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Abstract
Background: Recent advances in genome technologies have provided an excellent opportunity to
determine the complete biological characteristics of neoplastic tissues, resulting in improved
diagnosis and selection of treatment. To accomplish this objective, it is important to establish a
sophisticated algorithm that can deal with large quantities of data such as gene expression profiles
obtained by DNA microarray analysis.

Results: Previously, we developed the projective adaptive resonance theory (PART) filtering
method as a gene filtering method. This is one of the clustering methods that can select specific
genes for each subtype. In this study, we applied the PART filtering method to analyze microarray
data that were obtained from soft tissue sarcoma (STS) patients for the extraction of subtype-
specific genes. The performance of the filtering method was evaluated by comparison with other
widely used methods, such as signal-to-noise, significance analysis of microarrays, and nearest
shrunken centroids. In addition, various combinations of filtering and modeling methods were used
to extract essential subtype-specific genes. The combination of the PART filtering method and
boosting – the PART-BFCS method – showed the highest accuracy. Seven genes among the 15
genes that are frequently selected by this method – MIF, CYFIP2, HSPCB, TIMP3, LDHA, ABR, and
RGS3 – are known prognostic marker genes for other tumors. These genes are candidate marker
genes for the diagnosis of STS. Correlation analysis was performed to extract marker genes that
were not selected by PART-BFCS. Sixteen genes among those extracted are also known prognostic
marker genes for other tumors, and they could be candidate marker genes for the diagnosis of STS.

Conclusion: The procedure that consisted of two steps, such as the PART-BFCS and the
correlation analysis, was proposed. The results suggest that novel diagnostic and therapeutic
targets for STS can be extracted by a procedure that includes the PART filtering method.
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Background
Soft tissue sarcomas are a group of highly heterogeneous
tumors that exhibit a diverse spectrum of mesenchymal
differentiations. However, the molecular dissection of
tumor heterogeneity has been hampered by the relatively
low incidence of these tumors; approximately 3,800 cases
are reported annually in Japan. Significant differences
were observed in the five-year survival rates among the
subtypes of STS, e.g., 100% for well-differentiated liposar-
coma (WLS), 71% for synovial sarcoma (SS), 46% for ple-
omorphic malignant fibrous histiocytoma (MFH), and
92% for myxofibrosarcoma (MFS). The primary objective
of this study was to identify a set of marker genes that
facilitates accurate differential diagnosis of the sarcoma
subtypes. Discrimination between MFH and MFS, for
example, is particularly difficult because there is a histo-
logical overlap between the two. Information on such
subtype-specific genes may also help in understanding the
molecular pathways that are activated in each subtype of
the different biological malignancies.

Recent advances in DNA microarray analysis have enabled
the simultaneous evaluation of the expression levels of
several tens of thousands of genes, thereby offering a rich
source of information that is potentially useful in the
diagnosis and prognosis of diseases [1]. There are two
main methods of expression data analyses: unsupervised
learning methods and supervised learning methods. The
unsupervised learning methods, e.g., hierarchical cluster-
ing [2] and fuzzy adaptive resonance theory (Fuzzy ART)
[3], are designed to identify previously unrecognized
classes of disease based on their expression pattern; the
biological significance of such disease subtypes, such as
prognosis, is then assessed. In contrast, the supervised
learning methods use training sets to specify the genes
that should be clustered together [4]. However, to conduct
either unsupervised or supervised analysis, it is necessary
to select genes that have a strong correlation with the tar-
get phenotype, such as disease diagnosis or prognosis.
This is because the performance of classification analysis
can decline if a large number of genes as predictor varia-
bles are incorporated in the model.

Gene selection has been performed to screen candidate
genes for modeling. There are two types of approaches –
the wrapper approach and the filtering approach. In the
former approach, genes are selected as a part of mining
algorithms, such as k-nearest neighbor (kNN), multiple
regression analysis (MRA), weighted voting (WV) [5], sup-
port vector machines (SVM) [6], fuzzy neural network
(FNN) combined with SWEEP operator (FNN-SWEEP)
method [7], and boosted fuzzy classifier with SWEEP
operator (BFCS) method [8,9]. On the other hand, in the
latter approach, prior to the application of the mining
algorithms, genes are selected by filtering methods, such

as the Mann-Whitney U test, Student's t-test (Sttest),
Welch's t-test (Wttest), the signal-to-noise statistic (S2N)
[5], significance analysis of microarrays (SAM) [10], near-
est shrunken centroids (NSC) [11], and the projective
adaptive resonance theory (PART) filtering method [12].

In a previous study, we developed the PART filtering
method by modifying PART [13,14], and reported that
PART exhibited a higher performance than conventional
methods, such as S2N and NSC [12]. The combination
method of PART and BFCS (PART-BFCS) was developed
and applied to gene expression data, such as lymphoma
[15] and esophageal cancer [16]. In the present study, we
applied the various filtering methods to the gene expres-
sion profile data for the STS subtypes and constructed
SVM models using the filtered genes. The results showed
that the accuracy of the model based on the genes filtered
by PART was the highest. In addition, various wrapper
methods were applied to the genes that were filtered by
the different filtering methods to extract essential genes
for diagnosis. The models of the PART-BFCS method
among various combinations of filtering and wrapper
methods showed the highest accuracy, and 28 independ-
ent probes were extracted using this method. Seven genes
among the 15 probes that were frequently selected by this
method are known prognostic marker genes for other
tumors. These genes are candidate marker genes for STS.
Correlation analysis was performed for the 15 genes to
extract the subtype-specific genes that were not selected by
PART-BFCS. Sixteen genes among those extracted are also
known prognostic marker genes for other tumors, and
these could be candidate marker genes for STS.

Results and discussion
Clustering analysis for unfiltered data
Hierarchical clustering was applied to 35 patients and
12,241 unfiltered probes, as shown in Fig. 1. Figure 1
shows that patients were separated into three clusters –
two MFH clusters and a single MFS cluster. However, there
were seven MFS patients in the MFH clusters and three
MFH patients in the MFS cluster that were misclassified by
the clustering. On the basis of these results, various filter-
ing and wrapper methods were performed for a more
accurate separation of these patients.

