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1 Introduction

A superconformal M5 brane can be put in a generic conformal supergravity background [1].

The corresponding supergravity background fields in the dimensionally reduced 5d SYM

theory has been analyzed in [2] following the approach of [3]. Using this result, 5d SYM

theories on R3 × S2 [4] and on R× S4 [5] have been obtained. However the corresponding

Lagrangian of the abelian M5 brane has not been obtained,1 perhaps due to the belief

that no such Lagrangian can be written down because of the selfdual tensor field in 6d.

However, by also including the wrong chirality tensor field as a decoupled spectator field,

we can write down a superconformal Lagrangian in 6d. But another reason that no 6d

Lagrangian has been obtained in the literature might be the following. In the applications

to the AGT correspondence [7] and the 3d-3d correspondence [4],2 we like to put M5 brane

on Rp×S6−p for p = 2 and p = 3 respectively, and then perform a partial topological twist

with the SO(5) R symmetry that enables us to put the theory on Mp × S6−p for a general

p-manifold Mp. The theory being topological on Mp means that we can scale the size of Mp

without affecting any observables in the theory. By taking the size to be small we obtain

a dimensionally reduced SYM theory on S6−p. By taking the size to be large we obtain a

theory on Mp. These theories will be equivalent thanks to the topological property of the

theory on Mp.

However, one obstacle in carrying out such a computation explicitly is that no M5

brane Lagrangian can exist in Euclidean signature with real fermions. If we consider the

theory in Lorentzian signature, we should, for p = 2 consider the manifold R1,1 × S4.

However, as was mentioned in [9], we cannot twist this theory partially on R1,1 if the R

symmetry group is SO(5).

In this paper we propose to solve this problem by instead taking the R symmetry

group to be SO(1, 4) [11, 12].3 This enables us to twist an SO(1, p− 1) subgroup with the

Lorentz group SO(1, p−1) on R1,p−1. We may then put the theory on a general Lorentzian

p-manifold M1,p−1 times S6−p.

For p = 1, 2, 3 we can find solutions for the background gauge potential, and the full M5

brane Lagrangian becomes real in Lorentzian signature. It is required that the bosonic part

of the Lagrangian is real in order to have a unitarity of the theory [13]. What is problematic

though, is that with SO(1, 4) R symmetry we have an indefinite kinetic energy for the scalar

fields. But this kind of problem might be cured by finding a suitable integration cycle where

the path integral is convergent. For more details we refer to section 3.

We will also perform dimensional reduction along time. This will perhaps justify our

choice of R symmetry group as SO(1, 4) a bit further. After that we dimensionally reduce

1A related question was addressed in [8]. Here the abelian M5 brane Lagrangian was obtained on

geometries of the form R1,1×M4 where a partial topological twist of Donaldson-Witten type was performed

on M4.
2The many original papers that proposed the 3d-3d correspondence can be found in the reference

list of [4].
3We use a signature convention such that SO(1, 4) refers to the group of transformations that leaves

the metric diag(−1,+1,+1,+1,+1) invariant. We then also refer to this space as R1,4 or as a space of

signature (1, 4).
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flat M5 brane with SO(1, 4) R symmetry along time, we find precisely the 5d SYM that

has global symmetry SO(5)×SO(1, 4) that also can be obtained by dimensionally reducing

10d SYM with SO(1, 9) global symmetry by reduction along time and 4 spatial directions.

The latter approach has been used in for example [14] to derive a SYM Lagrangian on a

four-sphere from 10d SYM with real fermions.

In this paper we will restrict ourselves to just turning on the supergravity background

gauge field that is associated with the SO(1, 4) R symmetry. Thus we will put all the

other supergravity fields to zero. Our restriction has the unfortunate limitation that we

cannot consider squashed spheres as these require other background fields also being turned

on. The AGT-like correspondences of course become much more interesting if one can

include an additional squashing parameter in the correspondence. We plan to return to

this problems in a future publication.

2 Abelian 6d theory with SO(1, 4) R symmetry group

In the introduction we have motivated why we like to study 6d (2, 0) theory with SO(1, 4)

R symmetry group. This can be thought of as embedding a Lorentzian M5 brane into 11 di-

mensional space with signature (2, 9). Let us now work out the supersymmetry transforma-

tions assuming SO(1, 4) R-symmetry group. We start by considering M5 brane on flat R1,5.

We use 11d gamma matrices that we split as ΓM (M = 0, . . . , 5) and Γ̂A (A = 0′, . . . , 4′) and

define the 6d chirality matrix Γ = Γ012345. The spinor and the supersymmetry parameter

have opposite 6d chiralities. We choose the convention

Γψ = ψ

Γε = −ε

The 11d Majorana conditions (or, equivalently, the 6d SO(1, 4)-Majorana conditions) for

these chiral spinors read

ψ̄ = ψTC

ε̄ = εTC

where ψ̄ = ψ†Γ0Γ̂0′ . We find that the following supersymmetry variations

δφA = ε̄Γ̂Aψ

δBMN = iε̄ΓMNψ

δψ = − i

12
ΓMNP εHMNP + ΓM Γ̂Aε∂Mφ

A

close on-shell,

[δη, δε]φ
A = −2ε̄ΓP η∂Pφ

A

[δη, δε]BMN = −2ε̄ΓP ηHPMN

[δη, δε]ψ = −2ε̄ΓP η∂Pψ +
3

4
ε̄ΓP ηΓPΓM∂Mψ −

1

4
η̄ΓM Γ̂AεΓM Γ̂AΓN∂Nψ

– 3 –
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To obtain the closure relation for the fermion we have used the Fierz identity that we have

collected in appendix D. For closure we must use the fermionic equation of motion

ΓM∂Mψ = 0

Let us notice that

(ε̄ΓMη)∗ = −(−1)
q(q+1)

2 ε̄ΓMη

where q counts the number of timelike components in the R symmetry group SO(q, 5− q).
In particular then, while we have that ε̄ΓMη is purely imaginary for SO(5) R symmetry,

we find that ε̄ΓMη becomes real for SO(1, 4) R symmetry. This explains why we do not

get the usual factor of i in the closure relations, such as ∼ 2iε̄ΓMη ∂Mφ
A as we get when

the R symmetry is SO(5).

By using the 11d Majorana condition, one can see that δφA and δBMN are real, and

that the variation δψ again satisfies the 11d Majorana condition. We notice that the

factors of i sit at different places compared to the more commonly used supersymmetry

transformations for the (2, 0) theory that has SO(5) R symmetry group.

