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1 Introduction

A superconformal M5 brane can be put in a generic conformal supergravity background [1].
The corresponding supergravity background fields in the dimensionally reduced 5d SYM
theory has been analyzed in [2] following the approach of [3]. Using this result, 5d SYM
theories on R3 x S? [4] and on R x S* [5] have been obtained. However the corresponding
Lagrangian of the abelian M5 brane has not been obtained,! perhaps due to the belief
that no such Lagrangian can be written down because of the selfdual tensor field in 6d.
However, by also including the wrong chirality tensor field as a decoupled spectator field,
we can write down a superconformal Lagrangian in 6d. But another reason that no 6d
Lagrangian has been obtained in the literature might be the following. In the applications
to the AGT correspondence [7] and the 3d-3d correspondence [4],% we like to put M5 brane
on R? x S6~P for p = 2 and p = 3 respectively, and then perform a partial topological twist
with the SO(5) R symmetry that enables us to put the theory on M, x S~ for a general
p-manifold M,,. The theory being topological on M,, means that we can scale the size of M,
without affecting any observables in the theory. By taking the size to be small we obtain
a dimensionally reduced SYM theory on S%~P. By taking the size to be large we obtain a
theory on M,,. These theories will be equivalent thanks to the topological property of the
theory on M,,.

However, one obstacle in carrying out such a computation explicitly is that no M5
brane Lagrangian can exist in Euclidean signature with real fermions. If we consider the
theory in Lorentzian signature, we should, for p = 2 consider the manifold RY! x S4,
However, as was mentioned in [9], we cannot twist this theory partially on RM! if the R
symmetry group is SO(5).

In this paper we propose to solve this problem by instead taking the R symmetry
group to be SO(1,4) [11, 12].3 This enables us to twist an SO(1,p — 1) subgroup with the
Lorentz group SO(1,p—1) on R*~!. We may then put the theory on a general Lorentzian
p-manifold M ;1 times S6-p,

For p =1, 2, 3 we can find solutions for the background gauge potential, and the full M5
brane Lagrangian becomes real in Lorentzian signature. It is required that the bosonic part
of the Lagrangian is real in order to have a unitarity of the theory [13]. What is problematic
though, is that with SO(1,4) R symmetry we have an indefinite kinetic energy for the scalar
fields. But this kind of problem might be cured by finding a suitable integration cycle where
the path integral is convergent. For more details we refer to section 3.

We will also perform dimensional reduction along time. This will perhaps justify our
choice of R symmetry group as SO(1,4) a bit further. After that we dimensionally reduce

1A related question was addressed in [8]. Here the abelian M5 brane Lagrangian was obtained on
geometries of the form RY'! x M,y where a partial topological twist of Donaldson-Witten type was performed
on Mjy.

2The many original papers that proposed the 3d-3d correspondence can be found in the reference
list of [4].

3We use a signature convention such that SO(1,4) refers to the group of transformations that leaves
the metric diag(—1,+1,+1,41,+1) invariant. We then also refer to this space as RY* or as a space of
signature (1,4).



flat M5 brane with SO(1,4) R symmetry along time, we find precisely the 5d SYM that
has global symmetry SO(5) x SO(1,4) that also can be obtained by dimensionally reducing
10d SYM with SO(1,9) global symmetry by reduction along time and 4 spatial directions.
The latter approach has been used in for example [14] to derive a SYM Lagrangian on a
four-sphere from 10d SYM with real fermions.

In this paper we will restrict ourselves to just turning on the supergravity background
gauge field that is associated with the SO(1,4) R symmetry. Thus we will put all the
other supergravity fields to zero. Our restriction has the unfortunate limitation that we
cannot consider squashed spheres as these require other background fields also being turned
on. The AGT-like correspondences of course become much more interesting if one can
include an additional squashing parameter in the correspondence. We plan to return to
this problems in a future publication.

2 Abelian 6d theory with SO(1,4) R symmetry group

In the introduction we have motivated why we like to study 6d (2, 0) theory with SO(1,4)
R symmetry group. This can be thought of as embedding a Lorentzian M5 brane into 11 di-
mensional space with signature (2,9). Let us now work out the supersymmetry transforma-
tions assuming SO(1,4) R-symmetry group. We start by considering M5 brane on flat R,
We use 11d gamma matrices that we split as ™ (M =0, ...,5) and 4 (A=0,...,4)and
define the 6d chirality matrix I' = I'?12345 The spinor and the supersymmetry parameter
have opposite 6d chiralities. We choose the convention

I'p =4
I'e = —¢

The 11d Majorana conditions (or, equivalently, the 6d SO(1,4)-Majorana conditions) for
these chiral spinors read

e

e

<
I

o
I

where 1) = d)TI‘OfO/. We find that the following supersymmetry variations
S = ey
0Byn = i€l y Ny
i

oY = 12FMNP€HMNP + FMfAEaM¢A

close on-shell,
[0, 8]p? = —2eTPnope?
[0y, 0| Bun = —2e0nHpyn

1 ~ N
[0, 0c]tp = —2eTTndpy + ZEI‘PUFPFM o) — ZF]PM T4l DAl Nony



To obtain the closure relation for the fermion we have used the Fierz identity that we have
collected in appendix D. For closure we must use the fermionic equation of motion

™oy =0

Let us notice that

(¢+1)
qq2 M

(Mp)* = —(-1)" =z aMy

where ¢ counts the number of timelike components in the R symmetry group SO(q,5 — q).
In particular then, while we have that e[y is purely imaginary for SO(5) R symmetry,
we find that '™y becomes real for SO(1,4) R symmetry. This explains why we do not
get the usual factor of i in the closure relations, such as ~ 2iel'™n dy,0? as we get when
the R symmetry is SO(5).

