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1 Introduction

The basic entities of a local quantum field theory are its Green’s functions. They can be

calculated with various methods ranging from perturbation theory to Monte-Carlo simu-

lations on discretized space-time lattices or functional equations, e.g., via the functional

renormalization group or their equations of motion, the Dyson-Schwinger equations (DSEs).

Studies of gluonic Green’s functions in quantum chromodynamics (QCD) using their DSEs

have a long history. For a selection of such studies see [1–27]. Over the past two decades

there has been a steady development that pushed the technical limits and thereby improved

the quantitative reliability of the results. Many conceptual problems were solved, but a

perpetual challenge for many DSE practitioners remained in how to deal with spurious

ultraviolet (UV) divergences in a practically feasible yet unambiguous way. Such diver-

gences occur, when a regularization is used that violates gauge invariance. The mostly for

its technical simplicity used O(4) invariant Euclidean UV cutoff is such a regularization.

Feasible alternatives without this problem are scarce. Dimensional regularization, for ex-

ample, which does not have this problem and which is therefore best suited for analytic

calculations (see, e.g. [28]), is not easily implemented in numerical computations [29, 30].

Thus, from a practical point of view, it is still desirable to cure this artificial problem

of spurious divergences with a simple UV cutoff in an unambiguous way. In contrast to
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Figure 1. Standard truncation of the gluon propagator DSE to explicit one-loop structures which

contains the bare inverse gluon propagator, the gluon and ghost loops, and the tadpole (second

diagram on the right), which is normally also dismissed. Curly (dashed) lines are gluon (ghost)

propagators. Thick (thin) filled circles represent dressed (bare) vertices. All internal propagators

are dressed as well.

the unavoidable logarithmic UV divergences of a renormalizable theory in four space-time

dimensions, they cannot be removed by standard multiplicative renormalization.

Several ways to remove these spurious divergences were proposed in the literature and

used in the past. We review some of them in section 3. However, depending on which

method is used, the results can vary to some extent in the non-perturbative regime. At

the moment, these variations may not be dramatic but still within the overall uncertainties

of present approximations and the systematic truncation errors, especially in the gluon

propagator DSE in which the explicit two-loop contributions are typically neglected. As

the systematics in the truncations and hence the quantitative reliability of DSE results

are steadily improving, however, we will inevitably reach a point at which the variations

due to the different subtractions of spurious UV divergences will matter as well. This

motivates to search for a better understanding of how to subtract them without affect-

ing non-perturbative aspects such as dynamically generated mass terms, or condensate

contributions, and the infrared behavior.

Often the ambiguity in the non-perturbative regime is directly reflected in the appear-

ance of a new parameter. At first sight this might also seem to be the case for the method

proposed here. However, upon closer inspection, in particular of the asymptotic perturba-

tive behavior of the propagators in the ultraviolet, where calculations can be done analyti-

cally, the subtraction of the spurious divergences in the gluon propagator can be fixed unam-

biguously by requiring that it must not introduce a mass term. We explicitly demonstrate

this and verify that the subtracted spurious contributions remain the same in the fully non-

perturbative calculation. Our perturbative subtraction method moreover allows to assess

possible contributions from the tadpole diagram in the gluon DSE, which are usually dis-

carded because they vanish in perturbation theory, but which can contribute beyond that.

Before we illustrate in section 3 how the spurious (quadratic) divergences emerge, we

give a short review of the gluon propagator DSE in section 2. Some methods used in the

literature to subtract these divergences are listed in section 3. In section 4 we detail our

new method which is used to obtain the results presented in section 5. We summarize

our work in section 6. Two appendices contain further details on the derivation of the

subtraction term.
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2 The gluon propagator DSE

The truncated DSE of the gluon propagator is shown diagrammatically in figure 1. We

consider the widely used truncation in which all explicit two-loop diagrams are neglected.

Unlike most previous studies we have maintained also the tadpole contribution here for now,

however, which we will discuss in more detail below. The gluon and ghost propagators in

the Landau gauge are given by (color indices suppressed)

Dgl,µν(p2) := D(p2)Pµν(p2) := Pµν(p)
Z(p2)

p2
, Dgh(p2) := −G(p2)

p2
, (2.1)

where Pµν is the transverse projector and G(p2) and Z(p2) are the ghost and gluon dressing

functions. It is by now well understood [12] that their DSEs admit a family of solutions

which are classified by the value of the inverse ghost dressing function in the infrared,

G−1(0). Finite positive values give rise to the so-called decoupling solutions [10–12, 31, 32]

with

Z(p2) ∼ p2/M2 , G(p2)→ const., for p2 → 0 , (2.2)

and, as a limiting case with G−1(0) = 0, one obtains the scaling solution [1, 33],

Z(p2) ∼ (p2)2κ , G(p2) ∼ (p2)−κ, for p2 → 0 , (2.3)

with a positive exponent κ < 1 which can be calculated analytically under a certain regu-

larity assumption on the ghost-gluon vertex [34, 35]. It is given by κ = (93−
√

1201)/98 ≈
0.6 [34, 36]. Only decoupling is seen on the lattice, e.g., [37–42], and the reasons for that

are fairly well understood [43].

