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1 Introduction

Gravitational tensor hierarchies are a common feature of supergravity compactifications

resulting from the reduction of component p-forms in the higher-dimensional component

spectrum that are charged under the higher-dimensional superdiffeomorphisms [1–3]. Upon

compactification, some of the components of the gravitino generally become massive but

leave behind massless non-abelian gauge fields from mixed components of the frame and

their superpartners. What remains is a hierarchy of differential forms of various spacetime

degrees, all charged under the residual diffeomorphisms compatible with the splitting of

the compactified spacetime. Further decoupling this structure from the lower-dimensional

supergravity fields, one is left with a hierarchy of p-forms charged under the (non-abelian)

gauge algebra of diffeomorphisms of the internal manifold.

This gauged p-form hierarchy may be abstracted away from its gravitational avatar

by replacing the algebra of diffeomorphisms with an arbitrary Lie algebra g and assigning

to each gauge p-form a representation ρp : g → GL(Vp). Consistency of the resulting

“non-abelian tensor hierarchy” requires a complicated set of identities to hold between

the Lie algebra, its representations, and a collection of maps relating the forms of various

degrees [4, 5]. Attempts at interpreting this structure algebro-geometrically suggest that

they are strongly homotopy Lie algebras [6, 7].

Here, we take a somewhat different approach more closely related to the gravitational

tensor hierarchy [8–12] in which the conditions on the couplings of the theory come from two

requirements. The first set of conditions results from closure of the gauge algebra induced

on the tower of p-forms by the representations ρp. Roughly speaking, this set says that the

induced action of the gauge algebra on the tower of forms is g-covariant. The second set

of conditions comes from requiring the existence of gauge-covariant field strengths for all

fields in the tower. This defines the tower as a differential complex and defines an extension

of the Lie derivative (naturally defined on p-foms) to this gauged complex. We refer to

these two sets of conditions as the hierarchy equations. Taken together, our gravitationally-

motivated version of the non-abelian tensor hierarchy is a g-equivariant double complex

constructed from de Rham forms with values in a complex of representations ρp of g.

For applications to supergravity and the construction of superconformal models, it is

of interest to supersymmetrize the bosonic hierarchy. This hierarchy simplifies dramati-

cally if we turn off the g gauging and in reference [13], we embedded this “abelian tensor

hierarchy” into 4D, N = 1 superspace. In this paper we gauge this superspace hierarchy to

obtain a non-abelian tensor hierarchy in 4D, N = 1 superspace. We begin in section 2 by

coupling a system of bosonic p-forms to a non-abelian gauge field. The set of fields and their

interactions are inspired by but not identical to the fields obtained from a Kaluza-Klein

reduction of the three-form and a metric gauge field of eleven-dimensional supergravity to

four dimension. In section 3 we phrase the hierarchy equations in the language of homo-

logical algebra. (We consider the abstract formulation important because it illuminates

the meaning of the hierarchy equations and it gives hints about possible generalizations.)

In subsection 3.2 we write the hierarchy equations in terms of Lie derivatives and interior

products and we recover some familiar equations such as Cartan’s magic formula. Then
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in section 4 we formulate this system in superspace, thereby gauging the abelian super-

space hierarchy of reference [13]. To set up the conventions and quote some results which

are useful for the rest of the paper we recall how to formulate non-abelian gauge fields in

superspace in section 4.1. Then in section 4.2 we embed the bosonic fields and transforma-

tions into superfields. Moreover, we define field strengths and show that they transform

covariantly.

Once this is done, we turn to the construction of Chern-Simons-like invariants, first

in the bosonic case (section 5) and then in superspace (section 6) (previous approaches

to supersymmetric Chern-Simons invariants include [14, 15]). These constructions re-

quire the definition of certain cocycles on the tensor algebra of the total complex. Their

(co)homological interpretation is relatively straightforward but explicit checking of their

compatibility with the structure of the gauged hierarchy is somewhat involved, requiring

repeated use of the hierarchy equations and superspace D-algebra identities. To illustrate

the formalism and to show that the resulting structure admits non-trivial solutions, we

turn in section 7 to the explicit example of the Chern-Simons form of eleven-dimensional

supergravity. Decomposition of the eleven-dimensional 3-form and its Chern-Simons 11-

form into four-dimensional representations gives an explicit solution to the hierarchy equa-

tions and the required Chern-Simons cocycle conditions. Substitution into the superspace

Chern-Simons action gives an embedding with manifest 4D, N = 1 supersymmetry. We

conclude in section 8 with a summary of our result and comment on its relationship to

related approaches and applications.

2 Bosonic hierarchy

Consider a collection of real scalars, one-forms, two-forms, and so on in d space-time

dimensions, φ
Ip
[p]. The components of these forms are denoted by

φ
Ip
a1...ap , (2.1)

and are functions taking values in real vector spaces Vp. Here Ip = 1, . . . , dim(Vp) labels

the coordinates in some basis of Vp. These vector spaces are not necessarily finite dimen-

sional. Space-time indices are labelled by lower case letters from the beginning of the Latin

alphabet. The fields considered herein are elements of Ωq(Rd)⊗Vp or Ωq(Rd)⊗ g, for some

p and q. Here Ω•(Rd) is the d-dimensional de-Rham complex and g is a Lie algebra. In

equations without explicit space-time indices, we use a subscript [p] to indicate that the

given object is a p-form.

There is a non-abelian gauge field A with transformation

δAka = ∂aλ
k + fklmλ

lAma , (2.2)

and field strength

Fkab = 2∂[aAkb] − f
k
lmAl[aA

m
b] . (2.3)

Here fklm are the structure constants of the gauge algebra. We have expanded Aa =

AkaTk, where Tk are the generators of the gauge algebra. Closure of the gauge algebra
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implies that the structure constants are anti-symmetric in their lower indices and the

Jacobi identity holds,

fk(lm) = 0, fkp[lf
p
mn] = 0. (2.4)

As a result the gauge algebra is a Lie algebra which is denoted by g.

For each p > 0 there is a gauge transformation parameterized by a differential (p− 1)-

form Λ
Ip
[p−1], which generates abelian p-form transformations. In addition, there is a shift

by the parameter Λ
Ip+1

[p]

δφ
Ip
a1···ap = p∂[a1Λ

Ip
a2···ap] +

(
q(p)
)Ip

Jp+1

Λ
Jp+1
a1···ap , (2.5)

where (q(p))
Ip
Jp+1

are linear maps

q(p) : Vp+1 → Vp. (2.6)

In the following we suppress the index (p) on q(p) and write only q, whenever this index is

clear from the context.

The tensor fields are charged under the non-abelian gauge transformation. When

coupled to the non-abelian gauge field the change of the tensor fields after infinitesimal

gauge transformations is1

δφ
Ip
a1···ap = (tk)

Ip
Jp
λkφ

Jp
a1···ap + p∂[a1Λ

Ip
a2···ap] − p (tk)

Ip
Jp
Ak[a1Λ

Jp
a2···ap] + q

Ip
Jp+1

Λ
Jp+1
a1···ap

+
p (p− 1)

2
(hk)

Ip
Jp−1
Fk[a1a2Λ

Jp−1

a3···ap], (2.7)

Here tk are a set of linear maps

t : (Ωp ⊗ g)× (Ωq ⊗ Vr)→ Ωp+q ⊗ Vr, (2.8)

which very explicitly take

xka1···ap ∈ Ωp ⊗ g, ϕIrb1···bq ∈ Ωq ⊗ Vr, (2.9)

to

t(x, ϕ)Ira1···ap+q =
(p+ q)!

p!q!
(tk)

Ir
Jr
xk[a1···apϕ

Jr
ap+1···ap+q ]. (2.10)

While hk are linear maps

h : (Ωp ⊗ g)× (Ωq ⊗ Vr) −→ Ωp+q ⊗ Vr+1, (2.11)

which act via

h(x, ϕ)
Ir+1
a1···ap+q =

(p+ q)!

p!q!
(hk)

Ir+1

Jr
xk[a1···apϕ

Jr
ap+1···ap+q ]. (2.12)

1This is not necessarily the most general possible form of the transformation, but it is sufficiently general

to encompass the cases which arise from dimensional reduction.
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Moreover, the maps q have been trivially extended to

q : Ωp ⊗ Vq −→ Ωp ⊗ Vq−1, (2.13)

by acting with the identity on the first factor.

Closure of the gauge algebra, i.e. requiring that the commutator of two transformations

δ, δ′ of the type (2.7) gives another one

[δ, δ′] = δ′′, (2.14)

for some δ′′, requires

0 = (tk)
Ip
Kp

(tl)
Kp

Jp
− (tl)

Ip
Kp

(tk)
Kp

Jp
− fmkl (tm)

Ip
Jp
, (2.15a)

0 = q
Ip
Kp+1

(tk)
Kp+1

Jp+1
− (tk)

Ip
Kp
q
Kp

Jp+1
, (2.15b)

0 = (hk)
Ip
Kp−1

(tl)
Kp−1

Jp−1
− (tl)

Ip
Kp

(hk)
Kp

Jp−1
− fmkl (hm)

Ip
Jp−1

. (2.15c)

Equation (2.15a) says that the ti form a representation of the gauge algebra g. This action

of the gauge algebra on the forms commutes with the map q by (2.15b). Equation (2.15c)

says that the pairing of gauge forms with “matter” forms defined by the h’s is covariant.

Field strengths are given by

F
Ip
a1···ap+1 = (p+ 1) ∂[a1φ

Ip
a2···ap+1] − (p+ 1) (tk)

Ip
Jp
Ak[a1φ

Jp
a2···ap+1] − q

Ip
Jp+1

φ
Jp+1
a1···ap+1

− p (p+ 1)

2
(hk)

Ip
Jp−1
Fk[a1a2φ

Jp−1

a3···ap+1].
(2.16)

These are covariant, i.e.

