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A b s t r a c t  

In this work, we compare Fourier transform, wavelet transform, and 
empirical mode decomposition (EMD), and point out that EMD method 
decomposes complex signal into a series of component functions through 
curves of local mean value. Each of Intrinsic Mode Functions (IMFs – 
component functions) contains all the information on the original signal. 
Therefore, it is more suitable for the interface identification of logging 
sequence strata. 

Well logging data reflect rich geological information and belong to 
non-linear and non-stationary signals and EMD method can deal with 
non-stationary and non-linear signals very well. By selecting sensitive 
parameters combination that reflects the regional geological structure and 
lithology, the combined parameter can be decomposed through EMD 
method to study the correlation and the physical meaning of each intrin-
sic mode function. Meanwhile, it identifies the stratigraphy and cycle se-
quence perfectly and provides an effective signal treatment method for 
sequence interface.  

Key words: empirical mode decomposition (EMD), intrinsic mode func-
tion (IMF), logging data processing, sequence stratigraphy. 
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1. INTRODUCTION 
Sequence stratigraphy is a branch of stratigraphy, and it studies chronostrati-
graphic framework based on erosion surface or comparable integrated sur-
face, inner stratum of sedimentary sequence, and petrographic distribution 
pattern which is in a cycle type in time and internally linked by formation. 
Sequence partition and interface identification are the foundation to study 
sequence stratigraphy. Generally, outcrop data, core data, logging data, and 
seismic data are adopted for the partition and identification of sequence 
stratigraphy. The logging data contains rich geologic information. When the 
information from outcrop and core is not enough and seismic resolution is 
limited, logging data becomes more important during the partition of se-
quence stratigraphy (Van Wagoner et al. 1990).  

As the theory of high resolution sequence stratigraphy puts forward, var-
ious methods such as wavelet analysis, Hilbert–Huang transform (HHT) are 
applied into strata partition. Hilbert–Huang transform is an arithmetic meth-
od, based on Hilbert spectrum. It includes empirical mode decomposition 
and Hilbert Spectrum Analysis. Empirical mode decomposition, EMD meth-
od for short, calculates local mean curve for instable signals, which decom-
poses the complex signal to a series of component functions for instantane-
ous frequency with obvious physical meaning. This method is very useful to 
deal with non-stationary and non-linear processes (Huang et al. 1998, 1999; 
Wu and Huang 2004). In this study, the EMD method is applied into logging 
data processing. It serves as an effective method for identifying sequence in-
terface in logging. 

2. EMPIRICAL  MODE  DECOMPOSITION  (EMD)  METHOD 
2.1  Theoretical basis of EMD method 
EMD is a kind of transform method, in which analysis should be adaptable 
to the nature of the data. Its essential is to obtain signal’s intrinsic fluctuating 
mode by using the characteristic temporal scale of signal (Li et al. 2010). 
Compared with wavelet transform and Fourier transform, the EMD trans-
form is ideally suitable for handling data from non-stationary and non-linear 
processes. EMD method can decompose any complicated data into a small 
number of intrinsic mode function components, IMFs, which represent the 
basic characteristics of the data. As it is adaptable and the decomposition is 
based on the local characteristics of the data, the IMFs usually are mono-
component oscillatory modes. Specifically, this method is based on the fol-
lowing hypothesis: 

(i) A signal shall have a maximum value and a minimum value; 
(ii) The characteristic temporal scale shall be defined by the time interval 

of extreme points. 



N. ZHAO  and  R. LI 
 

1258

2.2  Decomposing procedure of EMD method 
Effective algorithm procedure of EMD of a signal x(t) is presented in Fig. 1.  

Intrinsic mode functions (IMFs) have to satisfy the following two condi-
tions:  

(i) in the whole data set, the number of extreme values and the number of 
zero crossings must be either equal or differ at most by one; 

(ii) at any point the mean value of the envelope defined by the local maxi-
ma and the envelope defined by the local minima is zero (de Lima et al. 2006). 

Fig. 1. Decomposing procedure of EMD. 
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The first condition guarantees that the maximum value of datum of local 
part is positive and minimum value is negative; the second condition elimi-
nates the instantaneous frequency vibration caused by nonsymmetrical 
waveform (Huang et al. 1998).  

For a given signal x(t), EMD ends up with a representation of the form: 

 
1

( ) IMF ( ) ( ) .n
ii

x t t R t
�

� 
�  (1) 

In Eq. 1, R(t) stands for a residual trend and the intrinsic mode functions 
{IMFi (t), i = 1,…n}  are the modulating wave of frequency-amplitude mod-
ulation constrained by zero-mean value (Flandrin et al. 2004).  

As depicted in Fig. 1, when the first IMF has been calculated successful-
ly, it is separated from the original signal and produced a residual. This re-
sidual is considered as a new signal to be computed again. It was repeated 
until the residual no longer contains any oscillations (Bowman and Lees 
2013). 