By using the 11d Majorana condition, one can see that 6¢“ and 6By are real, and
that the variation v again satisfies the 11d Majorana condition. We notice that the
factors of i sit at different places compared to the more commonly used supersymmetry
transformations for the (2,0) theory that has SO(5) R symmetry group.

As usual, from I'e = —e¢, we can find that the gauge field part of the above supersym-
metry variations can be also written in the form*

i
SHinp = ieFQFMNpacyﬁ

0Hynp =0
]
5y = —EFMNPeHAJ}NP -

where we define

1 1
H]:\t4NP =3 (HMNP + 66MNPUVWHUVW)

This means that H,,yp is not part of the tensor multiplet, but we include it in order to
write down a neat supersymmetric Lagrangian, which is given by

1 1 1-
L=~ HY P Hyyp + 506" 0p o — SuT o
First we notice that the whole Lagrangian is real. In particular we have
@TY0r)t = YT Oy

up to a boundary term produced by an integration by parts. Second, we notice that the
gauge potential kinetic term and the scalar field kinetic term cannot both have the right
sign simultaneously. However, for the kinetic term of the scalar fields, we also need to
remember that the signature of the R symmetry group is SO(1,4) which means that it is
never possible for all the five scalar fields to have the right sign of the kinetic term. It is
therefore the most natural to assign the gauge potential the right sign kinetic term, and
then ¢ for o/ =1/,2/,3', 4" will have the wrong sign kinetic term.

4The dots represent the scalar field part.



2.1 SO(4,1) R symmetry group

For completeness, we also work out the supersymmetry variations with SO(4, 1) R symme-
try group, which corresponds to (5,6) signature in 11 dimensions. We have the supersym-

metry variations
St = el 4y
0Byn = i€l'yne

1 .
oY = EFMNPGHMNP + TMT 4edprp?
where the Dirac conjugation y is now defined by xTOTV2'3'4 in this SO(4, 1) theory. By
using the 11d Majorana condition in this signature, one can see that d¢? and §Byn

are real, and that the variation dv again satisfies the 11d Majorana condition. Closure
relations are

[0, 8]¢™ = —2iel nope?
[0, 0| Brn = —2ieT T nHprn
(6, 6.]¢b = —2ieTPndpd + %grpanrManp _ %ﬁFMf‘AeI’Mf‘ TN N
That is, we have on-shell closure on the fermionic equation of motion
™oy =0
The supersymmetric Lagrangian is

1 1 7 -
L= —ﬂHMNPHMNp - QaMasAaMm + iwrMaMw

This theory can be obtained from the above theory in signature (2,9) by the follow-
ing map,

M M
4 — —ir4
9gAB — —YAB

Y — i

€ — €

C — —iC

together with ¢ — 1) and € — —i€ which follow from the definitions of the Dirac conjugation
and the Gamma matrix transformation rule. Thus the SO(4,1) twisted and the time
reduced theories are equivalent to those from the (2,9) theory.



2.2 SO(5) R symmetry group

The supersymmetry variations and the Lagrangian for the usual Lorentzian M5 brane with
SO(5) R symmetry are in our conventions given by

0ByN = el yny

St = el
o = %FMNPGHMNP + TMT gedprp?
and
L= g YN Hygp — 0V 6 0noa+ 0T Oy

Although these variations and the Lagrangian are on the same form as for the case of
SO(4,1) R symmetry above, there is no simple relation between the SO(1,4) or SO(4, 1)
theories and the usual SO(5) theory since there is no natural map from the Dirac conjugate
¢ = T to the Dirac conjugates of the SO(1,4) or SO(4, 1) theories.

3 Unitarity

As we have changed signatures, it is important to check unitarity of the theory. To illustrate
unitarity, we follow the arguments in [13]. Let us consider some Lagrangian
1 Y . *i,7 ]
L = 59314 + ihijp™ "

where g;; and h;; are invertible matrices with inverses ¢” and h¥. This system can be
quantized by imposing the commutation relations

[¢',p;] = ihd) (3.1)
{v", T} = hh

where p; are the conjugate momenta of ¢*. These have the unitary representations p; =
—ihd/0q" irrespectively of the signature of gij, in the sense that the translation operators
U =expiL'p; are unitary for any real distances L’, provided the bosonic part of the La-
grangian is real. However, if g;; is indefinite the energy is unbounded from below. For the
fermions the situation is the opposite; we see that h% has to be positive definite to have a
unitarity representation of (3.2). On the other hand we do not encounter negative energy
states by filling up the Dirac sea.

Let us now consider our theory. The bosonic part of our Lagrangian is real although
we have indefinite g;;. Hence the bosonic part describes a unitary theory. The fermionic
part does not however. Here we have

{¢, ¥} ~ hIO



which is indefinite. Hence our 6d theory is non-unitary. This happens for both SO(1,4)
and SO(4,1) R symmetry. On the other hand, if the R symmetry is SO(5) the 6d theory
is unitary since then we have

{1} ~ Rl

where I denotes the 16 x 16 identity matrix.

The microscopic structure of an 11d theory is of course unclear, but it seems reasonable
to think that such a theory would have two time-directions and global symmetry group
SO(2,9), that is broken by an embedding of M5 brane down to SO(1,5) x SO(1,4). But
if we have two time-directions, then time-evolution will be rather different from what we
are used to and a new concept should replace that of unitarity, which is based on time
evolution with just one time direction.