δF
Ip
a1···ap+1 = (tk)

Ip
Jp
λkF

Jp
a1···ap+1 , (2.17)

provided that we also have

0 = q
Ip
Kp+1

q
Kp+1

Jp+2
, (2.18a)

0 = q
Ip
Kp+1

(hk)
Kp+1

Jp
+ (hk)

Ip
Kp−1

q
Kp−1

Jp
+ (tk)

Ip
Jp
, (2.18b)

0 = (hk)
Ip
Kp−1

(hl)
Kp−1

Jp−2
+ (hl)

Ip
Kp−1

(hk)
Kp−1

Jp−2
. (2.18c)

3 Abstract formulation

In this section we recast the results of section 2 in the language of homological algebra.

This simplifies the notation and suggests a natural interpretation of each of the hierar-

chy equations.

3.1 Homological algebra

We consider a set of fields, field strengths, and gauge parameters which are sections of

Ωq(Rd)⊗ Vp or of Ωq(Rd)⊗ g for some p and q. We will drop the Rd below, but it should

be considered implicit. Specifically, we have table 1.
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Object Bundle

λ Ω0 ⊗ g

A Ω1 ⊗ g

F Ω2 ⊗ g

Λ Ωp−1 ⊗ Vp
φ Ωp ⊗ Vp
F Ωp+1 ⊗ Vp

Table 1. Gauge parameters (λ, Λ), potentials (A, φ) and field strengths (F , F ), and the space

each one lives in.

On these objects we also have the following operations. There is a set of linear operators

q : Vp+1 −→ Vp, (3.1)

for each p, satisfying

q2 = 0. (3.2)

The set of vector spaces Vp can then be assembled into a chain complex V•,

V• : · · · q→ Vp+1
q→ Vp

q→ Vp−1
q→ · · · q→ V0. (3.3)

This can trivially be extended to a map

q : Ωr ⊗ Vp+1 −→ Ωr ⊗ Vp, (3.4)

by acting with the identity on the first factor.

The Lie bracket on g is denoted by [·, ·]. If Ti, i = 1, . . . , dim g, is a basis we write

[Ti, Tj ] = fkijTk, (3.5)

where fkij are the structure constants of g. Given two elements x, y ∈ g expanded in this

basis, x = xlTl, y = ymTm, their Lie bracket is [x, y] = [x, y]kTk with

[x, y]k = fklmx
lym. (3.6)

Given then two elements

xka1···ap ∈ Ωp ⊗ g, yka1···aq ∈ Ωq ⊗ g (3.7)

This can be extended to the map

[·, ·] : (Ωp ⊗ g)× (Ωq ⊗ g) −→ Ωp+q ⊗ g, (3.8)

by using the wedge product on the first factors,

[x, y]ka1···ap+q =
(p+ q)!

p!q!
fklmx

l
[a1···apy

m
ap+1···ap+q ]. (3.9)
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The antisymmetry of the structure constants in eq. (2.4) amounts to

[x, y] = − (−1)pq [x, y], (3.10)

while the Jacobi identity becomes

(−1)pr [x, [y, z]] + (−1)pq [y, [z, x]] + (−1)qr [z, [x, y]] = 0. (3.11)

Here p, q, and r are the spacetime degrees of x, y, and z respectively.

Then there are maps, denoted by t, which furnish a representation of g on the complex

V•. In other words, given an element x ∈ g,

tx : Vp → Vp, (3.12)

is a linear map which respects the Lie bracket. eq. (2.15a) then becomes

txty − tytx = t[x,y], ∀x, y ∈ g, (3.13)

Using the notation tx(ϕ) = t(x, ϕ), then t is also linear in its first argument.

The map t can also be extended to

t : (Ωp ⊗ g)× (Ωq ⊗ Vr) −→ Ωp+q ⊗ Vr, (3.14)

by acting with t on the second factors as before, and with a wedge product on the first

factors. Explicitly, if

xka1···ap ∈ Ωp ⊗ g, ϕIrb1···bq ∈ Ωq ⊗ Vr, (3.15)

then

t(x, ϕ)Ira1···ap+q =
(p+ q)!

p!q!
(tk)

Ir
Jr
xk[a1···apϕ

Jr
ap+1···ap+q ]. (3.16)

The closure equation, (2.15a), becomes

txty − (−1)pq txty − t[x,y] = 0, ∀x, y ∈ g, ϕ ∈ V•, (3.17)

where p and q are the spacetime degrees of x and y.

The next closure condition, eq. (2.15b), now takes the form

txq = qtx, ∀x ∈ g, ϕ ∈ V•, (3.18)

This is the statement that the diagram

. . . // Vp+1
q

//

tx
��

Vp
q

//

tx
��

Vp−1
q

//

tx
��

. . .

. . . // Vp+1
q

// Vp
q

// Vp−1
q

// . . .

is commutative and tx : V• → V• is a chain map. Technically this says that the chain

complex V• with boundary operator q is equivariant with respect to the action of g en-

coded by t.

– 7 –
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Finally, given a x ∈ g we define the linear map

hx : Vp−1 → Vp, (3.19)

which in the notation hx(ϕ) = h(x, ϕ), ϕ ∈ Vp−1, are also linear in their first arguments.

Diagrammatically

. . . // Vp+1
//

tx
��

hx

}}

Vp //

tx
��

hx

}}

Vp−1
//

tx
��

hx

}}

. . .
hx

}}

. . . // Vp+1
// Vp // Vp−1

// . . .

This can also be extended to a product

h : (Ωp ⊗ g)× (Ωq ⊗ Vr) −→ Ωp+q ⊗ Vr+1, (3.20)

via

h(x, ϕ)
Ir+1
a1···ap+q =

(p+ q)!

p!q!
(hk)

Ir+1

Jr
xk[a1···apϕ

Jr
ap+1···ap+q ]. (3.21)

Condition (2.18b) then states

qhx + hxq + tx = 0. (3.22)

This says that the linear map tx is chain-homotopic to the zero map.

We write the closure condition (2.15c) as two equations

h[x,y] =
1

2
[hxty − (−1)pq tyhx + txhy − (−1)pqhytx] , (3.23a)

txhy + (−1)pqtyhx = hxty + (−1)pqhytx, (3.23b)

where p and q are the spacetime degrees of x and y. In the first equation the symmetries

of the Lie bracket and the Jacobi identity are manifest.

Gauge invariance (eq. (2.18c)), also requires

hxhy + (−1)pq hyhx = 0. (3.24)

3.2 Interior product and Lie derivative

In the case of dimensional reduction, we have an especially nice interpretation. We will

reëxamine this story in slightly more detail in section 7, but the reader might find a preview

of the discussion to be useful here. For illustrative purposes consider the compactification

from eleven to four dimensions on a seven-dimensional manifold M . In ref. [16] we found

(adapted to the notation of the present paper)

δCijk = 3∂[iΛ̃jk] + ξl∂lCijk + 3∂[iξ
lCjk]l,

δCaij = DaΛ̃ij + 2∂[iΛ̃j]a + ξk∂kCaij + 2∂[iξ
kC|a|j]k,

δCabi = 2D[aΛ̃b]i + ∂iΛ̃ab − Λ̃ijF jab + ξj∂jCabi + ∂iξ
jCabj ,

δCabc = 3D[aΛ̃bc] + 3Λ̃i[aF ibc] + ξi∂iCabc,

(3.25)

– 8 –
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where the covariant derivative is defined by

Da1Λ̃a2...ani1...ip−n = ∂a1Λ̃a2...ani1...ip−n −Aaa1∂aΛ̃a2...ani1...ip−n
+ (p− n)(−1)p−nΛ̃a2...ana[i1...ip−n−1

∂ip−n]Aaa1 .
(3.26)

The Lie algebra g is the algebra of tangent vector fields xk on the internal space M (i.e.

g ∼= Γ(TM)). The bracket is the Lie bracket on tangent vector fields. The chain complex

is the (dual of) the de Rham complex on M , Vp ∼= Ωn−p(M), and the operator q is (up to a

sign) the exterior derivative dM on M . The representation t is the Lie derivative, so t(x, ϕ)

becomes Lxϕ for a tangent vector field x and a differential form ϕ ∈ Ω•(M). Finally, the

operator h is contraction, so h(x, ϕ) becomes ιxϕ, again up to a sign.

Using this language, some of the equations in section 3.1 include some fairly famous

equations. So for example, eq. (3.13) is

LxLy − LyLx = L[x,y]. (3.27)

while eq. (3.18) is

dMLx − LxdM = 0 (3.28)

while eq. (3.2) is

d2
M = 0. (3.29)

Moreover, eq. (3.22) is Cartan’s magic formula

Lx = dM ιx + ιxdM . (3.30)

and eq. (3.24) is the anti-symmetry of the interior product

ιxιy + ιyιx = 0, (3.31)

while eqs. (3.23a) and (3.23b) correspond

Lxιy − ιyLx = ιxLy − Lyιx = ι[x,y]. (3.32)

3.3 Covariant derivatives and Bianchi identities

It is also useful to define a covariant exterior derivative

D : Ωp ⊗ Vq −→ Ωp+1 ⊗ Vq (3.33)

by Dϕ = dϕ− tAϕ or explicitly

(Dϕ)Iqa1···ap+1
= (p+ 1)

[
∂[a1ϕ

Iq
a2···ap+1] − (tk)

Iq
Jq
Ak[a1ϕ

Jq
a2···ap+1]

]
. (3.34)

Then the variation and field strength for the matter fields becomes

δφ[p] = tλφ[p] +DΛ[p−1] + q(Λ[p]) + hFΛ[p−2], (3.35)

– 9 –
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and

F = dA− 1

2
[A,A] ,

F[p+1] = Dφ[p] − q(φ[p+1])− hFφ[p−1],

δF[p+1] = tλF[p+1].