Construction of SVM models by using filtered genes
To eliminate nonspecific genes for discriminating
between MFH and MFS, various filtering methods, such as
the U test, Sttest, Wttest, S2N, SAM, NSC, and PART were
applied to the modeling data set comprising 26 patients
and 12,241 probes; the performances were evaluated by
using prediction accuracies for the blind data. The top
1,000 genes selected by each filtering method were used
to construct the SVM models. The blind accuracies of
models for each method are shown in Table 1. Table 1
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shows that the accuracy of the SVM model using genes fil-
tered by PART, which was 88.8%, was the best in this
study. The accuracies of models using S2N or SAM
(77.7%) were the second highest. On the other hand, the
accuracy of the SVM model without filtering was 55.6%,
which was the lowest. Average accuracy of the models
with random selection was also 55.6%. These results sug-
gest that when constructing diagnostic models, it is neces-
sary to incorporate a filtering step; further, in this study,

the PART filtering method was found to give the most
accurate predictions.

Application of various combinations of filtering and 
wrapper methods
To extract essential subtype-specific genes for differentia-
tion between MFH and MFS, various wrapper methods
such as kNN, MRA, WV, SVM, FNN-SWEEP, and BFCS
were applied to the modeling data set comprising 26

Hierarchical clustering of STS patients by using 12,241 unfiltered probesFigure 1
Hierarchical clustering of STS patients by using 12,241 unfiltered probes.
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patients and 1,000 probes filtered by each filtering
method; the performances were evaluated by using the
prediction accuracies of the blind data. The genes selected
by each wrapper method were used in the models, and
numbers of inputs were optimized by cross-validation of
the modeling data set. The blind accuracies were calcu-
lated by using ten combination models that were con-
structed by PIM, as shown in Table 2. Table 2 shows that
the average accuracy of PART-BFCS was 81.1%, which was
the highest. There was a total of 80 probes in ten combi-
nations of 8-input models. Some probes were selected
several times. Among 80 probes, 28 were independent.
The average accuracies of the SAM-kNN and PART-SVM
methods, at 74.4% and 73.3%, were the second and third
best, respectively. These results imply that the combina-
tion of PART and BFCS is the most accurate method for
extraction of essential subtype-specific genes for STS.

Clustering analysis using genes extracted by PART-BFCS
Hierarchical clustering was applied to 35 patients and 28
probes selected by PART-BFCS, as shown in Fig. 2. Figure
2 shows that patients were separated into two clusters – an

MFH cluster and an MFS cluster. The results show that
there was a single MFS patient in the MFH cluster and
three MFH patients in the MFS cluster. These observations
suggest that misclassification of samples was reduced
using the genes that were extracted by the PART-BFCS
method and that essential genes could be extracted for the
diagnosis of STS subtypes.

Extraction of marker gene candidates by the correlation 
analysis
To extract the marker gene candidates unextracted by
PART-BFCS, the correlation analysis was applied to STS
data. Twenty-eight probes were extracted by PART-BFCS.
Fifteen probes among 28 ones were selected two times or
more. As shown in Table 3, a total of 150 probes, compris-
ing the top 10 probes having high correlation with the 15
probes, were extracted as marker gene candidates. Some
probes were selected several times. Thus, these probes
comprised 145 independent probes, which correspond to
126 independent genes. The performance of the 145
probes was confirmed by hierarchical clustering, as shown
in Fig. 3. Figure 3 shows that patients were separated into
two clusters – an MFH cluster and an MFS cluster. The
results show that there was two MFS patient in the MFH
cluster and four MFH patients in the MFS cluster. This
result was almost the same as Figure 2. This is, the genes
that have high performances, were extracted by using cor-
relation analysis.

Characteristics of the genes selected for the classification 
models and the genes highly correlated with them
Significant differences were observed in the five-year sur-
vival rates between MFH and MFS. Thus, it was expected
that prognostic marker genes would be extracted for the
discrimination of MFH and MFS. We investigated the
presence of previously reported prognostic marker genes
among the 15 probes (genes) selected frequently by PART-
BFCS among the 28 probes. Furthermore, 145 probes
which correspond to 126 independent genes, were inves-
tigated.

Table 2: Blind accuracies for various combinations of filtering and modeling methods

Filtering methods Wrapper methods

BFCS FNN SVM MRA kNN WV

PART 81.1 ± 14.1 (8) 64.4 ± 15.6 (3) 73.3 ± 5.4 (2) 60.0 ± 16.6 (11) 67.8 ± 16.8 (10) 56.7 ± 13.6(14)
NSC 68.9 ± 6.7 (5) 60.0 ± 12.4 (3) 62.2 ± 13.3 (3) 65.6 ± 9.2 (9) 68.9 ± 13.0 (3) 66.7 ± 9.9 (21)
S2N 68.9 ± 6.7 (15) 56.7 ± 16.1 (3) 61.1 ± 15.9 (3) 61.1 ± 14.3 (4) 63.3 ± 17.2 (4) 58.9 ± 12.2 (18)
SAM 71.1 ± 7.4 (12) 64.4 ± 12.0 (3) 67.8 ± 13.6 (3) 63.3 ± 12.2 (10) 74.4 ± 8.7 (7) 63.3 ± 11.2 (9)

Student's t-test 71.1 ± 5.4 (15) 53.3 ± 12.0 (4) 60.0 ± 10.2 (13) 58.9 ± 13.2 (5) 68.9 ± 8.3 (4) 60.0 ± 19.4 (26)
U-test 66.7 ± 9.9 (9) 56.7 ± 16.1 (3) 64.4 ± 13.0 (7) 54.4 ± 10.2 (7) 67.8 ± 11.6 (14) 62.2 ± 12.4 (1)

Welch's t-test 65.6 ± 10.5 (15) 55.6 ± 14.9 (3) 58.9 ± 8.7 (13) 53.3 ± 12.2 67.8 ± 10.5 65.6 ± 13.6 (12)
No filtering 68.9 ± 9.7 (10) 58.9 ± 10.0 (3) 66.7 ± 15.7 (2) 61.1 ± 13.4 (3) 55.6 ± 15.7 (3) 57.8 ± 17.1 (26)

Parenthesized values indicate the numbers of probes used in each model.

