they do not understand that increasing individual pesticide use when
everyone else uses a biological strategy would generate larger profits. Another
technical issue that motivates the introduction of individual pesticide use in
the revenue function is that, if the revenue function were to depend only on
N, the biological strategy would always yield larger profits than the intensive
strategy, as N is identical for all agents and a high level of pesticide use is more
costly than a low level. In this case, the evolution of strategies can be easily
predicted, as all agents would ultimately adopt the most profitable biological
strategy. Individual profits are equal to net revenues of pesticide use:

π j = f (N, x j) − c(x j) j = I, B. (9)

Here, f (N, x j) are the revenues from crop growth, and c(x j) represents the
cost of pesticide use. In particular, we assume that fN < 0, i.e. the larger the
pest population on the crop, the lower the individual revenues, and f (N, xI) >

f (N, xB), i.e. large pesticide use generates large revenues. Further, we assume
c(xI) > c(xB), so that using a high level of pesticides is more costly than using a
low level. Profits of farmers are not (directly) affected by the genetic evolution
of resistance. In other words, p does not enter the profit function. Therefore,
farmers only need to have access to information about pest population size to
calculate their profit levels.

Since the aggregate pest population affects all harvesters in the same way, an
implicit assumption is that pests are equally distributed, i.e. can migrate, over
the whole land area. The proportion of susceptible alleles in the gene pool
of the pest population (p) is assumed to be constant over all subpopulations,
i.e. the level of resistance is the same on all land parcels.

The shares of farmers using the intensive and biological pesticide strategies
are denoted by s and (1 − s), respectively. The evolution of pesticide strategies
shares is described using a replicator dynamic equation:

ṡ = s(πI − π̄), (10)

where π̄ denotes average profits, such that π̄ = sπI + (1 − s)πB. The repli-
cator dynamic equation reflects the fact that agents experience (imperfect
or delayed) social learning, and update strategies by imitating the strategy
that yields above-average profits. Indeed, the share of the intensive pesticide
strategy grows as long as πI > π̄ . Further on, we will adopt the following

2Another interpretation, which could be clarified in a spatial model, is that individual revenues
are affected by both local effects, through individual pesticide use, and global effects, through the
aggregate pest population size.
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functional forms that capture the aforementioned assumptions on revenues
and cost functions:

f (N, x j) = ax j

N + 1
, j = I, B,

c(x j) = bx2
j, (11)

so that Eq. 10 is equivalent to:

ṡ = s(1 − s)(xI − xB)

(
a

N + 1
− b(xI + xB)

)
. (12)

Economic activities reduce the fitness of susceptible genes as follows:

WAx = WA − m(sxI + (1 − s)xB). (13)

Here, WAx corresponds to the reduced fitness of genes A as a result of total
pesticide use. If human activities reduce the fitness of susceptible genes, such
that WAx < Wa, then resistant strains will be selected over susceptible ones.
The average fitness, given pesticide use denoted by W̄x, is defined by:

W̄x = W̄ − p(2 − p)m(sxI + (1 − s)xB). (14)

The evolution of p over time is then:

ṗ =
(

WAx

W̄x
− 1

)
p. (15)

Substituting Eqs. 13, 14 and 1 in Eq. 15, and rewriting gives:

ṗ = pq2 (WA − m(sxI + (1 − s)xB) − Wa)

p(2 − p) (WA − m(sxI + (1 − s)xB)) + q2Wa
. (16)

Further, substituting for Eqs. 3 and 13, where WA is replaced by WAx, into
Eq. 1 gives another expression for W̄x:

W̄x = p2

(
1 + rA − rA

N
K

− m(sxI + (1 − s)xB)

)

+ 2pq
(

1 + rA − rA
N
K

− m(sxI + (1 − s)xB)

)

+ q2

(
1 + ra − ra

N
K

)
. (17)

The evolution of pest population size can be obtained by substituting Eq. 17
into Eq. 4, where W̄ is replaced by W̄x. After rewriting, we obtain:

Ṅ = N
[(

p(2 − p)rA + q2ra
) (

1 − N
K

)
− p(2 − p)m(sxI + (1 − s)xB)

]
. (18)
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3 Dynamic analysis of the coevolutionary system

3.1 The coevolutionary system

The full model of coevolution is represented by a system of three differential
equations: namely, Eqs. 12, 16 and 18.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṡ = s(1 − s)(xI − xB)

(
a

N + 1
− b(xI + xB)

)
(19)

Ṅ = N
[(

p(2 − p)rA + q2ra
) (

1 − N
K

)
− p(2 − p)m(sxI + (1 − s)xB)

]
(20)