(3.36)

Here we have explicitly indicated spacetime degree with subscripts, and λ = λ[0], A = A[1],

F = F[2].

Next we can define the operator

Q :
⊕
p

(
Ωp+q ⊗ Vp

)
−→

⊕
p

(
Ωp+q+1 ⊗ Vp

)
, (3.37)

for each q, via

Qϕ = Dϕ− (−1)q [q(ϕ) + hFϕ] , (3.38)

where ϕ is an element of the direct sum above. With this definition we have

Q2 = 0. (3.39)

In terms of this operator we have

δφ = tλφ+QΛ, F = Qφ, QF = 0. (3.40)

4 Supersymmetric hierarchy

In this section, we embed the gauged bosonic tensor hierarchy into 4D, N = 1 superspace.

The result is a gauged version of the abelian superspace hierarchy of ref. [13].

4.1 Non-abelian gauge symmetry in superspace

In this section we set up our conventions and derive some results which will be needed in

forthcoming sections. As a result we keep some equations explicit. Section 4.1.1 parallels

chapters 12 and 13 of ref. [17] and establishes some of our conventions. Unlike in the last

section, we will write all spacetime vector and spinor indices explicitly, but promote all

fields to superfields again valued in either g or (in the next section) in Vp for some p. All

the operations, [·, ·], t, q, and h will be promoted to superfields in the obvious way, treating

the fields as zero-forms (since we are writing the spacetime indices explicitly). The one

caveat is that anywhere that had a sign which depended on form degrees (e.g. a (−1)pq),

we will now have a sign in the case that both fields are anticommuting.

4.1.1 g-valued superfields

We first promote the gauge field A to a g-valued super-one-form AA, i.e. a spinor-valued

superfield of each chirality, Aα and its complex conjugate Aα̇, and a real vector valued

superfield Aa, all of which are also valued in g. We use capital letters from the beginning

of the Latin alphabet to label superspace coordinates.

– 10 –
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Of course, there are far too many components included in these superfields. Some of

them can be removed by gauge transformations. We would like these to mimic the bosonic

case, i.e.

δAα = Dαλ+ [λ,Aα], δAα̇ = Dα̇λ+ [λ,Aα̇], δAa = ∂aλ+ [λ,Aa], (4.1)

for a real scalar superfield λ. Here we are using the Lie bracket defined in eq. (3.9).

In analogy with the bosonic case, we can build gauge-covariant combinations which

assemble into a super-two-form FAB,

Fαβ = 2D(αAβ) − [Aα, Aβ ], (4.2a)

Fα̇β̇ = 2D(α̇Aβ̇) − [Aα̇, Aβ̇ ], (4.2b)

Fαβ̇ = DαAβ̇ +Dβ̇Aα − [Aα, Aβ̇ ] + 2iσa
αβ̇
Aa, (4.2c)

Faβ = ∂aAβ −DβAa − [Aa, Aβ ], (4.2d)

Faβ̇ = ∂aAβ̇ −Dβ̇Aa − [Aa, Aβ̇ ], (4.2e)

Fab = 2∂[aAb] − [Aa, Ab]. (4.2f)

These are covariant in the sense that

δFAB = [λ, FAB]. (4.3)

It is useful to define covariant derivatives which act on g-valued superfields,

Dαx = Dαx− [Aα, x], Dα̇x = Dα̇x− [Aα̇, x], Dax = ∂ax− [Aa, x]. (4.4)

From these definitions it follows

δAα = Dαλ, δAα̇ = Dα̇λ, δAa = Daλ. (4.5)

In the next section we will also extend the action of the covariant derivative to superfields

from the tensor hierarchy.

By construction, the field strengths satisfy a number of Bianchi identities,

0 = 3D(αFβγ), (4.6a)

0 = 3D(α̇Fβ̇γ̇), (4.6b)

0 = 2D(αFβ)γ̇ +Dγ̇Fαβ + 4iσa(α|γ̇Fa|β), (4.6c)

0 = 2D(α̇F|γ|β̇) +DγFα̇β̇ + 4iσaγ(α̇F|a|β̇), (4.6d)

0 = DaFαβ − 2D(αF|a|β), (4.6e)

0 = DaFα̇β̇ − 2D(α̇F|a|β̇), (4.6f)

0 = DaFαβ̇ −DαFaβ̇ −Dβ̇Faα − 2iσb
αβ̇
Fab, (4.6g)

0 = 2D[aFb]α +DαFab, (4.6h)

0 = 2D[aFb]α̇ +Dα̇Fab, (4.6i)

0 = 3D[aFbc]. (4.6j)
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Note that we are not imposing these identities; they are simply consequences of the defini-

tions of the FAB.

Even with the gauge transformations, however, there are still too many components

in AA. Some extra conditions have to be imposed on the superfields. These conditions

should be gauge covariant, and should consequently be formulated in terms of FAB. We

start by setting

Fαβ = Fα̇β̇ = Fαβ̇ = 0. (4.7)

The last equation can be used to solve for Aa,

Aa = − i
4

(σa)
α̇α (DαAα̇ +Dα̇Aα − [Aα, Aα̇]

)
. (4.8)

Since Faα splits into two irreducible representations of the four-dimensional Lorentz group,

of spin 1/2 and spin 3/2, we next set the spin 3/2 piece to zero. Explicitly, this means

σa(α|α̇Fa|β) = 0, (4.9)

and its complex conjugate,

σaα(α̇F|a|β̇) = 0. (4.10)

The remaining components of Faα are captured by

Wα = −1

4
(σa)α̇α Faα̇,

W α̇
= −1

4
(σa)α̇α Faα,

(4.11)

or equivalently

Faα = (σa)αα̇W
α̇
,

Faα̇ = (σa)αα̇W
α.

(4.12)

Fab is determined by the Bianchi identity to be

Fab = − i
2

[
(σab)

β
α D

αWβ − (σab)
α̇
β̇
Dα̇W

β̇
]
. (4.13)

Here the normalization of W has been chosen to agree with the conventions of ref. [13].

Taking the symmetric part

DαWα −Dα̇W
α̇

= 0. (4.14)

Finally, from a different Bianchi identity we have

0 = D(α̇F|a|β̇) = (σa)β(β̇ Dα̇)Wβ , (4.15)

and contracting with (σa)β̇α, we learn that

Dα̇Wα = 0. (4.16)
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Of course, we can also derive the conjugate,

DαW
α̇

= 0. (4.17)

Finally, we note that the covariant derivatives obey an algebra

2D(αDβ)x = 0, (4.18a)

2D(α̇Dβ̇)x = 0, (4.18b)

DαDα̇x+Dα̇Dαx = −2iσaαα̇Dax, (4.18c)

DaDαx−DαDax = − (σa)αα̇ [W α̇
, x], (4.18d)

DaDα̇x−Dα̇Dax = − (σa)αα̇ [Wα, x], (4.18e)

2D[aDb]x = −[Fab, x]. (4.18f)

Some additional identities include (we define D2 = DαDα and D2
= Dα̇D

α̇
, and we will

always write DaDa out explicitly to distinguish it from the D2 just defined)

D2Dα̇x−Dα̇D2x = −2iσaαα̇ (DaDαx+DαDax) , (4.19)

D2Dαx−DαD
2
x = 2iσaαα̇

(
DaD

α̇
x+Dα̇Dax

)
, (4.20)

DαD2Dαx−Dα̇D2Dα̇x = 8iΩg(W, x), (4.21)

where we have defined

Ωg(ψ, x) = [ψα,Dαx] + [ψα̇,D
α̇
x] +

1

2
[Dαψα +Dα̇ψ

α̇
, x], (4.22)

as an operator on any g-valued covariantly chiral spinor superfield ψ and a real g-valued

superfield x.

4.1.2 Vp-valued superfields

Now we will combine the hierarchy structure from the first sections with the non-abelian

gauge superfield in the last section. For a Vp-valued superfield ϕ, we define covariant

derivatives

Dαϕ = Dαϕ− t(Aα, ϕ), Dα̇ϕ = Dα̇ϕ− t(Aα̇, ϕ), Daϕ = ∂aϕ− t(Aa, ϕ). (4.23)

These satisfy an algebra

2D(αDβ)ϕ = 0, (4.24a)

2D(α̇Dβ̇)ϕ = 0, (4.24b)

DαDα̇ϕ+Dα̇Dαϕ = −2iσaαα̇Daϕ, (4.24c)

DaDαϕ−DαDaϕ = − (σa)αα̇ t(W
α̇
, ϕ), (4.24d)

DaDα̇ϕ−Dα̇Daϕ = − (σa)αα̇ t(W
α, ϕ), (4.24e)

2D[aDb]ϕ = −t(Fab, ϕ). (4.24f)
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Also,

D2Dα̇ϕ−Dα̇D2ϕ = −2iσaαα̇ (DaDαϕ+DαDaϕ) , (4.25a)

D2Dαϕ−DαD
2
ϕ = 2iσaαα̇

(
DaD

α̇
ϕ+Dα̇Daϕ

)
, (4.25b)

DαD2Dαϕ−Dα̇D2Dα̇ϕ = 8iΩt(W, ϕ), (4.25c)

where we defined

Ωt(W, ϕ) = t(Wα,Dαϕ) + t(W α̇,D
α̇
ϕ) +

1

2
t(DαWα +Dα̇W

α̇
, ϕ). (4.26)

Note that the last term can be rewritten using DαWα = Dα̇W
α̇
.