Table 1: Blind accuracies for the SVM models using different 
filtering methods

Filtering method Number of genes Accuracy (%) SVM model

PART 1000 88.9
NSC 1000 66.7
S2N 1000 77.8
SAM 1000 77.8
Student's t-test 1000 66.7
U-test 1000 66.7
Welch's t-test 1000 66.7
Random selection1 1000 55.6
No filtering 12241 55.6

1 The SVM model was constructed by using 1000 probes selected 
randomly. This process was repeated 1000 times. Average accuracies 
of 1000 SVM models were calculated.
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With regard to the genes selected directly by PART-BFCS,
seven genes among the 15 genes are reported to be prog-
nostic markers for other tumors. MIF promotes tumor
invasion and metastasis via the Rho dependent pathway,
reported by Sun et al. [17]. CYFIP2 (PIR121) is one of the
genes downregulated by p53, reported by Ceballos et al.
[18]. p53 is a well-known type of tumor suppressor gene.
HSPCB plays an important role in the assembly/disassem-
bly of tubulin by inhibiting tubulin polymerization,
reported by Man et al. [19]. Tubulin is a simple and useful
predictive marker for the clinical response to chemother-
apy in gastric cancer, reported by Urano et al. [20].
Reduced expression of TIMP3 in esophageal adenocarci-
noma is associated with increased tumour invasiveness
and reduced patient survival, reported by Darnton et al.
[21]. LDHA is a hypoxia-inducible gene and is associated

with considerably poorer overall survival, reported by Chi
et al. [22]. ABR is a regulator of the Rho GTP-binding pro-
tein family, reported by Chuang et al. [23]. The Rho path-
way is associated with tumor invasion and metastasis,
reported by Sun et al. [17]. RGS3 is associated with tumor
metastasis, reported by Tatenhorst et al. [24]. These find-
ings suggest that the genes extracted by the PART-BFCS
method are new marker genes for the STS subtypes.

With regard to the genes selected by correlation analysis,
sixteen genes among 126 genes are reported to be prog-
nostic markers for other tumors. The ADD3 protein
(adducinγ) belongs to a family of ubiquitously expressed
membrane-skeletal proteins that are localized at spectrin-
actin junctions, reported by van den Boom et al. [25]. In
renal carcinomas, changes in adducin expression, phos-

Hierarchical clustering of STS patients by using 28 genes selected by PART-BFCSFigure 2
Hierarchical clustering of STS patients by using 28 genes selected by PART-BFCS.
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Table 3: The genes selected by PART-BFCS and the genes having high correlation with them

Accession no. Gene name Times of 
selection

Top 10 high correlation genes

1 2 3 4 5 6 7 8 9 10

NM_002415 MIF 9 NIPSNAP1 
NM_003634 

(0.74)

DDT 
NM_001355 

(0.73)

PORIMIN 
BG538627 

(0.73)

NDUFA7 
NM_005001 

(0.71)

SNAP29 
NM_004782 

(0.71)

TSSC3 
AF001294 

(0.71)

MMP1 
NM_002421 

(0.71)

LSM1 
NM_014462 

(0.71)

DGCR14 
L77566 (0.71)

MRPL20 
NM_017971 

(0.69)
AB032261 SCD 8 SCD 

AA678241 
(0.94)

SMAP1 
NM_021940 

(0.74)

SCD 
BC005807 

(0.69)

NRBF-2 
AA883074 

(0.67)

INSIG1 
NM_005542 

(0.65)

FADS1 
AL512760 

(0.63)

VDAC2 
L08666 (0.63)

GLUD1 
NM_005271 

(0.62)

TFG 
NM_006070 

(0.62)

TFAP2A 
BF343007 

(0.61)
NM_016332 SEPX1 7 SIAH2 

U76248 
(0.81)

WHSC1 
BF111870 

(0.73)

KIAA0220 
AI424872 

(0.73)

BAIAP3 
AI799802 

(0.71)

TBC1D1 
AB029031 

(0.70)

FARSLA 
AD000092 

(0.70)

OPRS1 
NM_005866 

(0.70)

CTBP2 
N23018 
(0.70)

TCF3 
AW062341 

(0.69)

KCTD5 
NM_018992 

(0.68)
AL161999 CYFIP2 5 CRISPLD2 

AL136861 
(0.91)

NTF3 
NM_002527 

(0.90)

PRO1331 
NM_030778 

(0.89)

TNFSF11 
AF053712 

(0.88)

NTRK3 
S76476 (0.87)

SLC24A3 
NM_020689 

(0.86)

KCNIP1 
NM_014592 

(0.86)

CP 
NM_000096 

(0.86)

ARTN 
AF120274 

(0.86)

KIAA0523 
AB011095 

(0.86)
AI218219 HSPCB 5 HSPCB 

AF275719 
(0.89)

HSP105B 
NM_006644 

(0.84)

HSP105B 
BG403660 

(0.82)

FOXG1B 
NM_005249 

(0.81)

HSPD1 
BE256479 

(0.80)

TERA_ 
NM_021238 

(0.80)

DNAJB1 
BG537255 

(0.79)

HSPE1 
NM_002157 

(0.79)

FXR1 
AI990766 

(0.79)

NXT2 
AF201942 

(0.78)
AI811298 OSR2 5 OAZ 

AW149417 
(0.80)

FXYD1 
NM_005031 

(0.78)

FBLN2 
NM_001998 

(0.78)

PMP22 
L03203 (0.73)

KIAA0763 
AI652645 

(0.73)

TEKNM_000
459 (0.73)

KIAA0644 
NM_014817 

(0.72)

GAS7 
BE439987 

(0.71)

FLJ10159 
NM_018013 

(0.70)

WNT10B 
NM_003394 

(0.69)
U67195 TIMP3 5 TIMP3 

BF347089 
(0.91)

TIMP3 
AW338933 

(0.90)

IL6ST 
AW242916 

(0.88)

IL6ST 
NM_002184 

(0.88)

IL6ST 
AB015706 

(0.82)