ṗ = pq2 (WA − m(sxI + (1 − s)xB) − Wa)

p(2 − p) (WA − m(sxI + (1 − s)xB)) + q2Wa
, (21)

with 0 ≤ s ≤ 1, 0 ≤ N ≤ K, and 0 ≤ p ≤ 1 and q = 1 − p.
The system includes two equations for the ecological part of the system and

one equation for the economic system. Note that a full model of coevolution,
analogous to the ones developed in biology, would require two equations for
each system, one for the genetic-strategy evolution and one for the population
dynamics. In the economic context, this would require the relaxation of the
assumption of a fixed population of farmers, for instance, by allowing for entry
and exit of agents. Nevertheless, in the present model, we assume that the
population of harvesters is fixed. This simplifies the model greatly, allowing
for a first discussion of coevolutionary systems.

3.2 Identification of the steady states

The steady states of the dynamic system are situated at the intersections of the
nullclides Ṅ = 0, ṗ = 0 and ṡ = 0. We find ṡ = 0 along the two-dimensional
planes defined by s = 0, s = 1 and N = N̄, where N̄ is given by:

N̄ = a
b(xI + xB)

− 1. (22)

Next, we find Ṅ = 0 along the planes N = 0 and s = g(N, p), as given by:

s = g(N, p) = (p(2 − p)rA + q2ra)(K − N) − xB Kmp(2 − p)

Kmp(2 − p)(xI − xB)
. (23)

Finally, we have ṗ = 0 along the planes p = 0, p = 1 and s = s̄, where s̄ is
given by:

s̄ = WA − Wa − mxB

m(xI − xB)
. (24)

The details of solving the system and the existence conditions of each steady
state are given in Appendices 1 and 2, respectively.
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In total, ten steady states (A–F and O1–O4) can be identified:

A. (NA; pA; sA) =
(

KrA−xI Km
rA

; 1; 1
)

.

B. (NB; pB; sB) =
(

KrA−xB Km
rA

; 1; 0
)

.

The steady states A and B are characterized by the absence of resistance. At
these points p = 1, so that there are only susceptible genes in the gene pool. At
A, all agents use the intensive strategy xI , so that the pest population is lower
than in the steady state B, in which all agents use the low level of pesticide xB.

C. (NC; pC; sC) = (K; 0; 1).
D. (ND; pD; sD) = (K; 0; 0).

The steady states C and D are characterized by the sole presence of resistant
genes, since p = 0. At these points, the population of pests reaches the carrying
capacity level K. Just as for A and B, there is one steady state (C) where all
agents use the intensive strategy, and another (D) where all agents use the
biological strategy.

E. (NE; pE; sE) = (N̄; 1 − √
v
u ; s̄),

where u and v are analytical expressions defined by Eqs. 29 and 30 given
in Appendix 1. The steady state E is characterized by a pest population
size that falls between NA and NC, an intermediate level of resistance, and
the coexistence of both intensive and biological pesticide strategies in the
economic sphere. At the steady state E, both strategies yield equal profits.

F. (NF; pF; sF) =
(

N̄; 1; rA(b(xI+xB(K+1)−a)−xBbKm(xI+xB)

bKm(x2
I−x2

B)

)
.

The steady state F is characterized by a pest population size of N̄, no resistance
(pF = 1), and the coexistence of both pesticide strategies. At F, profits yielded
by both strategies are equal (and are also equal to profits obtained at E).

O1.(0; 0; 0; ).
O2.(0; 0; 1).
O3.(0; 1; 0).
O4.(0; 1; 1).

Finally, we can identify four equilibria which correspond to extreme cases
where the pest population is extinct.

Figure 2 represents the nullclides and the steady states of the system in the
three-dimensional space in the particular case in which all steady states lie in
the feasible range for N, s and p, i.e. 0 ≤ N ≤ K, 0 ≤ s ≤ 1 and 0 ≤ p ≤ 1.

3.3 Dynamics

The direction of motion in the three-dimensional space is given by:

– ṡ > 0 for 0 < s < 1 and N < N̄. The threshold N̄ is the level of pest pop-
ulation, below (above) which the proportion of agents using the intensive
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Fig. 2 Graphical represen-
tation of the system in
three-dimensional space

strategy increases (decreases). Indeed, when the pest population is lower
than N̄, the intensive strategy yields larger profits than the biological
strategy, and an increasing number of agents adopt the intensive stategy.
At N = N̄, the strategies coexist, as they yield equal positive profits πI =
πB = bxI xB, and the evolution of strategies stops.

