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Abstract This article deals with a new approach to the text-independent speaker
verification task. It is namely proposed to combine spectral and the so-called high-
level features (prosodic, articulatory, and lexical) in order to increase accuracy of
speaker verification. The presented experiments were performed using a Polish
language corpus developed by the authors, the so-called PUEPS corpus. It
contains semi-spontaneous telephone conversations (acted emergency telephone
notifications) recorded in laboratory conditions. As the Polish language is under
resourced and the PUEPS corpus is relatively small, in this case a new approach
is needed, other than these well known from NIST (National Institute of Standards
and Technology) evaluations. The authors proposed to use the fast scoring instead
of more complex classifiers and the AdaBoost (adaptive boosting) algorithm for
features combination. Combination of features resulted in the equal error rate
(EER) reduction for various SNR (signal-to-noise ratio) conditions. Additionally,
score normalization methods were evaluated. It was shown that significant benefits
can be obtained using the z-norm2 method.

Keywords Speaker recognition ·High-level features ·Kernel combination ·
Boosting

1 Introduction

In this article the text-independent speaker verification task is considered in the con-
text of emergency telephone conversations. An approach that was chosen, combines
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spectral and the so-called high-level features in order to increase the recognition
accuracy [20]. The aim of this work is to show advantages of high-level features in
the case of the Polish language. The high-level features carry information about the
speaker especially in the case of the spontaneous speech. In order to perform this task
database that contain Polish spontaneous speech was needed. Dabrowski et al. [9]
developed Polish language corpus called PUEPS. It contains semi-spontaneous
telephone conversations recorded in laboratory conditions. This gives a possibility to
control degradation of the speech signal. As the Polish language is under resourced
and the PUEPS corpus is relatively small, another approach is needed than these
known from the well known NIST evaluations. In this paper a method is proposed
that is a combination of algorithms known from the literature—cosine similarity
system with scoring methods z-norm and z-norm2 (z-norm modified by authors),
where features combination is performed by means of the AdaBoost algorithm.
This method turned out to be effective for the corpus with Polish speech. The
authors proposed to use the fast scoring instead of more complex classifiers and the
AdaBoost algorithm for features combination. Moreover, the use of various scoring
methods has been investigated.

The article is structured as follows: in Section 2 multi-level features approach to
speaker recognition is described. This is followed by Section 3 in which SVM-based
speaker recognition is reviewed. Next, in Section 4, the scoring and feature combi-
nation methods are presented. In Section 5 an experimental method, description of
the features, and the results are shown and discussed. Finally, conclusions are given
in Section 6.

2 Multi-level speaker recognition

In the multi-level speaker recognition systems several types of features are extracted,
next they are combined, and finally a classifier is used to discriminate speakers. The
so-called higher level features provide information complementary to classic spectral
features and they make the system more robust [3, 6, 11, 18, 20]. In this work four
types of features were used: spectral, prosodic, articulatory, and lexical. Spectral fea-
tures convey information about timbre, which is related to shape and size of the vocal
tract. They are based on computation of MFCC (mel-frequency cepstral coefficient)
features. Prosodic features carry information about intonation, accent, and rhythm.
These features are obtained from F0 and intensity contours. Articulatory features are
related to the characteristic pronunciation of the speaker. In order to extract these
features, neural networks trained to discriminate between articulatory classes were
employed. Finally, lexical features correspond to characteristic words or phrases
used by the speakers. In this work only pairs of consecutive words are considered
(bigrams). They were obtained from transcriptions of the utterances in the PUEPS
corpus.

3 Speaker recognition using support vector machines

Support vector machines (SVM) [22] are two-class hyperplane based classifiers that
became successful in the text-independent speaker recognition [15]. These classifiers
have good generalization property thanks to maximum-margin training criterion. In
order to obtain nonlinear decision boundary, so called kernel trick can be applied.
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The data from the input space can be nonlinearly transformed via mapping φ(·)
to the feature space. The mapping is performed implicitly, by specifying an inner
product for each pair of points κ(xi, x j) = 〈φ(xi)φ(x j)〉 rather than giving coordinates
in the feature space. The information that is needed to train the SVM is kernel
N × N matrix K which contains all pairwise evaluations of kernel function κ(·, ·).
The decision boundary can be written [21]:

f (x) =
N∑

i=1

αi yiκ(xi, x) + b (1)

where αi are decision boundary coefficients (Lagrange’s multipliers) and b is
bias term. The α coefficients are determined during optimization where objective
function is:

maximize
α1,...,αN

N∑

i=1

αi − 1

2

N∑

i=1

N∑

j=1

αiα jyi y jκ(xi, x j)

subject to 0 ≤ αi ≤ c i = 1, . . . , N

N∑

i=1

αi yi = 0 ,

(2)

where yi is label of i’th example. c is the regularization parameter for setting the
tradeoff between maximum-margin and empirircal error criteria.