Since we are not aware of any formalism with two time directions, let us stick to one
time direction. Here we can also find that a unitary theory may appear to be non-unitary
if we have one time direction and one space direction, if we interpret the space direction
as ‘time’. To illustrate this, let us consider an action of a 2-component spinor with o2 the
third Pauli matrix,

S = / 2T (i0y + o201 )y
If we let 2" play the role of time, we quantize the theory by imposing

{vf. ¢} =h

and we have a unitary representation. But we can also quantize this theory by declaring
that ! is the direction of time evolution, in which case we shall impose the commuta-
tion relation

(1,9} = o

3 is indefinite. One might now spec-

which has no unitary representation as the matrix o
ulate that our non-unitary M5 brane theory might appear to be non-unitary for a similar
reason that is related to the fact that one time direction of the 11d theory is outside the
worldvolume of the M5 brane.

More concrete statements can be made related to unitarity if we reduce our M5 brane
theory along the world-volume time direction. This dimensional reduction gives rise to 5d
SYM theory with global symmetry SO(5) x SO(1,4) and can be exactly mapped to the
5d SYM theory that one would also obtain by reducing 10d SYM theory with SO(1,9)
Lorentz symmetry, along time and four space directions. We present the map in full detail
in appendix B. As the 10d SYM theory is a unitary theory and the dimensional reduction
is a physically consistent procedure, we conclude that there is no problem with our M5
brane theory with SO(1,4) R symmetry after this theory has been reduced along the time
direction down to 5d SYM theory.



Let us finally comment on the issue of convergence of the path integral. If the R sym-
metry group is SO(1,4), then we have the wrong sign of the kinetic term in the Lagrangian
for one of the scalar fields, say ¢". We may Wick rotate this into i¢° to get the right sign
kinetic term. We can indeed Wick rotate the R symmetry SO(1,4) including the fermionic
part, into the SO(5) R symmetry and get the usual M5 brane theory. But we can also carry
on with our SO(1,4) R symmetry, and perform some partial twist of say an SO(1,p — 1)
subgroup of the R symmetry where p = 2,3,.... In this case, the R symmetry will be
reduced by the twist with the Lorentz group to SO(5 — p). Nevertheless, we can Wick
rotate ¢ into i¢? and get the right sign kinetic term. If we do that after the twist, then we
get a different theory that can not be related to the familiar M5 brane theory with SO(5)
R symmetry.

4 Superconformal symmetry

The Lagrangian has not only the usual Poincare supersymmetry, but also a special con-
formal supersymmetry. We can relax the condition that the supersymmetry parameter is
constant, to the condition that it satisfies the superconformal Killing spinor equation [10)]

1
Dye = 6FMFNDNe

Once we have done that, we can also admit more general curved six-manifolds where this
equation has some solution. The Ricci curvature scalar may be defined by the equation

1
TMNDyDye = —ZRE

and Dy; = Oy + wyy is the covariant derivative where wys is the spin connection.
The Lagrangian is now given by

L=Ly+ L
where
Lo = —— 2 +1(D ) )2—11/?FMD 0
0 = 24 MNP 2 M®PA 9 M
R 4
El—ﬁqb b

The superconformal symmetry variations can be expressed as
0 = o+ 01
where
S0 = el
doBun = i€l Ny

dop = _éFMNPGHMNP + TMT geDyro”



and

5164 =0
5lBMN =0
2 R
61 = §I‘MI‘A(DM6)¢A

When we vary the Lagrangian, we find it most convenient to bring the variation into the
following form,

1 _
6L = Dpb™ + ZDMHMNPcSBNp — Dy DMpA6¢4 + §¢>A5¢ A — YTM Dy
where the boundary term

1 1.
oM = — BBy p 4 DMotga + Sy oy
i 1. .
— _ﬂng PRy Hpor + ek ATMTP Y Dpp? — 2(DMET g1pgp?

is non-vanishing if the M5 brane has a boundary. If there is no boundary, then the variation
is vanishing if the supersymmetry parameter € is a superconformal Killing spinor. We then
find the following superconformal variations,

SoLo = 4T 4(DNe)Dyo?

1o = —AGTA(DN ) Dyt — T oel sy
oLy = Loty

01L1 =0

where we have used the conformal Killing spinor equation and ignore the total derivative
contribution Dy/bM. Hence 6L = §9Lo+61Lo+00L1+61L1 = 0 up to the total derivatives.
If we then replace € by fe where f is a function on spacetime, then we pick up a variation
that is proportional to djs f, which is again up to total derivatives. From this we can read
off the supercurrent. We only need to consider the last term since this is the only term
that can produce something ~ 0y f. We find that

6L = Moy f
where
M = — @ PR M Y Hpgr + @ ATTTM Y Dpo?t + (DML Ao

For this computation, we may use the variation

S = STMEAf(Dage)o?



When the equations of motion are satisfied, we will have that the action is stationary under
any variation. Hence

0= /d%\/ﬁéﬁ = /jMDMf = —/DMjMf

and since f is arbitrary, it follows that Dy ;¥ = 0.

4.1 Coupling to background R symmetry gauge potential

We introduce a background gauge potential A4 5 and corresponding covariant derivatives

Duy¢® = Vo + Ay po”
1 .
Dyrp = Vi + ZAMABFABiﬁ

Here V; is the covariant derivative of the background geometry.
We can now find a superconformal Lagrangian by imposing the following Weyl
projection

1 R .
§FMNFA6FMNAB =TaeP

Pap = Ppa
From this, it follows that
%FMNfAB eFyunap = —e Py
TMNDy Dye = —i(R+ P)e
Here we define
P =Py

After we gauge the R symmetry, we find new terms in the variation of the Lagrangian

1_ . R
doLo = -+ — §wFMNFA€FMNAB¢B = — YT ePypo”
4 _. P _.
0Lyg=---— 51/JFA(FMNDMDN6)¢A = ..+ gq/)FAng)A
where --- are terms of the same form as we had before. We cancel these terms by adding

the following terms

1/1
AL = 3 (577ABP - PAB) ¢oP

to the Lagrangian.