An equation for the gluon dressing function Z(p2) is obtained by a suitable projection

of its DSE. Mainly for bookkeeping purposes we use a generalized projector as in refs. [5, 6]:

P ζµν(p) = gµν − ζ
pµpν
p2

. (2.4)

In a manifestly transverse truncation to the full gluon DSE the solution will not depend

on the parameter ζ introduced here. Conversely, the required ζ-independence can be used

as a valuable test of specific truncations in numerical studies, see the discussion in ref. [44].

Here we will simply set ζ = 1 for the transverse projector later on. For now, however, we

contract the gluon DSE with the projector in eq. (2.4):

1

Z(p2)
= Z̃3 +Nc g

2 Z4

∫
q
Z(q2)Ktad,ζ

Z (p, q)

+Nc g
2 Z̃1

∫
q
G(q2)G((p+ q)2)Kgh,ζ

Z (p, q)

+Nc g
2 Z1

∫
q
Z(q2)Z((p+ q)2)Kgl,ζ

Z (p, q)DA3
(p2, q2, (p+ q)2). (2.5)

The integral measure in eq. (2.5) is defined as
∫
q =

∫
d4q/(2π)4 and the kernels (with

x = p2, y = q2 and z = (p+ q)2) are given by

Kgh,ζ
Z (p, q) =

x2 (ζ − 2− 4 ηη̂ (ζ − 1)) + 2x(y + z)− ζ(y − z)2

12x2yz
, (2.6)
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Kgl,ζ
Z (p, q) =

z2ζ

24x2y2
+
z(5x− xζ + 4yζ)

12x2y2
+
x2(−19 + ζ) + 2xy(−17 + ζ)− 18y2ζ

24x2y2

+
(x−y)2

(
x2+10xy+y2ζ

)
24x2y2z2

+
4x3+xy2(−17+ζ)+4y3ζ−x2y(15+ζ)

12x2y2z
, (2.7)

Ktad,ζ
Z (p, q) = −ζx

2 − 2x((18− 5ζ)y + ζz) + ζ(y − z)2

12x2y2
. (2.8)

where we used the tree-level ghost-gluon vertex of the general covariant gauges of refs. [45–

48],

ΓAc̄c,abcµ (k; p, q) = i g fabc (η pµ − η̂ qµ) . (2.9)

It involves a second gauge parameter η with η̂ ≡ 1− η such that standard Faddeev-Popov

theory corresponds to η = 1, η̂ = 0, its mirror image after Faddeev-Popov conjugation to

η = 0, η̂ = 1, and the ghost-antighost symmetric Curci-Ferrari gauges to η = η̂ = 1/2 [49].

In Landau gauge there is no such distinction, however, and the gluon propagator must be

independent of η as well [34].

The renormalization constants of gluon and ghost propagator are denoted by Z3 and Z̃3

and those for the ghost-gluon, three-gluon and four-gluon vertices by Z̃1, Z1 and Z4. In the

following we will use the MiniMOM scheme [50] which is defined such that Z̃1 = 1 in Landau

gauge as in minimal subtraction schemes, and which is also valid for all η.1 The truncated

gluon propagator DSE contains two dressed three-point functions. The dressed ghost-

gluon vertex has already been set to its tree-level counterpart in the expressions above.

As an approximation this is well justified by the overall comparatively small deviations

of the fully momentum dependent vertex from its tree-level form [18, 24, 52–57] which

induce only minor changes in the propagators likewise [18, 24]. We can furthermore see in

eq. (2.6) explicitly that the relevant transverse part of the gluon propagator obtained for

ζ = 1 remains η-independent in this truncation [34].

For the dressed three-gluon vertex we have furthermore assumed that one can restrict

its form in a first approximation to that of the tree-level vertex which was shown to provide

the dominant tensor structure for ζ = 1 [27]. Consequently, we use an ansatz,

ΓA
3,abc

µνρ (p, q, k) = i g fabcDA3
(p2, q2, k2) ((q − p)ρgµν + perm.) . (2.10)

The form of the model dressing function DA3
(p2, q2, k2) will be specified when we need it

below.