– Ṅ > 0 for N < K and s < g(N, p). When the proportion of agents using
the intensive strategy lies below (above) the locus s = g(N, p), the pest
population increases (decreases). Intuitively, the pest population is neg-
atively affected by a large proportion of susceptible genes p combined
with a large pesticide use. Indeed, when resistance is low in the system,
pesticides are efficient in killing pests. If, in addition, many agents use
the intensive strategy, N will decrease sharply. Therefore, a large p and
a large s cause N to decrease rapidly. However, when p is small and
almost all pests are resistant, pesticides are not efficient in killing pests,
and then the population of pests increases for any level of pesticide use in
the population, i.e. for any level of s.

– ṗ > 0 for 0 < p < 1 and s < s̄. The threshold s̄ corresponds to the pro-
portion of intensive strategies, above (below) which resistance increases
(decreases) in the system. Whenever the proportion of intensive strategies
is larger than s̄, then WAx < Wa. Hence, resistant genes increase in propor-
tion in the gene pool and p decreases. At s̄, the evolution of resistance is
halted.

Due to the high dimensionality of the system, analytical tractability is lost.
Therefore, the remainder of the analysis is conducted using numerical exper-
iments. Given the large number of parameters in the system, simulations are
carried out for a fixed range of parameters providing exploratory results. The
objective is thus limited to providing some intuition regarding the long-run
behavior of such environment–economy coevolution systems.
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4 A numerical illustration of the coevolutionary system

4.1 Parameter values and steady states

Numerical simulations are carried out to illustrate the dynamical behavior of
the system. The numerical experiments were implemented in Mathematica
and checked using an ODE solver for stiff equations in Matlab. We fix the
parameters as follows:

xI = 0.05 xB = 0.025
K = 100 m = 10
a = 20 b = 5

rA = 0.6 ra = 0.4
WA = 1 Wa = 0.6.

The choice of parameter values for ecological parameters rA, ra, Wa and WA

is based on numerical examples in Roughgarden (1979). The fitness levels
WA and Wa can be interpreted as an individual’s contribution to the next
generation in terms of a (scaled) number of offspring. Pesticide use parameters
measure a quantity of pesticide use, but can be, in the present context, broadly
interpreted as a measure of the (scaled) number of offspring killed. Further,
the size of the system is small: we consider only 10 farmers and a maximum pest
population of K = 100. This parameter choice ensures that all steady states A,
B, C, D, E, F, O1, O2, O3 and O4 exist. The coordinates of the steady states are
then:

A. (NA; pA; sA) = (16.66; 1; 1).
B. (NB; pB; sB) = (58.33; 1; 0).
C. (NC; pC; sC) = (100; 0; 1).
D. (ND; pD; sD) = (100; 0; 0).
E. (NE; pE; sE) = (52.33; 0.388; 0.6).
F. (NF; pF; sF) = (52.33; 1; 0.144).

O1. (0; 0; 0).
O2. (0; 0; 1).
O3. (0; 1; 0).
O4. (0; 1; 1).

To avoid cumulative errors of approximation close to p = 0 leading to the
possible occurrence of negative values for p, the simulations were carried
out using a logarithmic transformation of p.3 All simulations were run over
50,000 time steps which appeared to be long enough to observe asymptotic
convergence to a steady state.

3We computed the simulations using a transformed system formed by Eqs. 19, 20, in which p is
replaced by ep. Further, Eq. 21 is transformed into:

˙(lnp) = (1 − ep)2 (WA − m(sxI + (1 − s)xB) − Wa)

ep(2 − ep) (WA − m(sxI + (1 − s)xB)) + (1 − ep)2Wa
.
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Fig. 3 Coevolution of N, s
and p, with N0 = K, p0 = 0.8,
and s0 = 0.25

As an illustration, Fig. 3 presents the behavior of the system, starting with
the following initial conditions: N0 = K, s0 = 0.25 and p0 = 0.8.

Under the chosen parameters, the coevolutionary system converges to the
steady state B. The intuition behind the simultaneous evolution of N, p and s
is as follows:

1. Between t = 0 and t � 1400. The pest population decreases sharply, since p
is initially large, and the pest population is negatively affected by pesticide
use. This can be observed in the upper graph of Fig. 3. This large drop in
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N occurs within the first 60 time steps.4 As soon as the size of the pest
population falls below N̄, s starts to increase progressively. Since there
are few farmers using the intensive strategy initially (s0 < s̄), no resistance
is created and the proportion of susceptible genes increases. This occurs
until t � 750. As s keeps on increasing and passes above s̄, resistance is
created in the system and p decreases, first gradually and then sharply. As
p decreases, pesticides become less efficient in killing pests and the pest
population recovers. At t � 1400, p gets very close to zero (without ever
reaching it5), while N reaches the carrying capacity.

