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Abstract

Protein timing is a popular dietary strategy designed to optimize the adaptive response to exercise. The strategy
involves consuming protein in and around a training session in an effort to facilitate muscular repair and
remodeling, and thereby enhance post-exercise strength- and hypertrophy-related adaptations. Despite the appar-
ent biological plausibility of the strategy, however, the effectiveness of protein timing in chronic training studies has
been decidedly mixed. The purpose of this paper therefore was to conduct a multi-level meta-regression of ran-
domized controlled trials to determine whether protein timing is a viable strategy for enhancing post-exercise mus-
cular adaptations. The strength analysis comprised 478 subjects and 96 ESs, nested within 41 treatment or control
groups and 20 studies. The hypertrophy analysis comprised 525 subjects and 132 ESs, nested with 47 treatment or
control groups and 23 studies. A simple pooled analysis of protein timing without controlling for covariates showed
a small to moderate effect on muscle hypertrophy with no significant effect found on muscle strength. In the full
meta-regression model controlling for all covariates, however, no significant differences were found between treat-
ment and control for strength or hypertrophy. The reduced model was not significantly different from the full
model for either strength or hypertrophy. With respect to hypertrophy, total protein intake was the strongest pre-
dictor of ES magnitude. These results refute the commonly held belief that the timing of protein intake in and
around a training session is critical to muscular adaptations and indicate that consuming adequate protein in com-
bination with resistance exercise is the key factor for maximizing muscle protein accretion.
Background
Protein timing is a popular dietary strategy designed to
optimize the adaptive response to exercise [1]. The strat-
egy involves consuming protein in and around a training
session in an effort to facilitate muscular repair and re-
modeling, and thereby enhance post-exercise strength-
and hypertrophy-related adaptations [2]. It is generally
accepted that protein should be consumed just before
and/or immediately following a training session to take
maximum advantage of a limited anabolic window [3].
Proponents of the strategy claim that, when properly ex-
ecuted, precise intake of protein in the peri-workout
period can augment increases in fat-free mass [4]. Some
researchers have even put forth the notion that the
timing of food intake may have a greater positive
effect on body composition than absolute daily nutri-
ent consumption [5].
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A number of studies support the superiority of protein
timing for stimulating increases in acute protein synthe-
sis pursuant to resistance training when compared to
placebo [6-9]. Protein is deemed to be the critical nutri-
ent required for optimizing post-exercise protein synthe-
sis. The essential amino acids, in particular, are believed
primarily responsible for enhancing this response, with
little to no contribution seen from provision of non-
essential amino acids [10,11]. Borsheim et al. [10] found
that a 6 g dose of essential amino acids (EAAs) con-
sumed immediately post-exercise produced an approxi-
mate twofold increase in net protein balance compared
to a comparable dose containing an approximately equal
mixture of essential and non-essential amino acids, indi-
cating a dose–response relationship up to 6 g EAAs.
However, increasing EAA intake beyond this amount
has not been shown to significantly heighten post-
exercise protein synthesis [2]. There is limited evidence
that carbohydrate has an additive effect on enhancing
post-exercise muscle protein synthesis when combined
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with amino acid ingestion [12], with a majority of studies
failing to demonstrate any such benefit [13-15].
Despite the apparent biological plausibility of the strat-

egy, the effectiveness of protein timing in chronic train-
ing studies has been decidedly mixed. While some
studies have shown that consumption of protein in the
peri-workout period promotes increases in muscle
strength and/or hypertrophy [16-19], others have not
[20-22]. In a review of literature, Aragon and Schoenfeld
[23] concluded that there is a lack of evidence to support
a narrow “anabolic window of opportunity” whereby
protein need to be consumed in immediate proximity to
the exercise bout to maximize muscular adaptations.
However, these conclusions were at least in part a reflec-
tion of methodological issues in the current research.
One issue in particular is that studies to date have
employed small sample sizes. Thus, it is possible that
null findings may be attributable to these studies being
underpowered, resulting in a type II error. In addition,
various confounders including the amount of EAA sup-
plementation, matching of protein intake, training status,
and variations in age and gender between studies make
it difficult to draw definitive conclusions on the topic.
Thus, by increasing statistical power and controlling for
confounding variables, a meta-analysis may help to pro-
vide clarity as to whether protein timing confers poten-
tial benefits in post-exercise skeletal muscle adaptations.
A recent meta-analysis by Cermak et al. [24] found

that protein supplementation, when combined with regi-
mented resistance training, enhances gains in strength
and muscle mass in both young and elderly adults. How-
ever, this analysis did not specifically investigate protein
timing per se. Rather, inclusion criteria encompassed all
resistance training studies in which at least one group
consumed a protein supplement or modified higher pro-
tein diet. The purpose of this paper therefore is to con-
duct a meta-analysis to determine whether timing
protein near the resistance training bout is a viable strat-
egy for enhancing muscular adaptations.