One of the most successful acoustic features for speech recognition are mel-
frequency cepstral coefficients. Each recording can be represented as a sequence
of vectors. The typical rate is 100 vectors per second of the input signal. In order to
be able to classify recordings using SVM each recording is transformed to the one
fixed-length vector. One method to do this is GMM supervector [5]. Where for each
recording GMM model is trained and then each conversation is represented by the
vector that is concatenation of means of GMM model.

The kernel function to be valid has to fulfill Mercer’s condition [19]. This
means that function κ(·, ·) can be decomposed into inner product of its transformed
parameters—κ(xi, x j) = 〈φ(xi)φ(x j)〉. When a kernel function fulfills Mercer’s condi-
tion then the corresponding kernel matrix is semi-positive definite.

In order to combine information from multiple sources, multiple kernel learning
(MKL) algorithm can be applied [17]. The idea of this algorithm is to use kernel
matrix in the following form

K =
K∑

i=1

βiKi (3)

and optimize coefficients βi and αi concurrently. The optimization is performed
alternately for a given βi parameters αi coefficients are optimized using standard
SVM learning algorithm, and next βi coefficients are optimized using gradient
method. This is continued alternately until convergence.
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4 Fast scoring and feature combination

In the present study the corpus that consists of telephone conversations has been
used. These conversations mimic the emergency telephone notifications. From each
conversation segments of signal that contain the speech of the calling person were
extracted. The set of segments extracted from the signal of a given speaker from a
given conversation is called conversation side.

In the presented speaker recognition system after the feature extraction phase,
each conversation side is represented as K vectors. As in this work spectral, prosodic,
articulatory, and lexical features were used K = 4. These vectors are stored in K
matrices X1, . . . ,XK where:

Xk = [
xk1 . . . xkN

]
, (4)

where xkj is the feature vector of j’th type extracted for j’th conversation side.
N denotes the number of the conversation sides available in the corpus. In the
next phase, kernel matrices were computed from matrices Xk. In the performed
experiments cosine kernel was used. The cosine kernel is a function that for a given
pair vectors returns an inner product of these vectors normalized to the unit length.
These inner products for all pairs of available vectors are collected in the kernel
matrix. The (i, j) element of the matrix Ki can be calculated as follows:

(Kk)ij = xTkixkj
‖xki‖‖xkj‖ . (5)

It can be treated as a measure os similarity between i’th and j’th conversation sides
for the features of type k.

There is no SVM classifier used, but values of the kernel matrix elements are
used as decision scores. This can cause a problem when there are more than one
training side per speaker model. It is not obvious how to combine information
from the available training sides in order to achieve higher speaker recognition
accuracy. In this article, this problem has not been addressed. It is because durations
of conversation sides collected in the PUEPS corpus are not normalized. This is
caused by a type of conversations. Indeed, it is natural that the emergency telephone
calls differ in duration. The experiments with varying number of training sides
could lead to uninterpretable results, when the times of these sides differ. Another
argument for this approach is the following one: when there is no large dataset
available to model background speakers, there is no benefit from using SVM in terms
of the verification error. Thus, its rejection simplifies the system and reduces the
computational complexity. Using kernel matrix element values directly as scores is
known in the literature as the fast scoring [10].