As usual, from Γε = −ε, we can find that the gauge field part of the above supersym-

metry variations can be also written in the form4

δH+
MNP =

i

2
ε̄ΓQΓMNP∂Qψ

δH−MNP = 0

δψ = − i

12
ΓMNP εH+

MNP + . . .

where we define

H±MNP =
1

2

(
HMNP ±

1

6
εMNP

UVWHUVW

)
This means that H−MNP is not part of the tensor multiplet, but we include it in order to

write down a neat supersymmetric Lagrangian, which is given by

L = − 1

24
HMNPHMNP +

1

2
∂MφA∂MφA −

1

2
ψ̄ΓM∂Mψ

First we notice that the whole Lagrangian is real. In particular we have

(ψ̄ΓM∂Mψ)† = ψ̄ΓM∂Mψ

up to a boundary term produced by an integration by parts. Second, we notice that the

gauge potential kinetic term and the scalar field kinetic term cannot both have the right

sign simultaneously. However, for the kinetic term of the scalar fields, we also need to

remember that the signature of the R symmetry group is SO(1, 4) which means that it is

never possible for all the five scalar fields to have the right sign of the kinetic term. It is

therefore the most natural to assign the gauge potential the right sign kinetic term, and

then φa
′

for a′ = 1′, 2′, 3′, 4′ will have the wrong sign kinetic term.

4The dots represent the scalar field part.
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2.1 SO(4, 1) R symmetry group

For completeness, we also work out the supersymmetry variations with SO(4, 1) R symme-

try group, which corresponds to (5, 6) signature in 11 dimensions. We have the supersym-

metry variations

δφA = iε̄Γ̂Aψ

δBMN = iε̄ΓMNψ

δψ =
1

12
ΓMNP εHMNP + ΓM Γ̂Aε∂Mφ

A

where the Dirac conjugation χ̄ is now defined by χ†Γ0Γ̂1′2′3′4′ in this SO(4, 1) theory. By

using the 11d Majorana condition in this signature, one can see that δφA and δBMN

are real, and that the variation δψ again satisfies the 11d Majorana condition. Closure

relations are

[δη, δε]φ
A = −2iε̄ΓP η∂Pφ

A

[δη, δε]BMN = −2iε̄ΓP ηHPMN

[δη, δε]ψ = −2iε̄ΓP η∂Pψ +
3i

4
ε̄ΓP ηΓPΓM∂Mψ −

i

4
η̄ΓM Γ̂AεΓM Γ̂AΓN∂Nψ

That is, we have on-shell closure on the fermionic equation of motion

ΓM∂Mψ = 0

The supersymmetric Lagrangian is

L = − 1

24
HMNPHMNP −

1

2
∂MφA∂MφA +

i

2
ψ̄ΓM∂Mψ

This theory can be obtained from the above theory in signature (2, 9) by the follow-

ing map,

ΓM → ΓM

Γ̂A → −iΓ̂A

gAB → −gAB
ψ → iψ

ε → ε

C → −iC

together with ψ̄ → ψ̄ and ε̄→ −iε̄ which follow from the definitions of the Dirac conjugation

and the Gamma matrix transformation rule. Thus the SO(4, 1) twisted and the time

reduced theories are equivalent to those from the (2, 9) theory.

– 5 –



J
H
E
P
1
2
(
2
0
1
5
)
0
9
3

2.2 SO(5) R symmetry group

The supersymmetry variations and the Lagrangian for the usual Lorentzian M5 brane with

SO(5) R symmetry are in our conventions given by

δBMN = iε̄ΓMNψ

δφA = iε̄Γ̂Aψ

δψ =
1

12
ΓMNP εHMNP + ΓM Γ̂Aε∂Mφ

A

and

L = − 1

24
HMNPHMNP −

1

2
∂MφA∂MφA +

i

2
ψ̄ΓM∂Mψ

Although these variations and the Lagrangian are on the same form as for the case of

SO(4, 1) R symmetry above, there is no simple relation between the SO(1, 4) or SO(4, 1)

theories and the usual SO(5) theory since there is no natural map from the Dirac conjugate

ψ̄ = ψ†Γ0 to the Dirac conjugates of the SO(1, 4) or SO(4, 1) theories.

3 Unitarity

As we have changed signatures, it is important to check unitarity of the theory. To illustrate

unitarity, we follow the arguments in [13]. Let us consider some Lagrangian

L =
1

2
gij q̇

iq̇j + ihijψ
∗iψ̇j

where gij and hij are invertible matrices with inverses gij and hij . This system can be

quantized by imposing the commutation relations

[qi, pj ] = i~δij (3.1)

{ψi, ψj†} = ~hij (3.2)

where pi are the conjugate momenta of qi. These have the unitary representations pi =

−i~∂/∂qi irrespectively of the signature of gij , in the sense that the translation operators

U =expiLipi are unitary for any real distances Li, provided the bosonic part of the La-

grangian is real. However, if gij is indefinite the energy is unbounded from below. For the

fermions the situation is the opposite; we see that hij has to be positive definite to have a

unitarity representation of (3.2). On the other hand we do not encounter negative energy

states by filling up the Dirac sea.

Let us now consider our theory. The bosonic part of our Lagrangian is real although

we have indefinite gij . Hence the bosonic part describes a unitary theory. The fermionic

part does not however. Here we have

{ψ,ψ†} ∼ ~Γ̂0

– 6 –
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which is indefinite. Hence our 6d theory is non-unitary. This happens for both SO(1, 4)

and SO(4, 1) R symmetry. On the other hand, if the R symmetry is SO(5) the 6d theory

is unitary since then we have

{ψ,ψ†} ∼ ~I

where I denotes the 16× 16 identity matrix.

The microscopic structure of an 11d theory is of course unclear, but it seems reasonable

to think that such a theory would have two time-directions and global symmetry group

SO(2, 9), that is broken by an embedding of M5 brane down to SO(1, 5) × SO(1, 4). But

if we have two time-directions, then time-evolution will be rather different from what we

are used to and a new concept should replace that of unitarity, which is based on time

evolution with just one time direction.

Since we are not aware of any formalism with two time directions, let us stick to one

time direction. Here we can also find that a unitary theory may appear to be non-unitary

if we have one time direction and one space direction, if we interpret the space direction

as ‘time’. To illustrate this, let us consider an action of a 2-component spinor with σ3 the

third Pauli matrix,

S =

∫
d2xψ†(i∂0 + σ3∂1)ψ

If we let x0 play the role of time, we quantize the theory by imposing

{ψ†, ψ} = ~

and we have a unitary representation. But we can also quantize this theory by declaring

that x1 is the direction of time evolution, in which case we shall impose the commuta-

tion relation

{ψ†, ψ} = σ3

which has no unitary representation as the matrix σ3 is indefinite. One might now spec-

ulate that our non-unitary M5 brane theory might appear to be non-unitary for a similar

reason that is related to the fact that one time direction of the 11d theory is outside the

worldvolume of the M5 brane.