The process shows that the starting point of EMD is to consider signals 
at the level of their local oscillations. EMD method is used to decompose 
original signal into a series of intrinsic mode functions (IMFs) from high 
frequency to low frequency as well as a residual trend item, namely IMFi (t) 
and R(t), respectively. Once this decomposition (EMD) is achieved, details 
are considered as effective and consisting of all local feature.  

In practice, the EMD sifting process was multi-scale, adaptable, and 
based solely on the data, so we can find an appropriate scale that may reveal 
important information embedded in the original signal. 

2.3  Advantages of EMD 
Fourier transform and wavelet analysis are the common methods in logging 
signal analysis. Now, EMD method is compared with them:  

Fourier transform is the foundation for analyzing signal frequency spec-
trum. It decomposes an original signal into weighted sum of several sine sig-
nals, of which each sine signal aims at one fixed frequency and amplitude 
value. It is suitable for analyzing stable signal that does not change with time 
(Wu and Huang 2004). Logging data is instable signal-in-space. Through 
Fourier transform, frequency signal can be obtained. It has a maximum reso-
lution in the frequency domain but it does not contain depth information, so 
you may find the maximum frequency but you cannot confirm its depth.  

Wavelet transform is the extension of Fourier transform. It can adjust the 
size of window automatically according to the frequency (Wawrzyniak 
2010). Meanwhile, it has more resolving and analytic functions. Discrete 
wavelet decomposition produces low frequency signal and high frequency 
signal generated from two complementary filters (Akansu et al. 2010). In 
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application, low frequency part is regarded as the most important part. The 
limitation of wavelet transform includes: first, the selection of wavelet func-
tion shall influence the accuracy of decomposing, and secondly, each extrac-
tion does not contain the complete information. It only represents the part 
after filtering. 

EMD method is the key part of HHT and it is designed specifically for 
adaptable representation of non-stationary and non-linear signal processes. It 
can be used to decompose any complicated data into sums of intrinsic mode 
functions plus a residual (Huang and Wu 2008). EMD provides us with a 
useful method to find out the underlying processes of non-stationary and 
non-linear signals and better indicate the physical meaning of local phase 
change with the instantaneous frequency than any other non-IMF time series. 
EMD decomposes the whole signal and each component contains whole in-
formation that can reflect the characteristics of instantaneous frequency 
(Zheng and Yang 2007). This is the major advantage of EMD method com-
pared to wavelet transform. 

3. EMD  METHOD  APPLICATION  IN  IDENTIFICATION  OF  
LOGGING  SEQUENCE  STRATA 

3.1  Parameters selection and processing 
During well logging data collection, various interference factors cannot be 
avoided, which must influence the resolution of signal. Using a linear com-
bination of sensitive parameters, highly correlated, is an effective method to 
improve accuracy of logging interpretation. At the beginning of processing 
well logging signals data should be deeply analyzed and various parameters 
should be compared. As a result, sensitive parameters reflecting lithological 
characteristics will be selected. Next, cross-correlation coefficients on the se-
lected sensitive parameters such as spontaneous potential and natural gamma 
ray, and transit interval time and density, etc. will be calculated. Combining 
various linearly correlated parameters can strengthen stratum characteristics 
information. Because the noise is generated randomly, stacked signals with 
good correlation can highlight useful information and decrease the influence 
of interference factors. 

In order to stack groups of data with different units, normalization should 
be applied and, next, sets of non-dimensional data can be used to form a new 
analytic parameter. 

3.2  Identification method of circle of basic level 
3.2.1  Data processing rule 
EMD decomposes the original signal into intrinsic functions (IMFi) with dif-
ferent frequency and a remaining trend item R. Each IMF is the mode of a 



EMD  IN  INTERFACE  IDENTIFICATION  OF  SEQUENCE  STRATA 
 

1261 

signal at some characteristic dimension. The component with high frequency 
reflects the short-term cycle characteristics that is mainly controlled by as-
tronomical factors (such as long eccentricity, precession cycle), while the 
component with low frequency reflects the middle and long term stable cycle 
characteristics that is controlled by long term structure formation process 
(such as regional tectonic movement, the tectonic of stress field transforma-
tion, and tectonic episodic intensity change). R refers to the data trend or 
zero drift of instruments (Zhang and Nie 2011).  

Based on this rule, correlation of intrinsic mode function IMFi obtained 
after EMD can be determined as follows:  

(i) calculate the correlation coefficient of every IMFi and its original sig-
nal. Commonly, those IMFs which have good correlation with the original 
signal are the best signal components reflecting stable sedimentary environ-
ment; 

(ii) analyze the correlation between different IMFs and combine those 
IMFi with good correlation. This is because that good correlation reveals that 
they have consistent variation style. Combining them can reduce interference 
factors and strengthen signals that reflect the geological characteristics; 
therefore, it can improve the accuracy of bed boundary identification. 