In case of the fast scoring method only information from the two compared
conversation sides is taken into account. In order to include some global information,
the score normalization can be performed [2]. These methods reduce the differences
in scores for different models. In the literature there exist well known methods such
as z-norm and t-norm. In this work z-norm has been considered. It can be said
that fast scoring without score normalization is a speaker vs speaker verification
system. When scores are normalized it is speaker vs all—the information based on
the modeled speaker and all other available speakers is stored in each model.
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An idea of the z-norm method is to test the model i using a set of impostor sides
B. Next, the statistics (mean μ(i)

z and variance σ (i)
z ) are computed from the resulting

set of scores {(Kk)ij} j∈B. Next, the scores are shifted and scaled using these obtained
statistics

(K̄k)ij = (Kk)ij − μ(i)
z

σ
(i)
z

. (6)

It is important to use a proper kernel in such systems. Each kernel matrix element
should reflect similarity between the corresponding sides. For example, it is possible
to show datasets, for which linear kernel (i.e. inner product of vectors without
normalization) values would not reflect similarity. Instead, the cosine kernel or
spherical normalization can be used.

Using fast scoring makes it possible to use the boosting algorithms to combine
information from different features. However, values of elements of the kernel
matrix should be centered at zero. Thus, the score matrix S has been introduced

Sk = K̄k − θEER
k 11T . (7)

where 1 is a vector filled with ones, while θEER
k is the threshold, for which probability

of false alarms is equal to the probability of the miss error for k’th kernel matrix.
Each kernel matrix needs to be shifted by this value. After this operation the semi-
definite property of the kernel matrices can be lost.

The t-norm method works in a similar way, with a difference that every test side
is tested with a set of impostor models and then shifted and scaled. In preliminary
experiments this method led to a relatively high error increase. Thus, it was not used
in further tests.

After the score normalization when the model side is compared with itself,
different results can be obtained. In the reported experiments an additional variant
has been evaluated. The scores for a given model were normalized in such a way that
(K̂k)ii = 1. This case is denoted as the z-norm2.

Kernel boosting is a method of the kernel matrix combination, which is similar to
the MKL algorithm and the combination coefficients are optimized

S =
K∑

k=1

λkSk , (8)

where λk coefficients determine contributions of features in the resulting kernel
matrix. Boosting is based on the AdaBoost algorithm [8]. In the present work score
matrices Sk instead of the kernel matrices have been used.

The algorithm can be divided into the following steps:

1. Input: Score matrices set and the corresponding labels: {(Sk,D)}Kk=1, where

(D)ij =
{
1 if xki and xkj belong to the same class
−1 otherwise

S ∈ R
N×N , D ∈ R

N×N .
2. Initialization: W = 1/m, wherem = N(N+1)

2 , Ŝ = 0.
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3. For each pair (Sk,D)

(a) S+ = {(i, j) : (Sk)ij(D)ij > 0}, S− = {(i, j) : (Sk)ij(D)ij < 0}
(b) W+ = ∑

(i, j)∈S+ (W)ij|(Sk)ij|
W− = ∑

(i, j)∈S− (W)ij|(Sk)ij|
(c) λk = 1

2 log
(
W+
W−

)

(d) (W)ij = (W)ij exp(−λk(D)ij(Sk)ij)
(e) W = W

1TW1 where 1 is a column vector filled with ones, 1TW1 is a sum of all
elements of the matrix W.

(f) Ŝ = Ŝ + λkSk.

4. Output: Kernel matrix Ŝ.

Boosting algorithm uses exponential loss function exp(−x) that bounds empirical
error. This bound B can be written as

B =
∑

i, j

exp
[ − (S)ij(D)ij

]
. (9)

The matrix W contains the weights for the trials that are used for optimization. For
the first type of features it is set uniformly e.g. all trials have the same weight. The
number of distinct trials (the order of recordings in a trial is irrelevant) is N(N+1)

2 . In
each iteration two sets that contain index pairs that represent trials are determined:
S+ and S−. S+ contains pairs correctly classified using current score matrix Ŝ while
S− contains badly classified trials. In the next step, two scalar values are computed:
W+ and W−, they are the sums of weighted scores of correctly and badly classified
trials respectively. This is followed by calculating of λk weight of the current score
matrix. This calculation is optimal in a sense of the error bound B [8]. In the next
phase weights in the matrix W are updated. The higher weights are assigned to
the trials with the worst scores. It is followed by the normalization step in order
to guarantee that elements of matrix W sum up to 1. This process is repeated
for each matrix Si. Using this function the optimal kernel weights are determined.
Additionally, each element of the added kernel matrix is weighted in order to
optimize mixing weight mainly using badly classified data.