3 Spurious divergences in the gluon propagator DSE

The existence and type of spurious divergences in the gluon propagator DSE can be inferred

from analyzing the UV behavior of eq. (2.5) [2, 3, 58]. This is done by replacing all dressing

functions in the loop diagrams by their leading perturbative expressions [2, 3]:

GUV (x) = G(s)
(

1 + ω ln
(x
s

))δ
= G(s) (ω tx)δ , (3.1)

1At one-loop level with minimal subtraction this was already observed in [46]. In general it follows from

a Slavnov-Taylor identity as can be shown along the lines of ref. [51].
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ZUV (x) = Z(s)
(

1 + ω ln
(x
s

))γ
= Z(s) (ω tx)γ , (3.2)

where tx = ln(x/Λ2
QCD) and Λ2

QCD = s e−1/ω; δ = −9/44 and γ = −13/22 are the

propagator anomalous dimensions at one-loop level, ω = 11Nc α(s)/12/π = β0g
2(s) with

α(s) = g2(s)/(4π) denoting the strong coupling at some sufficiently large reference scale s

in the UV, Nc is the number of colors and β0 = 11Nc/3/(4π)2 is the one-loop coefficient of

the β-function. As in refs. [18] we use the following expression for the three-gluon vertex

in the UV analysis,

DA3

UV (p2, q2, k2) = GUV (p2)αZUV (p2)β, (3.3)

with p2 = (p2 + q2 + k2)/2. The exponents α and β are constrained by αδ + βγ = δ − γ =

17/44 so that they reproduce the correct anomalous dimension of the vertex. In our nu-

merical calculations we choose α = −17/9 and β = 0, with which eq. (3.3) tends to a

constant in the infrared (IR) for decoupling solutions [18]. As usual, we furthermore re-

place the three-gluon vertex renormalization constant Z1 by a momentum dependent func-

tion DA3

RG(p2, q2, k2) in order to restore the correct one-loop running of the gluon dressing

function resulting from the truncated DSE [2, 18]. For the UV analysis it suffices to set

DA3

RG(p2, q2, k2) = DA3

UV (p2, q2, k2).

These expressions are inserted into eq. (2.5). To extract the leading contributions to

the right hand side of eq. (2.5) from large loop momenta we furthermore assume q � p

which allows us to replace G(z) and Z(z) by G(y) and Z(y). Introducing a UV cutoff Λ

and performing the angle integrations then yields

1

ZUV (p2)
= Z3 − Z4

Nc g
2

64π2

1

x

∫ Λ2

x
dy (3(ζ − 4))ZUV (y) (3.4)

+
Nc g

2

192π2

∫ Λ2

x
dy
x (ζ − 2− 4 ηη̂ (ζ − 1))− (ζ − 4)y

xy
GUV (y)2

+
Ncg

2

384π2

∫ Λ2

x
dy

7x2+12(−4+ζ)y2−2xy(24+ζ)

xy2
GUV (y)2αZUV (y)2+2β + . . . ,

where the terms not given explicitly include subleading contributions from replacing G(z)

and Z(z) by G(y) and Z(y), and all contributions for y < x. Up to the latter, the result

for the tadpole is complete, because this loop integral, the first integral on the right, does

not depend on the external momentum in the first place. Assuming constant G(y) and

Z(y) one can see that the quadratically divergent terms are proportional to ζ − 4 as they

must. The modifications to these terms introduced by using the one-loop resummed forms

for the dressing functions given in eqs. (3.1) and (3.2) will be considered below.

Hence, choosing ζ = 4 is one possibility to get rid of spurious divergences as observed

by Brown and Pennington [59]. In particular, then the tadpole does not contribute at all.

In fact, this was one motivation to drop it in most previous studies. However, since we

work in the Landau gauge, we only need transverse Green’s functions, the subset of which

closes among itself [12]. The choice ζ = 4, on the other hand, projects on the longitudinal

parts of the vertices also, and it introduces a spurious dependence on the additional gauge

parameter η which should not be there in Landau gauge, requiring ζ = 1 [34]. Therefore,

we use the transverse projector P ζ=1
µν (p) from now on.

– 5 –



J
H
E
P
0
6
(
2
0
1
4
)
0
1
5

A number of proposals to remove the quadratically divergent parts exist in the litera-

ture. We summarize them in a probably still incomplete list as follows here:

1. Using the Brown-Pennington projector P ζ=4
µν (p) gets rid of the divergent terms di-

rectly but introduces the ambiguity relating to η as discussed above.

2. Modifications of the integrand(s) [5, 6, 18, 60, 61]: the corresponding spurious terms

can simply be subtracted from the integrands. Since the problem originates from the

region of large loop momenta, the extra subtraction terms needed to achieve this can

be multiplied by a damping factor to avoid an influence on lower momentum regions at

the expense of an additional parameter. Without such a damping factor, the subtrac-

tion will in general also affect the IR. In this case it is advantageous to subtract the di-

vergences for the loops in one integrand, if that particular loop is IR subleading [5, 6].

3. Modifications of the vertices [12]: instead of the integrands one can also modify

the vertices as a technical trick in a way which does not reflect their behavior as

expected from perturbation theory. To avoid an influence on the IR behavior, the

corresponding terms are again damped at low momenta, see also [15].

4. Fitting the coefficient of the divergent part [62]: for dimensional reasons the quadrat-

ically divergent part is proportional to 1/p2. Fitting the coefficient of this term allows

to subtract the corresponding mass-like term on the right-hand side which also gets

rid of any potential tadpole contribution. This is implemented most easily for the

scaling solution for which mass-like terms are IR subleading.