Methodology
Inclusion criteria
Only randomized controlled trials or randomized cross-
over trials involving protein timing were considered for
inclusion. Protein timing was defined here as a study
where at least one treatment group consumed a mini-
mum of 6 g essential amino acids (EAAs) ≤ 1 hour pre-
and/or post-resistance exercise and at least one control
group did not consume protein < 2 hours pre- and/or
post-resistance exercise. Resistance training protocols
had to span at least 6 weeks and directly measure dy-
namic muscle strength and/or hypertrophy as a primary
outcome variable. There were no restrictions for age,
gender, training status, or matching of protein intake,
but these variables were controlled via subgroup analysis
using meta-regression.

Search strategy
To carry out this review, English-language literature
searches of the PubMed and Google Scholar databases
were conducted for all time periods up to March 2013.
Combinations of the following keywords were used as
search terms: “nutrient timing”; “protein supplementa-
tion”; “nutritional supplementation”; “protein supple-
ment”; “nutritional supplement”; “resistance exercise”;
“resistance training”; “strength training”. Consistent with
methods outlined by Greenhalgh and Peacock [25], the
reference lists of articles retrieved in the search were
then screened for any additional articles that had rele-
vance to the topic. Abstracts from conferences, reviews,
and unpublished dissertations/theses were excluded
from analysis. A total of 34 studies were identified as po-
tentially relevant to this review. To reduce the potential
for selection bias, each of these studies were independ-
ently perused by two of the investigators (BJS and AAA),
and a mutual decision was made as to whether or not
they met basic inclusion criteria. Study quality was then
assessed with the PEDro scale, which has been shown to
be a valid measure of the methodologic quality of RCTs
[26] and possesses acceptable inter-rater reliability [27].
Only those studies scoring ≥5 on the PEDro scale–a
value considered to be of moderate to high quality [27]-
were accepted for analysis. Any inter-reviewer disagree-
ments were settled by consensus and/or consultation
with the third investigator. Initial pre-screening revealed
29 potential studies that investigated nutrient timing
with respect to muscular adaptations. Of these studies, 3
did not meet criteria for sufficient supplemental protein
intake [28-30] and in another the timing of consumption
was outside the defined post-workout range [31]. Thus,
a total of 25 studies ultimately were deemed suitable for
inclusion. Two of the studies were subsequently ex-
cluded because they did not contain sufficient data for
calculating an effect size and attempts to obtain this in-
formation from the authors were unsuccessful [19,32],
leaving a total 23 studies suitable for analysis. The aver-
age PEDro score of these studies was 8.7, indicating an
overall high level of methodological quality. Table 1
summarizes the studies meeting inclusion criteria.

Coding of studies
Studies were read and individually coded by two of the
investigators (BJS and AAA) for the following variables:
Descriptive information of subjects by group including
gender, body mass, training status (trained subjects were
defined as those with at least one year resistance training
experience), age, and stratified subject age (classified as
either young [18–49 years] or elderly [50+ years];



Table 1 Summary of studies meeting inclusion criteria

Study Subjects Supplementation Protein
matched
with
control?

Anthropometric
and/or body
composition
assessment
method

Training protocol Strength results Body composition
results

Antonio
et al., [33]

19 untrained
young
women

18.3 g EAA or an
equal dose of
cellullose placebo
taken (collectively)
20 minutes pre and
post-exercise

No DXA Periodized
progressive
resistance training
consisting of
exercises for all
major muscle
groups performed
3 days/wk for 6 wks

Total weight lifted
at the 12 RM
intensity did not
significantly change
in either group

No significant body
composition
changes occurred in
either group

Goddard
et al., [34]

17 untrained
older men
(60–80 y)

12 g of essential
amino acids and
72 g (total) of
fructose and
dextrose consumed
immediately after
exercise

No Computed
tomography (CT).

Progressive
resistance training
consisting of knee
extensions
preformed 3 days/
wk for 12 wks

Training produced a
significant increase
in 1RM strength and
measures of
maximal torque, no
differences between
groups

No significant
differences in
muscle CSA increase
between groups

Rankin
et al., [35]

13 untrained
young men

Chocolate milk
(providing a protein
dose of 0.21 g/kg)
or a CHO-electrolyte
beverage (Gatorade)
immediately after
exercise

No Dual X-ray absorp-
tiometry (DXA) and
multiple upper &
lower body circum-
ference
measurements

Periodized
progressive
resistance training
consisting of
exercises for all
major muscle
groups performed
3 days/wk for 10
wks

1 RM strength
increased in all
exercises, with no
significant difference
between groups

No significant
differences in fat
reduction, mean
mass gain, or
circumference
changes between
groups

Andersen
et al., [36]

22 untrained
young men

25 g protein
(combination of
whey, casein, egg
white, and
glutamine) or 25 g
maltodextrin
immediately before
and after exercise

No Muscle biopsy Periodized
progressive
resistance training
consisting of lower
body exercises
performed 3 days/
wk for 14 wks

Squat jump height
increased only in
the protein group,
whereas
countermovement
jump height and
peak torque during
slow isokinetic
muscle contraction
increased similarly in
both groups.