HLA-DRB3 
AA807056 

(0.80)

TIMP3 
NM_000362 

(0.78)

IL6ST 
BE856546 

(0.76)

HAS1 
NM_001523 

(0.74)

C6orf133 
AB002347 

(0.74)
NM_020122 PCMF 4 NTPBP 

AB044661 
(0.85)

MGC10882 
BC004952 

(0.80)

C16orf34 
AK023154 

(0.77)

FKBP4 
NM_002014 

(0.77)

PFDN2 
NM_012394 

(0.76)

FKBP4 
AA894574 

(0.75)

LDLR 
NM_000527 

(0.75)

STIP1 
BE886580 

(0.74)

AHSA1 
NM_012111 

(0.74)

FXR1 
NM_005087 

(0.73)
NM_001998 FBLN2 4 GAS7 

NM_005890 
(0.86)

GAS7 
BE439987 

(0.86)

PMP22 
L03203 (0.85)

BMP1 
NM_006129 

(0.79)

OSR2 
AI811298 

(0.78)

KIAA0644 
NM_014817 

(0.77)

FXYD1 
NM_005031 

(0.77)

WNT10B 
NM_003394 

(0.74)

ZDHHC3 
NM_016598 

(0.73)

AHNAK 
BG287862 

(0.73)
NM_005566 LDHA 4 PLOD2 

NM_000935 
(0.74)

ALDOA 
AK026577 

(0.72)

ADM 
NM_001124 

(0.70)

PSMA1 
NM_002786 

(0.69)

ALDOA 
NM_000034 

(0.68)

VDAC1 
AL515918 

(0.68)

QSCN6 
NM_002826 

(0.67)

PKM2 
NM_002654 

(0.67)

PSG3 
BC005924 

(0.67)

TCP11L1 
NM_018393 

(0.67)
NM_005756 GPR64 3 ADD3 

NM_019903 
(0.81)

ADD3 
AI818488 

(0.79)

SLC4A4 
NM_003759 

(0.79)

ADD3 
AI763123 

(0.79)

ADD3 
BE545756 

(0.78)

CRYAB 
AF007162 

(0.78)

LRRC16 
NM_017640 

(0.77)

EYA2 U71207 
(0.74)

HSPB2 
NM_001541 

(0.71)

SPRY1 
BF508662 

(0.71)
AL136663 PLXNA1 2 PCBP2 

AW103422 
(0.70)

MGC5566 
NM_024049 

(0.63)

CLIC5 
NM_016929 

(0.63)

SMAD3 
NM_015400 

(0.62)

PTPRB 
NM_002837 

(0.62)

SMAD3 
BF971416 

(0.62)

ICAM2 
AA126728 

(0.62)

SEMA3G 
NM_020163 

(0.61)

KIAA0417 
AB007877 

(0.61)

EXT1 
NM_000127 

(0.60)
AL136663 ABR 2 RNMTL1 

NM_018146 
(0.72)

MFAP4 
R72286 (0.62)

ABR 
AL136663 

(0.61)

KIAA1085 
AU160676 

(0.61)

P2RX4 
NM_002560 

(0.61)

CYP2E 
AF182276 

(0.60)

LOC51031 
AF061730 

(0.60)

ZNF212 
NM_012256 

(0.59)

GSPT2 
NM_018094 

(0.59)

IDUA 
NM_000203 

(0.59)
AL527773 RARRES2 2 PANX1 

NM_015368 
(0.91)

CCT8 
NM_006585 

(0.89)

GART 
NM_000819 

(0.88)

ASMTL 
Y15521 (0.87)

ASMTL 
AA669799 

(0.87)

ASMTL 
BC002508 

(0.87)

SERPINB7 
NM_003784 

(0.85)

SERPINB3 
AB046400 

(0.84)

SERPINB4 
U19557 
(0.83)

ATP5O 
NM_001697 

(0.83)
NM_021106 RGS3 2 TDO2 

NM_005651 
(0.84)

MMP13 
NM_002427 

(0.81)

COL11A1 
NM_001854 

(0.80)

MMP9 
NM_004994 

(0.75)

COL11A1 
J04177 (0.74)

CLECSF5 
NM_013252 

(0.72)

HBA2 
T50399 (0.72)

SLC19A1 
AF004354 

(0.72)

MMP11 
AI761713 

(0.71)

MMP11 
NM_005940 

(0.71)
13 additional 

genes

The left hand side of the table shows the genes selected by PART-BFCS and the right hand side shows the genes correlated with them. Parenthesized values indicate correlation coefficients.
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phorylation state, and localization were found to be asso-
ciated with increased malignancy. In addition, the down-
regulation of adducin-γ expression is correlated with
increased migratory activity of human glioma cells in
vitro. The expression of COL11A1 in colorectal tumors
could be associated with the APC/β-catenin pathway in
familial adenomatous polyposis (FAP) and sporadic
colorectal cancer, reported by Fischer et al. [26]. Nuclear
accumulation of the beta-catenin protein is associated
with activation of the Wnt/Wg signaling pathway. Beta-
catenin status predicts a favorable outcome in childhood
medulloblastoma, reported by Ellison et al. [27]. SMAD3
is a component of the transforming growth factor-beta
(TGFβ), which is a potent regulator of growth, apoptosis,

and invasiveness of tumor cells, such as breast cancer cells,
reported by Dubrovska et al. [28]. TGFβ1/SMAD3 sup-
presses BRCA1-dependent DNA repair in response to
DNA damaging agents. GAS7, a growth arrest-specific
gene, is the partner gene of MLL in treatment-related acute
myeloid leukemia. MLL gene translocations can be
present early during anticancer treatment at low cumula-
tive doses of DNA topoisomerase II inhibitors, reported
by Megonigal et al.[29]. CD130 (IL6ST) expression is asso-
ciated with disease activity in multiple myeloma, reported
by Barille et al. [30]. MMP1 expression is correlated signif-
icantly with the evolution of lymph node status and
tumor-lymph node-metastasis (TNM) stage, reported by
Gouyer et al. [31]. Expression of MMP9 and MMP13 is