~10 -



4.2 Dimensional reduction along time to 5d SYM

We assume six-manifold of the form R x M5 with time along R, and with a rather generic
R symmetry gauge field. The natural split of the 6d conformal Killing spinor equation for
this analysis will be to write 6 = 1 + 5, which means that we will assume the following
equations

1
I'°Dye = =T™D,e

5
1 n
D, e = 5me D,e
where we also put
Ope = 0

in order to preserve supersymmetry under the dimensional reduction.
By dimensional reduction along time, we get the following Lagrangian

Lo = HE2+ 5 (Dnda)® = 1[04, 08) — SOT™ Dy — L0060,

L1 = ~5(Doda)? — 0Dy + 5 Mapg "

1
2

7
Ly = EEABCDEAOAB¢C[¢D,¢E]

where the mass matrix is given by

1
Mup = =NAB (R+ P) — Pap

The action is invariant under
Spa = el ay)
6 Ay, = il Dot
o = —%anfoean + T gDy — %fABFO[gb A, O8]
+T°T 4e D™ + AT°TA Dyed?

To check supersymmetry, we only need to check this for the nonabelian type of terms
that involve the curvature corrections. Collecting all such terms, we find the following
contributions

50 = — 0148 Duclon, o] — U14Pel6.4, Doow] — el Do
51 = —g 048 Ducloa, o] — GT4Pel6.4, Do)

Then we note

f\AfoCD AB,CD +4nBCfoD + f\ABC’D

1.
D0€ - XFABGAOAB

- 11 -



and we get

1 -4
O(Lo + L1) = 59T Pedooploa, o5 = —0L

5 Summary
The M) brane Lagrangian is given by
L=Ly+ L
where
L umNP Lo A Lo
Ly = —5 Hynp + 5V7 0" Vauda — 59T Vuy,
1 1 ara
L1 = AfpoPon e + S Mape¢P — ol MDA Ay ap

where Vs is the covariant derivative of the background geometry and

1
Map = g”AB(P +R) — Pap + Ap“ 4AM o

We have the superconformal transformations

Spa = el 4t

0Byn = i€l

. ) L )
S = ——TMNPeH nvp + TMEAedy d 0 + —THT 4T BCeA, pod™ + THTAeA, 1 50B
p

12

where P4p is a symmetric tensor that we deduce from the curvature of the R-symmetry

connection through the Weyl projection

1 . .
§I‘MNFA6FMNAB = T4eP4p

It would be interesting to see whether one can give P4p a geometric interpretation, perhaps

as the Ricci tensor in normal directions to the M5 brane.

By dimensional reduction along time, we can also find a nonabelian generalization

Ly = trGanan + %vmqf“vmm - 116%,6%1[64,65)

1- 1 - on
— VTVt — ST T [, z,z)])
1

81/;FMf‘AB¢AMAB

1
L1 = tr (A%B¢38M¢A + §MA3¢A¢B —

+%EABCDEA0AB¢C (9D, ¢E])

- 12 —



6 Six-manifolds on the form R"P~1 x §6-p

We will now restrict ourselves to six-manifolds on the form R'?~! x S6~P where p can take
any of the values p = 1,2,3,4,5,6. We will subsequently perform a partial topological
twist along R~ although for p = 1 this twist cannot be done since the Lorentz group
on R is rather trivial. For our M5 brane theory on R"® we have deliberately chosen the
global symmetry group SO(1,5) x SO(1,4). If we break this symmetry down to SO(1,p —
1) x SO(6 — p) x SO(1,p — 1) x SO(5 — p), we can perform a partial twist and identify
the two SO(1,p — 1) subgroups and declare that the diagonal subgroup of these, times
SO(6 — p), is the new twisted Lorentz group. Thus after the twist, we have the global
symmetry SO(1,p — 1) x SO(6 — p) x SO(5 — p)gr. We then first need how the M5 brane
spinor in the representation (4’;4) of SO(1,5) x SO(1,4) transforms under the subgroups
for the various values of p. Here we denote by a prime as in 4’ the anti-Weyl representation.
The supersymmetry parameter is subject to the anti-Weyl projection I'e = —e. After the
split we find the following representations

p=1 (4:4)
p=2 (21@ 121@24)
2 2 2
p=3 (2,2, ;) (2,2;2 1)
2
p=4 (2 1D 415 @2/>
2 2
p=5 (4;4)

where subscripts denote either SO(1,1) or SO(2) charges respectively. Our convention for
these charges are QMY = —%I‘MN so that for instance Q' = :l:% and Q% = j:%. After
the identification of the SO(1,p — 1) groups, these representations become

p=1 (44)

p=2 (2208 (2,208 (2.2) & (2,2).