The protein group
showed hypertrophy
of type I & II muscle
fibers, whereas no
significant change
occurred in the CHO
group

Bird et al.,
[37]

32 untrained
young men

6 g EAA or 6% CHO
solution + 6 g EAA
or placebo during
exercise

No DXA and muscle
biopsy

Progressive
resistance training
consisting of
exercises for all
major muscle
groups performed
2 days/wk for 12
wks

Training caused a
significant increase
in 1RM in the leg
press similarly in
both treatment
groups compared to
placebo, isokinetic
strength increased
in all groups, with
no differences
between groups

CHO + EAA showed
greater gains in fat-
free mass compared
to placebo, fat mass
decreased in all
groups without any
significant difference
between groups

Coburn
et al., [38]

33 untrained
young men

20 g whey + 6.2 g
leucine or 26.2 g
maltodextrin
30 minutes prior to
and immediately
after exercise

No Magnetic
resonance imaging
(MRI)

Progressive
resistance training
consisting of knee
extensions
performed 3 days/
wk for 8 wks

Significantly greater
1 RM strength
increase in the
trained limb in the
protein group
compared to
placebo

No significant body
composition
changes occurred in
any of the groups,
CSA increases did
not differ between
the protein and
placebo groups

Candow,
Burke, et al.,
[39]

27 untrained
young men
& women

Whey (1.2 g/kg) +
sucrose (0.3 g/kg) or
placebo (1.2 g/kg
maltodextrin +
0.3 g/kg sucrose)

No DXA Progressive,
periodized
resistance training
consisting of
exercises for all
major muscle

1 RM strength
increases in the
squat and bench
press were
significantly greater
in the protein

Lean mass increase
was significantly
greater in the
protein groups than
placebo
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Table 1 Summary of studies meeting inclusion criteria (Continued)

groups performed
4 days/wk for 6 wks

groups than
placebo

Note that only the
soy treatment was
excluded from
analysis.

Candow,
Chilibeck,
et al., [40]

29 untrained
older men

Multi-ingredient
supplement
containing a protein
dose of 0.3 g/kg
immediately before
exercise and a CHO-
based placebo im-
mediately after, or
the reverse order of
the latter, or pla-
cebo before & after
exercise

No Air-displacement
plethysmography,
ultrasound

Progressive
resistance training
consisting of
exercises for all
major muscle
groups performed
3 days/wk for 12
wks

1 RM strength
increases in the leg
press & bench press
occurred in all
groups, no
significant
differences between
groups

Lean mass and
muscle thickness
increased in all
groups, no
significant difference
between groups

Cribb and
Hayes, [16]

23 young
recreational
male
bodybuilders

1 g/kg of a
supplement
containing 40 g
whey isolate, 43 g
glucose, and 7 g
creatine
monohydrate
consumed either
immediately before
and after exercise or
in the early morning
and late evening

Yes DXA and muscle
biopsy

Progressive
resistance training
consisting of
exercises for all
major muscle
groups performed
3 days/wk for 10
wks

Immediate pre-post
supplementation
caused greater in-
creases in 1-RM in 2
out of 3 exercises

Significant increases
in lean body mass
and muscle CSA of
type II fibers in
immediate vs.
delayed
supplementation

Hartman
et al., [41]

56 untrained
young men

17.5 g protein
within milk or a soy
beverage, or CHO
control immediately
after exercise and
again 1 hr after
exercise

No DXA and muscle
biopsy

Progressive
resistance training
consisting of
exercises for all
major muscle
groups performed
5 days/wk for 12
wks

All groups
experienced 1RM
strength gains, but
no between-group
differences were
seen

Type II muscle fiber
area increased in all
groups, but with
greater increases in
the milk group than
in the soy and
control groups, fat-
free mass increased
to a greater extent
in the milk group
compared to the
soy & control
groups

Note that only the
soy treatment was
excluded from
analysis.

Hoffman
et al., [42]

21 well-
trained
young men

42 g protein within
a multi-ingredient
supplement or a
CHO placebo taken
once in the morn-
ing and again after
training

No DXA Progressive,
periodized
resistance training
consisting of
exercises for all
major muscle
groups performed
4 days/wk for 12
wks

1 RM bench press
strength (but not
squat strength)
significantly
increased in the
protein group, while
no measures of
strength increased
in the placebo
group

No significant
between-group or
absolute changes in
body composition
occurred

Willoughby
et al., [17]

19 untrained
young men

20 g whey-
dominant protein or
20 g dextrose con-
sumed 1 hour be-
fore and after
exercise