5. Additional counter terms: in order to match decoupling solutions to lattice data a

simple mass counter term has also been introduced [63] so that the 1/p2 terms are

not subtracted but fixed by an additional condition hence again introducing an ad-

ditional parameter. In two dimensions, on the other hand, the spurious divergences

are logarithmic and can be subtracted via a kind of MOM scheme [35].

6. Dimensional regularization: there are no spurious divergences in analytic calculations

using dimensional regularization by definition. Numerically it is difficult to realize [29,

64]. It has so far only been implemented for logarithmic divergences and it is to our

knowledge still not known yet how to numerically handle power law divergences [30].

7. Seagull identities [65]: these identities were originally derived in dimensional regular-

ization but they are also used within the PT-BFM framework [66] with a momentum

cutoff, e.g., [16, 67]. Their use requires the vertices to have a special form so that the

divergent parts of the individual integrals cancel via the seagull identities.

The general observation here is that most of the more practical methods that have

been implemented numerically are not unambiguous because they involve a new a priori

undetermined parameter. This is the case, for example, when damping functions are in-

troduced to subtract the integrands or via modifying the vertices according to methods 2

and 3. While one can choose a value in the region of least sensitivity, some residual depen-

dence on the damping parameter will always be left as the price for cutoff independence in

– 6 –
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these schemes. This is avoided in method 4 where one fits the coefficient in the mass-like

1/p2 term on the right-hand side of the DSE to subtract it completely. However, this

coefficient is in general not given by quadratically divergent contributions alone but can

contain a finite part which is then subtracted as well. Considering decoupling solutions

it is evident that such a finite part must exist due to the massive behavior of the gluon

propagator in the IR, i.e., Z(p2) ∝ p2/M2 for low p2. Also for the scaling solution, however,

where it is IR as well as UV subleading in the gluon DSE, we tested explicitly that it can

contribute beyond perturbation theory, as a dimension two condensate contribution in the

operator product expansion of the gluon propagator, although we generally observe that

its overall effects are very small. Instead of fixing the finite part of the mass-like term by

hand, as in ref. [63] to match lattice data, we will focus on disentangling perturbative from

non-perturbative contributions below in order to make sure that one subtracts only the

perturbative ones when removing spurious divergences.

We emphasize, however, that as far as results are available that can be compared, all

methods yield qualitatively similar solutions, with deviations that are still within the other

systematic uncertainties at present. Given the current progress with enlarged truncations

and quantitatively improving results especially for the gluon propagator, on the other hand,

a properly perturbative subtraction method for spurious divergences should soon pay off

as well.

4 Subtraction of spurious divergences

In the previous section we have exposed the spurious divergences in the gluon propaga-

tor DSE by analyzing the UV behavior of the integrands. This was not new, of course,

but it was also used to devise corresponding subtraction terms in the integrands or via

the vertices according to methods 2 and 3. The integrals over the subtraction terms used

to extend over all momenta and thus also affect the nonperturbative region. This is not

necessary, however, as will be seen explicitly below.

We again start from eq. (3.4), set ζ = 1 and consider only the spurious terms:(
1

ZUV (p2)

)
spur

→ Z4
9Nc g

2

64π2

1

x

∫ Λ2

x
dyZUV (y)

+
Nc g

2

64π2

∫ Λ2

x
dy

1

x
GUV (y)2 − 3Ncg

2

32π2

∫ Λ2

x
dy

1

x
GUV (y)2αZUV (y)2+2β

= Z4
9Nc g

2

64π2

Z(s)

x

∫ Λ2

x
dy (ω ty)

γ

+
Ncg

2

64π2

1

p2

(
G(s)2 − 6G(s)2αZ(s)2+2β

)∫ Λ2

x
dy (ω ty)

2δ , (4.1)

where again x = p2, y = q2 and ty = ln(y/Λ2
QCD). The logarithmic divergences are

handled separately, specifically by using a subtracted equation. For now we suppress the

corresponding extra terms. The expression in eq. (4.1) depends on the external momentum

only via the trivial factor 1/p2. For the renormalized DSE, this factor is modified to

1/p2 − 1/p2
0, where p2

0 = µ2 is the subtraction point.

– 7 –
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In deriving this form of the quadratically divergent contributions we have replaced the

mixed momentum p+ q in dressing functions by the loop momentum q, for q much larger

than p, and it is assumed that s is sufficiently large as well so that we can use eqs. (3.1)

and (3.2) for the leading UV behavior of G and Z. It turns out that this approximation

is justified extremely well, as can be verified by comparing the numerical derivative with

respect to the UV cutoff of the full solution ZΛ(p2) of the renormalized DSE with the

corresponding result from the analytic expression above, which takes the simple form:

p2
∂Z−1

spur(p
2)

∂Λ2
= btad (ω tΛ)γ + b (ω tΛ)2δ, (4.2)

with tΛ = ln
(

Λ2/Λ2
QCD

)
. The coefficients b and btad are given by

b =
Ncg

2

64π2

(
G(s)2 − 6G(s)2αZ(s)2+2β

)
, and btad = Z4

9Nc g
2

64π2
Z(s) . (4.3)

We also recall that

ω = β0g
2(s) =

11Ncα(s)

12π
, (4.4)

where the coupling α(s) at the large reference scale s is related to α(µ) = g2/4π at the

renormalization point µ, in the MiniMOM scheme [50], via

α(s) = α(µ2)Z(s)G(s)2, (4.5)

but other schemes may be used as well. Calculating the derivative has two advantage. First,

it avoids large numbers and it becomes easier to expose the general form of the expression.