Hierarchical clustering of STS patients by using 145 probes having high correlation with the 15 probes selected by PART-BFCSFigure 3
Hierarchical clustering of STS patients by using 145 probes having high correlation with the 15 probes selected by PART-BFCS.
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positively associated with poor tumor cell differentiation,
vessel permeation, and lymph node metastasis, reported
by Gu et al. [32]. MMP11 (ST3) is associated with lymph
node involvement and tumor progression, reported by
Soni et al. [33]. TSSC3 is one of the genes related to apop-
tosis, reported by Muller et al. [34]. HSPB2 (HSP27) is
implicated in resistance to chemotherapy in breast cancer,
and also predicts a poor response to chemotherapy in
leukemia patients, reported by Ciocca and Calderwood
[35]. HSP105B is an alternatively spliced form of
HSP105A, reported by Yamagishi et al. [36]. HSP105A pre-
vents stress-induced apoptosis in neuronal PC12 cells,
and it is a novel anti-apoptotic neuroprotective factor in
the mammalian brain. An anti-ICAM2 monoclonal anti-
body induces immune-mediated regressions of ICAM2-
negative colon carcinomas, reported by Melero et al. [37].
HSPD1 is downregulated during early apoptosis of
hepatoma cells, reported by Lee et al. [38]. WNT10B is a
member of the WNT signaling molecules, which are
potent targets for the diagnosis of cancer (susceptibility,
metastasis, and prognosis) as well as for the prevention
and treatment of cancer, reported by Kirikoshi and
Katoh[39]. TEK is correlated with a higher risk of metas-
tases in node-negative patients, reported by Dales et al.
[40]. Thus, correlation analysis was performed to extract
the subtype-specific genes that were not selected by PART-
BFCS. These findings suggest that the genes having a high
correlation with those extracted by the PART-BFCS
method could also be new marker genes for the STS sub-
types, and that this fact gives greater confidence in the
accuracy of these potential maker genes selected directly
by PART-BFCS.

Conclusion
In this study, we applied the PART filtering method to STS
gene expression profiling data to construct subtype pre-
dictors for diagnosis. The results showed that the genes
selected by PART exhibited higher prediction accuracy for
STS than the other methods assessed. The genes selected
by PART-BFCS such as MIF, CYFIP2, HSPCB, TIMP3,
LDHA, ABR, and RGS3 can be used as targets for molecu-
lar diagnosis and treatment. In addition, the new candi-
date marker genes that were not extracted directly by
PART-BFCS, could be extracted by correlation analysis. We
believe that this procedure, the PART filtering method,
should be considered as one of the candidate analytical
procedures in various class prediction problems in clinical
and basic oncology using transcriptome data.

Methods
Microarray analysis
The gene expression profile data were obtained from 35
surgical specimens of STS – 20 pleomorphic malignant
fibrous histiocytomas (MFH) and 15 myxofibrosarcomas
(MFS). For RNA extraction, trained pathologists carefully

excised the tissue samples from the main tumor, leaving a
margin clear from the surrounding non-tumorous tissue.
Microscopically, the samples may still contain several
non-tumor cells such as infiltrating lymphocytes, tissue
macrophages, and vascular and lymphatic endothelial
cells. However, unlike carcinomas, it is difficult to elimi-
nate non-tumor stroma in case of soft tissue sarcomas;
therefore, laser microdissection was not performed in this
study. Total RNAs extracted from the bulk tissue samples
were biotin-labeled and hybridized to high-density oligo-
nucleotide microarrays (Affymetrix Human Genome
U133A 2.0 Array) comprising 22,283 probe sets repre-
senting 18,400 transcripts, according to the manufac-
turer's instructions. The scanned array data were processed
by Affymetrix Microarray Suite v.5.1, which scaled the
average intensity of all the genes on each array to the target
signal of 1,000.

Data processing
In this experiment, the data set was randomly partitioned
into two groups – 26 samples (15 MFH and 11 MFS) as a
modeling data set for constructing the subtype prediction
model (predictor) and nine samples (5 MFH and 4 MFS)
as a blind data set for evaluating the constructed predictor.
Validations were performed by comparing the accuracies
in the blind data set, instead of cross-validation accura-
cies, as reported by Bhasin and Raghava [41]. In the
present study, cross-validation was used to optimize vari-
ous parameters of the models for the modeling data.

In the 35 specimens, the probes that expressed at a signal
intensity of less than 1,000 were excluded as a preprocess
procedure prior to the application of various combina-
tions of filtering and modeling methods. It is empirically
difficult to reproduce the expression by RT-PCR for the
genes which have signal intensity of less than 1,000, when
their gene expression values were scaled to target signal of
1,000. Accordingly, 12,241 probes were selected. During
the gene filtering step, 1,000 probes were selected using
each filtering method. For each filtering method, SVM
models were constructed to differentiate between MFH
and MFS by using the filtered genes. In addition, various
wrapper methods were used to extract essential genes for
diagnosis; these are described in the following sections.

With regard to the wrapper methods, the parameter
increasing method (PIM) [42] was used to select input
combinations for model construction in the modeling
methods. To validate the performance of the models, 10
independent combination models were constructed. The
accuracy of the subtype prediction of the blind data was
also calculated as the average of 10 combination predic-
tors.
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Model construction with parameter selection
The PIM was used to select input combinations for the
construction of kNN, MRA, WV, SVM, and FNN-SWEEP
models. This was conducted as follows:

Firstly, we predicted the subtype of each sample by using
a prediction model with a single input. Prediction models
for each probe were constructed in a series, and all the
probes were ordered based on the accuracy of the con-
structed models. In the next step, the probe having the
highest accuracy was used for constructing a combination
model.

Secondly, we selected a partner probe for the probe
selected in the first step in order to increase the prediction
accuracy. To accomplish this, we constructed a 2-input
model in which a ranked probe was designated as input 1,
and input 2 (the partner probe) was selected to provide
the highest training accuracy; doing so, we applied FNN-
SWEEP (kNN, MRA, WV, SVM, or SVM) and PIM to the
modeling data. By repeating this step, a combination of
Nopt (optimized by leave-one-out cross-validation of the
modeling data) candidate probes was identified for use as
input probes in the model construction.