These covariant derivatives also have many nice properties with respect to the operators

t, q, and h. In particular,

Dαt(x, ϕ) = t(Dαx, ϕ)± t(x,Dαϕ), (4.27a)

Dα̇t(x, ϕ) = t(Dα̇x, ϕ)± t(x,Dα̇ϕ), (4.27b)

Dat(x, ϕ) = t(Dax, ϕ) + t(x,Daϕ), (4.27c)

Dαq(ϕ) = q(Dαϕ), Dα̇q(ϕ) = q(Dα̇ϕ), (4.27d)

Daq(ϕ) = q(Daϕ), (4.27e)

Dαh(x, ϕ) = h(Dαx, ϕ)± h(x,Dαϕ), (4.27f)

Dα̇h(x, ϕ) = h(Dα̇x, ϕ)± h(x,Dα̇ϕ), (4.27g)

Dah(x, ϕ) = h(Dax, ϕ) + h(x,Daϕ), (4.27h)

where the upper sign is for x being a commuting superfield, and the lower sign is for x

being anticommuting.

4.1.3 Chern-Simons superfield

In this subsection we define an operator Ωh which takes a g-valued covariantly chiral

spinor superfield ψ (in practice ψ will always be W) and a Vp-valued scalar superfield ϕ,

and returns a Vp+1-valued scalar superfield,

Ωh(ψ,ϕ) = h(ψα,Dαϕ) + h(ψα̇,D
α̇
ϕ) +

1

2
h(Dαψα +Dα̇ψ

α̇
, ϕ). (4.28)

This satisfies

−1

4
D2

Ωh(ψ,ϕ) = h

(
ψα,−1

4
D2Dαϕ

)
− 1

8
D2
h(Dαψα −Dα̇ψ

α̇
, ϕ), (4.29)

−1

4
D2Ωh(ψ,ϕ) = h

(
ψα̇,−

1

4
D2Dα̇ϕ

)
+

1

8
D2h(Dαψα −Dα̇ψ

α̇
, ϕ). (4.30)

For the case of ψ =W the second terms drop out and we have

− 1

4
D2

Ωh(W, ϕ) = h

(
Wα,−1

4
D2Dαϕ

)
, −1

4
D2Ωh(W, ϕ) = h

(
W α̇,−

1

4
D2Dα̇ϕ

)
.

(4.31)
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Note also that Ωh inherits certain properties from h, for instance from (2.15c),

Ωh(ψ, t(x, ϕ))− t(x,Ωh(ψ,ϕ)) + Ωh([x, ψ], ϕ) = 0, (4.32)

and from (2.18b),

q(Ωh(x, ϕ)) + Ωh(x, q(ϕ)) + Ωt(x, ϕ) = 0. (4.33)

Finally, note that if ϕ is covariantly chiral, then

Ωh(ψ,ϕ) = h(Wα,Dαϕ) + h(DαWα, ϕ), (4.34)

while if ϕ is antichiral,

Ωh(ψ,ϕ) = h(W α̇,D
α̇
ϕ) + h(Dα̇W

α̇
, ϕ). (4.35)

4.2 Incorporating the hierarchy

4.2.1 Prepotentials

The hierarchy consists of the following components and their prepotential

superfields [13, 18]:

• A collection of V0-valued covariantly chiral superfields Φ, i.e.

Dα̇Φ = 0. (4.36)

The axions are given by

a =
1

2

(
Φ + Φ

) ∣∣∣. (4.37)

The vertical slash means that we evaluate the superfield at θ = θ̄ = 0, i.e. we take

the lowest component.

• A collection of V1-valued real superfields V . We have

Aa = −1

4
σα̇αa

(
DαDα̇ −Dα̇Dα

)
V
∣∣∣. (4.38)

Note that this map to components now depends on the non-abelian gauge field!

• A collection of V2-valued covariantly chiral spinor superfields Σα, Dα̇Σα = 0. We

also have

Bab = − i
2

(
(σab)

β
α D

αΣβ − (σab)
α̇
β̇
Dα̇Σ

β̇
) ∣∣∣. (4.39)

• A collection of V3-valued real superfields X.

Cabc =
1

8
εabcd

(
σd
)α̇α (

DαDα̇ −Dα̇Dα
)
X
∣∣∣. (4.40)

• A collection of V4-valued covariantly chiral superfields Γ, Dα̇Γ = 0.

Dabcd =
i

8

(
D2Γ−D2

Γ
) ∣∣∣. (4.41)
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Now we declare the following variations

δΦ = tλΦ + q(Λ), (4.42a)

δV = tλV +
Λ− Λ

2i
+ q(U), (4.42b)

δΣα = tλΣα −
1

4
D2DαU + q(Υα) + hWαΛ, (4.42c)

δX = tλX +
1

2i

(
DαΥα −Dα̇Υ

α̇
)

+ q(Ξ) + Ωh(W, U), (4.42d)

δΓ = tλΓ− 1

4
D2

Ξ + hWαΥα. (4.42e)

Here in addition to the g-valued real superfield λ, we have gauge parameters Λ, which is a

V1-valued covariantly chiral superfield, U , which is a V2-valued real scalar superfield, Υα,

a V3-valued covariantly chiral spinor superfield, and Ξ, a V4-valued real scalar superfield.

Covariantly chiral fields remain so after a gauge transformation, i.e. given covariantly

chiral fields Φ, Σα and Γ

δ
(
Dα̇Φ

)
= 0, δ

(
Dα̇Σα

)
= 0, δ

(
Dα̇Γ

)
= 0. (4.43)

Finally, note also that we can go to a Wess-Zumino-like gauge for each of these trans-

formations. After this gauge fixing, the only residual gauge symmetries are the bosonic

ones with parameters Λ
Ip
a1···ap−1 . In this gauge, the transformations of the components aA,

AIa, B
M
ab , CSabc and DX

abcd, defined in this section, simply match eq. (2.7).

4.2.2 Field strengths

Next we define field strengths

E = −q(Φ), (4.44a)

F =
1

2i

(
Φ− Φ

)
− q(V ), (4.44b)

Wα = −1

4
D2DαV − q(Σα)− hWαΦ, (4.44c)

H =
1

2i

(
DαΣα −Dα̇Σ

α̇
)
− q(X)− Ωh(W, V ), (4.44d)

G = −1

4
D2
X − q(Γ)− hWαΣα. (4.44e)

We can check that these are covariant, making heavy use of eqs. (3.17), (3.18), (3.22),

(3.23), (3.24), as well as the algebra of the D’s, and the way they commute through the

operators t, q, and h. We denote these as the hierarchy equations. So, for example,

very explicitly

δE = −q [tλΦ + q(Λ)]
(3.2)
= −qtλ(Φ)

(3.18)
= tλE. (4.45)

or

δF =
1

2i

(
tλΦ− tλΦ

)
− q [tλV + q(U)]

(3.2)
=

1

2i

(
tλΦ− tλΦ

)
− qtλV

(3.18)
= tλF. (4.46)
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Here we have dropped terms which cancel trivially. However, terms which only cancel after

using the hierarchy equations are kept explicit and the equation being used is indicated.

In the same way

δWα = tλ

[
−1

4
D2DαV − q(Σα)

]
− (tWα + qhWα + hWαq) Λ

−
(
hWαtλ + h[λ,Wα]

)
Φ + q2(Υα) = tλWα,

(4.47)

Here eqs. (3.2), (3.22), (3.23) have been used. Moreover, we have used the identity

i

8
D2DαΛ = −1

4
σaαα̇D

α̇DaΛ =
1

4
σaαα̇σ

α̇β
a tWβ

Λ = −tWαΛ, (4.48)

valid for any covariantly chiral field Λ.

Next consider H. We find

δH =
1

2i

(
tλ(DαΣα)− tλ(Dα̇Σ

α̇
)
)
− qtλX − Ωh([λ,W], V )− Ωh(W, tλV )

+
1

2i

(
−1

4
DαD2DαU +

1

4
Dα̇D2Dα̇U

)
− Ωh(W, q(U))− qΩh(W, U)− q2Ξ

+
1

2i

(
h(DαWα,Λ)+h(Wα,DαΛ)−h(Dα̇W

α̇
,Λ)−h(W α̇,D

α̇
Λ)
)
−Ωh

(
W,

Λ−Λ

2i

)
= tλH.

(4.49)

Note that the second and third lines of this equation vanish after using

eqs. (3.2), (4.25c), (4.33), (4.34), and (4.35). The first line can be rewritten using eqs.

(3.18) and (4.32).

And finally consider

δG = − 1

4
tλ(D2

X)− qtλΓ− h[λ,Wα]Σα − hWαtλΣα

+
i

8
D2DαΥα − qhWαΥα − hWαq(Υα)− hWαhWαΛ

= tλG.

(4.50)

Here eqs. (3.23), (3.18) have been used. Note that the last term hWαhWαΛ, vanishes after

taking into account that the W’s are anticommuting and we are contracting their indices

with εαβ . The combination of these two antisymmetries makes the result symmetric so we

can use (2.18c).

To summarize the after a gauge transformation the superfield strengths change accord-

ing to

δE = tλE,

δF = tλF,

δWα = tλWα,

δH = tλH,

δG = tλG.