No Hydrostatic
weighing, muscle
biopsy, surface
measurements

Progressive
resistance training
consisting of
exercise for all
major muscle
groups performed
4 days/wk for 10
wks

Protein
supplementation
caused greater
increases in relative
strength (maximal
strength corrected
for bodyweight) in
bench press & leg
press

Significant increase
in total body mass,
fat-free mass, and
thigh mass with pro-
tein vs. carb
supplementation

Eliot et al.,
[43]

42 untrained
older men

35 g whey protein
+ CHO-electrolyte
solution, or whey/
CHO + 5 g creatine,
or creatine-only, or
CHO placebo

No DXA and
bioelectrical
impedance

Progressive
resistance training
consisting of
exercise for all
major muscle
groups performed

Not measured No significant
effects of any of the
whey and/or
creatine treatments
were seen beyond
body composition
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Table 1 Summary of studies meeting inclusion criteria (Continued)

3 days/wk for 14
wks

changes caused by
training alone

Note that creatine
treatments were
excluded from
analysis

Mielke
et al., [44]

39 untrained
young men

20 g whey protein
+ 6.2 g of leucine or
20 g maltodextrin
30 minutes before
and immediately
after exercise

No Hydrodensitometry, Dynamic constant
external resistance
(DCER) bilateral leg
extension and
bench press
exercises were
performed 3 days/
wk for 8 wks.

1 RM strength
increased
significantly in both
groups without any
between-group
differences

No significant
training-induced
changes in body
composition in ei-
ther group,

Verdijk
et al., [21]

28 untrained
elderly men

10 g casein
hydrolysate or
placebo consumed
immediately before
and after exercise

No DXA, CT, and
muscle biopsy

Progressive
resistance training
consisting leg press
and knee extension
performed 3 days/
wk for 12 wks

1 RM leg press & leg
extension strength
increased, with no
significant difference
between groups

No significant
differences in
muscle CSA increase
between groups

Hoffman
et al., [20]

33 well-
trained
young men

Supplement
containing 42 g
protein (milk/
collagen blend) and
2 g carbohydrate
consumed either
immediately before
and after exercise or
in the early morning
and late evening

Yes DXA Progressive
resistance training
consisting exercises
for the major
muscle groups
peformed 4 days/
wk for 10 wks.

1 RM & 5 RM bench
press & squat
strength increased,
with no significant
difference between
groups

No significant
differences in total
body mass or lean
body mass between
groups.

Hulmi et al.,
[18]

31 untrained
young men

15 g whey isolate or
placebo consumed
immediately before
and after exercise

No MRI, muscle biopsy Progressive,
periodized total
body resistance
training consisting
of exercises for all
major muscle
groups trained
performed 2 days/
wk for 21 wks

Strength increased
similarly in the
protein & placebo
group, but only the
protein group
increased isometric
leg extension
strength vs the
control group

Significant increase
in CSA of the vastus
lateralis but not of
the other
quadriceps muscles
in the protein group
vs placebo

Josse et al.,
[45]

20 untrained
young
women

18 g protein within
milk or an isocaloric
maltodextrin
placebo
immediately after
exercise and again
1 hr later

No DXA Progressive,
periodized
resistance training
consisting of
exercises for all
major muscle
groups performed
5 days/wk for 12
wks

1 RM strength
increased similarly in
both groups, but
milk significantly
outperformed
placebo in the
bench press

Lean mass increased
in both groups but
to a significantly
greater degree in
the milk group, fat
mass decreased in
the milk group only

Walker
et al., [46]

30
moderately
trained men
and women

19.7 g of whey
protein and 6.2 g
leucine or isocaloric
CHO placebo 30–
45 minutes before
exercising and the
second packet 30–
45 minutes after
exercising.

No DXA Bodyweight-based
exercises and
running at least
3 days/wk,
externally loaded
training not
specified

1 RM bench press
strength increased
significantly in the
protein group only

Total mass, fat-free
mass, and lean body
mass increased sig-
nificantly in the pro-
tein group only

Vieillevoye
et al., [47]

29 untrained
young men

15 g EAA + 15 g
saccharose. or 30 g
saccharose
consumed with
breakfast and
immediately after
exercise

No Ultrasonography, 3-
site skinfold assess-
ment with calipers,
3-site circumfer-
ence
measurements

Progressive,
periodized
resistance training
consisting of
exercises for all
major muscle
groups performed
2 days/wk for 12
wks

Maximal strength
significantly
increased in both
groups, with no
between-group
diffrerence

Muscle mass
significantly
increased in both
groups with no
differences between
groups, muscle
thickness of the
gastrocnemius
medialis significantly
increased in the EAA
group only
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Table 1 Summary of studies meeting inclusion criteria (Continued)

Wycherly
et al., [22]

34
untrained,
older men &
women w/
type 2
diabetes

21 g protein, 0.7 g
fat, 29.6 g
carbohydrate
consumed either
immediately prior
to, or at least 2 h
following exercise