Secondly, all cutoff independent terms drop out. Since the logarithmic cutoff dependence

has already been taken care of by momentum subtraction, the remaining expression only

contains contributions from spurious divergences. A comparison of the analytic result in

eq. (4.2) with two numerical results from ZΛ(p2) is shown in figure 2. The latter two are

those for the minimal and the maximal external momenta used in the calculation. The good

agreement is demonstrated in the right plot of figure 2, where the difference between the two

is shown. Hence, spurious quadratic divergences indeed depend on the external momentum

only via the prefactor 1/p2, i.e., there is no evidence of a nontrivial momentum dependence

in these terms. The solid line in the left plot of figure 2 represents the analytic result from

eq. (4.2) which coincides with the numerical results, again within numerical accuracy as

also demonstrated on the right. Consequently we conclude that we have correctly identified

the source of the spurious divergences in eq. (4.1) to be of purely perturbative origin.

To remove the spurious terms it is sufficient to subtract the indefinite integral of

eq. (4.2) over Λ2. The integration constant then again introduces an arbitrary mass term,

however. In other words, if we replace the lower integration bound x = p2 in eq. (4.1) by

an arbitrary constant x1 in the necessary subtraction term, we have traded the momentum

dependence there for a mass term. Our goal, however, is to implement this subtraction

in a minimal way, in particular, we want to avoid adding an ad hoc mass term. This will

be achieved by choosing the special x1 at which all cutoff independent terms vanish in the

subtraction term identically.
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Figure 2. Left: cutoff dependence of the full solution ZΛ(p2). The big gray (small black) dots

represent results for the largest (smallest) external momentum used in the calculations. The solid

line shows the corresponding analytic expression from eq. (4.2). The cutoff Λ is given in arbitrary

internal units. Right: absolute values of differences ∆ in the left plot between smallest and largest

momentum results (thick, gray dots), as well as numerical (smallest momentum) result and analytic

expression (thin, black dots).

Appendix A contains the details of integrating eq. (4.2) from a general lower bound

x1 to the UV cutoff. The two necessary integrals only differ in their exponent so we only

give the solution for γ here. With t1 = ln
(
x1/Λ

2
QCD

)
it reads

I(Λ2, γ)− I(x1, γ) =

∫ Λ2

x1

dy (ω ty)
γ = Λ2

QCD(−ω)γ
(
Γ (1 + γ,−tΛ)−Γ (1 + γ,−t1)

)
(4.6)

The definition of the incomplete Gamma function Γ(a, z) is given in eq. (A.3). The lower

bound x1 is now fixed such that the constant contribution vanishes, which leads to t1 = 0

and hence x1 = Λ2
QCD. In other words, we integrate down to the Landau pole of the pertur-

bative running coupling. The subtraction coefficient of the spurious 1/p2 terms then reads

Csub := b
(
I(Λ2, 2δ)− I(Λ2

QCD, 2δ)
)

+ btad
(
I(Λ2, γ)− I(Λ2

QCD, γ)
)

= Λ2
QCD

(
b ω2δ

∞∑
n=0

(tΛ)1+2δ+n

n!(1 + 2δ + n)
+ btad ω

γ
∞∑
n=0

(tΛ)1+γ+n

n!(1 + γ + n)

)
(4.7)

where we have used the series expansion of the incomplete Gamma function in eq. (A.4). In

this form it is numerically easy to calculate. An added bonus of choosing the perturbative

Landau pole as the lower integration bound in the subtraction term is that the details

of the lower momentum behavior of the corresponding integrands do not matter at all as

long as the contributions to the integrals from the lower bound vanish. As an example

we discuss an alternative parametrization of the perturbative propagators, with the same

leading perturbative behavior in the UV but with the Landau pole and x1 both shifted to

zero in appendix B. The result is the same.

Another reason that makes this choice a natural one is the following: spurious divergent

terms appear already for a purely perturbative treatment and have to be handled there as

well. Within such a calculation, a constant contribution, as arising from a contribution from

– 9 –
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Figure 3. The gluon dressing function for two cutoffs: 7747 GeV2 (red, continuous line) and twice

that magnitude (green, dashed line).

the lower boundary, would correspond to a mass term for the gluon, which is of course not

allowed. Since the cutoff dependence is the same for all external momenta, as demonstrated

above, we can use the perturbative prescription in the nonperturbative regime as well. It

should be noted that the massive behavior (in the sense of a screening mass) at low momenta

for the decoupling solution of the gluon propagator is of purely nonperturbative origin.