(4.51)
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With similar manipulations we can show that the field strengths obey Bianchi

identities,

0 = q(E), (4.52a)

0 =
1

2i

(
E − E

)
+ q(F ), (4.52b)

0 = −1

4
D2DαF + q(Wα) + hWαE, (4.52c)

0 =
1

2i

(
DαWα −Dα̇W

α̇
)

+ q(H) + Ωh(W, F ), (4.52d)

0 = −1

4
D2
H + q(G) + hWαWα. (4.52e)

5 Bosonic Chern-Simons actions

Next we turn to the task of constructing gauge-invariant actions. One possibility is simply

to build a spacetime scalar f(F , F ) out of our covariant field strengths F[2] and F[p+1], and

then take an action

S =

∫
ddxf(F , F ). (5.1)

The condition for gauge invariance is simply that f is also a singlet under the non-abelian

gauge transformations, i.e. that schematically

0 = δλf(F , F ) = f([λ,F ], F ) + f(F , tλF ). (5.2)

where it is understood that the last term should be expanded with one term for each F
Ip
[p+1].

This is not the only way to construct a gauge-invariant action, however. Another

option is to have a Chern-Simons type action, in which the Lagrangian is not invariant,

but rather transforms into a total derivative (so the action itself is invariant). In this

section we explore this possibility.

5.1 Cohomological interpretation of abelian bosonic Chern-Simons actions

We will proceed in the same way that we did in ref. [13]. For us, a Chern-Simons action

will be a sum of terms, each of which is the integral over spacetime of the wedge product

of one potential and some number of field strengths. For example, we can have a linear

Chern-Simons term

S0,CS =

∫
αIdφ

Id
[d], (5.3)

or a quadratic Chern-Simons action

S1,CS =

∫ d∑
p=0

αIpJd−p−1
φ
Ip
[p] ∧ F

Jd−p−1

[d−p] , (5.4)

or a cubic Chern-Simons action

S2,CS =

∫ d∑
p=0

b d−p
2
c−1∑

q=−1

αIpJqKd−p−q−2
φ
Ip
[p] ∧ F

Jq
[q+1] ∧ F

Kd−p−q−2

[d−p−q−1]. (5.5)
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In each case the coefficients α are just numbers which will have to satisfy certain identities

in order for the action to be gauge-invariant.

In order to generalize this construction, we will introduce some notation. For an

element ϕ ∈ Vp, we can define its degree by

deg(ϕ) = p. (5.6)

For a general element ϕ ∈ V• there is not a well-defined degree unless we first project onto

Vp ⊆ V• with πp : V• −→ Vp (so deg(πp(ϕ)) = p).

Now for fixed N , define a co-chain complex X•(N) via

Xp
(N) =

⊕
i1+···+iN=p

(
V ∗i1 ⊗ · · · ⊗ V

∗
iN

)
, (5.7)

where

V ∗i = Hom(Vi,R) (5.8)

is the dual space, and the co-boundary operator is defined by

q : Xp
(N) −→ Xp+1

(N) , (5.9)

(qα) (ϕ1, · · · , ϕN ) =

N∑
i=1

(−1)
∑i−1
j=1 deg(ϕj)+i+1 α(ϕ1, · · · , q(ϕi), · · · , ϕN ). (5.10)

For example, for α ∈ Xp
(3), ϕ1 ∈ Vi, ϕ2 ∈ Vj , ϕ3 ∈ Vp−i−j+1,

(qα) (ϕ1, ϕ2, ϕ3)

= α(q(ϕ1), ϕ2, ϕ3) + (−1)i+1 α(ϕ1, q(ϕ2), ϕ3) + (−1)i+j α(ϕ1, ϕ2, q(ϕ3)). (5.11)

It is straightforward to check that q2 = 0 on X•(N), using the fact that q2 = 0 on V•.

It will be useful to introduce some short hand notation. For ϕj ∈ V•, which do not

necessarily have well-defeined degrees, and for α ∈ Xp
(N), we will write

α(ϕ1, · · · , ϕN ) ≡
∑

i1+···+iN=p

α(πi1(ϕ1), · · · , πiN (ϕN )) ∈ R. (5.12)

We would also like to define a closely related sub-complex, X̂•(N), given by

X̂p
(N) =

{
α ∈ Xp

(N)|∀i1, i2, and ϕ1 ∈ Vi1 , ϕ2 ∈ Vi2 , ϕ0 ∈ V•,

then α(ϕ0, · · · , ϕ1, · · · , ϕ2, · · · ) = (−1)(i1+1)(i2+1) α(ϕ0, · · · , ϕ2, · · · , ϕ1, · · · )
}
,

i.e. X̂•(N) consists of those α that are symmetric (with appropriate signs) in their final N−1

arguments. We also have that for α ∈ X̂p
(N), then qα ∈ X̂p+1

(N) ⊆ Xp+1
(N) , so q is well-defined

on X̂•(N). Equivalently, there are obvious inclusion and projection maps between X•(N) and

X̂•(N), and the various squares which combine these with q commute. Finally, note that this

symmetrization is only non-trivial for N > 2; in particular, X̂•(1) = X•(1) and X̂•(2) = X•(2).

– 19 –



J
H
E
P
0
6
(
2
0
1
6
)
0
9
7

We can easily extend the operation of any α to objects in Ω•⊗V• by combining it with

the wedge product on differential forms, taken in the order of its arguments. Fix an N , and

pick some α ∈ X̂d+1−N
(N) . Note that α(φ, F, · · · , F ) (one potential, N − 1 field strengths) is

a d-form, so we can construct an action by integrating it over the space-time Rd,

SCS,α =

∫
α(φ, F, · · · , F ). (5.13)

All of the previous examples of Chern-Simons terms (5.3), (5.4), and (5.5), were of this form.

Note that this is the reason we defined the complex X̂•(N). If we took an α ∈ X•(N) which

was in the kernel of the projection onto X̂•(N) (the projection is simply symmetrization

over the last N − 1 arguments, so for example when N = 3 the kernel consists of elements

in X•(3) which are antisymmetric under exchange of the last two arguments), then the

corresponding action would be zero for trivial reasons of symmetry.

Restricting for the moment to the abelian case only, what is the condition for gauge

invariance? The variation comes only from δφ = dΛ + q(Λ). After integrating by parts,

using the Bianchi identities dF = −q(F ), and using the definition (5.10), we have

δSCS,α =

∫
α(dΛ + q(Λ), F, · · · , F ) =

∫
(qα) (Λ, F, · · · , F ). (5.14)

We see immediately that a sufficient condition for gauge-invariance is that α is a closed

element, qα = 0, of the co-chain complex X̂•, i.e. α is a cocycle.

The necessary condition is actually a little bit weaker, since Λ and F are not completely

unconstrained elements of V•. More explicitly, we can define projectors

πΛ =
d∑
p=1

πp, πφ =
d∑
p=0

πp, πF = πIm(q)∩V−1
+

d−1∑
p=0

πp, (5.15)

where the first term in πF is the projection onto the image of the map q : V0 → V−1. These

projections simply capture the fact that ΛIp is only defined for p ≥ 1, φIp for p ≥ 0, and

F IP for p ≥ −1 with the additional constraint that F I−1 is q-exact. Then the necessary

condition for gauge invariance is that

(qα) (πΛ ⊗ πF ⊗ · · · ⊗ πF ) = 0. (5.16)

This is really just a technical detail. If we are given Vp for p ≥ 0, and we define V−1 = q(V0),

by restriction from the full V−1 if necessary, then given α satisfying (5.16), we can always

extend the definition of α to a new α̃ such that qα̃ = 0 and

α̃ (πφ ⊗ πF ⊗ · · · ⊗ πF ) = α (πφ ⊗ πF ⊗ · · · ⊗ πF ) , (5.17)

so that SCS,α̃ = SCS,α. For this reason, we can often treat qα = 0 as both necessary and

sufficient.2

2There is an interesting reformulation that can be made here. Suppose we consider a more general

spacetime manifold S which can be written as the boundary of some (d+ 1)-dimensional manifold T , and
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What about exact α = qβ? A calculation similar to the above shows in this case that

SCS,q
X̂
β = −

∫
β(F, F, · · · , F ). (5.20)

In other words, if α is q-exact, then SCS,α can be constructed in terms of field strengths

only. If we are interested in Chern-Simons actions that can’t be constructed from field

strengths alone, then we should quotient out by the image of q. This means that the

gauge-invariant Chern-Simons actions are classified by the cohomology group

Hd+1−N
q (X̂). (5.21)

5.2 Non-abelian bosonic Chern-Simons actions

We take over all the structures from the abelian case, but for each x ∈ g we have maps

tx : Vp −→ Vp, hx : Vp −→ Vp+1, (5.22)

given by tx(ϕ) = t(x, ϕ) and hx(ϕ) = h(x, ϕ) respectively. These can be lifted to maps on

X•(N) or X̂•(N) by taking,3 for α ∈ Xp
(N),

(txα) (ϕ1, · · · , ϕN ) =

N∑
i=1

α(ϕ1, · · · , tx(ϕi), · · · , ϕN ), (5.23)

and

(hxα) (ϕ1, · · · , ϕN ) =

N∑
i=1

(−1)
∑i−1
j=1 deg(ϕj)+i+1 α(ϕ1, · · · , hx(ϕj), · · · , ϕN ). (5.24)

With these definitions we have

tx : Xp
(N) −→ Xp

(N), hx : Xp
(N) −→ Xp−1

(N) , (5.25)

or the corresponding maps with X(N) replaced by X̂(N) by simple restriction (in other

words these maps commute with projection or inclusion between the hatted and un-hatted

complexes).

formally lift all of our fields to differential forms on T . Then we can show that

dα(φ, F, · · · , F ) = α(F, F, · · · , F ) + (qα) (φ, F, · · · , F ). (5.18)

If qα = 0, it then follows that

SCS,α =

∫
S

α(φ, F, · · · , F ) =

∫
T

α(F, F, · · · , F ). (5.19)

It would be quite interesting to push this idea further for topologically interesting spaces, etc. We would

like to thank the JHEP referee for this suggestion.
3When we promote everything to forms on Rd these expressions mostly work the same unless x is an

odd-degree form in space-time. In that case, we need to introduce extra signs in these expressions for

commuting x through the ϕi.
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Just in the same way that q2 = 0 on V• implied that q2 = 0 on X•(N) or X̂•(N), we

can check that the various relations between the maps lift to the maps defined on X•(N).