More concrete statements can be made related to unitarity if we reduce our M5 brane

theory along the world-volume time direction. This dimensional reduction gives rise to 5d

SYM theory with global symmetry SO(5) × SO(1, 4) and can be exactly mapped to the

5d SYM theory that one would also obtain by reducing 10d SYM theory with SO(1, 9)

Lorentz symmetry, along time and four space directions. We present the map in full detail

in appendix B. As the 10d SYM theory is a unitary theory and the dimensional reduction

is a physically consistent procedure, we conclude that there is no problem with our M5

brane theory with SO(1, 4) R symmetry after this theory has been reduced along the time

direction down to 5d SYM theory.

– 7 –
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Let us finally comment on the issue of convergence of the path integral. If the R sym-

metry group is SO(1, 4), then we have the wrong sign of the kinetic term in the Lagrangian

for one of the scalar fields, say φ0. We may Wick rotate this into iφ0 to get the right sign

kinetic term. We can indeed Wick rotate the R symmetry SO(1, 4) including the fermionic

part, into the SO(5) R symmetry and get the usual M5 brane theory. But we can also carry

on with our SO(1, 4) R symmetry, and perform some partial twist of say an SO(1, p − 1)

subgroup of the R symmetry where p = 2, 3, . . .. In this case, the R symmetry will be

reduced by the twist with the Lorentz group to SO(5 − p). Nevertheless, we can Wick

rotate φ0 into iφ0 and get the right sign kinetic term. If we do that after the twist, then we

get a different theory that can not be related to the familiar M5 brane theory with SO(5)

R symmetry.

4 Superconformal symmetry

The Lagrangian has not only the usual Poincare supersymmetry, but also a special con-

formal supersymmetry. We can relax the condition that the supersymmetry parameter is

constant, to the condition that it satisfies the superconformal Killing spinor equation [10]

DM ε =
1

6
ΓMΓNDN ε

Once we have done that, we can also admit more general curved six-manifolds where this

equation has some solution. The Ricci curvature scalar may be defined by the equation

ΓMNDMDN ε = −1

4
Rε

and DM = ∂M + ωM is the covariant derivative where ωM is the spin connection.

The Lagrangian is now given by

L = L0 + L1

where

L0 = − 1

24
H2
MNP +

1

2
(DMφA)2 − 1

2
ψ̄ΓMDMψ

L1 =
R

10
φAφA

The superconformal symmetry variations can be expressed as

δ = δ0 + δ1

where

δ0φ
A = ε̄Γ̂Aψ

δ0BMN = iε̄ΓMNψ

δ0ψ = − i

12
ΓMNP εHMNP + ΓM Γ̂AεDMφ

A

– 8 –
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and

δ1φ
A = 0

δ1BMN = 0

δ1ψ =
2

3
ΓM Γ̂A(DM ε)φ

A

When we vary the Lagrangian, we find it most convenient to bring the variation into the

following form,

δL = DMb
M +

1

4
DMH

MNP δBNP −DMD
MφAδφA +

R

5
φAδφA − ψ̄ΓMDMδψ

where the boundary term

bM = −1

4
HMNP δBNP +DMφAδφA +

1

2
ψ̄ΓMδψ

= − i

24
ε̄ΓMΓPQRψHPQR +

1

2
ε̄Γ̂AΓMΓPψDPφ

A − 2(DM ε̄)Γ̂Aψφ
A

is non-vanishing if the M5 brane has a boundary. If there is no boundary, then the variation

is vanishing if the supersymmetry parameter ε is a superconformal Killing spinor. We then

find the following superconformal variations,

δ0L0 = 4ψ̄Γ̂A(DN ε)DNφ
A

δ1L0 = −4ψ̄Γ̂A(DN ε)DNφ
A − R

5
φAε̄Γ̂Aψ

δ0L1 =
R

5
φAε̄Γ̂Aψ

δ1L1 = 0

where we have used the conformal Killing spinor equation and ignore the total derivative

contribution DMb
M . Hence δL = δ0L0+δ1L0+δ0L1+δ1L1 = 0 up to the total derivatives.

If we then replace ε by fε where f is a function on spacetime, then we pick up a variation

that is proportional to ∂Mf , which is again up to total derivatives. From this we can read

off the supercurrent. We only need to consider the last term since this is the only term

that can produce something ∼ ∂Mf . We find that

δL = jM∂Mf

where

jM = − i

12
ε̄ΓPQRΓMψHPQR + ε̄Γ̂AΓPΓMψDPφ

A + 4(DM ε̄)Γ̂Aψφ
A

For this computation, we may use the variation

δ1ψ =
2

3
ΓM Γ̂Af(DM ε)φ

A

– 9 –
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When the equations of motion are satisfied, we will have that the action is stationary under

any variation. Hence

0 =

∫
d6x
√
gδL =

∫
jMDMf = −

∫
DM j

Mf

and since f is arbitrary, it follows that DM j
M = 0.

4.1 Coupling to background R symmetry gauge potential

We introduce a background gauge potential AM
A
B and corresponding covariant derivatives

DMφ
A = ∇MφA +AM

A
Bφ

B

DMψ = ∇Mψ +
1

4
AMABΓ̂ABψ

Here ∇M is the covariant derivative of the background geometry.

We can now find a superconformal Lagrangian by imposing the following Weyl

projection

1

2
ΓMN Γ̂AεFMN

A
B = Γ̂A ε P

A
B

PAB = PBA

From this, it follows that

1

2
ΓMN Γ̂AB εFMNAB = −ε PAA

ΓMNDMDN ε = −1

4
(R+ P ) ε

Here we define

P = PAA

After we gauge the R symmetry, we find new terms in the variation of the Lagrangian

δ0L0 = · · · − 1

2
ψ̄ΓMN Γ̂AεFMNABφ

B = · · · − ψ̄Γ̂AεPABφ
B

δ1L0 = · · · − 4

5
ψ̄Γ̂A(ΓMNDMDN ε)φ

A = · · ·+ P

5
ψ̄Γ̂Aεφ

A

where · · · are terms of the same form as we had before. We cancel these terms by adding

the following terms

∆L =
1

2

(
1

5
ηABP − PAB

)
φAφB

to the Lagrangian.

– 10 –
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4.2 Dimensional reduction along time to 5d SYM

We assume six-manifold of the form R×M5 with time along R, and with a rather generic

R symmetry gauge field. The natural split of the 6d conformal Killing spinor equation for

this analysis will be to write 6 = 1 + 5, which means that we will assume the following

equations

Γ0D0ε =
1

5
ΓmDmε

Dmε =
1

5
ΓmΓnDnε

where we also put

∂0ε = 0

in order to preserve supersymmetry under the dimensional reduction.