5 Experiments

5.1 PUEPS corpus

PUEPS corpus was recorded in order to provide spontaneous speech samples in
Polish. It contains a set of telephone conversations with the emergency telephone
service.

5.1.1 Data recording and system architecture

There were several requirements while PUEPS corpus [4] was designed. The lan-
guage of speech had to be Polish. Second, there was a need for spontaneous speech.
It has been very important as lexical features have sense when the speaker uses
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his/her own words. It has also significance in case of prosodic features (tempo and
speaking style are less consciously controlled by a speaker) as well as articulatory
(speaker articulates words less carefully). Another requirement of this corpus was
a laboratory quality of the recordings. This feature allows free signal degradation;
for example using Head and Torso simulator as in [7]. Finally, each speaker needed
to record several conversations to make automatic speaker recognition experiments
possible. Moreover, the time between conversations of one speaker should be longer
than a week in order to obtain a within-speaker variability that is close to reality.

The records contain the acted telephone conversations with the emergency tele-
phone services. The task of the speakers was to act as a person that is a victim
or observer of a crime or an emergency situation. He/she had to report the event
to the emergency telephone operator. Only Polish native speakers took part in
the recordings. In order to provide the speaker information about the situation to
describe, without suggesting words to use, videomovies were prepared and presented
to the speakers.

At the beginning of the experiment the speaker had to watch such a short movie
with a crime scene. After that he or she was calling to the emergency phone and
reporting a crime to a person who played role of the police officer. The telephone
call was recorded and prepared for the post-processing.

The caller was located in an anechoic room equipped with a terminal, a telephone,
and a high quality microphone. After watching the movie the participant called
over the PBX (private branch exchange) to the emergency phone operator, who
was located in another laboratory. The call was recorded twofold: with a digital
call recorder from the telephone line and with an audio recorder from the observer
microphone. The call recorder processed signal of the whole conversation with a
typical telephone line quality, while the high quality caller voice was stored with the
audio recorder for post-processing.

5.1.2 Calls database statistics

30 speakers participated in the recording sessions of the PUEPS corpus. All of them
were students aged between 19 and 26. Majority of recordings are recordings of
male voices (27 speakers) with the rest done by females (3 speakers). The role of
the operator that received emergency notifications was performed by 3 persons.

Each speaker recorded 6 conversations. Two conversations maximum were
recorded by one speaker during one session. Minimal time between two sessions in
which a speaker could take part was one week. The mean conversation time is 111 s.

5.2 Feature extraction

The high-level features were extracted in the same way as in the earlier authors’ work
[12]. The shortened description of extraction is presented below.

5.2.1 Spectral features

In order to convey spectral information to multilevel recognition system, GMM
(Gaussian mixture models) supervectors were used. First, the MFCC features were
extracted. The frame length was set to 20 ms and frame step to 10 ms. The number
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of mel-frequeny filters was 30 and first 20 cepstral coefficients were saved for further
processing. Next, for each recording the GMM model was trained. The number of
components was 30. Each component was represented by the Gaussian function with
the diagonal covariance matrix.

In order to cope with two distributions the Kullback–Leibler (KL) divergence
was used. However, it cannot be applied directly, because in our case the Mercer’s
condition would not be fulfilled. One of possibilities is to use the function that is an
upper bound of the KL divergence

d (m1,m2) = 1

2

C∑

i=1

ωi
(
m1

i − m2
i

)T
�−1

i

(
m1

i − m2
i

)
, (10)

where ωi denotes weights, mi mean, and 
i is a covariance matrix of the i’th
component. C is the number of GMM components. Weights and covariance matrices
are the same for all conversations and are equal to parameters of the global GMM
model for the training data. Kernel function can be expressed in the following way:

K(m1,m2) =
C∑

i=1

ωim1
i �

−1
i m2

i . (11)

The vector that represents i’th conversation side has the following structure

vi =

⎡

⎢⎢⎢⎢⎣

√
ω1�

−2
1 m1√

ω2�
−2
2 m2

...√
ωC�−2

C mc

⎤

⎥⎥⎥⎥⎦
(12)

As�i matrices are diagonal, the matrix �−2
i is also diagonal and contains the inverses

of the square roots of elements. As 20 cepstral coefficients have been computed for
each frame, and GMM has 30 components, the total number of elements of vector vi
is 600.