The suggested procedure to subtract spurious divergences is summarized as follows:

1. Calculate b, btad and ω from eqs. (4.3) and (4.4).

2. Calculate the subtraction coefficient Csub from eq. (4.7).

3. Subtract the spurious divergences via

Z(p2)−1 := ZΛ(p2)−1 − Csub

(
1

p2
− 1

p2
0

)
(4.8)

where ZΛ(p2)−1 corresponds to the calculated right-hand side of the gluon propagator

DSE.

In figure 3 we show results obtained with this procedure. The two lines, calculated

with two different UV cutoffs, agree with each other at the level of the numerical preci-

sion. Another check was to vary the routing of the external momentum through the loop

diagrams. For this we transformed the loop momentum as q → q + λ p in eq. (2.5) and

tested several values of 0 ≤ λ ≤ 1. In all calculations the results were the same within the

precision seen in figure 3.

5 Effects on the gluon propagator dressing

We will now apply the method discussed above to the coupled system of propagators of

Landau gauge Yang-Mills theory. For the three-gluon vertex dressing the following model

is employed [18]:

DA3
(p, q, k)=G

(
x+y+z

2

)α
Z

(
x+y+z

2

)β
−G(x+y+z)3(f3g(x)f3g(y)f3g(z))4, (5.1)

– 10 –
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Figure 4. The gluon dressing functions for decoupling/scaling (left/right) for different subtraction

methods and with Λ3g = 0.82 GeV in the three-gluon vertex model of eq. (5.1). For DA3

RG eq. (3.3)

with full propagators was used. Green, dashed line: subtraction in the gluon loop as in refs. [5, 6].

Red, continuous line: subtraction via eq. (4.8).
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Figure 5. Left/Right: the gluon propagators corresponding to the results in figures 4 (left) and 9.

where f3g(x) is a damping function given by

f3g(x) :=
Λ2

3g

Λ2
3g + x

. (5.2)

The first part of the three-gluon vertex dressing was already used in the UV analysis in

section 3 and describes the behavior according to one-loop resummed perturbation theory.

The second part was introduced to account for the nonperturbative behavior of the vertex

dressing which becomes negative in the IR [18, 25, 27, 57, 67]. The logarithmic IR diver-

gence found in several approaches [25, 27, 57, 67] is not implemented. Since the vertex is

always multiplied by gluon dressing functions which are suppressed in the IR this is not of

relevance here. The parameter hIR is set to −1 and Λ3g can be varied. For the calculations

the programs DoFun [68, 69] and CrasyDSE [70] were employed.

5.1 Comparison of subtraction methods

First we illustrate to what extent results differ when using different methods of subtraction.

For easier separation of the individual effects we do not include the tadpole diagram here

yet. Its role is discussed separately below. In figure 4 the dashed, green line was obtained

– 11 –
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by using a variant of method 2: the divergent terms are subtracted in the gluon loop

without a damping function [5, 6]. The continuous, red line was obtained from the method

proposed here. The maximal difference occurs at momenta around 1 GeV. Its magnitude is

different for scaling and decoupling solutions, the reason being most likely that the (finite)

1/p2 terms are IR subleading for scaling. Hence the difference is smaller for scaling than

for decoupling where there is a clear deviation that is manifest for the dressing function

in the mid-momentum regime. Plotting the propagator instead of the dressing function

confirms that also the IR is affected, see figure 5, which means that the gluon screening

mass M2 := D(0)−1 obtained from both methods is different. This is a natural consequence

of the fact that the gluon screening mass arises from terms that behave like 1/p2 on the

right-hand side of the gluon DSE, which is the same momentum dependence as that of the

spurious divergences. Although the difference between the two methods is quite large, the

spread is still within the error introduced by the modeled vertices, see, e.g., refs. [14, 18].

5.2 Renormalization group improvement

It is known that the choice of the RG improvement has some influence on the results for the

dressing function. Specifically for the three-gluon vertex it was shown that the IR is affected

rather strongly as the position of its zero crossing is sensitive to this choice [27]. Here we

propose an alternative expression for DA3

RG(p2, q2, k2) that eliminates certain ambiguities

related to the behavior in the IR. For this we define the following dressing functions that

obey the correct UV behavior and become unity in the IR:

GRG(x) := G(s)

(
ω ln

(
agh +

x

Λ2
QCD

))δ
, (5.3)

ZRG(x) := Z(s)

(
ω ln

(
agl +

x

Λ2
QCD

))γ
, (5.4)

with

agl = e
Z(s)−1/γ

ω , agh = e
G(s)−1/δ

ω . (5.5)

GRG(x) and ZRG(x) are used to define a renormalization group improvement term that

has the advantage over previous choices that it becomes unity in the IR and thus does not

affect the results there. In particular, this expression is the same for decoupling and scaling

solutions, because it only depends on the UV of the propagators. It is given by

DA3

RG(p2, q2, k2) =
GRG(p2)