By dimensional reduction along time, we get the following Lagrangian

L0 =
1

4
F 2
mn +

1

2
(DmφA)2 − 1

4
[φA, φB]2 − 1

2
ψ̄ΓmDmψ −

1

2
ψ̄Γ0Γ̂A[φA, ψ]

L1 = −1

2
(D0φA)2 − 1

2
ψ̄Γ0D0ψ +

1

2
MABφ

AφB

L2 =
i

6
εABCDEA0ABφC [φD, φE ]

where the mass matrix is given by

MAB =
1

5
ηAB (R+ P )− PAB

The action is invariant under

δφA = ε̄Γ̂Aψ

δAm = iε̄ΓmΓ0ψ

δψ = − i
2

ΓmnΓ0εFmn + ΓmΓ̂AεDmφ
A − 1

2
Γ̂ABΓ0[φA, φB]

+Γ0Γ̂AεD0φ
A + 4Γ0Γ̂AD0εφ

A

To check supersymmetry, we only need to check this for the nonabelian type of terms

that involve the curvature corrections. Collecting all such terms, we find the following

contributions

δL0 = −3

2
ψ̄Γ̂ABD0ε[φA, φB]− ψ̄Γ̂ABε[φA, D0φB]− ψ̄ε[φA, D0φA]

δL1 = −1

2
ψ̄Γ̂ABD0ε[φA, φB]− ψ̄Γ̂ABε[φA, D0φB]

Then we note

Γ̂ABΓ̂CD = −2ηAB,CD + 4ηBC Γ̂AD + Γ̂ABCD

D0ε =
1

4
Γ̂ABεA0AB

– 11 –
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and we get

δ(L0 + L1) = −1

2
ψ̄Γ̂ABCDεA0CD[φA, φB] = −δL2

5 Summary

The M5 brane Lagrangian is given by

L = L0 + L1

where

L0 = − 1

24
HMNPHMNP +

1

2
∇MφA∇MφA −

1

2
ψ̄ΓM∇Mψ,

L1 = AMABφ
B∂Mφ

A +
1

2
MABφ

AφB − 1

8
ψ̄ΓM Γ̂ABψAMAB

where ∇M is the covariant derivative of the background geometry and

MAB =
1

5
ηAB(P +R)− PAB +AM

C
AA

M
CB

We have the superconformal transformations

δφA = ε̄Γ̂Aψ

δBMN = iε̄ΓMNψ

δψ = − i

12
ΓMNP εHMNP + ΓM Γ̂Aε∂MφA +

1

p
ΓµΓ̂AΓ̂BCεAµBCφ

A + ΓµΓ̂AεAµABφ
B

where PAB is a symmetric tensor that we deduce from the curvature of the R-symmetry

connection through the Weyl projection

1

2
ΓMN Γ̂AεFMN

A
B = Γ̂AεP

A
B

It would be interesting to see whether one can give PAB a geometric interpretation, perhaps

as the Ricci tensor in normal directions to the M5 brane.

By dimensional reduction along time, we can also find a nonabelian generalization

L0 = tr

(
1

4
FmnFmn +

1

2
∇mφA∇mφA −

1

4
[φA, φB][φA, φB]

−1

2
ψ̄Γm∇mψ −

1

2
ψ̄Γ0Γ̂Aψ[φA, ψ]

)
L1 = tr

(
AMABφ

B∂Mφ
A +

1

2
MABφ

AφB − 1

8
ψ̄ΓM Γ̂ABψAMAB

+
i

2
εABCDEA0ABφC [φD, φE ]

)

– 12 –
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6 Six-manifolds on the form R1,p−1 × S6−p

We will now restrict ourselves to six-manifolds on the form R1,p−1×S6−p where p can take

any of the values p = 1, 2, 3, 4, 5, 6. We will subsequently perform a partial topological

twist along R1,p−1, although for p = 1 this twist cannot be done since the Lorentz group

on R is rather trivial. For our M5 brane theory on R1,5 we have deliberately chosen the

global symmetry group SO(1, 5)× SO(1, 4). If we break this symmetry down to SO(1, p−
1) × SO(6 − p) × SO(1, p − 1) × SO(5 − p), we can perform a partial twist and identify

the two SO(1, p − 1) subgroups and declare that the diagonal subgroup of these, times

SO(6 − p), is the new twisted Lorentz group. Thus after the twist, we have the global

symmetry SO(1, p− 1)′ × SO(6− p)× SO(5− p)R. We then first need how the M5 brane

spinor in the representation (4′; 4) of SO(1, 5) × SO(1, 4) transforms under the subgroups

for the various values of p. Here we denote by a prime as in 4′ the anti-Weyl representation.

The supersymmetry parameter is subject to the anti-Weyl projection Γε = −ε. After the

split we find the following representations

p = 1 (4; 4)

p = 2
(

2− i
2
⊕ 2′

+ i
2

; 2 i
2
⊕ 2− i

2

)
p = 3

(
2, 2; 2+ 1

2

)
⊕
(

2, 2; 2− 1
2

)
p = 4

(
2− 1

2
⊕ 2′

+ 1
2

, 2⊕ 2′
)

p = 5 (4; 4)

where subscripts denote either SO(1, 1) or SO(2) charges respectively. Our convention for

these charges are QMN = − i
2ΓMN so that for instance Q01 = ± i

2 and Q45 = ±1
2 . After

the identification of the SO(1, p− 1) groups, these representations become

p = 1 (4; 4)

p = 2 (2, 2)0 ⊕ (2′, 2)0 ⊕ (2, 2)−i ⊕ (2′, 2)+i

p = 3 (1, 2)+ 1
2
⊕ (3, 2)+ 1

2
⊕ (1, 2)− 1

2
⊕ (3, 2) 1

2

p = 4 1− 1
2
⊕ 3+− 1

2

⊕ 4− 1
2
⊕ 4+ 1

2
⊕ 3−

+ 1
2

⊕ 1+ 1
2

p = 5 1⊕ 5⊕ 10

Here 3+ refers to a selfdual two-form of SO(1, 3). Let us turn to the Weyl projections for

the singlet supercharges. First we have the 6d Weyl projection

Γ01Γ23Γ45ε = −ε

For p = 2 we have the singlet representations (2, 2)0 ⊕ (2′, 2)0 i.e. neutral under SO(1, 1).

For these representations we have

Γ01Γ̂0′1′ε = ε

– 13 –
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For p = 3 we have the singlet representations (1, 2)+ 1
2
⊕(1, 2)− 1

2
i.e. singlets under SO(1, 2).

For these representations we have

Γ01Γ̂0′1′ε = ε

Γ12Γ̂1′2ε = ε

These two projections project onto the singlet state in the tensor product representation of

two spin-1/2 representations of SO(1, 2). With the gamma matrix representation as below,

these two projections amount to

(σ3)s0s′0(σ3)t0 t′0η
s′0t
′
0 = −ηs0t0

(σ2)s0s′0(σ2)t0 t′0η
s′0t
′
0 = −ηs0t0

The first projection picks states with spins s0 + t0 = 0, that is either |+−〉 or |−+〉. Then

the second projection projects out the even linear combination |+−〉 + |−+〉 leaving us

with the singlet state |+−〉 − |−+〉 of SO(1, 2). In other words, ηs0t0 = εs0t0η where εs0t0

is the antisymmetric tensor with ε+− = 1. This is why we chose the notation η for the

supersymmetry parameter, in order to not confuse it with the antisymmetric tensor.