5.2.2 Prosodic features

The prosodic features are based on a linear approximation of F0 and intensity
contours computed similarly as in [1]. The procedure consists of the following steps:

1. fundamental frequency and intensity contours extraction,
2. determination of voiced speech segments,
3. approximation of F0 contours with lines,
4. approximation of intensity contours with lines,
5. quantization of directional coefficients and interval lengths,
6. combination of quantized sequences into one sequence,
7. calculation of a bag of n-grams statistics and forming the resulting vector.

The number of quantization levels of F0 slope with addition of unvoiced segment,
intensity slope and segment duration was 2. Thus each segment could by coded
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using one of 12 codes. However, in order to reduce the number of possibilities, for
unvoiced segments there is no distinction between rising and falling intensity. Finally
each segment was coded with one of 10 codes. Thus, in case of unigrams, the vector
representing prosodic aspects of a given conversation side had 10 elements, while for
bigrams it was 100.

5.2.3 Articulatory features

In order to catch speaker characteristics connected to pronunciation, articulatory
features were extracted. It has been done using neural networks trained on 2000
h of the telephone speech [14]. First, spectral features were extracted using PLP
(perceptual linear prediction) method. The PLP feature extraction was done in the
following way using HTK software (hidden Markov toolkit) [23]. First preemphasis
filter with coefficient equal to 0.97 was applied. Next, signal were divided into frames
with 25 ms window length and 10 ms frame step. The number of frequency channels
was 24 and linear prediction order was 12. Finally, linear prediction coefficients were
transformed to the 12 cepstral coefficients. These 12 features together with log-
energy coefficient formed basic feature vectors. Theses vectors were expanded by
delta and delta-delta features. Finally feature vector consisted of 39 elements. Next,
each frame and its context (4 preceding and 4 subsequent frames) has been classified
using multi-layer perceptrons (MLPs) in order to extract articulatory features. Two
categories of articulatory features were taken into account: place of articulation
and articulatory degree (two MLPs were used). The perceptrons had 3 layers. The
number of units of the input layer was 351 (dimension of the PLP feature vector
times 9 - frame and its context), the number of hidden units was set according to the
amount of the available data. It was 1900 for MLP for place of articulation and 1600
for degree of articulation. The outputs of theMLPs correspond to places and degrees
of articulation summarized in Table 1. Degree of articulation network had 6 output
and place of articulation network had 10 output. For each frame the output with the
highest activation has been coded. Thus, degree of articulation had 6 symbols and
place of articulation had 10 symbols. These sequences of symbols were combined
into one sequence with 6 × 10 = 60 symbols. Finally statistics of bigrams have been
computed. There were 60 × 60 = 3600 of possible bigrams.

5.2.4 Lexical features

Idiolectal aspects of speakers have been also taken into account [11]. They were
caught by lexical features obtained frommanually made transcriptions of the PUEPS
corpus. First, dictionaries were constructed for word bigrams for the available
data. Only the bigrams that occurred at least 4 times were used in the dictionary.
This resulted with the dictionary with 425 entries. Then for each side the number

Table 1 Outputs of the MLPs
for acticulatory features
extraction

Category Outputs

Place Alveolar, dental, labial, labio-dental,
lateral, post-alveolar, rhotic, velar

Degree Approximant, closure, flap, fricative,
vowel
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of occurrences of each bigram in the dictionary was counted. These numbers of
occurrences were used to construct bigram vectors for each side, which resulted with
425-dimensional vectors.

5.3 Experimental setup

A fact that the PUEPS corpus was recorded in laboratory conditions gives a
possibility to perform experiments, in which a degree of the signal degradation is
controlled. The so-called “babble noise” was added to original recordings with the
following SNRs: 20, 10, and 0 dB. The noise was added before limiting to the phone
line bandwidth. The used babble noise was obtained by summing many sentences in
Polish languages [16]. These sentences were shifted and some of them were reversed
prior to mixing. All mixed sentences had normalized level. The power spectrum
density of the noise is presented in Fig. 1. It reveals maximum between 500 and
1000 Hz. It has also a second maximum between 3500 and 4000 Hz which reflects
a consonants as Polish is a sort of “consonant” language [16].