2. Between t � 1400 and t � 3000. At about t � 1400, N exceeds N̄ and the
intensive strategy yields less than average profits. As a result, s decreases
progressively.

3. At t � 3000. As s passes below s̄, pesticides no longer create resistance
and p rises (see the logarithmic graph of p in Fig. 8 in Appendix 3). As p
increases, pesticides become efficient in killing pests and N falls sharply.
Nevertheless, N does not fall below N̄. Indeed, as s is then close to zero,
the drop in N is stopped and the pest population size converges to NB. In
the long-run, s converges asymptotically to zero, as πB remains larger than
πI . Only susceptible genes are left in the gene pool and p asymptotically
approaches 1.

Figure 4 shows the three-dimensional phase diagram of the system.6 Figure 5
describes the evolution of the profit differential (πI − πB) over time. This can
be analyzed in parallel with the evolution of N and s in the upper and lower
graph of Fig. 3. First, we observe a positive profit differential, implying that
πI > πB until about t � 1400. This corresponds to N smaller than N̄ in the
upper graph of Fig. 3, and to the gradual increase of s in the lower graph of
Fig. 3. The ranking of profits switches at around t � 1400 and, after this point,
the profit differential remains negative, i.e. πB remains larger than πI and s
converges to zero.

The speed at which each variable evolves deserves further explanation.

– The evolution of N depends on two forces: (1) the natural growth rate

of the pest population rN
(

1 − N
K

)
that augments the pest population, and

(2) the killing of pests by pesticide use, which is a function of p and s,
that reduces it. The rate at which pests are killed depends on the level of
resistance in the population. In other words, when p is large (small), the
number of pests killed is large (small). The quick drops and rises in N
are fully explained by the characteristics of the logistic equation. Indeed,
where N is near K, the natural growth rate of the population is close to

4This short-run drop cannot be well observed in Fig. 3 due to the presentation of coevolutionary
dynamics on a long-run horizon.
5The dynamic behavior of p close to p = 0 is best observed using the logarithmic transformation
as shown in Fig. 8 in Appendix 3.
6For illustration purposes, the axes of N and p are reversed.
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Fig. 4 Three-dimensional
phase diagram, with
N0 = 100, p0 = 0.8,
and s0 = 0.25

zero. When, at the same time, p is large, N will decrease sharply since the
killing of pests then far exceeds the natural growth rate. This explains the
two sharp declines in N observed just after t = 0 and t � 3,500. At both
points, p is large and N is near K. But, when N is much smaller than K,
then the natural growth rate of the pest population is close to rN, i.e. it
exhibits exponential growth, implying that the pest population replenishes
quickly. When, at the same time, resistance is large (p close to zero), then
the killing of pests by pesticide use is relatively low and the replenishment
of pests occurs faster than their killing. This explains the sharp rise in
N observed around t � 1,400. Finally, between t � 60 and t � 1,400, the
slow decrease in N is caused by the fact that the killing of pests is just
slightly larger than their natural growth rate. After t � 4,000, on the path

Fig. 5 Evolution of profits
differential over time, with
N0 = 100, p0 = 0.8, and
s0 = 0.25
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converging to the steady state B, the natural growth rate almost exactly
compensates the killing of pests, and, in the long run, N approaches the
equilibrium level NB.

– The evolution of p depends on the proportion of A genes present in the
population. As observed in the middle graph of Fig. 3, after t � 750, the
decline in p due to large pesticide use starts out rather flat but accelerates
as evolution progresses. This is because, at the beginning, the aa phenotype
is very rare and only a very small fraction of the population is being favored
by selection, all the rest being selected against. Nevertheless, as evolution
proceeds, more and more a genes are present in the gene pool and the
speed increases until p gets close to zero. The same mechanism explains
the increase in p observed around t � 3,500. At that point, A genes start
to be selected over a ones. As A genes are rare, evolution starts slowly but
accelerates sharply as these become more frequent in the gene pool.

– In comparison with N and p, the economic evolution of strategies follows a
gradual process. This is due to the specific functional form of the replicator
dynamics used. Indeed, the evolution of s is a function of s(1 − s), and
of the profit differential between πI and π̄ . The rate of change in s
therefore depends on the proportion of intensive strategies, as well as
on the proportion of biological ones. The role of (1 − s) explains that
economic evolution does not exhibit patterns of acceleration, as observed
for p. For instance, when s is very small and πI > πB, s will only increase
gradually. A possible interpretation of this gradual change is that, when
many agents use the biological strategy, there is a relatively low probability
of observing an intensive agent earning larger profits. In other words,
intensive agents are more difficult to detect in a population composed
mainly of biological farmers. This can be explained by the fact that agents
are boundedly-rational and only observe a limited set of agents, most likely
in their immediate neighborhood. Therefore, the speed of imitation of the
most profitable strategy will be rather slow.