Finally, an Nopt input model was constructed. The probes
with the 1st to the 10th highest accuracies were used as the
first inputs for the construction of the 10 combination
models by PIM. The performance of the prediction mod-
els was evaluated by applying them to the blind data set.

Fuzzy neural network (FNN) combined with the SWEEP 
operator method (FNN-SWEEP)
The FNN-SWEEP method was also applied for model con-
struction. The FNN-SWEEP method was originally pro-
posed by Noguchi et al. [43] and modified by Ando et al.
[7] to manage microarray data. The FNN has three types
of weight parameters (wc, wg, and wf) [44]. For the FNN-
SWEEP method, only parameter wf was optimized by the
SWEEP operator method at the gene selection step. After
the input combinations were determined, FNN models
with selected input combinations were optimized using a
backpropagation algorithm at the model construction
step. For backpropagation, the number of epochs was set
to 5,000 and the learning rate was set to 0.1; these values
are the same as those reported by Ando et al. [7].

Support vector machine (SVM)
The SVM was originally proposed by Vapnik and Chervo-
nenkis [45] and is used to prevent the "curse of dimen-
sionality." The SVM is superior to many conventional
methods and is frequently used in bioinformatics. In the
present study, the SVM-LIGHT software package [46] was
used. This software was modified, and the PIM function
was added to select for a combination of inputs. The reg-

ulatory parameter c was the default value of SVM_LIGHT
((avg. (input vector)2)-1). A linear kernel was used because
a similar cross-validation accuracy of the model was
obtained for the modeling data set using various kernels.

Boosted fuzzy classifier with SWEEP operator (BFCS)
BFCS is a type of advanced AdaBoost algorithm [47]. The
BFCS algorithm has been described previously [8]. Briefly,
multiple single-input predictors were first constructed by
the FNN-SWEEP method. Then, BFCS was used to calcu-
late adequate weights for the weak predictors, and the
weighted weak predictors were assembled efficiently. As a
result, the integrated predictor could correctly classify as
many samples as possible by minimizing and smoothing
out the probability of making an error in each individual
sample.

k-nearest neighbor (kNN)
kNN methods are based on a distance function, such as the
Euclidean distance, for pairs of tumor samples. The kNN
proceeds as follows to classify blind data set observations
on the basis of the modeling data set. For each patient in
the blind data set, (a) it finds the k closest patients in the
modeling data set and (b) it predicts the class by majority
vote; that is, it chooses the class that is most common
among those k neighbors. The number of neighbors k was
chosen as three because a similar cross-validation accu-
racy of the model was obtained in the modeling data set
for various values of k.

Multiple regression analysis (MRA)
MRA is a conventional method of statistical analysis. The
MRA can be used to describe and evaluate the relationship
between the subtypes of tumor and gene expression. MRA
models were used to help us predict the subtypes of cancer
by using gene expression data.

Weighted voting (WV)
The WV method was originally proposed by Golub et al.
[5] to manage microarray data. The weights of each gene
were calculated by the signal-to-noise ratio. The linear
models of one gene were assembled with gene weight.

Hierarchical clustering analysis
Hierarchical clustering is widely used as one of the unsu-
pervised learning methods. This clustering method was
applied to the STS subtype analysis by using CLUSTER
software [2] for the cases of the 12,241 unfiltered probes
or the 28 probes selected by PART-BFCS. In this study,
hierarchical clustering was performed by using centroid-
linkage.

Correlation analysis
Correlation analysis was performed to extract the subtype-
specific genes of the STS that were not selected by PART-
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BFCS. Correlation coefficients for the 15 genes that were
selected two times or more by PART-BFCS were calculated
by Pearson's correlation coefficient.

Authors' contributions
HT developed the software, analyzed microarray data, and
wrote the manuscript. NE carried out experiment of
microarray. TY, HH, and TH conceived of the study, and
participated in its design and coordination. All authors
read and approved the final manuscript.

Acknowledgements
This work was supported in part by the Hori Information Science Promo-
tion Foundation and the Ministry of Education, Science, Sports and Culture, 
Grant in aid for JSPS Fellows, 18 6550, 2006 and by the program for pro-
motion of Fundamental Studies in Health Sciences of the National Institute 
of Biomedical Innovation (NiBio).

References
1. Kebriaei P, Anastasi J, Larson RA: Acute lymphoblastic leukae-

mia: diagnosis and classification.  Best Pract Res Clin Haematol
2002, 15(4):597-621.

2. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis
and display of genome-wide expression patterns.  Proc Natl
Acad Sci USA 1998, 95(25):14863-14868.

3. Tomida S, Hanai T, Honda H, Kobayashi T: Analysis of expression
profile using fuzzy adaptive resonance theory.  Bioinformatics
2002, 18(8):1073-1083.

4. Brown MPS, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS,
Ares MJ, Haussler D: Knowledge-based analysis of microarray
gene expression data by using support vector machines.  Proc
Natl Acad Sci USA 2000, 97(1):262-267.

5. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov
JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD,
Lander ES: Molecular classification of cancer: class discovery
and class prediction by gene expression monitoring.  Science
1999, 286(5439):531-537.

6. Guyon I, Weston J, Barnhill S, Vapnik V: Gene selection for cancer
classification using support vector machines.  Mach Learning
2002, 46:389-422.

7. Ando T, Suguro M, Hanai T, Kobayashi T, Honda H, Seto M: Fuzzy
neural network applied to gene expression profiling for pre-
dicting the prognosis of diffuse large B-cell lymphoma.  Jpn J
Cancer Res 2002, 93(11):1207-1212.

8. Takahashi H, Honda H: A new reliable cancer diagnosis method
using boosted fuzzy classifier with a SWEEP operator
method.  J Chem Eng Jpn 2005, 38(9):763-773.

9. Takahashi H, Honda H: Prediction of peptide binding to major
histocompatibility complex class II molecules through use of
boosted fuzzy classifier with SWEEP operator method.  J Bio-
sci Bioeng 2006, 101(2):137-141.

10. Tusher VG, Tibshirani R, Chu G: Significance analysis of micro-
arrays applied to the ionizing radiation response.  Proc Natl
Acad Sci USA 2001, 98(9):5116-5121.