ZRG(p2)
. (5.6)

The specific form of this expression is motivated by the STI, Z1 = Z3/Z̃3. The influence

of the choice of DA3

RG(p2, q2, k2) on the gluon propagator is shown in figure 6, where we

compare the solution obtained with the renormalization group improvement from eq. (5.6)

to the a solution where DA3

RG(p2, q2, k2) = DA3

UV (p2, q2, k2) was used. While the difference

in the midmomentum region is small, the IR is affected stronger. Note that Z4 in the

tadpole diagram is not replaced as it does not contribute to the anomalous dimension of

the gluon propagator. Its value is determined via the STI Z4 = Z3/Z̃
2
3 . Typical values in

our calculations are Z3 ≈ 3.98 and Z̃3 ≈ 1.56.

– 12 –
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Figure 6. The gluon dressing function and propagator calculated with DA3

RG from eq. (3.3) with

full propagators (red, continuous) and with DA3

RG from eq. (5.6) (green, dashed).
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Figure 7. The gluon dressing function calculated without (red, continuous) and with (green,

dashed) tadpole. For DA3

eq. (5.1) with Λ3g = 0/1.7 GeV (left/right) was used, for DA3

RG eq. (5.6).

5.3 Tadpole contributions

This diagram is typically dropped in numeric calculations as it is believed that it does

not contribute to the gluon selfenergy. This relies on several arguments. First of all, in

the UV analysis it turned out that the complete diagram is proportional to ζ − 4 and

thus looks like a pure spurious divergence. Furthermore, in dimensional regularization this

diagram is zero in perturbation theory. However, this does not exclude nonperturbative

contributions. From the form of the tadpole integrand it becomes evident that subtracting

the spurious divergences in our scheme leaves us with the integral over the difference

between the perturbative and nonperturbative gluon propagators. Thus, as required by the

absence of a gluon mass in perturbation theory, there is no perturbative contribution but

only one from the nonperturbative regime. We found that the magnitude of the subtracted

tadpole integral depends on the details of the employed three-gluon vertex model. In

figure 7 two examples are shown. We found cases, where the difference is negligible, but we

also obtained solutions where differences of several percent were found. They only occur

in the nonperturbative regime and cause, for example, a different height of the bump of

the gluon dressing function and a different gluon screening mass.

The method proposed here has also the advantage that contributions from single dia-

grams can be disentangled. Thus the importance of the ghost and the gluon sectors can be
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Figure 8. Individual contributions of the three one-loop diagrams in the gluon propagator DSE

corresponding to the results in figure 7 multiplied by p2. Full circles denote negative values. The

second zero crossing is determined by the subtraction point.

considered separately. However, one should keep in mind that due to the nonlinearity of

the gluon propagator DSE each part is important on its own for the final result albeit the

magnitude of the contribution can be small. The individual contributions corresponding

to the dressings in figure 7 are plotted in figure 8. To better expose their momentum

dependence they were multiplied by p2. As expected the gluon loop dominates in the mid-

and high-momentum regimes. The ghost loop becomes important for small momenta.

5.4 Calculations with an optimized effective three-gluon vertex

In ref. [18] it was observed that the model for the three-gluon vertex can be used to ef-

fectively include contributions of the two-loop terms. The model with the best choice of

parameters was called optimized effective three-gluon vertex. Since the midmomentum is

affected by the subtraction method for the spurious divergences we repeat this calculation

here, i.e., we drop the tadpole diagram and use eq. (3.3) with full propagators for DA3

RG.

This is justified, since the employed model for the three-gluon vertex including the RG

improvement term effectively mimics the missing contributions. The results, which repro-

duce results from Monte-Carlo simulations very well, can then be used as input in other

calculations. For the parameter Λ3g we found 2.9 GeV, whereas in [18] it was 1.8 GeV. The

results for the dressing functions are compared to lattice data in figure 9. The gluon prop-

agator is depicted in the right plot of figure 5. These plots show that good agreement with

lattice results is obtained. However, we stress that in a full calculation with the correct

three-gluon vertex this can only be achieved when the tadpole and the two-loop diagrams

are included. The contributions of the former were investigated here, while for the latter

calculations showed that the squint diagram can yield sizable contributions [63, 71] and

the sunset is strongly subleading [63, 71, 72].

6 Summary and conclusions

Spurious divergences in the gluon propagator DSE are an obstacle that needs proper han-

dling. The various methods in the literature differ from each other, but only to an extent

that is within the error expected from truncating the gluon propagator DSE. Thus, for

quantitative improvements a good understanding of spurious divergences is necessary. As
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Figure 9. The gluon and ghost dressing functions with a bare ghost-gluon vertex and Λ3g = 2.9 GeV

for the three-gluon vertex model of eq. (5.1) compared to lattice data [73] (blue disks: N = 32;

brown squares: N = 48; both β = 6).

required, the regularization procedure we described here removes any dependences on the

cutoff beyond logarithmic divergences. One parameter x1 enters via the lower bound of an

integral. Since spurious divergences have their origin in the perturbative regime, we argued

that x1 should be fixed such that perturbatively no mass terms are introduced. As checks

of our results we varied the cutoff and the momentum routing without any effect on the

obtained dressing function of the gluon propagator. Also an alternative parametrization of

the perturbative behavior that leads to a different value for x1 was discussed and confirmed

our results.