After having performed the partial topological twist, we may put the theory on

M1,p−1 × S6−p where M1,p−1 can be any Lorentzian p-dimensional manifold, while pre-

serving a certain amount of supersymmetry. For p = 2 this will then have applications to

the AGT correspondence relating SYM theory on S4 to Toda theory on M1,1. For p = 3

we should expect to find the 3d-3d correspondence with a complex Chern-Simons theory

living on M1,2. For p = 5 we have a trivial circle reduction from 6d down to 5d SYM and

p = 6 is flat M5 brane on R1,5. The case p = 1 has been considered in [6] and in many

subsequent papers.

Let us now begin the detailed computations. We split the 6d vector index M = (µ, i)

where µ lives on R1,p−1 (and more generally on M1,p−1 after the twist) and i lives on S6−p.

We assume that the background gauge field has no components along S6−p,

Ai = 0

and we require the 6d conformal Killing spinor equation holds along with the conditions

that the supersymmetry parameter is constant on R1,p−1,

∂µε = 0

This implies that

ΓµDµε =
p

6− p
ΓiDiε

Diε =
1

6− p
ΓiΓ

jDjε

Dµε =
1

p
ΓµΓνDνε

– 14 –
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and, for p = 2, 3, 4,

P = − p(p− 1)

(6− p)(5− p)
R

where we have

ΓµνDµDνε =
1

8
ΓµνΓ̂ABεFµνAB = −1

4
P ε

ΓijDiDjε = −1

4
Rε (6.1)

Let us comment that once we put ∂µε = 0 we descend to an ordinary Killing spinor equation

on M6−p

Diε =
1

4p
ΓiΓ

µΓ̂ABεAµAB

For p = 1 we may instead use the relation

D0D
0ε = +

1

80
Rε

to determine A0,AB

We have the curvature condition

1

2
ΓµνΓ̂ABεFµνAB = −Pε

Assuming that p = 2, 3, 4 we can solve this equation as

Fµ
′ν′

µν = − 2P

p(p− 1)
δµ
′ν′
µν

F abµν = 0

Fµ
′a

µν = 0

if we imposing the Weyl projection

1

p(p− 1)
ΓµνΓ̂µ′ν′ε = ε (6.2)

We find that if we make the assumptions we make, then the curvature R must be constant,

and it leads us to consider manifolds on the form R1,p−1 × S6−p. If r denotes the radius of

S6−p, then we have

R =
(6− p)(5− p)

r2

P = −p(p− 1)

r2

We further find that

Pµ
′

ν′ = −p− 1

r2
δµ
′

ν′

– 15 –
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We now proceed to solve the conformal Killing spinor equation on R1,p−1 with respect to

the background gauge field. To this end, it is convenient to introduce the notations

Xµ =
1

4
Γ̂ABAµAB

Yµ = Xµε

The equation we have to solve then reads

Yµ =
1

p
ΓµΓνYν

For p 6= 1, we can rewrite this in the form

Yµ =
1

p− 1
Γµ

νYν (6.3)

We solve this iteratively in p. If we know the solution for p, then we can construct the

solution for p+ 1. For p+ 1, we have the equations

Yµ =
1

p
Γµ

νYν +
1

p
Γµ

pYp (6.4)

Yp =
1

p
Γp

µYµ (6.5)

Inserting (6.5) into (6.4), we find the equation (6.3). Let us now take p = 2 which is the

lowest value of p for which the conformal Killing spinor on R1,p−1 is nontrivial. For p = 2

we get

Yµ = Γµ
νYν

By induction we then find that the most general solution for general p can be expressed as

Yµ = Γµ
pYp (6.6)

for µ = 0, · · · , p− 1.

We also have to satisfy the condition that comes from the curvature by commuting

two covariant derivatives as in equation (6.1) that amounts to the condition

Γµν [Xµ, Xν ]ε = −1

2
P ε (6.7)

We will now proceed to solve the equations (6.6) and (6.7) while imposing the Weyl pro-

jection in (6.2) for various values on p.

6.1 M5 brane on R1,0 × S5

For p = 1 we find the solution

A0,ab =

(
1

2r
− λ

)
εab

A0,a′b′ =

(
1

2r
+ λ

)
εa′b′

– 16 –
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where a = 1′, 2′ and a′ = 3′, 4′. These solutions are valid only if we impose the projection

Γ̂1′2′3′4′ε = −ε

unless λ = ± 1
2r when this projection is not necessary. The Lagrangian is

L = L0 +

(
1

2r
− λ

)
εabφ

a∂0φ
b +

(
1

2r
+ λ

)
εa′b′φ

a′∂0φ
b′ +

(
15

8r2
− λ2

2

)(
φaφ

a + φa′φ
a′
)

+
λ

2r

(
φaφ

a − φa′φa
′
)

+
2

r2
φ0′φ

0′ − 1

4r
ψ̄−Γ0Γ̂1′2′ψ− +

λ

2
ψ̄+Γ0Γ̂1′2′ψ+

where ψ± = 1
2

(
1± Γ̂1′2′3′4′

)
ψ.

6.2 M5 brane on R1,1 × S4

For p = 2 we find the solution

Aµ,ν′4′ =
1

r
εµν′

where ε01′ = 1 and antisymmetric, in the sense that ε10′ = −1. The Weyl projection is

Γ01Γ̂0′1′ε = ε

The M5 brane Lagrangian is

L = L0 +
2

r
εµν
′
φ4
′
∂µφν′ +

1

r2
(
−φ20′ + φ21′ + φ22′ + φ23′

)
− 1

4r
ψ̄ΓµΓ̂ν

′4′ψεµν′

6.3 M5 brane on R1,2 × S3

For p = 3 we find the solution

Aµ,ν′λ′ =
1

r
εµν′λ′

where ε01′2′ = 1 and totally antisymmetric. We have the Weyl projections

Γ01Γ̂0′1′ε = ε

Γ12Γ̂1′2′ε = ε

The M5 brane Lagrangian is

L = L0 +
1

r
εµν
′λ′φλ′∂µφν′ −

1

8r2
εµν′λ′ψ̄ΓµΓ̂ν

′λ′ψ

6.4 M5 brane on R1,3 × S2

For p = 4 we find the solution

Aµ,ν′4′ =
i

r
ηµν′

– 17 –
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and Weyl projections

Γ01Γ̂0′1′ε = ε

Γ12Γ̂1′2′ε = ε

Γ23Γ̂2′3′ε = ε

The M5 brane Lagrangian is

L = L0 +
2i

r
φ4
′
∂µφµ′ −

3

r2
φ4
′
φ4′ −

i

4r
ψ̄ΓµΓ̂µ

′4′ψ

Here we could not find a real solution for the background gauge potential. The 5d

SYM action can be real for R symmetry group SO(2, 3) if the signature is (2, 3) (section

9.2 in [12]). We find that the bosonic part of the action is real once we Wick rotate φ4
′

which suggests R symmetry is Wick rotated from SO(1, 4) into SO(2, 3). If we do that Wick

rotation of R symmetry then Γ̂4′ shall also be Wick rotated and the full action becomes

real on R3 × S2 if the signature is (2, 3) with the S2 part timelike.