In this illustration, economic and ecological phenomena evolve on the same
time-scale. Biological studies on pest resistance have shown that agricultural
pests and bacteria may exhibit very short reproductive cycles, thus leading to
biological evolution occuring very rapidly. Certain species of flies, for instance,
have evolved important resistance to insecticides within time scales of one
or two years. The potato wireworm evolved large-scale resistance after only
5 years of exposure (Georghiou 1980). Nevertheless, in most of the cases,
biological evolution will occur over much longer time scales than economic
evolution. Decoupling the time scales of economic and biological evolution
can be easily introduced in this model. For instance, multiplying the right-hand
side of Eq. 19 by a time-scale parameter would make it possible to control for
the speed of economic evolution. A large parameter would then imply that
economic evolution occurs much faster than biological evolution. A simpler
way to speed up economic evolution in comparison to biological evolution is to
decrease the parameter xB, so as to increase the difference (xI − xB) in Eq. 19.
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4.2 Stability properties of the steady states

4.2.1 Local stability results: linearization

In this section, we study the local stability properties of each steady state by
looking at the properties of the linearized system near the steady states, using
Jacobian analysis. This provides only partial information about the long-run
behavior of the system, but makes it possible to rule out stability for certain
steady states.

We evaluate numerically the eigenvalues of the Jacobian matrix with the
same set of parameters given above. The signs of the respective eigenvalues of
the Jacobian matrix and the resulting stability properties are given in Table 1.

The steady state E has one real eigenvalue and two eigenvalues that form
complex conjugates. All other equilibria exhibit only real eigenvalues. The
local stability theorem (Strogatz 1994; Hilborn 1994) states that the steady
state is locally asymptotically stable if all the eigenvalues of the respective
Jacobian matrix have negative real parts, or if at least two eigenvalues are
negative and one is zero. Local stability can thus be concluded for A and B,
but not for F and O4. Along the same lines, the steady state is unstable if all
eigenvalues are positive, or at least two are positive and one is zero. Therefore,
we can rule out stability for the steady states O1, F and O4.

Next, eigenvalues of opposite signs indicate that the steady state is a saddle
point. This is the case for the steady states C, D, E and O2. A saddle point
indicates that the stability of the steady state is conditional on initial conditions.
There exists a trajectory, such that this state can be reached. However, for
arbitrary initial conditions, this will only occur by chance.

Table 1 Local stability results

Steady states Signs of eigenvalues Singular points Stability result

λ1 λ2 λ3

A – – 0 Node Locally stable
B – – 0 Node Locally stable
C – – + Saddle point Stability depends

on initial conditions
D – + – Saddle point Stability depends on

initial conditions
E – Re(λ2) > 0 Re(λ3) > 0 Saddle point Stability depends on

initial conditions
F – + 0 Cannot be determined

by Jacobian analysis
O1 + + + Repellor Unstable
O2 – + – Saddle point Stability depends on

initial conditions
O3 + + 0 Repellor Unstable
O4 – + 0 Cannot be determined

by Jacobian analysis
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4.2.2 Global stability results: sensitivity analysis

To determine under which conditions the system converges (or not) to each
steady state, we run a sensitivity analysis for a wide range of initial conditions.
We let N0 vary between 5 and 100 in increasing steps of 5. Further, we let s0

and p0 vary between 0.05 and 0.95 in increasing steps of 0.05.
Some straightforward canonical cases can be briefly studied here. For s0 = 0

and under the chosen parameters, the coevolutionary system (Eqs. 19 – 21) will
converge to the steady state B. Next, for s0 = 1, the system converges to C.
Further, starting with p0 = 0, the system reaches D. Finally, for N0 = 0 the
system converges to O2.7

Only two types of steady state emerge out of the numerical experiments,
namely, B and C. B corresponds to a situation in which all agents use the
biological strategy, there is no resistance in the system, and the pest population
levels out at a large level, but remains below the carrying capacity. At B,
boundedly rational economic agents keep on using the biological strategy,
although pests could be efficiently killed by using larger levels of pesticides.
This behavior, however, make sense from an economic perspective, since using
larger amounts of pesticides, i.e. using an intensive strategy, is very costly,
as long as N is larger than N̄. At B, the biological strategy remains more
profitable than the intensive one, so farmers have no incentive to change
strategy.