The SNRs were calculated using active speech level obtained with ITU.T P56
norm. For testing the verification error for each feature type individually the data
from all speakers from the PUEPS corpus were used. However, in the case of testing
combinations of features it was necessary do divide the corpus into the background
and the test data (15 speakers for the background and 15 speakers for the test). The
background data were used to train feature weights (using AdaBoost). The system
has been evaluated in terms of equal error rate (EER). During the test system had
to decide whether a given pair of recordings (trial) contain the speech of the same
speaker. There are two kinds of trials: true trials (where speakers in recordings
match) and false trials. The number of badly classified true trials is miss error, while
badly classified false trials result in false acceptance error. These errors depends on
the threshold. The error for which these two types of errors are equal is called EER.
As the number of speakers in the corpus is relatively small, the experiments were
performed for 20 different divisions of speakers. This was motivated by the fact that,
are relatively short for high-level features. Additionally there is some variance in
the lengths of recordings. Such results multiplication gives an opportunity to check
how data division influences the results. The divisions were selected randomly. EERs
from all divisions were averaged.

Fig. 1 Power spectrum density
of babble noise
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5.4 Results

The DET (detection error tradeoff) curves for SNR 20 dB are presented in Fig. 2.
The lowest EER (9.26 %) was achieved for spectral features. The about two times
higher EER has been brought for prosodic features (21.72 %). A slightly worse
accuracy was obtained for lexical features (29.14 %). The worst performance has
been observed for articulatory features (EER = 33.50 %).

For spectral features the EER is about two percent higher than in case of
experiments conducted by the authors with the Switchboard corpus [13] for one
training side condition. The cause of this discrepancy may be the following factors:
first, duration of each conversation side and second, presence of the background
dataset. For the Switchboard database the side duration it is about 2.5 min while
for the PUEPS corpus the average duration is 1 min and its dispersion is much
higher than this of the Switchboard database. Additionally, for the PUEPS corpus
no background dataset is available.

Prosodic features, despite the duration and time differences, give similar accura-
cies. The prosodic features vector has a dimension of 100. This is not a very large
number and it can perform well.

Articulatory features for the PUEPS corpus give a higher error than that in case
of the Switchboard database [13] and it is equal to 33.5 %. Here, the number of
elements of the feature vectors is 3600. In case of short conversations (about 1 min)
this number is similar to the number of frames for many conversations in the PUEPS
corpus. This can lead to a high noise level.

Lexical features give error about 50 % higher than in case of the Switchboard.
Here the bigram lexicon contains 424 positions.

The DET curves for the case, in which SNR is 10 dB, are presented in Fig. 3. The
increase of the noise level only in a small degree influenced the EER for spectral

Fig. 2 Results for SNR 20 dB
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Fig. 3 Results for SNR 10 dB
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Fig. 4 Results for SNR 0 dB
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Table 2 EERs (%) obtained
for spectral features for
various training and testing
conditions

Training SNR Testing SNR

20 dB 10 dB 0 dB

20 dB 9.32 13.01 34.24
10 dB 14.31 9.40 27.75
0 dB 39.35 30.57 18.58
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Table 3 EERs (%) obtained
for prosodic features for
various training and testing
conditions

Training SNR Testing SNR

20 dB 10 dB 0 dB

20 dB 24.45 31.27 43.99
10 dB 28.37 25.89 39.96
0 dB 44.01 41.70 32.47

features. It increased by about 0.05 %. Prosodic features turned out to be more
sensitive to “babble noise”—it increased by about 10.08 %. For articulatory features
with SNR decrement the EER slightly decreased. It can be caused by masking some
unreliable features.

For SNR 0 dB (see Fig. 4) significant deterioration of accuracy of spectral features
was observed—the EER increased 2 times in comparison to the SNR= 10 dB case.
For prosodic features the EER increased by about 18,53%. The EER for articulatory
features remained at a similar value, (above 30%), but it is still high. This means that
it does not carry much additional speaker-dependent information.

There were also performed experiments for mismatched SNRs in the training and
and the test sides. The results obtained for spectral features are shown in Table 2. It
can be noticed that errors dramatically increased in the case of the SNR mismatch—
the higher differece in SNRs the higher the error. Another observation is that the
lower error is obtained when the model side has higher SNR than the test side.