Explicitly,

txty − tytx = t[x,y], (5.26a)

txq − qtx = 0, (5.26b)

hxty − tyhx = h[x,y], (5.26c)

qhx + hxq = − tx, (5.26d)

hxhy + hyhx = 0, (5.26e)

and similarly for X̂•.

Turning to the hierarchy, we recall that the variations of the potentials become

δφ = tλφ+ dΛ− tAΛ + q(Λ) + hFΛ, (5.27)

and the Bianchi identities are

dF − tAF = −q(F )− hFF. (5.28)

Recall also that the field strengths are covariant,

δF = tλF. (5.29)

As before, take α ∈ X̂d+1−N
(N) and define4

SCS,α =

∫
α(φ, F, · · · , F ). (5.30)

Then under a λ transformation we have

δλSCS,α =

∫
{α(tλφ, F, · · · , F ) + α(φ, tλF, F, · · · , F ) + · · ·+ α(φ, F, · · · , F, tλF )}

=

∫
(tλα) (φ, F, · · · , F ). (5.31)

Under a Λ transformation, we have, after performing the now-familiar manipulations,

δΛSCS,α =

∫
α(dΛ− tAΛ + q(Λ) + hFΛ, F, · · · , F )

=

∫
{(qα) (Λ, F, · · · , F ) + (hFα) (Λ, F, · · · , F )− (tAα) (Λ, F, · · · , F )} (5.32)

4We could have tried something more general here, allowing Chern-Simons actions which depend ex-

plicitly on A and F as well. In the present work we will neglect this possibility since the gauge variations

always preserve the number of matter fields and increasing the number of non-abelian gauge fields appearing

in the Chern-Simons action (either via field strengths F or having a potential A which displaces one of

the potentials φ into a field strength F ) will necessarily increase the dimension of the action. Also, the

generalization does not appear in our motivating examples coming from dimensional reduction.
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From these expressions we see that a sufficient condition for gauge invariance is that

(qα) (πΛ ⊗ πF ⊗ · · · ⊗ πF ) = 0,

(hxα) (πΛ ⊗ πF ⊗ · · · ⊗ πF ) = 0, ∀x ∈ g. (5.33)

Note that these conditions imply also that

(txα) (πΛ ⊗ πF ⊗ · · · ⊗ πF ) = 0, ∀x ∈ g, (5.34)

so the only extra condition we need to impose is (since πφ = πΛ + π0) that

(txα) (π0 ⊗ πF ⊗ · · · ⊗ πF ) = 0, ∀x ∈ g. (5.35)

As before, this is more or less a technicality, and in practice we can consider the

condition for gauge invariance to be simply that qα = 0 and hxα = 0, ∀x ∈ g.

5.3 Explicit equations for the coefficients

Specializing to d = 4, we can expand the α’s out and explicitly write the conditions for

gauge invariance. For instance the invariance of the linear Chern-Simons action,

SCS,α =

∫
αXD

X
[4], (5.36)

becomes simply that (note that α is automatically q-closed in this case)

αX (hk)
X
S = 0. (5.37)

The subscript on the potential DX
[4] simply indicates that it is a four-form in spacetime.

For a quadratic Chern-Simons action,

SCS,α =

∫ {
α1ASa

A
[0]F

S
[4] + α2IMA

I
[1] ∧ F

M
[3] + α3MIB

M
[2] ∧ F

I
[2]

+α4SAC
S
[3] ∧ F

A
[1] + α5XZD

X
[4]F

Z
[0]

}
. (5.38)

our conditions are

α1ASq
A
I + α2IMq

M
S = 0, (5.39a)

α2INq
I
M − α3MIq

I
N = 0, (5.39b)

α3MIq
M
S + α4SAq

A
I = 0, (5.39c)

α4SAq
S
X − α5XZq

Z
A = 0, (5.39d)

from (qα)(πΛ ⊗ πF ) = 0,

α2IM (hk)
M
J + α3MJ (hk)

M
I = 0, (5.40a)

−α3MI (hk)
I
A + α4SA (hk)

S
M = 0, (5.40b)

α4SB (hk)
B
Z q

Z
A + α5XZ (hk)

X
S q

Z
A = 0, (5.40c)
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from (hxα)(πΛ ⊗ πF ) = 0, and

α1BS (tk)
B
A + α1AT (tk)

T
S = 0, (5.41)

from (txα)(π0 ⊗ πF ) = 0.

For a cubic Chern-Simons action, there are nine coefficients appearing in α,{
α1AZS , α2ABM , α3A(IJ), α4IZM , α5IAJ , α6MZI , α7M [AB], α8SZA, α9X(ZZ′)

}
, (5.42)

where we have noted where they are symmetric or antisymmetric. The conditions they

must satisfy are

α1BZSq
B
Iq
Z
A + α4IZMq

M
Sq

Z
A = 0, (5.43a)

α2BAMq
B
I + α4IZMq

Z
A − α5IAJq

J
M = 0, (5.43b)

α3AJKq
A
I + α5IA(Jq

A
K) = 0, (5.43c)

α4IZNq
I
Mq

Z
A − α6MZIq

I
Nq

Z
A = 0, (5.43d)

α5JAIq
J
M − α6MZIq

Z
A + 2α7MABq

B
I = 0, (5.43e)

α6MZIq
M
Sq

Z
A + α8SZBq

B
Iq
Z
A = 0, (5.43f)

α7MABq
M
S − α8SZ[Aq

Z
B] = 0, (5.43g)

α8SZAq
S
Xq

Z
B − 2α9XZZ′q

Z
Bq

Z′
A = 0, (5.43h)

α4IZM (hk)
M
J q

Z
A + α5IBJ (hk)

B
Z q

Z
A + α6MZJ (hk)

M
I q

Z
A = 0, (5.44a)

−α5I[A|J | (hk)
J
B] + α7MAB (hk)

M
I = 0, (5.44b)

−α6MZI (hk)
I
A q

Z
B − 2α7MCA (hk)

C
Z q

Z
B + α8SZA (hk)

S
M qZB = 0, (5.44c)

α8SZC (hk)
C
Z′ q

Z
(Aq

Z′

B) + α9XZZ′ (hk)
X
S q

Z
(Aq

Z′

B) = 0, (5.44d)

and

α1CZS (tk)
C
A q

Z
B + α1AZ′S (tk)

Z′

Z q
Z
B + α1AZT (tk)

T
S q

Z
B = 0, (5.45a)

α2CBM (tk)
C
A + α2ACM (tk)

C
B + α2ABN (tk)

N
M = 0, (5.45b)

α3BIJ (tk)
B
A + 2α3AK(I (tk)

K
J) = 0. (5.45c)

We will provide an explicit solution to these equations in section 7.

6 Superfield Chern-Simons actions

Now we would like to supersymmetrize the structures we found in section 5 to N = 1 su-

perspace in four dimensions. Our starting point will be the abelian Chern-Simons actions

that we constructed in ref. [13], but where we promote all derivatives to covariant deriva-

tives, and use the field strengths constructed in (4.44). When expanded in components,

these actions will contain the bosonic Chern-Simons actions of section 5 (along with more

pieces involving other component fields), and are gauge-invariant when we restrict to the

abelian case.
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It remains to check that they remain invariant in the non-abelian case. For the non-

abelian gauge variations with parameter λ, it will be easy to see that the condition for

gauge invariance will simply be that tλα = 0, just as in the bosonic case, and since the

action of tλ preserves V• degree, this means that tx annihilates the Lagrangian term by

term. Once this is established, it is possible to go back and forth between full superspace

integrals and chiral superspace integrals using covariant derivatives,

d2θ ∼ −1

4
D2, d2θ̄ ∼ −1

4
D2
, d4θ ∼ 1

16
D2D2

. (6.1)

We will still need to check that the actions are invariant under the hierarchy gauge trans-

formations, and in fact we will find a surprise in the case of the cubic Chern-Simons action,

where an additional piece will have to be added to make the action fully gauge-invariant.

6.1 Linear super-Chern-Simons action

We start with the linear Chern-Simons action

S0,SCS = Re

[
i

∫
d4xd2θ α(Γ)

]
, (6.2)

where we use the short-hand α(Γ) = αXΓX .

Under the variations (4.42), we have

δS0,SCS = Re

[
i

∫
d4xd2θ α(t(λ,Γ)− 1

4
D2

Ξ + h(Wα,Υα))

]
= Re

[
i

∫
d4xd2θ ((tλα) (Γ) + (hWαα) (Υα))

]
. (6.3)

The Ξ term vanishes since we can promote it to Re[i
∫
d4xd4θΞ] = 0, since Ξ is real.

Moreover, the condition that hxα = 0 implies that txα = 0 in this case (using (5.26d) and

qα = 0), so the only condition for gauge invariance is eq. (5.36), just as in the bosonic case.

6.2 Quadratic super-Chern-Simons action

For the quadratic Chern-Simons term, we have

S1,SCS =

∫
d4xd4θ (α2(V,H)− α4(X,F ))

+ Re

[
i

∫
d4xd2θ (α1(Φ, G) + α3(Σα,Wα) + α5(Γ, E))

]
. (6.4)

The α’s are as in (5.38), in notation which is hopefully obvious (i.e. α1(Φ, G) =

α1ASΦAGS , etc.).