[V

_ + -
p=4 1_%@3_%@4_%@4+%@3+%@1+%
p=>5 15410

Here 3% refers to a selfdual two-form of SO(1, 3). Let us turn to the Weyl projections for
the singlet supercharges. First we have the 6d Weyl projection

F01P23F456 = ¢

For p = 2 we have the singlet representations (2,2)p @ (2/,2)¢ i.e. neutral under SO(1,1).
For these representations we have

F01F0/1/€ = €

~13 -



For p = 3 we have the singlet representations (1,2) 1 ®(1,2)_1 i.e. singlets under SO(1, 2).
2 2
For these representations we have

F01F0/1/€ = €

F12F1/26 = €

These two projections project onto the singlet state in the tensor product representation of
two spin-1/2 representations of SO(1,2). With the gamma matrix representation as below,
these two projections amount to

(0_3)3086 (03)t0t6n86t6 _ _77501&0

(0%)%0 g (0®) 00t = —p*ote

The first projection picks states with spins sg + t9 = 0, that is either |[+—) or |—+). Then
the second projection projects out the even linear combination |[+—) + |—+) leaving us
with the singlet state |[+—) — |—+) of SO(1,2). In other words, nt = e%0%y where et
is the antisymmetric tensor with e™~ = 1. This is why we chose the notation 1 for the
supersymmetry parameter, in order to not confuse it with the antisymmetric tensor.

After having performed the partial topological twist, we may put the theory on
My 1 % S6=P where M p—1 can be any Lorentzian p-dimensional manifold, while pre-
serving a certain amount of supersymmetry. For p = 2 this will then have applications to
the AGT correspondence relating SYM theory on S* to Toda theory on My,. Forp=3
we should expect to find the 3d-3d correspondence with a complex Chern-Simons theory
living on M 2. For p =5 we have a trivial circle reduction from 6d down to 5d SYM and
p = 6 is flat M5 brane on R'®. The case p = 1 has been considered in [6] and in many
subsequent papers.

Let us now begin the detailed computations. We split the 6d vector index M = (u, 1)
where y lives on R1?~! (and more generally on M, after the twist) and ¢ lives on S®P.
We assume that the background gauge field has no components along S%~7,

A =0

and we require the 6d conformal Killing spinor equation holds along with the conditions
that the supersymmetry parameter is constant on RM»~1

Oue =0
This implies that
T#D,e = G%QFZDK
1 .
Die = 7F1FJD]'€
6—p
1

D,e = -T,IYD,e
I P H

— 14 —



and, for p = 2, 3, 4,

p(p—1)

P= 669

where we have
1 . 1
" D,D,e = gI‘“’TABeFWAB =—Pe
. 1
FZJDZ‘D]‘G = _ZRE (61)

Let us comment that once we put d,e = 0 we descend to an ordinary Killing spinor equation
on M6_p

1 .
Die = —T,THT4BeA, 4
4p
For p = 1 we may instead use the relation
DyD"% = +iRe
07T TR0

to determine Ag 4B
We have the curvature condition

1 A
5FWFAB €Fap = —Pe

Assuming that p = 2,3,4 we can solve this equation as

2P

Fﬁ;y/ _ _méﬁ;yl
Fib =
Fie =0
if we imposing the Weyl projection
1 A
mf’wnﬂyle =€ (6.2)

We find that if we make the assumptions we make, then the curvature R must be constant,
and it leads us to consider manifolds on the form R'P~1 x §6=P_If r denotes the radius of
S6—P then we have

MR
We further find that
p, = Py

~15 —



We now proceed to solve the conformal Killing spinor equation on R~ with respect to
the background gauge field. To this end, it is convenient to introduce the notations

1A
Xﬂ - ZPABA}LAB
Y, = X,e
The equation we have to solve then reads
1 v
Y, = EF#I‘ Y,
For p # 1, we can rewrite this in the form
1
Y, = HFN”YV (6.3)

We solve this iteratively in p. If we know the solution for p, then we can construct the
solution for p + 1. For p + 1, we have the equations

1 1

Y, =-T,Y, +-T,Y, (6.4)
p p
1

Yy = -1y, (6.5)
p

Inserting (6.5) into (6.4), we find the equation (6.3). Let us now take p = 2 which is the
lowest value of p for which the conformal Killing spinor on R~ is nontrivial. For p = 2
we get

Y, =TI,
By induction we then find that the most general solution for general p can be expressed as
Y, =T, (6.6)

foru=0,---,p—1.
We also have to satisfy the condition that comes from the curvature by commuting
two covariant derivatives as in equation (6.1) that amounts to the condition

1
I'"X,, X,)e = —§Pe (6.7)

We will now proceed to solve the equations (6.6) and (6.7) while imposing the Weyl pro-
jection in (6.2) for various values on p.

6.1 M5 brane on R0 x §°

For p = 1 we find the solution

~16 —



where a = 1/,2" and o/ = 3’,4’. These solutions are valid only if we impose the projection
presy.

unless A = j:% when this projection is not necessary. The Lagrangian is

_ i a b i a’ b E )‘72 a a’
L= Lo+ <27’ _)\> €ab®00®” + <27‘ +)\> €a'ty @ 009" + <87“2 - 9 > <¢a¢ + Qur@ )

A ’ 2 ’ 1 - Aqlor P n1re
5 (qﬁaqﬁ“ — ¢ * ) + Sop¢” — — ¢ T2y + S FtTOnT 2 gt
2r r 4r 2
Where wi = % (1 4+ f‘1l2l3/4/) w

6.2 M5 brane on R x §4

For p = 2 we find the solution

Appar = 7 Cn/
where €g1y = 1 and antisymmetric, in the sense that ;oo = —1. The Weyl projection is
F01f0/1/€ = €

The M5 brane Lagrangian is
2

/ / ]_ 1 - A Al
L= Lo+~ ¢ 0udy + - (=00 + 01 + 65 + ¢3) — O T e

6.3 MS5 brane on R2 x §3
For p = 3 we find the solution

1
A}J,,I//)\/ = ; Euv’ N

where €p1/or = 1 and totally antisymmetric. We have the Weyl projections

F01F0/1/€

F12F112/6 = €

I
M

The M5 brane Lagrangian is
1 MV/)\/ 1 - M e V/)\/
L =L+ —¢ ¢)\’a,u¢1/ - ﬁeuu’)\/wr r“*4
T 8r
6.4 M5 brane on RY3 x §2