11. Tibshirani R, Hastie T, Narasimhan B, Chu G: Diagnosis of multiple
cancer types by shrunken centroids of gene expression.  Proc
Natl Acad Sci USA 2002, 99(10):6567-6572.

12. Takahashi H, Kobayashi T, Honda H: Construction of robust
prognostic predictors by using projective adaptive reso-
nance theory as a gene filtering method.  Bioinformatics 2005,
21(2):179-186.

13. Cao Y, Wu J: Projective ART for clustering data sets in high
dimensional spaces.  Neural Netw 2002, 15(1):105-120.

14. Cao Y, Wu J: Dynamics of projective adaptive resonance the-
ory model: the foundation of PART algorithm.  IEEE Trans Neu-
ral Netw 2004, 15(2):245-260.

15. Takahashi H, Honda H: Lymphoma prognostication from
expression profiling using a combination method of boosting
and projective adaptive resonance theory.  J Chem Eng Jpn 2006,
39(7):767-771.

16. Takahashi H, Aoyagi K, Nakanishi Y, Sasaki H, Yoshida T, Honda H:
Classification of intramural metastases and lymph node
metastases of esophageal cancer from gene expression
based on boosting and projective adaptive resonance theory.
JBiosci Bioeng 2006, 102(1):46-52.

17. Sun B, Nishihira J, Yoshiki T, Kondo M, Sato Y, Sasaki F, Todo S: Mac-
rophage migration inhibitory factor promotes tumor inva-
sion and metastasis via the Rho-dependent pathway.  Clin
Cancer Res 2005, 11(3):1050-1058.

18. Ceballos E, Munoz-Alonso MJ, Berwanger B, Acosta JC, Hernandez R,
Krause M, Hartmann O, Eilers M, Leon J: Inhibitory effect of c-Myc
on p53-induced apoptosis in leukemia cells. Microarray anal-
ysis reveals defective induction of p53 target genes and
upregulation of chaperone genes.  Oncogene 2005,
24(28):4559-4571.

19. Man TK, Lu XY, Jaeweon K, Perlaky L, Harris CP, Shah S, Ladanyi M,
Gorlick R, Lau CC, Rao PH: Genome-wide array comparative
genomic hybridization analysis reveals distinct amplifica-
tions in osteosarcoma.  BMC Cancer 2004, 4:45.

20. Urano N, Fujiwara Y, Doki Y, Kim SJ, Miyoshi Y, Noguchi S, Miyata H,
Takiguchi S, Yasuda T, Yano M, Monden M: Clinical significance of
class III beta-tubulin expression and its predictive value for
resistance to docetaxel-based chemotherapy in gastric can-
cer.  Int J Oncol 2006, 28(2):375-381.

21. Darnton SJ, Hardie LJ, Muc RS, Wild CP, Casson AG: Tissue inhib-
itor of metalloproteinase-3 (TIMP-3) gene is methylated in
the development of esophageal adenocarcinoma: loss of
expression correlates with poor prognosis.  Int J Cancer 2005,
115(3):351-358.

22. Chi JT, Wang Z, Nuyten DS, Rodriguez EH, Schaner ME, Salim A,
Wang Y, Kristensen GB, Helland A, Borresen-Dale AL, Giaccia A,
Longaker MT, Hastie T, Yang GP, Vijver MJ, Brown PO: Gene
expression programs in response to hypoxia: cell type specif-
icity and prognostic significance in human cancers.  PLoS Med
2006, 3(3):e47.

23. Chuang TH, Xu X, Kaartinen V, Heisterkamp N, Groffen J, Bokoch
GM: Abr and Bcr are multifunctional regulators of the Rho
GTP-binding protein family.  Proc Natl Acad Sci USA 1995,
92(22):10282-10286.

24. Tatenhorst L, Senner V, Puttmann S, Paulus W: Regulators of G-
protein signaling 3 and 4 (RGS3, RGS4) are associated with
glioma cell motility.  J Neuropathol Exp Neurol 2004,
63(3):210-222.

25. van den Boom J, Wolter M, Kuick R, Misek DE, Youkilis AS, Wechsler
DS, Sommer C, Reifenberger G, Hanash SM: Characterization of
gene expression profiles associated with glioma progression
using oligonucleotide-based microarray analysis and real-
time reverse transcription-polymerase chain reaction.  Am J
Pathol 2003, 163(3):1033-1043.

26. Fischer H, Salahshor S, Stenling R, Bjork J, Lindmark G, Iselius L, Rubio
C, Lindblom A: COL11A1 in FAP polyps and in sporadic color-
ectal tumors.  BMC Cancer 2001, 1:17.

27. Ellison DW, Onilude OE, Lindsey JC, Lusher ME, Weston CL, Taylor
RE, Pearson AD, Clifford SC: beta-Catenin status predicts a
favorable outcome in childhood medulloblastoma: the
United Kingdom Children's Cancer Study Group Brain
Tumour Committee.  J Clin Oncol 2005, 23(31):7951-7957.

28. Dubrovska A, Kanamoto T, Lomnytska M, Heldin CH, Volodko N,
Souchelnytskyi S: TGFbeta1/Smad3 counteracts BRCA1-
dependent repair of DNA damage.  Oncogene 2005,
24(14):2289-2297.

29. Megonigal MD, Cheung NK, Rappaport EF, Nowell PC, Wilson RB,
Jones DH, Addya K, Leonard DG, Kushner BH, Williams TM, Lange
BJ, Felix CA: Detection of leukemia-associated MLL-GAS7
translocation early during chemotherapy with DNA topoi-
somerase II inhibitors.  Proc Natl Acad Sci USA 2000,
97(6):2814-2819.

30. Barille S, Thabard W, Robillard N, Moreau P, Pineau D, Harousseau
JL, Bataille R, Amiot M: CD130 rather than CD126 expression is
associated with disease activity in multiple myeloma.  Br J
Haematol 1999, 106(2):532-535.