The state C corresponds to a ‘degenerate’ steady state, in which all farmers
use the costly intensive pesticide strategy even though pesticides are ineffec-
tive, since all pests are resistant (p = 0). In our simulations, convergence to
C is observed in 7% of the simulation runs. Initial conditions leading to C
are irregularly scattered over the whole map of initial values. An example of
convergence to C is presented in Fig. 6.8

Convergence to C is caused by the fact that, under certain circumstances,
the adaptive response of ecological evolution is characterized by long delays.
In Fig. 6, N remains below N̄ for a long period of time, between about
t � 4,000 and t � 9,000. As a result, the share of intensive pesticide strategies
increases and eventually s reaches 1. As s passes above s̄, p starts to decrease.
Nevertheless, there exists a time lag between the evolution of strategies and
the consequence of this evolution on resistance. In Fig. 6, the sharp decrease
in p, causing N to jump to K, occurs too late to reverse economic evolution.
In fact, all farmers have already switched to the intensive strategy before the
effects on the ecological system become too important. In this case, since all

7The boundary cases N0 = K and p0 = 1 cannot be determined in a straightforward way. We
exclude the canonical cases s = 0, s = 1, p = 0, p = 1 from our simulations, since these imply that
both economic and genetic evolution are halted. Instead, we are interested in truly coevolutionary
dynamics.
8See the logarithmic graph of p in Fig. 9 in Appendix 3.
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Fig. 6 Convergence to C with
initial conditions N0 = 50,
p0 = 0.5, and s0 = 0.8

agents have adopted the same strategy, further economic evolution is stopped.
Ultimately, p will converge to zero, since s has reached its maximum value,
and N reaches K.

Remarkably, we did not observe the occurrence of the steady state A.
Local stability of A implies that starting close enough to A, the system will
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Fig. 7 Convergence to B with
initial conditions N0 = N̄,
s0 = s̄, and p0 = pE

asymptotically converge to it. It can be observed in Fig. 6 that the system is
close to A at about t � 8,000. Nevertheless, p is not close enough to pA = 1 for
convergence to occur. Further on, p will decrease, since s = 1, and the system
will jump to C.
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Initial conditions also affect the dynamics of the process. Indeed, starting
with initial conditions close to the steady state E, the system exhibits more
cycles before converging to B. An example is given in Fig. 7.9

In Fig. 7, in a first step the gradual motion of s remains close to the
threshold s̄, and will actually pass beyond it several times. Each of these
cycles reproduce the same patterns and phases described in Fig. 3. The cyclical
behavior gains amplitude over time, and eventually s approaches zero and the
system converges to B.

5 General implications for policy

What implications can be drawn from the analysis of the coevolutionary system
for agricultural pesticide use policy? When the policy objective is to avoid
resistance and reduce the number of pests, convergence to B is a desirable
result for policymakers. Indeed, at B, all pests are susceptible to pesticides and
the pest population size remains below the carrying capacity. Furthermore,
policy can control the level of xB, for instance, by means of pesticide quotas,
so as to affect the final level of the pest population. Indeed, a large xB reduces
the final level NB. However, setting xB too large reduces the threshold s̄ below
which resistance is reversed. For instance, setting xB such that WA − mxB =
Wa induces s̄ = 0. In this case, resistance is irreversible and the coevolutionary
system will always converge to D, in which s = 0, p = 0, and N = K, for
any initial level of pesticide use. This underscores the importance of critical
ecological thresholds. Policymakers must be aware of these thresholds when
implementing policy measures.

Another important result of our analysis is that coevolutionary systems
are characterized by nonlinearities and complexity that challenge the task of
policymakers. In some cases, the system may converge to a non-desirable state,
in which the pest population reaches the carrying capacity, all pests are resis-
tant and all farmers use the intensive strategy, which is costly and, moreover,
ineffective. Further, although convergence to such a degenerate state is not
frequent in our simulations, precisely identifying the initial conditions leading
to C is problematic, as they are irregularly scattered over the whole set of
possible initial values. Therefore, the management of coevolutionary systems
is complex and possible irreversible catastrophic scenarios may be caused by
the presence of delays between economic and ecological evolution.

An additional result of our analysis deals with the dynamic patterns of
the coevolutionary system. Starting with different initial conditions, diverse
trajectories are observed before convergence to a steady state. Certain tra-
jectories are characterized by important cyclical patterns. From an economic
perspective, there exist trajectories which are more desirable than others in

9See the logarithmic graph of p in Fig. 10 in Appendix 3.
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terms of net present value of total profits. For instance, the net present value
of total discounted profits at T = 30,000 in Fig. 3 is larger than the net present
value in Fig. 7.10 Numerous fluctuations of profits over time lead to lower total
discounted profits over time.