The results for mismatched noise degradation for prosodic features are shown in
Table 3. Similarly to the spectral features case the error increases, when noise levels
are different in the model and the test samples. However, the relative difference is
lower than in the previous case. Thus it can be said that the prosodic features are less
sensitive to additive noise than the spectral features.

5.4.1 Combined features

The results of the speaker verification accuracy based on features combination
with weights of each feature set, determined with the AdaBoost algorithm, are
presented in Table 4. In the experiments the spectral, prosodic, and lexical features
were combined. The articulatory features were rejected, because of a relatively
high EER (more than 30 %). Indeed, the preliminary experiments showed that
the considered combination together with articulatory features led to some system
accuracy deterioration.

For SNR = 20 % the system based on features combination gives an error of
21.21 % lower than for the system based on spectral features. For SNR = 10 dB
an improvement caused by the features combination is slight—it is about 5 %. It is
caused by the fact, that the noise influenced spectral features in small degree while

Table 4 EERs (%) obtained for various score normalization techniques

SNR Without normalization z-norm z-norm2 SVM baseline

Spectral Combined Spectral Combined Spectral Combined Spectral

20 9.59 7.54 10.12 7.17 6.57 4.73 7.67
10 9.92 9.38 10.76 8.54 6.37 6.06 8.22
0 18.89 16.39 16.60 14.34 15.28 13.40 14.78
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Table 5 EERs (%) obtained
for combined features for
various training and testing
conditions

Training SNR Testing SNR

20 dB 10 dB 0 dB

20 dB 4.73 6.42 21.63
10 dB 8.83 6.06 19.75
0 dB 28.90 22.21 13.40

accuracy of the prosodic features was decreased. In this case, a combination with
high-level features caused the EER decrement by 13.23 %.

When z-norm was applied before combination of the features the error increased
for spectral features tested individually for high SNRs. However, for combined
features considerable benefit was obtained for the whole range of noise degradation.

The best results were obtained in case of z-norm2 normalization. It gave higher
relative EER reductions in all tested cases (individual and combined).

The last column of Table 4 contains the results obtained for the SVM baseline
system with GMM supervector kernel. It can be noticed that z-norm2 method
outperforms the baseline for spectral features for SNRs 20 and 10 dB. In case of
SNR 0 dB the SVM results are slightly better than z-norm2 for the spectral features.
However, when high-level features are applied the results are better than for the
baseline.

As it was mentioned in Section 5.3 the dataset had to be divided into development
and evaluation parts. There was 20 different divisions in order to check the variance
of error reduction. In case of SNR 20 dB the mean error reduction (absolute) was
1.65 %. In all divisions there was an EER reduction standard deviation of this error
reduction was 0.8 %. In case of SNR 10 dB, although the mean error reduction was
0.8 % there were some divisions in which combination with high-level features have
not resulted in improvement. It can be the result of the fact that when SNR is lowered

Fig. 5 Combined features for
mixed conditions
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from 20 dB to 10 dB the prosodic features are more affected than spectral features.
In case of SNR 0 dB the mean error reduction was 1.53 % while standard deviation
of this error is 1.08 %. In all divisions combination with high level features resulted
with EER reduction. It can be the consequence of the fact that lowering SNR from
10 dB to 0 dB, affects in higher degree spectral features than high-level features.

Finally, the results obtained with combined features in mismatched SNR condi-
tions are presented in Table 5 and in Fig. 5. It turned out that the signal degradation
mismatch leads to an error increase and better results are obtained when the model
is trained using samples with better quality.

6 Conclusions

From the performed experiments the following conclusions can be drawn:

1. prosodic and lexical features provide a complementary information to spectral
features in the speaker verification task

2. articulatory features extracted as present in the article do not provide sufficent
amount of speaker-dependent information in multi-level speaker recognition
systems. It can be a consequence of too high number of parameters in relation
to lengths of the conversations. Further research concerning constraining of the
articulatory feature extraction process are planned by the authors

3. AdaBoost and fast scoring methods can effectively be used to combine informa-
tion from various features

4. additional score normalization (z-normnorm method) gives considerable error
reduction

5. for mismatched degradation of training and test sides, significant error increase
was observed.

6. the error is higher when the model side has lower SNR than the test side.

Open Access This article is distributed under the terms of the Creative Commons Attribution
License which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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