Our regularization prescription for spurious divergences is summarized at the end of

section 3. We illustrated its use by calculating the ghost and gluon propagators using an

optimized effective three-gluon vertex which allowed us to reproduce lattice results rather

accurately, see figure 9. Furthermore, this method allows to obtain the nonperturbative

contribution from the tadpole diagram. Its influence on the gluon dressing function can be

up to a few percent, but its magnitude depends on details of the employed model for the

three-gluon vertex.

Note that while we described this procedure only for the Yang-Mills sector of QCD

explicitly, the inclusion of the quark propagator does not lead to any new problems. With

a suitable ansatz for the quark-gluon vertex that respects the correct UV behavior, the

formal structure of the quark loop is the same as that of the ghost and gluon loops as can

be inferred from its UV analysis, see, e.g., [7]. Thus the spurious term arising from the

quark loop is of the same form and can be subtracted as described here.

Dynamically including vertices, on the other hand, requires an extension of this

method. The reason is that the models employed here respect the one-loop resummed

behavior in the UV exactly and no higher perturbative corrections are included. However,

using calculated vertices means that higher loop effects enter. It remains to be seen if this

can be taken into account analytically or if a numeric approach, for example fitting to

eq. (4.2), is more promising.

– 15 –



J
H
E
P
0
6
(
2
0
1
4
)
0
1
5

Acknowledgments

We thank Christian S. Fischer and Markus Hopfer for useful discussions. We are particu-

larly grateful to Richard Williams for discussions about subtraction method 4 and a careful

reading of the manuscript. This work was supported by the Helmholtz International Center

for FAIR within the LOEWE program of the State of Hesse and the European Commission,

FP7-PEOPLE-2009-RG No. 249203.

A Calculation of the subtraction coefficient Csub

To calculate Csub the following integral has to be solved:

I(Λ2, γ)− I(x1, γ) =

∫ Λ2

x1

dy (ω ty)
γ , (A.1)

where x1 is a cutoff independent value for the lower bound. Using u(y) = −ty as integration

variable we obtain

I(Λ2, γ)− I(x1, γ) = −Λ2
QCD(−ω)γ

∫ u(Λ2)

u(x1)
du e−uuγ . (A.2)

The result can be expressed in terms of the incomplete Gamma function, given by

Γ(a, z) =

∫ ∞
z

duua−1e−u. (A.3)

Its series representation is

Γ(a, z) = Γ(a)− za
∞∑
n=0

(−z)n
n!(a+ n)

. (A.4)

The final result is

I(Λ2, γ)− I(x1, γ) = Λ2
QCD(−ω)γ (Γ (1 + γ,−tΛ)− Γ (1 + γ,−t1)) (A.5)

= Λ2
QCD ω

γ
∞∑
n=0

(tΛ)1+γ+n − (t1)1+γ+n

n!(1 + γ + n)
, (A.6)

where t1 = ln
(
x1/Λ

2
QCD

)
and tΛ = ln

(
Λ2/Λ2

QCD

)
.

B Alternative UV parametrization

The parametrization for the perturbative dressing functions is not unique, as the large

momentum behavior can be reproduced by several expressions. Here we explore the effects

of a different parametrization that shifts the Landau pole to zero [74]. This amounts to

the following replacement in the dressing functions:

G(s)(ω ln(y/Λ2
QCD))δ → G(s)(ω ln(1 + y/Λ2

QCD))δ, (B.1)
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Z(s)(ω ln(y/Λ2
QCD))γ → Z(s)(ω ln(1 + y/Λ2

QCD))γ . (B.2)

The calculations of section 3 and appendix A can be repeated along the same lines with

the variable substitution t(y) = − ln(1 + y/Λ2
QCD). The result is

IR(Λ2)− IR(x1) = ωγ
∫ Λ2

x1

dy ln(1 + y/Λ2
QCD)γ (B.3)

= Λ2
QCD ω

γ
∞∑
n=0

ln(1 + Λ2/Λ2
QCD)1+γ+n − ln(1 + x1/Λ

2
QCD)1+γ+n

n!(1 + γ + n)
. (B.4)

With the Landau pole in the Richardson coupling now at p2 = 0, we extend the integra-

tion in the subtraction terms to x1 = 0 as well. The contribution from the lower integra-

tion bound then vanishes again. The remaining cutoff dependent parts of both solutions,

eqs. (A.5) and (B.3), are equivalent for Λ� ΛQCD in the UV. Consequently, the subtraction

terms are the same for both parametrizations, which should be expected as the details at

lower momenta must be insignificant for a perturbative subtraction of spurious divergences.
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