Finally, some general policy implications can be drawn from the study
of environment–economy coevolutionary systems. First, the coevolutionary
framework sheds light on the speed of selection patterns taking place in the
biological and economic worlds. Selection dynamics can occur fast and be
characterized by rapid bursts. In addition, biological selection is characterized
by rapid accelerations as the frequency of resistant genes become larger.
Understanding ecological dynamics and the role of ecological thresholds is of
crucial importance for policymakers.

Second, the cyclical behavior observed in our simulations presents some
similarities with policies based on rotation of pesticides or based on life cycles
of usefulness of pesticides (Georghiou et al. 1983; Comins 1984). These policies
take into account the possibility that, as soon as the use of a certain pesticide is
stopped, the pest population may recover its susceptibility. Such management
practices state that once a pesticide becomes ineffective in killing pests, its use
must be stopped and possibly replaced by less intensive treatments so that pests
can recover susceptibility. Later on, intensive pesticides can again be applied.
Similarly, our model promotes alternating between intensive and biological
pesticide strategies. Switching to the biological strategy allows for resistance to
decline and susceptibility to recovery.

The major innovation of our model is that such alternation in pesticide
strategies driven by micro-interactions between the agents is the direct result
of changing economic incentives created by ecological evolution. Boundedly
rational agents, having information about the pest population size only, have
incentives to switch to the biological strategy when the pest population is very
large as a result of increasing resistance. Nevertheless, regulation by a central
authority can play a great role in influencing some central variables and thus
in framing the context of interactions between the agents.

Third and most important, policies in the context of environment–economy
coevolution need to make use of the precautionary principle. While so far we
assumed that policymakers, unlike the agents, understand the role of biological
evolution, this is not necessarily true in reality. A myopic social planner may
not be able to foresee the consequences of evolutionary pressures and thus to
anticipate the final equilibrium. In such situations, lock-ins into a non-desirable
state may be avoided by policies of risk minimizing (Rammel and van den

10The net present value of total discounted profits is computed using:

N PV =
∫ T

0
m(sπI + (1 − s)πB)e−δdt

with δ = 0.05 as the discount rate. Starting with initial conditions as in Fig. 3, we get N PV = 1.07,
while, starting with initial conditions as in Fig. 7, N PV = 0.87.
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Bergh 2003), which are much in line with the precautionary principle. Such
policies involve exploiting the natural environment at a significantly lower
level than what is possible, for instance by limiting even further the total level
of pesticide use in the system.

6 Conclusions

The objective of this chapter has been to combine ecological and economic
evolution in a formal model of coevolution applied to the problem of pesticide
resistance management in agriculture. The interactions between economic
evolution of pesticide strategies, pest population dynamics and genetic evo-
lution of resistance of pests, have been studied in a system of three differential
equations.

Given the embedded complexity, the system loses analytical tractability and
must be studied using simulation techniques. Numerical illustrations presented
some exploratory insights into the dynamics and stability properties of coevo-
lutionary systems. In most of the numerical experiments, a desirable state is
achieved in the (very) long run. At that point, there is no resistance in the
system, the pest population size lies below the carrying capacity and all agents
use the most profitable biological strategy. Further, the analysis sheds light on
the types of dynamics observed in such systems, which are characterized by
cyclical behavior before convergence to a steady state. Genetic evolution oc-
curs quickly and is characterized by periods of rapid acceleration. In addition,
time lags between the different processes can have an impact on the final state
reached. Further, the model shows that complexity is an intrinsic element of
such systems. Indeed, it is often difficult to identify which initial conditions will
lead to an undesirable state. The presence of a few occurrences of degenerate
states shows that policymaking in coevolutionary systems is subject to great
complexity and possible irreversibilities.

Finally, policy implications have been discussed. A major implication is that
policymakers must acknowledge the role of important ecological thresholds.
Further, micro-interactions between the agents lead the system to exhibit
alternation of pesticide strategies, without the need of governmental interven-
tion. In this context, the role of policymakers consists in varying some critical
parameters to frame the complex interactions taking place in coevolutionary
systems. Further research is needed to complete the numerical investigation
of the system and to study in more detail the effects of the different parame-
ters on the dynamics and stability of the coevolutionary system. Ideally, the
model could be tested with some empirics on studies of pesticide resistance
management.
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Appendix 1 Solving the three-dimensional coevolution system

We solve the system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s = 0, s = 1, N = N̄ (25)