Under the non-abelian variation we simply get the condition tλα = 0. Now consider

the other variations. After some algebraic manipulations involving integrations by parts,

the algebra of super-covariant derivatives, and the Bianchi identities on the field strengths,
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we find

δΛS1,SCS = Re

[
i

∫
d4xd2θ (α1(q(Λ), G) + α2(Λ, q(G))

+α2(Λ, hWαWα) + α3(hWαΛ,Wα))

]
, (6.5a)

δUS1,SCS =

∫
d4xd4θ (α2(q(U), H)− α3(U, q(H))

−α4(Ωh(W, U), F )− α3(U,Ωh(W, F ))) , (6.5b)

δΥS1,SCS = Re

[
i

∫
d4xd2θ (α3(q(Υα),Wα) + α4(Υα, q(Wα))

+α4(Υα, hWαE) + α5(hWαΥα, E))

]
, (6.5c)

δΞS1,SCS =

∫
d4xd4θ (−α4(q(Ξ), F ) + α5(Ξ, q(F ))) . (6.5d)

It is easy to confirm that the vanishing of these variations is precisely equivalent to the

conditions (5.39), (5.40), and (5.41) of the bosonic case.

6.3 Cubic super-Chern-Simons action

In order to write the cubic super-Chern-Simons action from ref. [13], and take its variations,

we need to make a couple of definitions,

Φ̂ =
1

2

(
Φ + Φ

)
, Ê =

1

2

(
E + E

)
= −q(Φ̂), Λ̂ =

1

2

(
Λ + Λ

)
, (6.6)

and another application of the Chern-Simons superfield construction, where we are given

three arguments, one of which is a chiral spinor superfield ψ and the other two are real

scalar superfields U1 and U2. Then we have

Ωα(ψ,U1, U2) = α(ψα, U1,DαU2) + α(ψα̇, U1,D
α̇
U2)+

1

2
α(Dαψα +Dα̇ψ

α̇
, U1, U2), (6.7a)

Ωα(U2, ψ, U1) = α(DαU2, ψα, U1) + α(Dα̇U2, ψ
α̇
, U1)+

1

2
α(U2,Dαψα +Dα̇ψ

α̇
, U1), (6.7b)

Ωα(U1, U2, ψ) = α(U1,DαU2, ψα) + α(U1,Dα̇U2, ψ
α̇
)+

1

2
α(U1, U2,Dαψα +Dα̇ψ

α̇
). (6.7c)

As examples

Ωα5(V, F,W ) = α5(V,DαF,Wα) + α5(V,Dα̇F,W
α̇
) +

1

2
α5(V, F,DαWα +Dα̇W

α̇
), (6.8a)

Ωα7(Σ, F, F ) = α7(Σα, F,DαF ) + α7(Σα̇, F,D
α̇
F ), (6.8b)

Note that the last term in Ωα7 vanishes since

α7(DαΣα +Dα̇Σ
α̇
, F, F ) = 0, (6.9)

by the antisymmetry of α7 in its last two arguments.
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With these definitions, we have the cubic Chern-Simons action from ref. [13], which

was invariant in the abelian case and correctly reproduced the bosonic Chern-Simons ac-

tion (5.5),

S
(0)
2,SCS =

∫
d4xd4θ

(
α2(Φ̂, F,H) + α4(V, Ê,H) + Ωα5(V, F,W ) + Ωα7(Σ, F, F )

−α8(X, Ê, F )
)

+ Re

[
i

∫
d4xd2θ (α1(Φ, E,G) + α3(Φ,Wα,Wα)

+α6(Σα, E,Wα) + α9(Γ, E,E))

]
. (6.10)

The superscript (0) is because we will find that a correction will need to be added to get

a gauge-invariant action.

Again, it is easy to check that the λ variation simply leads to the condition that

tλα = 0. For the others, we have (after significant algebra)

δΛS
(0)
2,SCS =

∫
d4xd4θ

{(
α2(q(Λ̂), F,H) + α4(Λ̂, q(F ), H)− α5(Λ̂, F, q(H))

)
−Re [α5(Λ, F, hWαDαF )−α5(Λ,DαF, hWαF )−2α7(hWαΛ, F,DαF )]

− iα5

(
Λ− Λ

2i
,DαF, hWαF

)
+ iα5

(
Λ− Λ

2i
,Dα̇F, hWα̇F

)}
+ Re

[
i

∫
d4xd2θ {(α1(q(Λ), E,G) + α4(Λ, E, q(G)))

+ (α3(q(Λ),Wα,Wα) + α5(Λ, q(Wα),Wα))

+ (α4(Λ, E, hWαWα) + α5(Λ, hWαE,Wα) + α6(hWαΛ, E,Wα))}
]
,

(6.11a)

δUS
(0)
2,SCS =

∫
d4xd4θ

{(
α4(q(U), Ê,H)− α6(U, Ê, q(H))

)
+ (Ωα5(q(U), F,W )− Ωα6(U, q(F ),W ) + 2Ωα7(U,F, q(W )))

+
(
− α6(U, Ê, hDWF )− 2α7(U, hDWÊ, F ) + α8(hDWU, Ê, F )

)
+ 2 Re

[
− α6(U, Ê, hWαDαF )−2α7(U, hWαÊ,DαF )+α8(hWαU, Ê,DαF )

]
+ 2 Re

[
iα6(U, q(DαF ), hWαF ) + 2iα7(U, hWαq(DαF ), F )

− iα8(hWαU, q(DαF ), F )
]

+ 2 Re
[
iα5(q(U),DαF, hWαF )− iα6(U, q(DαF ), hWαF )

+ 2iα7(U,DαF, q(hWαF ))
]

−iα5(q(U),DαF, hWαF ) + iα5(q(U),Dα̇F, hWα̇F )
}
, (6.11b)
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δΥS
(0)
2,SCS =

∫
d4xd4θ (Ωα7(q(Υ), F, F ) + Ωα8(Υ, q(F ), F ))

+ Re

[
i

∫
d4xd2θ {(α6(q(Υα), E,Wα) + α8(Υα, E, q(Wα)))

+ (α8(Υα, E, hWαE) + α9(hWαΥα, E,E))}
]
, (6.11c)

δΞS
(0)
2,SCS =

∫
d4xd4θ

(
−α8(q(Ξ), Ê, F ) + 2α9(Ξ, Ê, q(F ))

)
. (6.11d)

From these expressions, we can see that invariance requires precisely the same condi-

tions (5.43) and (5.44) as in the bosonic case, but even after imposing these conditions,

the action is not completely invariant; we have a remainder term

δS
(0)
2,SCS = −Re

[
i

∫
d4xd4θ α5

(
Λ− Λ

2i
+ q(U),DαF, hWαF

)]
. (6.12)

Written in this form, it’s obvious that we can cancel the variation, by adding the additional

piece i
∫
d4xd4θ α5(V,DαF, hWαF ) to the action. Doing so, we arrive at the final form

S2,SCS =

∫
d4xd4θ

(
α2(Φ̂, F,H) + α4(V, Ê,H) + Ωα5(V, F,W ) + Ωα7(Σ, F, F )

−α8(X, Ê, F ) + Re [iα5(V,DαF, hWαF )]
)

+ Re

[
i

∫
d4xd2θ (α1(Φ, E,G) + α3(Φ,Wα,Wα)

+α6(Σα, E,Wα) + α9(Γ, E,E))

]
(6.13)

with the αs satisfying eqs. (5.43), (5.44), and (5.45).

7 Dimensional reduction

One of the prime motivations for this work is to develop the machinery needed to describe a

higher-dimensional supergravity theory, for example eleven-dimensional supergravity, in an

off-shell four-dimensional N = 1 formulation.5 In particular, when reducing a p-form gauge

potential, such as the three-form in eleven-dimensions, one naturally encounters hierarchies

of the sort described in this paper. The matter fields, in V•, arise from reductions of

the p-form itself, while the non-abelian gauge field is the Kaluza-Klein vector, and the

corresponding gauge group is the group of diffeomorphisms of the internal space M , with

g ∼= TM . Let us now make these observations more precise.

7.1 Hierarchy from reduction

As described in section 3.2, if we reduce a theory with an n-form potential in D dimensions

down to d dimensions on a (D − d)-dimensional manifold M , we are in the situation

5This is analogous to the construction ten-dimensional super-Yang-Mills theory in terms of 4D, N = 1

superfield representations [19].
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described by our tensor hierarchy. We have

Vp ∼= Ωn−p(M), (7.1)

with bases labeled by multi-indices

Ip = (i1 · · · in−p; y), (7.2)

where ik are indices on M and y is a coordinate on M . We will use somewhat interchange-

ably the following,

ϕIp = ϕ(i1···in−p;y) = ϕi1···in−p(y). (7.3)

Note that when we write the indices ij out explicitly, it is natural to put them downstairs

since they correspond to differential forms on M . A summation over a repeated index

involves both a standard summation over the ij indices, as well as an integration of y over

M . Simlarly, we will use

k̄ = (k; y), xk̄ = x(k;y) = xk(y), (7.4)

for indices of g ∼= TM .