7 Partially twisted theory on R1,1 × R4

For our gamma matrix conventions for this twist, we refer to appendix C.1. On R1,1 we

have the flat metric

ds2 = −e0e0 + e1e1 = −2e+e− − 2e−e+

where e0 = dx0 and e1 = dx1 and we define

e± =
1

2

(
e0 ± e1

)
and ± denote flat lightcone indices. We define

φ± =
1

2

(
φ0 ± φ1

)
and

γ± =
1

2

(
γ0 ± γ1

)
whose nonvanishing components are (γ+)+− = 1 and (γ−)−+ = −1 respectively. We

then have

γ+− = −1

2
γ

We have the following anti-hermitian SO(1, 1) charge generator

Q =
i

2
γ01

Q = 2i(δ01)µ
ν

– 18 –
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in the spinor and vector representations. It acts on the vector infinitesimally as

δφµ = − i
2
εκτ (Qκτ )µ

νφν

which yields

δφ± = ±ε01φ± =: −iε01Qφ±

which shows that φ± carry SO(1, 1) charge Q = ±i.
We define twisted spinor components as

ψ
(±)αt
0 = ψ±α∓t

χ
(±)αt
± = ψ±α±t

Here, on the left hand side, stands the twisted spinor fields, and ±, 0 without round brackets

refers to the twisted SO(1, 1) charge. The (±) refers to the SO(4) Weyl projection on the

Dirac spinor index α. On the right hand side stands the untwisted spinor fields, and the

± there refers to SO(1, 1) and SO(1, 1)R charges respectively. Hence the total charge of

ψ
(±)αt
0 is zero, while χ

(±)αt
± carry SO(1, 1) charges ±i respectively, just like φ± do. In the

sequel we will use the following shorthand notations,

ψ(±)αt := ψ
(±)αt
0

χαt± := χ
(±)αt
±

We define

D± = eµ±Dµ

We have

gµνDµDν = −1

2
{D+, D−}

Using the zweibein to convert µ into flat space indices ±, we find the following twisted

Lagrangian

Ltensor =
1

16
H+−

iH+−i +
1

16
H−

ijH+ij +
1

16
H+

ijH−ij −
1

24
H ijkHijk

Lscalars = −1

2
gµνDµφ+Dνφ− −

1

2
gij∂iφ+∂jφ− +

1

2
gµν∂µφ

a∂νφ
a +

1

2
gij∂iφ

a∂jφ
a

Lfermions = χ̄−D+ψ
− + χ̄+D−ψ

+ + χ̄−γ
iDiχ+ + ψ̄−γiDiψ

+

– 19 –
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where we define the new Dirac conjugation by ψ̄ = ψ† with the reality condition ψ̄αt =

(ψαt)∗ = ψα
′t′Cα′αεt′t. The action is invariant under the supersymmetry variations

δB+− = −2iε̄−ψ− − 2iε̄+ψ+

δB±i = ±2iε̄∓γiχ±

δBij = iε̄−γijψ
− − iε̄+γijψ+

δφ+ = −2ε̄+χ+

δφ− = −2ε̄−χ−

δφa = ε̄+σaψ+ + ε̄−σaψ−

δψ± = ε±D±φ∓ + γiσaε∓Diφ
a +

i

4
γiε∓H+−i ∓

i

12
γijkε∓Hijk

δχ± = −σaε±D±φa − γiε∓Diφ± ∓
i

4
γijε±H±ij

8 Partially twisted theory on M1,1 × R4

We introduce the Grassmannian two-space vector field by

χµ = e+µχ+ + e−µχ−

and a scalar

ψ = ψ+ + ψ−

where all the Grassmannian fields are realized in the 8d (α,t) space. The supersymmetry

parameter is a Grassmannian scalar given by

ε = ε+ + ε−

For notational convenience let us introduce 6D Weyl projection on χµ as

χWµ =
1

2

(
χµ − γ(4)εµνχν

)
Then χµ is subject to the Weyl projection condition

χµ = χWµ

which leads to the relation

χµ = −γ(4)εµνχν

Using this notation, we find the following twisted Lagrangian

Ltensor = −1

8
HµνiHµνi −

1

8
HµijHµij −

1

24
H ijkHijk

Lscalars =
1

4
φµνφ

µν +
1

2
(∇µφµ)2 +

1

2
gij∂iφµ∂jφ

µ +
1

2
gµν∂µφ

a∂νφ
a +

1

2
gij∂iφ

a∂jφ
a

Lfermions = 2∂µψ̄χ
µ − χ̄µγi∂iχµ +

1

2
ψ̄γi∂iψ

– 20 –
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The action is invariant under the supersymmetry variations

δBµν = −iεµν ε̄ψ = iεµν ψ̄ε

δBµi = 2iε̄γiγ(4)χµ

δBij = −iε̄γijγ(4)ψ

δφµ = −2ε̄χµ

δφa = ε̄σaψ

δψ = −ε∇µφµ − γ(4)ε εµν∂µφν + γiσaε ∂iφ
a − i

4
γiε εµνHµνi +

i

12
γijkγ(4)εHijk

δχµ =
1

2

(
qµ − γ(4)εµνqν

)
≡ qWµ

where

qµ = −σaε ∂µφa − γiε ∂iφµ −
i

4
γijγ(4)εHµij

9 Partially twisted theory on M1,1 × S4

Using the notation of the previous section, we find the following twisted Lagrangian

Ltensor = −1

8
HµνiHµνi −

1

8
HµijHµij −

1

24
H ijkHijk

Lscalars =
1

4
φµνφ

µν +
1

2
(∇µφµ)2 +

1

2
gij∂iφµ∂jφ

µ +
1

2
gµν∂µφ

a∂νφ
a +

1

2
gij∂iφ

a∂jφ
a

−2

r
φ4εµν∂µφν +

1

r2

(
φµφµ + φa

′
φa
′
)

Lfermions = 2∂µψ̄χ
µ − χ̄µγiDiχµ +

1

2
ψ̄γiDiψ −

1

2r
ψ̄γ(4)σ

3ψ

Here, in Lscalars, we assume indices range as a = (a′, 4) for a′ = 2, 3.