For p = 4 we find the solution

Au,u’4’ = ;nuu’
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and Weyl projections

I‘OIFO/l/e =€
F12F1/2/6 = €

F23F2/3/€ = €

The M5 brane Lagrangian is

2@ 4/ 3 4/ Z - A /4/
L= Lot 0" 00y — 50" 0 — OTI Y

Here we could not find a real solution for the background gauge potential. The 5d
SYM action can be real for R symmetry group SO(2,3) if the signature is (2,3) (section
9.2 in [12]). We find that the bosonic part of the action is real once we Wick rotate ¢*
which suggests R symmetry is Wick rotated from SO(1,4) into SO(2, 3). If we do that Wick
rotation of R symmetry then 'Y shall also be Wick rotated and the full action becomes
real on R? x S? if the signature is (2, 3) with the S? part timelike.

7 Partially twisted theory on R%! x R4

For our gamma matrix conventions for this twist, we refer to appendix C.1. On RV we
have the flat metric

ds® = —e% + ele! = —2¢te™ — 2¢ et
where € = dz¥ and e! = dz! and we define

1
eizi(oiel)

and £ denote flat lightcone indices. We define

1
oF =5 (" £ )
and
+_ 1.9 !
7 =50"%7)
whose nonvanishing components are (y")"™_ = 1 and (y~)"4 = —1 respectively. We
then have
1
+-_ _1
Y 27

We have the following anti-hermitian SO(1,1) charge generator

_ .o
Q=37
Q — 2,L~(501)u1/

~ 18 —



in the spinor and vector representations. It acts on the vector infinitesimally as

Z. KT 14
5¢u = _ienr(Q )u b
which yields
dp+ = Feg1p+ =: —i€1 QP+

which shows that ¢4 carry SO(1,1) charge Q = +i.

We define twisted spinor components as

w(()i)at — ¢:i:ocZFt

+)at
XSI: o — Qp:ta:tt

Here, on the left hand side, stands the twisted spinor fields, and 4=, 0 without round brackets
refers to the twisted SO(1, 1) charge. The (+) refers to the SO(4) Weyl projection on the
Dirac spinor index «. On the right hand side stands the untwisted spinor fields, and the
+ there refers to SO(1,1) and SO(1,1)r charges respectively. Hence the total charge of
w(()i)at is zero, while Xf)at carry SO(1,1) charges +i respectively, just like ¢ do. In the
sequel we will use the following shorthand notations,

0
Xg = ™
We define
Dy =€éiD,
We have

» 1
g,u DMDV = _§{D+7D—}

Using the zweibein to convert p into flat space indices £, we find the following twisted

Lagrangian

1 ) 1 - 1 - 1 ..
Ltensor = EH—i-—lH—ir—i + EH—”H—Hj + EH—&—UH—U - ﬂH”kHijk
1 1 .. 1 1 ..

'Cscalars - _§gHVDM¢+DV¢_ - 59”8@¢5+8j¢5_ + iglwau(baau(ba + igwai(;saajd)a

'Cfermions = )Z—D#/J_ + X+D—¢+ + )_(—PYZ'DZ'X—F + 1/_}_71'Diw+
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where we define the new Dirac conjugation by 1) = 9T with the reality condition 1 =
(Pp)* = wa/t/ Cura€ry- The action is invariant under the supersymmetry variations

0B, = —2ie ¢~ — 2iet T
0By = +2i€Tyix+
0Bj; = i€ yyp~ — i€ T
0 = =26 x4
0p_ = —2€ x-—
8" = eto YT + e g%~
§E = eEDigx + 40T D" + ZWZEqEHJr—i = E’Y”kejFHijk

Ox+ = —U“eiDﬂﬁa — '€ Dy F EVUGiHﬂ:ij

8 Partially twisted theory on M;; X R*
We introduce the Grassmannian two-space vector field by
Xu = €f X+ + e, x—
and a scalar
Y=+

where all the Grassmannian fields are realized in the 8d («,t) space. The supersymmetry
parameter is a Grassmannian scalar given by

e=¢t e
For notational convenience let us introduce 6D Weyl projection on x, as

1
X = 5 (X = Yamx”)

Then x,, is subject to the Weyl projection condition
Xu =X,
which leads to the relation
Xp = _'7(4)6/WXV
Using this notation, we find the following twisted Lagrangian
1 4 1. 1 ..
['tensor = _gHﬂmHulli - ngﬂjHﬂij - ﬂHz]kHijk
1 1 1 .. 1 1 ..
ﬁscalars = Z(puu(z)lw + §(VM¢“)2 + igljai(buaquu + §gw/au¢aay¢a + igljaigﬁaaqua

_ o 1- .
'Cfermions = 28;@)(“ - XMVZaiXM + 51/172311#
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The action is invariant under the supersymmetry variations
0By, = —i€u, € = i€y, e

0Bui = 2i€vy4)Xu

0Bij = —i€yijY(a)¥

0 = —2€ex,
0" = eo®

0y = —e Vugf)‘u — V)€ E‘uyau(ﬁy + 7i0a6 0;p* — i’yie E‘UVHMW' + éﬁ/ijk’}/(zl)e H;jp,

—_

_ W
X =5 (@ —Ywewd”) = q,
where

a a 7 i 17
qu = —0 Ea,ud) - fai¢u - Z'Y 17(4)€H,uij
9 Partially twisted theory on M;; x S*

Using the notation of the previous section, we find the following twisted Lagrangian