Yes DXA, waist
circumference

Progressive
resistance training
consisting of
exercises for all
major muscle
groups performed
3 days/wk for 16
wks

Not measured Fat mass, fat-free
mass, and waist cir-
cumference de-
creased with no
significant differ-
ences between
groups

Erskine
et al., [48]

33 untrained
young men

20 g whey protein
or placebo
consumed
immediately before
and after exercise

No MRI 4-6 sets of elbow
flexion performed
3 days/wk for
12 weeks

No significant
differences in
maximal isometric
voluntary force or 1
RM strength
between groups

No significant
differences in
muscle CSA
between groups

Weisgarber
et al., [49]

17 untrained
young men
and women

Whey protein dosed
at 0.3 g/kg or
isocaloric CHO
immediately before,
during, and after
exercise

No DXA and
ultrasound

Progressive
resistance training
consisting of
exercises for all
major muscle
groups performed
4 days/wk for 8 wks

1 RM strength in
the chest press
increased in both
groups without any
between-group
difference

Significant increases
in muscle mass
were seen without
any difference
between groups

Schoenfeld et al. Journal of the International Society of Sports Nutrition 2013, 10:53 Page 6 of 13
http://www.jissn.com/content/10/1/53
whether or not total daily protein intake between groups
was matched; whether the study was an RCT or cross-
over design; the number of subjects in each group;
blinding (classified as single, double, or unblinded); dur-
ation of the study; type of hypertrophy measurement
(MRI, CT, ultrasound, biopsy, etc.) and region/muscle of
body measured, if applicable; lean body mass measure-
ment (i.e. DXA, hydrostatic weighing, etc.), if applicable,
and; strength exercise (s) employed for testing, if applic-
able. Coding was cross-checked between coders, and any
discrepancies were resolved by mutual consensus. To as-
sess potential coder drift, 5 studies were randomly selected
for recoding as described by Cooper et al. [50]. Per case
agreement was determined by dividing the number of vari-
ables coded the same by the total number of variables. Ac-
ceptance required a mean agreement of 0.90.

Calculation of effect size
For each 1-RM strength or hypertrophy outcome, an ef-
fect size (ES) was calculated as the pretest-posttest
change, divided by the pretest standard deviation (SD)
[51]. The sampling variance for each ES was estimated
according to Morris and DeShon [51]. Calculation of the
sampling variance required an estimate of the population
ES, and the pretest-posttest correlation for each individ-
ual ES. The population ES was estimated by calculating
the mean ES across all studies and treatment groups
[51]. The pretest-posttest correlation was calculated
using the following formula [51]:

r ¼ s1
2 þ s2

2−sD2
� �

= 2 s1s2ð Þ

where s1 and s2 are the SD for the pre- and posttest
means, respectively, and sD is the SD of the difference
scores. Where s2 was not reported, s1 was used in its
place. Where sD was not reported, it was estimated using
the following formula [52]:

sD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s12=nð Þ þ s22=nð Þð Þ

p

Statistical analyses
Meta-analyses were performed using hierarchical linear
mixed models, modeling the variation between studies
as a random effect, the variation between treatment and
control groups as a random effect nested within studies,
and group-level predictors as fixed effects [53]. The
within-group variances were assumed known. Observa-
tions were weighted by the inverse of the sampling vari-
ance [51]. An intercept-only model was created,
estimating the weighted mean ES across all studies and
treatment groups. Second, a basic model was created
which only included the class of the group (treatment or
control) as a predictor. A full model was then created
with the following predictors: the class of the group
(treatment or control), whether or not the groups were
protein matched, training status (experienced or novice),
blinding (double, single, or none), gender (male, female,
or mixed), age (young or old), body mass in kg, and the
duration of the study in weeks. The full model was then
reduced by removing one predictor at a time, starting
with the most insignificant predictor [54]. The final
model represented the reduced model with the lowest
Akaike’s Information Corrected Criterion (AICC) [55]
and that was not significantly different (P > 0.05) from
the full model when compared using a likelihood ratio
test (LRT). Model parameters were estimated by the
method of restricted maximum likelihood (REML) [56];
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an exception was during the model reduction process, in
which parameters were estimated by the method of
maximum likelihood (ML), as LRTs cannot be used to
compare nested models with REML estimates. Denom-
inator df for statistical tests and CIs were calculated ac-
cording to Berkey et al. [57]. The treatment/control
classification variable was not removed during the model
reduction process.
Separate analyses were performed for strength and