In this language,

f
(k;y)

(`;y′)(m;y′′) = − δk` (∂mδ) (y − y′)δ(y − y′′) + δkmδ(y − y′) (∂`δ) (y − y′′),
(7.5)

q
(j1···jn−p−1;y′)

(i1···in−p;y) = (−1)n−1 (n− p) δ[j1
[i1
· · · δjn−p−1]

in−p−1

(
∂in−p]δ

)
(y − y′), (7.6)(

h(k;u)

) (j1···jn−p+1;y′)

(i1···in−p;y)
= (−1)p δ

[j1
k δj2[i1

· · · δjn−p+1]

in−p] δ(u− y)δ(u− y′). (7.7)

and

(
t(k;u)

) (j1···jn−p;y′)

(i1···in−p;y)
= δ

[j1
[i1
· · · δjn−p]

in−p] (∂kδ) (u− y′)δ(u− y)

+ (−1)n−p (n− p) δ[j1
k δj2[i1

· · · δjn−p]
in−p−1

(
∂in−p]δ

)
(u− y)δ(y − y′). (7.8)

We are using the notation that (∂δ) is the derivative of the delta function with respect to

its argument, so for example

(∂kδ) (u− y′) =
∂

∂uk
[
δ(u− y′)

]
= − ∂

∂y′ k
[
δ(u− y′)

]
. (7.9)

One can check explicitly that these coefficients satisfy the required conditions, but its

easier to see by computing their action on fields. For example, we have

f
(k;y)

(`;y′)(m;y′′)x
(`;y′)
1 x

(m;y′′)
2 = −x`2(y)∂`x

k
1(y) + x`1(y)∂`x

k
2(y), (7.10)

which is simply the Lie bracket on vector fields, and it is easy to check antisymmetry and

the Jacobi identity.
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Similarly,

q
(j1···jn−p−1;y′)

(i1···in−p;y) ϕ(j1···jn−p−1;y′) = (−1)p (n− p) ∂[i1ϕi2···in−p](y), (7.11)

or

q(ϕ) = (−1)p dMϕ, (7.12)

where dM is the exterior derivative acting on forms on M .

Next,(
h(k;u)

) (j1···jn−p+1;y′)

(i1···in−p;y)
x(k;u)ϕ(j1···jn−p+1;y′) = (−1)p xk(y)ϕki1···in−p(y), (7.13)

or

hxϕ = (−1)p ιxϕ, (7.14)

contraction with the vector x ∈ TM , and(
t(k;u)

) (j1···jn−p;y′)

(i1···in−p;y)
x(k;u)ϕ(j1···jn−p;y′)

= xk(y)∂kϕi1···in−p(y) + (n− p) ∂[i1x
k(y)ϕ|k|i2···in−p](y), (7.15)

i.e.

txϕ = Lxϕ, (7.16)

the Lie derivative along the vector x.

Using this language, the relations among f , q, h, and t are simply the equations stated

already in section 3.2,

LxLy − LyLx = L[x,y], (7.17a)

dMLx − LxdM = 0, (7.17b)

d2
M = 0, (7.17c)

ιxLy − Lyιx = ι[x,y], (7.17d)

dM ιx + ιxdM = Lx, (7.17e)

ιxιy + ιyιx = 0. (7.17f)

7.2 Chern-Simons actions

Now suppose the D-dimensional theory has a Chern-Simons action. For example, the

eleven-dimensional supergravity theory contains a coupling

S11D,CS =

∫
C[3] ∧G[4] ∧G[4], (7.18)

where G[4] = dC[3]. In general a theory with a single n-form potential can have a Chern-

Simons action with N − 1 field strengths if the total dimension of spacetime is D =

Nn + N − 1. If N > 2, we also need n to be odd, otherwise the wedge product of field

strengths will be zero automatically (if N = 2 we should also have n odd, otherwise the

Chern-Simons term is a total derivative). Our example above has N = 3, n = 3, D = 11,

but we can also have N = 3, n = 1, D = 5, or other combinations.
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In eq. (4.29) of ref. [13], we gave a collection of coefficients α, corresponding to the

dimensional reduction of the eleven-dimensional Chern-Simons term to four dimensions,

that satisfied the conditions (5.43) for gauge invariance of the abelian action. It is possible

to check that these same α’s also satisfy the remaining conditions (5.44) and (5.45) of the

non-abelian case. It is not true that the α ∈ X•(3) built from these coefficients satisfies

qα = 0 or hxα = 0; these conditions only hold after applying the additional projectors as

in (5.33). However, by adding more coefficients to α which do not contribute to the action

(since they are annihilated by the projectors πφ or πF ), we can build an explicit α which

is annihilated by q and hx. This new α has a very nice interpretation of simply wedging

together to get a top form which is then integrated over the internal space.

Indeed, upon reduction to d dimensions, the Chern-Simons action will become a sum

of terms of the form that we have described in section 5. The α in this case takes N

arguments that are forms on M whose total degree is D − d, wedges them together to get

a top form on M , and integrates the top form to get a number, i.e.

α(ϕ1, · · · , ϕN ) =

∫
M
ϕ1 ∧ · · · ∧ ϕN . (7.19)

Let us check that qα = 0 and hxα = 0. Well, qα will again take N forms, now whose total

degree is D − d− 1, and a direct computation shows that

(qα) (ϕ1, · · · , ϕN ) = (−1)deg(ϕ1)
∫
M
d (ϕ1 ∧ · · · ∧ ϕN ) = 0. (7.20)

In other words, qα is zero because it is the integral of a total derivative. hxα = 0 for an

even simpler reason, which is that hxα would be the integral of the contraction of xk on a

(D − d + 1)-form on M . But since there are no forms of degree greater than D − d (the

dimension of M), then this must be zero. This shows that such an α indeed corresponds

to a gauge-invariant Chern-Simons term (which should not come as a surprise).

Finally, note that the super-Chern-Simons actions, when expanded in component fields,

will give rise to the bosonic Chern-Simons actions but also to many other terms involving

other component fields. Some of these additional terms can have nice interpretations. For

instance, the term given by α3 in (6.13) will give rise to both a familiar axionic term∫
aF ∧ F, (7.21)

but also to a kinetic term (assuming that ϕ gets a VEV)∫
ϕF ∧ ∗F. (7.22)

8 Prospects

In this work, we have gauged the abelian superspace tensor hierarchy of reference [13] by a

non-abelian algebra g. In doing so, we have found that the required mathematical structure

is that of a g-equivariant double complex of differential forms with values in representations
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of g. This action action is homotopically trivial and the homotopy operator is itself a

differential. This gives an extension of the usual Lie derivative along g vector fields to the

complex of representations.

Using these ingredients, we constructed manifestly supersymmetric actions including

those of Chern-Simons type assuming certain cocycles exist on the tensor algebra of the

total complex. Although the explicit equations defining the latter are somewhat impos-

ing, existence of solutions is guaranteed by examples arising from decomposing higher-

dimensional theories of p-forms in terms of four-dimensional representations. This was

illustrated explicitly in section 7 in the case of the eleven-dimensional gauge 3-form result-

ing in an embedding of this structure into a theory of superforms in 4D, N = 1 superspace.

Our eventual goal for this type of construction is to build a manifestly 4D, N = 1

covariant description of eleven-dimensional supergravity. To that point, there are a few

questions left unanswered at this stage of development. The most pressing of these is the

following: the Chern-Simons action just constructed for eleven-dimensional supergravity is

not eleven-dimensionally Lorentz invariant because there are component fields in the 4D,

N = 1 supermultiplets that are not present in the four-dimensional decomposition of the

components of eleven-dimensional supergravity. Alternatively, since we have not included

any of the 4D, N = 1 supergravity fields, we have, at this stage, a non-gravitational theory

partially encoding the structure of a purely gravitational one. The goal, then, is to couple

the part of the theory we have just constructed to 4D, N = 1 supergravity in just such a way

that these two problems cancel. A related problem is that the known on-shell descriptions

of such dimensionally-reduced supergravity theories all require duality transformations on

the component fields. How this is resolved is currently under investigation but precisely this

question in the (very good) analogy of 5D, N = 1 supergravity must have an answer given

that the full off-shell structure of the latter is fully understood [20]. (See also refs. [21, 22]

where this issue is addressed at the level of superfields.)

Along a very different line of investigation, our result also raises questions pertaining

to related attempts to use similar non-abelian hierarchies for other purposes. In ref. [4]

the original idea was to use such hierarchies to construct 6D, N = (1, 0) superconformal

theories and, although the dimensions and supersymmetries differ, in retrospect our con-

struction is morally the same. Furthermore, a moment of reflection suffices to conclude

that the dimension and supersymmetry are largely irrelevant to the consistency of the basic

hierarchy so it is natural to contemplate the relation between our results. Although the full

exploration of this relationship is beyond the scope of this paper, we can already identify

(at least two) interesting differences: The first is that the couplings studied here are of the

same class as those arising from compactification and therefore a priori not as general as

those considered in ref. [4]. On the other hand, in the approach of ref. [4] all vector fields

(abelian and non-abelian) are treated on the same footing and the tensor analogous to the

map (2.11) is naturally symmetric6 in contrast to the asymmetric cases considered here.

6More explicitly, once we combine g and V1 into a single vector space V̂1 = V1 ⊕ g, then the analog

of (2.11) for r = 1 is

ĥ : (Ωp ⊗ V̂1)× (Ωq ⊗ V̂1) −→ Ωp+q ⊗ V2, (8.1)

and it is sensible to ask about ĥ being symmetric or antisymmetric in its arguments.
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Finally, we should point out that the construction presented here is a hybrid of two

approaches in which the forms in the hierarchy are treated in terms of superspace “pre-

potentials” whereas the non-abelian gauging is treated in terms of superspace potentials.

Ultimately, the use of the prepotentials is what is to blame for the complexity of the anal-

ysis throughout this paper. Morally speaking, the entire analysis should be done without

recourse to this pre-geometry. If this were possible, none of the complicated D-algebra

should be needed and, similarly, no part of the analysis should require the myriad “mag-

ical” cancelations. In a forthcoming paper, we hope to show this concretely by recasting

the results presented here in terms of the geometry of superforms [23].
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