31. Gouyer V, Conti M, Devos P, Zerimech F, Copin MC, Creme E,
Wurtz A, Porte H, Huet G: Tissue inhibitor of metalloprotein-
ase 1 is an independent predictor of prognosis in patients
with nonsmall cell lung carcinoma who undergo resection
with curative intent.  Cancer 2005, 103(8):1676-1684.
Page 10 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12617866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12617866
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12176830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12176830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10618406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10618406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12460461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12460461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12460461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16569609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16569609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16569609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11309499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11309499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12011421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12011421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15308545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15308545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15308545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11958483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11958483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15384518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15384518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15709171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15709171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15709171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15856024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15856024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15856024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15298715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15298715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15298715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16391792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16391792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16391792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15688381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15688381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15688381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16417408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16417408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16417408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7479768
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7479768
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15055445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15055445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15055445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12937144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12937144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12937144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11707154
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11707154
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16258095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16258095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16258095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15735739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15735739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10706619
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10706619
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10706619
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10460618
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10460618
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15754326
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15754326
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15754326


BMC Bioinformatics 2006, 7:399 http://www.biomedcentral.com/1471-2105/7/399
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

32. Gu ZD, Li JY, Li M, Gu J, Shi XT, Ke Y, Chen KN: Matrix metallo-
proteinases expression correlates with survival in patients
with esophageal squamous cell carcinoma.  Am J Gastroenterol
2005, 100(8):1835-1843.

33. Soni S, Mathur M, Shukla NK, Deo SV, Ralhan R: Stromelysin-3
expression is an early event in human oral tumorigenesis.  Int
J Cancer 2003, 107(2):309-316.

34. Muller S, van den Boom D, Zirkel D, Koster H, Berthold F, Schwab
M, Westphal M, Zumkeller W: Retention of imprinting of the
human apoptosis-related gene TSSC3 in human brain
tumors.  Hum Mol Genet 2000, 9(5):757-763.

35. Ciocca DR, Calderwood SK: Heat shock proteins in cancer:
diagnostic, prognostic, predictive, and treatment implica-
tions.  Cell Stress Chaperones 2005, 10(2):86-103.

36. Yamagishi N, Saito Y, Ishihara K, Hatayama T: Enhancement of oxi-
dative stress-induced apoptosis by Hsp105alpha in mouse
embryonal F9 cells.  Eur J Biochem 2002, 269(16):4143-4151.

37. Melero I, Gabari I, Corbi AL, Relloso M, Mazzolini G, Schmitz V, Rod-
riguez-Calvillo M, Tirapu I, Camafeita E, Albar JP, Prieto J: An anti-
ICAM-2 (CD102) monoclonal antibody induces immune-
mediated regressions of transplanted ICAM-2-negative
colon carcinomas.  Cancer Res 2002, 62(11):3167-3174.

38. Lee SM, Li ML, Tse YC, Leung SC, Lee MM, Tsui SK, Fung KP, Lee CY,
Waye MM: Paeoniae Radix, a Chinese herbal extract, inhibit
hepatoma cells growth by inducing apoptosis in a p53 inde-
pendent pathway.  Life Sci 2002, 71(19):2267-2277.

39. Kirikoshi H, Katoh M: Expression of WNT7A in human normal
tissues and cancer, and regulation of WNT7A and WNT7B
in human cancer.  Int J Oncol 2002, 21(4):895-900.

40. Dales JP, Garcia S, Carpentier S, Andrac L, Ramuz O, Lavaut MN, Alla-
sia C, Bonnier P, Charpin C: Long-term prognostic significance
of neoangiogenesis in breast carcinomas: comparison of Tie-
2/Tek, CD105, and CD31 immunocytochemical expression.
Hum Pathol 2004, 35(2):176-183.

41. Bhasin M, Raghava GP: SVM based method for predicting HLA-
DRB1*0401 binding peptides in an antigen sequence.  Bioinfor-
matics 2004, 20(3):421-423.

42. Noguchi H, Hanai T, Takahashi W, Ichii T, Tanikawa M, Masuoka S,
Honda H, Kobayashi T: Model construction for quality of beer
and brewing process using FNN. (in Japanese).  Kagaku Kogaku
Ronbunshu 1999, 25: :695-701.

43. Noguchi H, Hanai T, Honda H, Harrison LC, Kobayashi T: Fuzzy
neural network-based prediction of the motif for MHC class
II binding peptides.  J Biosci Bioeng 2001, 92(3):227-231.

44. Horikawa S, Furuhashi T, Uchikawa Y: On fuzzy modeling using
fuzzy neural networks with the back-propagation algorithm.
IEEE T Neural Networ 1992, 3(5):801-806.

45. Vapnik VN, Chervonenkis A: A note on one class of perceptrons.
Automat Rem Control 1964, 25:821-837.

46. Joachims T: Making large-scale SVM learning practical.  In
Advances in Kernel Methods - Support Vector Learning Edited by:
Scholkopf B, Burges C, Smola A. Cambridge , MIT Press; 1999. 

47. Freund Y, Schapire RE: A decision-theoretic generalization of
online learning and an application to boosting.  J Comput System
Sci 1997, 55:119-139.
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16086722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16086722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16086722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12949813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12949813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10749982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10749982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10749982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16038406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16038406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16038406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12180991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12180991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12180991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12036930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12036930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12036930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12215374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12215374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12215374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12239632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12239632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12239632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14991534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14991534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16233088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16233088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16233088
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Clustering analysis for unfiltered data
	Construction of SVM models by using filtered genes
	Application of various combinations of filtering and wrapper methods
	Clustering analysis using genes extracted by PART-BFCS
	Extraction of marker gene candidates by the correlation analysis
	Characteristics of the genes selected for the classification models and the genes highly correlated with them

	Conclusion
	Methods
	Microarray analysis
	Data processing
	Model construction with parameter selection
	Fuzzy neural network (FNN) combined with the SWEEP operator method (FNN-SWEEP)
	Support vector machine (SVM)
	Boosted fuzzy classifier with SWEEP operator (BFCS)
	k-nearest neighbor (kNN)
	Multiple regression analysis (MRA)
	Weighted voting (WV)
	Hierarchical clustering analysis
	Correlation analysis

	Authors' contributions
	Acknowledgements
	References