N = 0,
(

p(2 − p)rA + raq2
) (

1− N
K

)
= p(2− p)m(sxI +(1−s)xB) (26)

p = 0, p = 1, s = s̄ (27)

Substituting s = 1 in Eq. 26 gives:

N = K
(
rA p(2 − p) + raq2

) − xI Kmp(2 − p)(
rA p(2 − p) + raq2

) . (28)

Substituting for p = 1 in Eq. 28, we find the coordinates of the steady state A.
Similarly, substituting for s = 0 in Eq. 26, and then for p = 1 in the resulting
equation, gives us the coordinate of the steady state B. Substituting for p = 0
in Eq. 28, we find the coordinates of the steady states C and D with s = 1
and s = 0, respectively. Next, by substituting N = a

b(xI+xB)
− 1 into Eq. 26, we

obtain

(
rA p(2 − p) + raq2

) (
1 − a − b(xI + xB)

bK(xI + xB)

)
= p(2 − p)m(sxI + (1 − s)xB).

We then substitute Eq. 27 into the above expression:

(
rA p(2 − p) + raq2

) b(xI + xB)(K + 1) − a
b K(xI + xB)

= p(2 − p)(WA − Wa).

Observing that p(2 − p) = 1 − q2, we get:

rA + q2

1 − q2
ra = bK(xI + xB)(WA − Wa)

b(xI + xB)(K + 1) − a
.

We must solve the following equation:

[b(xI + xB)(K + 1) − a]q2ra = bK(xI + xB)(WA − Wa)

− q2bK(x1 + x2)(WA − Wa)

− rA[b(xI + xB)(K + 1) − a]
+ q2rA(bK(xI + xB)(K + 1) − a).
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Further, for ease of notation we will refer to u and v as:

u = [b(xI + xB)(K + 1) − a](ra − rA) + bK(xI + xB)(WA − Wa), (29)

v = bK(xI + xB)(WA − Wa) − rA[b(xI + xB)(K + 1) − a], (30)

so that we must solve the following equation:

uq2 = v.

Given that 0 ≤ p ≤ 1, there is only one solution:

p = 1 −
√

v

u
,

and combined with s = s̄, this gives us the coordinates of the steady state E.
Finally, we obtain the coordinates of the steady state F by setting N = N̄

and p = 1. Equation 26 then becomes:

rA
b(xI + xB)(K + 1) − a

bK(xI + xB)
= m(sxI + (1 − s)xB),

and we get

s = rA(b(xI + xB)(K + 1) − a) − xBbKm(xI + xB)

bKm
(
x2

I − x 2
B

) .

Appendix 2 Existence conditions for the steady-states

– Existence of the steady state A. A necessary condition for the existence of
the A-equilibrium is NA ≥ 0. This holds for:

rA ≥ mxI . (31)

– Existence of the steady state B. A necessary condition for the existence of
the A-equilibrium is NB ≥ 0. This holds for:

rA ≥ mxB. (32)
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– Existence of the steady states C and D. C and D always exist, since K > 0.
– Existence of the steady state E. NE ≥ 0 for a ≥ b(xI + xB). Next, the steady

state E exists if 0 ≤ pE ≤ 1. This, therefore, requires that the term under
the square root must be positive. This requires that u and v must both be
positive. This is realized whenever the following inequalities hold:

ra − rA ≤ bK(xI + xB)(WA − Wa)

b(xI + xB)(K + 1) − a
(33)

rA ≤ bK(xI + xB)(WA − Wa)

b(xI + xB)(K + 1) − a
. (34)

Next, pE ≥ 0 requires:

1 −
√

u
v

≥ 0

v ≤ u

ra[b(xI + xB)(K + 1) − a] ≥ 0

K ≥ a
b(xI + xB)

− 1. (35)

Further, pE ≤ 1 requires:

1 −
√

u
v

≤ 1

√
uv ≥ 0.

This last inequality is always true, so that pE is always inferior to 1.
The condition 0 ≤ sE ≤ 1 is satisfied if:

WA − Wa > mxB (36)

WA − Wa < mxI . (37)

– Existence conditions of the steady state F. NF ≥ 0 requires a ≥ b(xI + xB).
Next, 0 ≤ sF ≤ 1 is satisfied if:

rA ≥ xBbKm(xI + xB)

b(xI + xB)(K + 1) − a
(38)

rA ≤ xIbKm(xI + xB)

b(xI + xB)(K + 1) − a
. (39)
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Appendix 3 Logarithmic graphs of the evolution of p

Fig. 8 Evolution of ln(p)

in Fig. 3

Fig. 9 Evolution of ln(p)

in Fig. 6

Fig. 10 Evolution of ln(p)

in Fig. 7
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