The action is invariant under the supersymmetry variations

δBµν = −iεµν ε̄ψ = iεµν ψ̄ε

δBµi = 2iε̄γiγ(4)χµ

δBij = −iε̄γijγ(4)ψ

and

δφµ = −2ε̄χµ

δφa = ε̄σaψ

where φ2, φ3, and φ4 are respectively matched with σ1, σ2 and σ3 with a little abuse of

notation. The fermionic variation beomes

δψ = −ε∇µφµ − γ(4)ε εµν∂µφν + γiσaε ∂iφ
a − i

4
γiε εµνHµνi

+
i

12
γijkγ(4)εHijk +

2i

r
(γ(4)σ1εφ

3 − γ(4)σ2εφ2)

δχµ =
1

2

(
qµ −

1

2
γ(4)εµνq

ν

)
= qWµ
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where

qµ = −σaε ∂µφa − γiε ∂iφµ −
i

4
γijγ(4)εHµij −

1

r
γ(4)σ

3ε φµ

The Killing spinor equation reads

Diε =
1

2r
γiγ(4)σ

3ε

whose justification follows from the relation

−(ψ̄ΓiDiε)|χ±=0 = −4ψ̄Mε|χ±=0 = ψ̄γiDiε

where

M =
1

2r
Γ0Γ̂14

10 Partially twisted theory on M1,2 × S3

For our gamma matrix conventions for this twist, we refer to appendix C.2. We intro-

duce a Grassmannian vector field ψµ and scalar field ψ where all the Grassmannian fields

are realized in the 4d (s1, t1) space and µ = 0, 1, 2. The supersymmetry parameter is

a Grassmannian scalar on M1,2 which we denote by η which is related to the original

supersymmetry parameter by

εs0s1s2|t0t1 = εs0t0ηs1t1

In the twisted theory, the reality condition on any Grassmanian fields χ becomes

χ̄s1t1 = (χs1t1)∗ = iχs
′
1t
′
1εs′1s1εt′1t1

which basically defines the induced charge conjugation matrix for our twisted theory. In

addition, we introduce (for more details we refer to appendix C.2)

γi = γi ⊗ 1

and

(σ3, κa) = (1⊗ σ3, 1⊗ κa)

With these preliminaries, we find the following twisted Lagrangian

Ltensor = − 1

24
HµνλHµνλ −

1

8
HµνiHµνi −

1

8
HµijHµij −

1

24
H ijkHijk

Lscalars =
1

4
φµνφ

µν +
1

2
(∇µφµ)2 +

1

2
gij∂iφµ∂jφ

µ +
1

2
gµν∂µφ

a∂νφ
a +

1

2
gij∂iφ

a∂jφ
a

+
1

r
εµνλφµ∂νφλ
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where a = 3, 4 and

Lfermions = −2ψ̄µσ3∇µψ − εµνλψ̄µσ3∂νψλ − iψ̄γiσ3Diψ + iψ̄µγiσ3Diψµ

+
3

2r
ψ̄σ3ψ +

1

2r
ψ̄µσ3ψµ

This Lagrangian is invariant under the supersymmetry transformation

δBµν = −2εµνλ η̄ σ
3ψλ

δBµi = 2iη̄ γiσ
3ψµ

δBij = −2η̄ γijσ
3ψ

δφµ = −2iη̄ ψµ

δφa = 2iη̄ σ3κaψ

and

δψ = − 1

12
η
(
εµνλHµνλ − εijkHijk

)
− iσ3η∇µφµ − γiκaη∇iφa +

2i

r
κaη φa

δψµ = −1

4
γijηHµij −

i

4
γi ηεµνλH

νλi + iκaη∇µφa + γiσ3η∇iφµ − iσ3ηεµ νλ∂νφλ

To verify the supersymmetry of the action, we note that the 6d conformal Killing spinor

equation reduces to the usual Killing spinor equation on S3,

Diη = − i

2r
γi η

The main application of this twist is to the 3d-3d correspondence. This will be analyzed

elsewhere.
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A Classification of R symmetry groups for 6d (2, 0) theories

We assume Lorentz group SO(1, 5) and R symmetry group SO(q, 5 − q) and attempt to

impose the 11d Majorana condition

ψ̄ = ψTC

where we shall define

ψ̄ = ψ†Γ0Γ̂1···q

Let us assume that we can impose this Majorana condition. We can then pick the Majorana

representation for the gamma matrices where the charge conjugation matrix is given by

C = Γ0
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Since we also have that

(ΓM )T = −CΓMC−1

(Γ̂A)T = −CΓ̂AC−1

ΓM
†

= Γ0ΓMΓ0

Γa† = −Γa for a = 1, · · · , q

Γa
′†

= Γa
′

for a′ = q + 1, · · · , 5

we see that

ΓM
∗

= ΓM

Γa∗ = −Γa

Γa
′∗

= Γa
′

The Majorana condition becomes

ψ†Γ1···q = (−1)qψT

Applying transpose on both sides, we get

CΓq···1C−1ψ∗ = ψ

Using C = Γ0 we get

(−1)q+1Γq···1ψ∗ = ψ

Applying Γ1···q on both sides, we get

ψ∗ = −Γ1···qψ

If we complex conjugate again, we get

ψ∗∗ = −(−1)qΓ1...qψ∗ = (−1)q(Γ1···q)2ψ

Now we use that

(Γ1···q)2 = (−1)
q(q+1)

2

We then get

ψ∗∗ = (−1)
q(q−1)

2 ψ

This is consistent for

q(q − 1) ∈ 4Z

Solutions are q = 0, 1, 4, 5 and correspond to SO(5), SO(1, 4), SO(4, 1) and SO(5, 0).
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B A map from 6d to 10d Weyl projections

To find the non-Abelian generalization, we first put r = ∞. We wish to relate the theory

with the dimensional reduction of SYM on R1,9, dimensionally reduced down to R5. For

this SYM we have the Weyl projections

−iΓ0ζ = ζ

−iΓ0ω = ω

for the spinor field and the supersymmetry parameter respectively. These will be related

by a unitary transformation to our original variables as

ψ = Uζ

ε = U †ω

where

U =
1√
2

(
1 + iΓ0Γ

)
which has the properties

UU † = 1

U2 = iΓ0Γ

UΓ0 = Γ0U †

UΓm = ΓmU

UΓA = ΓAU †

We define

ε̄ = ε†Γ0Γ0′

ω̄ = ω†Γ̂0′

and so we also have the relations

ε̄ = ω̄Γ0U

ψ̄ = ζ̄Γ0U
†

In terms of these new spinor variables, we get

δφA = iω̄Γ̂Aζ

δAm = iω̄Γmζ

δζ =
1

2
ΓmnωFmn + ΓmΓ̂Aω∂mφA

If we now also flip the sign of the matter fields φA, we find the standard supersymmetry

variations of (1+9)d SYM reduced to 5d, for which we have the non-Abelian generalization
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that is obtained by substituting ordinary derivative with gauge covariant derivative Dm =

∂m − i[Am, •] in the adjoint representation, and by adding one commutator term

δ′ζ = − i
2

Γ̂ABω[φA, φB]

We can then transform this term back into our original, M5 brane adapted, variables

and get

δ′ψ = −1

2
Γ̂ABΓ0ε[φA, φB]

Likewise the non-Abelian Lagrangian is in the new variables given by the standard

SYM Lagrangian

L =
1

4
FmnFmn +

1

2
DmφADmφA −

1

4
[φA, φB][φA, φB]− i

2
ζ̄ΓmDmζ −

1

2
ζ̄Γ̂A[φA, ζ]

that in the M5 brane adapted variables translates into

L0 =
1

4
FmnFmn +

1

2
DmφADmφA −

1

4
[φA, φB][φA, φB]− 1

2
ψ̄ΓmDmψ −

1

2
ψ̄Γ0Γ̂A[φA, ψ]

C Gamma matrix conventions for partial topological twists

When we perform the partial topological twisting we find it convenient to choose gamma

matrices according to the dimension of the manifold over which we obtain the scalar su-

percharges after the twist.