1 1 1
Liensor = _gHHWHum, - gHm]H#ij - ﬂH”kHijk

1 1 1 .. 1 1 ..
Lscalars = Z¢HV¢#V + E(v/ﬁb#)z + ggwaiﬁbuajﬁbu + iguyauﬁbaauﬁi)a + 59”81'(;5&8]'?{)(1
2 1 ’
—=6' D, + = (90 + 070" )
_ . 1- . 1 -
Ltermions = 28,11¢X'u - Xu’leiXu + iw'yzDzw - 51/}7(4)0'31#

Here, in Lgeqiars, we assume indices range as a = (da’,4) for o/ = 2, 3.
The action is invariant under the supersymmetry variations

0B, = —i€ ) = i€y, e
0B = 2i€vYayXu
0Bij = —i€VijY(4)¥
and
0, = —2ex,
09* = o
where ¢2, ¢3, and ¢* are respectively matched with o', 0% and ¢® with a little abuse of
notation. The fermionic variation beomes

0 = —e V9" — yuye e O,y + Viote Bt — ivie " H i

T 21
+E’7”’W(4)6 Hijp + 7(7(4)016¢3 — Y()02€0°)
1 1
oxXp = 9 (q,t - 27(4)6#1161”) = QZV
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where
. i 1
Gp = —0"€ 0ud" = V'€ 0t — 17 vy Husj = ~ V)07 By

The Killing spinor equation reads

1
Die = 5%7(4)036

whose justification follows from the relation
—(YT"Di€)|ys—0 = =4 Me|y, —o = 1y Die
where

M = iFOf\14
2r

10 Partially twisted theory on M;, X S?

For our gamma matrix conventions for this twist, we refer to appendix C.2. We intro-
duce a Grassmannian vector field v, and scalar field 1) where all the Grassmannian fields
are realized in the 4d (s1,t1) space and pu = 0,1,2. The supersymmetry parameter is
a Grassmannian scalar on M2 which we denote by 7 which is related to the original
supersymmetry parameter by

6505152\150151 — 6Sotonsltl

In the twisted theory, the reality condition on any Grassmanian fields x becomes

- _ S1t1\* __ sht!
Xsit1 = (X ) =1X ! 168/151615’1151

which basically defines the induced charge conjugation matrix for our twisted theory. In
addition, we introduce (for more details we refer to appendix C.2)

V=@l
and
(03, k) = (1®03 1® kY
With these preliminaries, we find the following twisted Lagrangian

1 1 ) 1 - 1 .
['tensor = _ﬂHuV)\HMV)\ - gH“wHMw’ - gH“”Hﬂij - ﬂH”kHijk
1 1 1 .. 1 1 ..
£scalars = E(Z)uufz)lw + §(VM¢M)2 + 59”ﬁi¢uaj¢“ + 59“1/8#(;5&81/?#1 + igljai(ﬁaaj(lsa

1
+;6wj}\¢uay¢)\
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where a = 3,4 and
Liermions = —20"0° V) — " ,0° 0,05 — ihy'0® Dt + iy 0 Dy,
o B0 + 5 by,
This Lagrangian is invariant under the supersymmetry transformation
0By = —2¢€uu) 7703¢)‘

5Bm = Qiﬁ’yidglﬁu
6Bij = =270

6(25“ = _2“7 djﬂ
56 = 2if o3 KMp
and
1 A ijk ;3 B Aigea o g 2 ap g
0 = =0 (¢ Hun = T Hipn) = i0" Vit = 'w'n Vg + T
L 4 ¢ VN | :oa a y i3 io3ne, VA
0 = =7 g — JvineuaH"™ + ik Vud® + 90" Vigy — o ne, " 0y dy

4

To verify the supersymmetry of the action, we note that the 6d conformal Killing spinor
equation reduces to the usual Killing spinor equation on S3,

i
sz—ﬂwn
The main application of this twist is to the 3d-3d correspondence. This will be analyzed
elsewhere.
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A Classification of R symmetry groups for 6d (2,0) theories

We assume Lorentz group SO(1,5) and R symmetry group SO(g,5 — ¢) and attempt to
impose the 11d Majorana condition

¢ =9'C
where we shall define
7’5 _ wTFOflmq

Let us assume that we can impose this Majorana condition. We can then pick the Majorana
representation for the gamma matrices where the charge conjugation matrix is given by

c=r1°
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Since we also have that

ref = —pe fora=1,---,q

re' = re forad =q+1,---.,5
we see that
FM* — FM
Fa* — —Fa
Fa/* _ Fa/

The Majorana condition becomes

pirtt = (11"
Applying transpose on both sides, we get

Creto—ty* =4
Using C =T we get

(=TTl =y
Applying I''? on both sides, we get

A g )
If we complex conjugate again, we get
P = (1) = (1)

Now we use that

(TN = ()
We then get
= ()t
This is consistent for
qlg—1) € 4Z

Solutions are ¢ = 0,1, 4,5 and correspond to SO(5), SO(1,4), SO(4,1) and SO(5,0).
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B A map from 6d to 10d Weyl projections

To find the non-Abelian generalization, we first put r = co. We wish to relate the theory
with the dimensional reduction of SYM on R, dimensionally reduced down to R®. For

this SYM we have the Weyl projections

~ir%¢ = ¢

—il% = w

for the spinor field and the supersymmetry parameter respectively. These will be related
by a unitary transformation to our original variables as

Y =UC

where

which has the properties

urm =rmu

We define

frop?’