hypertrophy. ESs for both changes in cross-sectional
area (CSA) and FFM were pooled in the hypertrophy
analysis. However, because resistance exercise is associ-
ated with the accretion of non-muscle tissue, separate
sub-analyses on CSA and FFM were performed. Because
the effect of protein timing might interact with whether
the treatment and control groups were matched for total
protein intake, an additional model was created that in-
cluded an interaction term between the treatment/con-
trol classification variable and the protein match
variable. Also, because the effect of protein timing might
vary by training experience, a model was created that in-
cluded an interaction term between the treatment/con-
trol classification variable and the training status
variable. Adjustment for post hoc multiple comparisons
was performed using a simulation-based procedure [58].
All analyses were performed using SAS Enterprise Guide
Version 4.2 (Cary, NC). Effects were considered signifi-
cant at P ≤ 0.05. Data are reported as means (±SEs) and
95% CIs.
Figure 1 Impact of protein timing on strength by study.
Results
Study characteristics
The strength analysis comprised 478 subjects and 96
ESs, nested within 41 treatment or control groups and
20 studies. The weighted mean strength ES across all
studies and groups was 1.39 ± 0.24 (CI: 0.88, 1.90). The
hypertrophy analysis comprised 525 subjects and 132
ESs, nested with 47 treatment or control groups and 23
studies. The weighted mean hypertrophy ES across all
studies and groups was 0.47 ± 0.08 (CI: 0.31, 0.63).

Basic model
There was no significant difference between the treat-
ment and control for strength (difference = 0.38 ± 0.36;
CI: -0.34, 1.10; P = 0.30). The mean strength ES differ-
ence between treatment and control for each individual
study, along with the overall weighted mean difference
across all studies, is shown in Figure 1. For hypertrophy,
the mean ES was significantly greater in the treatment
compared to the control (difference = 0.24 ± 0.10; CI:
0.04, 0.44; P = 0.02). The mean hypertrophy ES differ-
ence between treatment and control for each individual
study, along with the overall weighted mean difference
across all studies, is shown in Figure 2.

Full model
In the full meta-regression model controlling for all co-
variates, there was no significant difference between the
treatment and control for strength (difference = 0.28 ±



Figure 2 Impact of protein timing on hypertrophy by study.
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0.40; CI: -0.52, 1.07; P = 0.49) or hypertrophy (difference
=0.16 ± 0.11; CI: -0.07, 0.38; P = 0.18).

Reduced model: strength
After the model reduction procedure, only training
status and blinding remained as significant covariates.
The reduced model was not significantly different
from the full model (P = 0.73). In the reduced model,
there was no significant difference between the treat-
ment and control (difference = 0.39 ± 0.36; CI: -0.34,
1.11; P = 0.29). The mean ES for control was 0.93 ±
0.31 (CI: 0.32, 1.54). The mean ES for treatment was
1.31 ± 0.30 (CI: 0.71, 1.92).

Reduced model: hypertrophy
After the model reduction procedure, total protein in-
take, study duration, and blinding remained as signifi-
cant covariates. The reduced model was not significantly
different from the full model (P = 0.87). In the reduced
model, there was no significant difference between the
treatment and control (difference = 0.14 ± 0.11; CI: -0.07,
0.35; P = 0.20). The mean ES for control was 0.36 ± 0.09
(CI: 0.18, 0.53). The mean ES for treatment was 0.49 ±
0.08 (CI: 0.33, 0.66). Total protein intake (in g/kg) was
the strongest predictor of ES magnitude (estimate = 0.41
± 0.14; CI: 0.14, 0.69; P = 0.004).
To confirm that total protein intake was mediator

variable in the relationship between protein timing and
hypertrophy, a model with only total protein intake as a
covariate was created. The difference between treatment
and control was not significant (difference = 0.14 ± 0.11;
CI: -0.07, 0.35,; P = 0.19). Total protein intake was a sig-
nificant predictor of ES magnitude (estimate = 0.39 ±
0.15; CI: 0.08, 0.69; P = 0.01). Figure 3 shows the total
protein intake-adjusted ES’s for each study, as well as
the overall effect from the meta-regression with only
total protein intake as a covariate.

Interactions
For strength, the interaction between treatment and
training status was nearly significant (P = 0.051), but post
hoc comparisons between treatment and control within
each training status classification were not significant
(adjusted P = 0.47 for difference within non-experienced
groups, and adjusted P = 0.99 for difference within expe-
rienced groups). There was no significant interaction
between treatment and whether groups were protein
matched (P = 0.43). For hypertrophy, there was no
significant interaction between treatment and training
status (P = 0.63) or treatment and protein matching
(P = 0.59).

Hypertrophy sub-analyses
Separating the hypertrophy analysis into CSA or FFM
did not materially alter the outcomes. For FFM, there
was no significant difference between treatment and
control (difference = 0.08 ± 0.07; CI: -0.07, 0.24; P = 0.27).
Total protein intake remained a strong predictor of ES



Figure 3 Impact of protein timing on hypertrophy by study, adjusted for total protein intake.
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magnitude (estimate = 0.39 ± 0.07; CI: 0.25, 0.53; P <
0.001). For CSA, there was no significant difference be-
tween treatment and control (difference = 0.14 ± 0.16;
CI: -0.17, 0.46; P = 0.37). Total protein intake was again
a predictor of ES magnitude (estimate = 0.55 ± 0.24; CI:
0.08, 1.20; P = 0.02).