C.1 Gamma matrices for the 2d-4d split

We choose the SO(1, 1) gamma matrices γµ as

γ0 = iσ2

γ1 = σ1

and we define the SO(1, 1) chirality matrix as

γ(2) = γ01 = σ3

We have

(γµ)T = −εγµε−1

γT(2) = −εγ(2)ε−1

where ε = iσ2.

We then choose the 11d gamma matrices as

Γµ = γµ ⊗ 1⊗ 1⊗ 1

Γi = γ(2) ⊗ γi ⊗ 1⊗ 1

Γ̂µ
′

= γ(2) ⊗ γ(4) ⊗ γµ
′ ⊗ 1

Γ̂a = γ(2) ⊗ γ(4) ⊗ γ(2) ⊗ σa
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We let indices range as µ = µ′ = 0, 1, i = 1, 2, 3, 4 and a = 1, 2, 3. We then find that the

6d chirality matrix becomes

Γ = γ(2) ⊗ γ(4) ⊗ 1⊗ 1

where we define the SO(4) hermitian chirality matrix as

γ(4) = γ1234

The 6d Weyl condition amounts to(
γ(2) ⊗ γ(4) ⊗ 1⊗ 1

)
ψ = ψ

The 11d charge conjugation matrix is

C11d = ε⊗ C ⊗ σ1 ⊗ ε

which is such that

CT11d = −C11d

(ΓM )T = −C11dΓ
MC−111d

(Γ̂A)T = −C11dΓ
AC−111d

We then have CT = −C and εT = −ε. An explicit realization of SO(4) gamma matrices is

γ1,2,3 = σ1,2,3 ⊗ σ2

γ4 = 1⊗ σ1

and

C = ε⊗ 1

Then

(γi)T = CγiC−1

Also, if we define

γ(4) = γ1234 = 1⊗ σ3

then

γT(4) = Cγ(4)C
−1

We will use spinor indices as follows,

ψs0αt0t1
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Thus if we write out all spinor indices, we have for instance

C11d = εs0s′0Cαβσ
1
t0t′0

εtt′

We have that

Cαβ = −Cβα
γiαβ = −γiβα
γijαβ = γijβα

γijkαβ = γijkβα

where we define γiαβ := Cαγ(γi)γβ .

We define

(γ(2))
s
t =

(
1 0

0 −1

)

and

(γ(2))st =

(
0 −1

−1 0

)

We denote the twisted SO(1, 1) neutral spinor components as

ψαt1

In addition to these, we have the twisted SO(1, 1) charged spinor components

χαt1

which carry the SO(1, 1) charge according to their SO(4) chirality.

In total we have 8 neutral (denoted as ψ) and 8 charged (denoted as χ) spinor com-

ponents. The supersymmetry parameters are neutral under SO(1, 1). We denote these as

εαt1

which has 4× 2 = 8 real components. In other words, we have 8 real supercharges.

C.2 Gamma matrices for the 3d-3d split

We choose 11d gamma matrices as (µ = 0, 1, 2, i = 3, 4, 5, A = 0′, 1′, 2′, 3′, 4′)

Γµ = γµ ⊗ 1⊗ σ2 ⊗ 1

Γi = 1⊗ γi ⊗ σ1 ⊗ 1

Γ̂A = 1⊗ 1⊗ σ3 ⊗ γA
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where γµ = (iσ2, σ1, σ3) and γi = (σ3, σ1, σ2) and where we choose γA as follows

γ0 = iσ2 ⊗ σ3

γ1 = σ1 ⊗ σ3

γ2 = σ3 ⊗ σ3

γ3 = 1⊗ σ2

γ4 = 1⊗ σ1

and we may use the notation

γµ
′

= γµ
′ ⊗ σ3

γa = 1 ⊗ κa

for µ′ = 0, 1, 2 and a = 3, 4. We have

(γA)T = CγAC−1

CT = −C

where

C = ε⊗ σ1

The 11d charge conjugation matrix is

C11d = ε⊗ ε⊗ σ1 ⊗ C

which is antisymmetric

CT11d = −C11d

We expand the spinor as

ψs0s1s2t0t1 = εs0t0ψs1t1 + (γµ)s0t0ψs1t1µ

Here ψs1± transform in the representation (1, 2)± and ψs1±µ in the representation (3, 2)± of

SO(1, 2)×SO(3)×SO(2)R. Note that s2 is determined by the 6d Weyl projection. We have

Γ01 = (σ3)s0s′0
Γ23 = −i(σ3)s0s′0(σ3)s1s′1(σ3)s2s′2
Γ45 = i(σ3)s1s′1

Then

Γ = Γ01Γ23Γ45 = (σ3)s2s′2

We conclude that s2 gives the 6d chirality of the spinor so that this number is fixed by the

spinor. For ψ we have s2 = + and for the supersymmetry parameter η we have s2 = −.
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D Untwisted Fierz identity

We use 11d gamma matrices that we split them into two groups, ΓM and Γ̂A where M =

0, 1, 2, 3, 4, 5 is for spacetime and A = 0′, 1′, 2′, 3′, 4′ is for SO(1, 4) R symmetry. We thus

assume that {ΓM , Γ̂A} = 0 as part of the 11d Clifford algebra. We define the 6d chirality

matrix

Γ = Γ012345

For two negative chirality spinors Γε = −ε and Γη = −η, we have the following

Fierz identity,

εη̄ − ηε̄ =
1

8

[
−(η̄ΓM ε)ΓM + (η̄ΓM Γ̂Aε)ΓM Γ̂A

] 1

2
(1 + Γ)− 1

192
(η̄ΓMNP Γ̂ABε)ΓMNP Γ̂AB

We have the following gamma matrix identities,

ΓMNPΓQΓNP = −20δMQ − 4ΓMQ

ΓPMNΓQRSΓMN = 4ΓPQRS + 12δP[QΓRS]

Γ̂AΓ̂BΓ̂A = −3Γ̂B

Γ̂AΓ̂BC Γ̂A = Γ̂BC

Open Access. This article is distributed under the terms of the Creative Commons
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