A

o
I

€l
Il
€~o—
2

and so we also have the relations

I'oU
¢ = (LoUT

[
&l

In terms of these new spinor variables, we get

6 = iwl'aC
§ A, = il
1 R
0¢ = ST wFyn + [T, a

If we now also flip the sign of the matter fields ¢4, we find the standard supersymmetry
variations of (1+9)d SYM reduced to 5d, for which we have the non-Abelian generalization
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that is obtained by substituting ordinary derivative with gauge covariant derivative D,,, =
Om — 1[Am, o] in the adjoint representation, and by adding one commutator term

8¢ = —%fABW[CﬁA, ¢B]

We can then transform this term back into our original, M5 brane adapted, variables
and get

1.
i = =5 TAPT%(64, 6]
Likewise the non-Abelian Lagrangian is in the new variables given by the standard

SYM Lagrangian

1
4

that in the M5 brane adapted variables translates into

L= (™ F + 5 D" Dds — 116", 0%04, 65] — S0 DG — 27 [64,]

1 1 1 1- 1-_ -
E() = Zanan + §Dm¢ADm¢A - E[QSA? ¢B][¢A, ¢B] - §¢FmDm'¢ - §wFOFA[¢A’ ¢]

C Gamma matrix conventions for partial topological twists

When we perform the partial topological twisting we find it convenient to choose gamma
matrices according to the dimension of the manifold over which we obtain the scalar su-
percharges after the twist.

C.1 Gamma matrices for the 2d-4d split

We choose the SO(1,1) gamma matrices y* as

and we define the SO(1,1) chirality matrix as

o) =" =0°

We have
()7 = —erte”!
V(TQ) = —67(2)6_1
where € = io?.
We then choose the 11d gamma matrices as
MH"=+4*"11x1
I :’y(g)@)’yi@l@l
= Ye2) ® V(4 7" @1
I'* = 52) ® Y1) ® Y(2) ® 0*

— 96 —



We let indices range as p = p/ = 0,1, ¢ = 1,2,3,4 and a = 1,2,3. We then find that the
6d chirality matrix becomes

F'=72)®74)®1®1

where we define the SO(4) hermitian chirality matrix as

Yy = 712

The 6d Weyl condition amounts to
(e @1y ®1e1) P =1
The 11d charge conjugation matrix is
Clig=e®CR0'®e
which is such that

C1T1d = —Clld
T"T = —cnaf™ ey
(" = —CnalCpy

We then have CT = —C and ¢!’ = —e. An explicit realization of SO(4) gamma matrices is
A28 — 5123 g 52
FA 10!
and
C=e®1
Then

()" =cCy'e!
Also, if we define
Yy = 24 _ 1 g o3
then
Ny = CrayC™
We will use spinor indices as follows,

,l/]Soat()tl
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Thus if we write out all spinor indices, we have for instance

_ 1
Clld = 53056 aﬁatotgett’

We have that

Cag = —Cga
’Yéﬁ = —’Yfm
Vs = Vin
SR

where we define ’ygﬁ = Coy (¥ 5.
We define

and

(V2))st = (_01 _01>

We denote the twisted SO(1, 1) neutral spinor components as

1/)04251

In addition to these, we have the twisted SO(1,1) charged spinor components

atq

X

which carry the SO(1, 1) charge according to their SO(4) chirality.
In total we have 8 neutral (denoted as 1)) and 8 charged (denoted as x) spinor com-
ponents. The supersymmetry parameters are neutral under SO(1,1). We denote these as

Eoztl

which has 4 x 2 = 8 real components. In other words, we have 8 real supercharges.

C.2 Gamma matrices for the 3d-3d split
We choose 11d gamma matrices as (u=0,1,2,47=3,4,5, A=0,1,2,3,4)

MM=1elecel
=19+ o1

M=1012 o4
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where v* = (io2, o', 0%) and 4* = (63, 0!, 6%) and where we choose ¥4 as follows

N0 =io?@ad
M=ol @’
A2 = 0% ol
B =180
M =10t

and we may use the notation

»y// — ,Yu’ ® o
,ya — 1 ® K_/(l

for p/ =0,1,2 and a = 3,4. We have
(,YA)T — C,YACfl

¢’ =-c
where

C=ecx0!
The 11d charge conjugation matrix is

Clig=e®@e0' ®@C

which is antisymmetric

Cﬂd = —Clq
We expand the spinor as

oosisatols — soloypsity | (,YM)S()t()letl

Here 1)°1* transform in the representation (1,2)+ and szli in the representation (3,2)+ of
SO(1,2) xSO(3) x SO(2)g. Note that s, is determined by the 6d Weyl projection. We have

POI _ (03)8086
r'* = _i(0.3)5086(0.3)51s/1 (03)825’2
F45 _ Z'(O.3 813/1

Then

T = F01F23F45 — (0_3)82 ,

S2

We conclude that ss gives the 6d chirality of the spinor so that this number is fixed by the
spinor. For ¢ we have sy = + and for the supersymmetry parameter n we have so = —.
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D Untwisted Fierz identity

We use 11d gamma matrices that we split them into two groups, I'M and ['4 where M =
0,1,2,3,4,5 is for spacetime and A = 0/,1,2',3' 4" is for SO(1,4) R symmetry. We thus
assume that {IT'M, f‘A} = 0 as part of the 11d Clifford algebra. We define the 6d chirality
matrix

T = F012345

For two negative chirality spinors I'e = —e and I'n = —7n, we have the following
Fierz identity,

1 . 11 1 R .
€ — e = 3 — (M + (ﬁFMFAe)TMFA] 3 (1+7T) - @(ﬁI‘MNPFABE)I‘MNpI‘AB

We have the following gamma matrix identities,

MNPy p = =206y — 4TV
TPMNT o psTay = 4T  grs + 125§FRS}
PADPPA = 3PP
f\AfBCfA — fBC
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