Discussion
This is the first meta-analysis to directly investigate the
effects of protein timing on strength and hypertrophic
adaptations following long-term resistance training pro-
tocols. The study produced several novel findings. A
simple pooled analysis of protein timing without con-
trolling for covariates showed a significant effect on
muscle hypertrophy (ES = 0.24 ± 0.10) with no significant
effect found on muscle strength. It is generally accepted
that an effect size of 0.2 is small, 0.5 is moderate, and
0.8 and above is a large, indicating that the effect of pro-
tein timing on gains in lean body mass were small to
moderate. However, an expanded regression analysis
found that any positive effects associated with protein
timing on muscle protein accretion disappeared after
controlling for covariates. Moreover, sub-analysis
showed that discrepancies in total protein intake ex-
plained the majority of hypertrophic differences noted in
timing studies. When taken together, these results would
seem to refute the commonly held belief that the timing
of protein intake in the immediate pre- and post-
workout period is critical to muscular adaptations [3-5].
Perceived hypertrophic benefits seen in timing studies
appear to be the result of an increased consumption of
protein as opposed to temporal factors. In our reduced
model, the amount of protein consumed was highly and
significantly associated with hypertrophic gains. In fact,
the reduced model revealed that total protein intake was
by far the most important predictor of hypertrophy ES,
with a ~0.2 increase in ES noted for every 0.5 g/kg in-
crease in protein ingestion. While there is undoubtedly
an upper threshold to this correlation, these findings
underscore the importance of consuming higher
amounts of protein when the goal is to maximize
exercise-induced increases in muscle mass. Conversely,
total protein intake did not have an impact on strength
outcomes and ultimately was factored out during the
model reduction process.
The Recommended Dietary Allowance (RDA) for pro-

tein is 0.8 g/kg/day. However, these values are based on
the needs of sedentary individuals and are intended to
represent a level of intake necessary to replace losses
and hence avert deficiency; they do not reflect the re-
quirements of hard training individuals seeking to in-
crease lean mass. Studies do in fact show that those
participating in intensive resistance training programs
need significantly more protein to remain in a non-
negative nitrogen balance. Position stands from multiple
scientific bodies estimate these requirements to be ap-
proximately double that of the RDA [59,60]. Higher
levels of protein consumption appear to be particularly
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important during the early stages of intense resistance
training. Lemon et al. [61] displayed that novice body-
builders required a protein intake of 1.6-1.7 g/kg/day to
remain in a non-negative nitrogen balance. The in-
creased protein requirements in novice subjects have
been attributed to changes in muscle protein synthetic
rate and the need to sustain greater lean mass rather
than increased fuel utilization [62]. There is some evi-
dence that protein requirements actually decrease
slightly to approximately 1.4 g/kg/day in well-trained in-
dividuals because of a greater efficiency in dietary nitro-
gen utilization [63], although this hypothesis needs
further study.
The average protein intake for controls in the un-

matched studies was 1.33 g/kg/day while average intake
for treatment was 1.66 g/kg/day. Since a preponderance
of these studies involved untrained subjects, it seems
probable that a majority of any gains in muscle mass
would have been due to higher protein consumption by
the treatment group. These findings are consistent with
those of Cermak et al. [24], who found that protein sup-
plementation alone produced beneficial adaptations
when combined with resistance training. The study by
Cermak et al. [24] did not evaluate any effects regarding
timing of intake, however, so our results directly lend
support to the theory that meeting target protein re-
quirements is paramount with respect to exercise-
induced muscle protein accretion; immediate intake of
dietary protein pre and/or post-workout would at best
appear to be a minor consideration. The findings also
support previous recommendations that a protein con-
sumption of at least 1.6 g/kg/day is necessary to
maximize muscle protein accretion in individuals in-
volved in resistance training programs [61].
For the matched studies, protein intake averaged

1.91 g/kg/day versus 1.81 g/kg/day for treatment and
controls, respectively. This level of intake for both
groups meets or exceeds suggested guidelines, allow-
ing for a fair evaluation of temporal effects. Only 3
studies that employed matched protein intake met in-
clusion criteria for this analysis, however. Interest-
ingly, 2 of the 3 showed no benefits from timing.
Moreover, another matched study actually found sig-
nificantly greater increases in strength and lean body
mass from a time-divided protein dose (i.e. morning
and evening) compared with the same dose provided
around the resistance training session [19]. However,
this study had to be excluded from our analysis be-
cause it lacked adequate data to calculate an ES. The
sum results of the matched-protein studies suggest
that timing is superfluous provided adequate protein
is ingested, although the small number of studies
limits the ability to draw firm conclusions on the
matter.
This meta-analysis had a number of strengths. For
one, the quality of studies evaluated was high, with an
average PEDro score of 8.7. Also, the sample was rela-
tively large (23 trials encompassing 478 subjects for
strength outcomes and 525 subjects for hypertrophy
outcomes), affording good statistical power. In addition,
strict inclusion/exclusion criteria were employed to re-
duce the potential for bias. Combined, these factors pro-
vide good confidence in the ability draw relevant
inferences from findings. Another strength was the rigid
adherence to proper coding practices. Coding was car-
ried out by two of the investigators (BJS and AAA) and
then cross-checked between coders. Coder drift was
then assessed by random selection of studies to further
ensure consistency of data. Finally and importantly, the
study benefited from the use of meta-regression. This
afforded the ability to examine the impact of moderator
variables on effect size and explain heterogenecity be-
tween studies [64]. Although initial findings indicated an
advantage conferred by protein timing, meta-regression
revealed that results were confounded by discrepancies
in consumption. This ultimately led to the determination
that total protein intake rather than temporal factors ex-
plained any perceived benefits.
There are several limitations to this analysis that

should be taken into consideration when drawing
evidence-based conclusions. First, timing of the meals in
the control groups varied significantly from study to
study. Some provided protein as soon as 2 hours post
workout while others delayed consumption for many
hours. A recent review by Aragon and Schoenfeld [23]
postulated that the anabolic window of opportunity may
be as long as 4–6 hours around a training session, de-
pending on the size and composition of the meal. Be-
cause the timing of intake in controls were all treated
similarly in this meta-analysis, it is difficult to determine
whether a clear anabolic window exists for protein con-
sumption beyond which muscular adaptations suffer.
Second, the majority of studies evaluated subjects who

were inexperienced with resistance exercise. It is well-
established that highly trained individuals respond differ-
ently to the demands of resistance training compared
with those who lack training experience [65]. In part,
this is attributed to a “ceiling effect” whereby gains in
muscle mass become progressively more difficult as a
trainee gets closer to his genetic hypertrophic potential.
There also is emerging evidence showing that regimen-
ted resistance exercise attenuates anabolic intracellular
signaling in rodents [66] and humans [67], conceivably
diminishing the hypertrophic response. Our sub-analysis
failed to show an interaction effect between resistance
training status and protein timing for either strength or
hypertrophy. However, statistical power was low because
only 4 studies using trained subjects met inclusion
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criteria. Future research should therefore focus on deter-
mining the effects of protein timing on muscular adapta-
tions in those with at least 1 year or more of regular,
consistent resistance training experience.
Third, in an effort to keep our sample size sufficiently

large, we pooled CSA and FFM data to determine hyper-
trophy ES. FFM is frequently used as a proxy for hyper-
trophy, as it is generally assumed that the vast majority
of the gains in fat free mass from resistance training are
myocellular in nature. Nevertheless, resistance exercise
also is associated with the accretion of non-muscle tissue
as well (i.e. bone, connective tissue, etc.). To account for
any potential discrepancies in this regard, we performed
sub-analyses on CSA and FFM alone and the results
essentially did not change. For FFM, the difference
between treatment and control was not significant
(P = 0.27), with a ES difference of −0.08. Protein intake
again was highly significant, with an ES impact of ~0.2
per every 1 g/kg/day. For CSA, the difference between
treatment and control was not significant (P = 0.37), with
a ES difference of −0.14. Protein intake was again signifi-
cant (P = 0.02) with an ES impact of ~0.33 per every
0.5 g/kg.
Finally and importantly, there was a paucity of timing

studies that attempted to match protein intake. As previ-
ously discussed, our results show that total protein in-
take is strongly and positively associated with post-
exercise gains in muscle hypertrophy. Future studies
should seek to control for this variable so that the true
effects of timing, if any, can be accurately assessed.

Practical applications
In conclusion, current evidence does not appear to sup-
port the claim that immediate (≤ 1 hour) consumption
of protein pre- and/or post-workout significantly en-
hances strength- or hypertrophic-related adaptations to
resistance exercise. The results of this meta-analysis in-
dicate that if a peri-workout anabolic window of oppor-
tunity does in fact exist, the window for protein
consumption would appear to be greater than one-hour
before and after a resistance training session. Any posi-
tive effects noted in timing studies were found to be due
to an increased protein intake rather than the temporal
aspects of consumption, but a lack of matched studies
makes it difficult to draw firm conclusions in this regard.
The fact that protein consumption in non-supplemented
subjects was below generally recommended intake for
those involved in resistance training lends credence to
this finding. Since causality cannot be directly drawn
from our analysis, however, we must acknowledge the
possibility that protein timing was in fact responsible for
producing a positive effect and that the associated in-
crease in protein intake is merely coincidental. Future
research should seek to control for protein intake so that
the true value regarding nutrient timing can be properly
evaluated. Particular focus should be placed on carrying
out these studies with well-trained subjects to better de-
termine whether resistance training experience plays a
role in the response.
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