3.2.2  EMD response characteristics 
After the well logging signal is decomposed using EMD method, the time-
frequency characteristics of original well logging signals can be obtained 
from different dimensions, which can reflect different sedimentary cycle 
grades. If the correlation with all kinds of sequence interfaces can be identi-
fied, then it can be deemed as the standard to divide the sequence of well 
logging. 

When the river reaches balance under the dynamics, suppose the bal-
anced profile as a potential energy surface, called the base level. The land 
surface or sedimentary boundary will develop towards the base level through 
sedimentary or erosion action to reach a new balance. Such a circling pro-
cess is called sequence formation cycle (Zheng et al. 2000, 2001). This kind 
of cycle of sequence stratum is reflected in well logging data as rhythmicity 
of mineral grains granularity and lithology. It is reflected as different ampli-
tude and frequency characteristics in well logging curve. Yet, the break 
points of a curve are often the sequence interfaces (Serra and Abbott 1982). 
Based on this, it is useful to make the mirror image on response characteris-
tics of EMD curve of well logging parameters reflecting all kinds of sedi-
mentary environment and summarize five basic types (Table 1). Most well 
logging curves of different sedimentary environments are the combination or 
variants of these five basic types.  
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Table 1  
Basic types of sedimentary environment  

that is corresponding to EMD curve of well logging 

Curve type Indicating 
type Analysis of curve type 

Gradually- 
varied type 

Top 

Poorly sorted. To the top, amplitude 
becomes less gradually and the curve turns 
into zigzag shape, which shows normal 
graded bed sequence. 

Bottom 

Poorly sorted. To the bottom, amplitude 
becomes less gradually and the curve turns 
into zigzag shape, which shows 
reverse grain size order.  

Abrupt 
change type 

Top Well sorted. An abrupt change at the top. 
Stacked upward-fining cycle.  

Bottom Well sorted. An abrupt change at the 
bottom. Stacked downward-fining cycle. 

Fluctuating 
type 

Top 

Granularity turns from coarser below to 
finer and the amplitude becomes less dras-
tically. It belongs to typical transgression 
and shows positive grain size order. 

Bottom 

Granularity turns from finer below to 
coarser and the amplitude becomes bigger 
drastically. It belongs to typical regression 
and shows reverse grain size order. 

Thin inter-
bedding type 

Inter- 
bedding 

Multi-lithology alternately appears and 
changes quickly. It often can be seen in 
thin inter-bedding. 

Block com-
bination type 

Simplex 
lithology 

The lithology is simplex, so the grain size 
of sediment changes are small and stable. 

 

4. PRACTICAL  EXAMPLE 
EDM method was applied for the X well logging data, Xujia River Group, 
middle section of West Sichuan Depression, Sichuan Basin. The sequence 
stratum was divided by using EMD and the cycle of base level was identi-
fied.  
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4.1  Analysis on parameter combination 
Natural gamma ray (GR) log is a common logging method to measure inten-
sity of natural gamma ray in rock along the well bore. Rocks contain differ-
ent amounts of radioactive elements and constantly emit radiation. GR curve 
reflects the granularity, sorting and clay minerals content, which can be used 
to judge lithology, compare stratum, and estimate the shale content. Com-
monly, gamma ray readings in sandstone and clay-stone are low and high, 
respectively. Yet, when sandstone has radioactive minerals such as mica or 
zircon or others, the reading of gamma ray will be influenced directly. 

Spontaneous potential (SP) log is an effective logging method for ana-
lyzing geological profile in borehole, which can be used to measure shaft 
spontaneous potential changes in an open hole. SP curve is often used to di-
vide the sandy-shaly profile into sandstone and shale lithology, compare the 
stratum, define the interface position of filtering layer, calculate the content 
of shale of the stratum, and spread the sedimentary face to study, etc.  

The presented analysis indicated that these two well logging data (GR 
and SP) are the sensitive parameters that are suitable for sequence division 
of the study area. At the same time, their curves indication have consistent 
rule: at the profile of sandstone and shale section well, the value of these two 
curves is low at sandstone while the value is high at shale. So, these parame-
ters can be combined. 

Correlation coefficient between natural gamma ray and spontaneous po-
tentials parameters was equal to 0.44, which indicated that correlation was 
sufficient. Normalization treatment on natural gamma ray and spontaneous 
potentials curves was done to eliminate the influence of units and select line-
ar normalization formula: 

 .x Miny
Max Min

��
�

 (2) 

In Eq. 2, x refers to current parameter value, Max and Min are x’s maxi-
mum and minimum value, respectively, and y is the value after x normaliza-
tion.  

With this expression the normalized values of GR, namely GR� (Eq. 3) 
and SP� (Eq. 4), were calculated: 
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Mean values of the normalized parameters (GR� and SP�) were combined 
to form a new parameter marked GR_SP: 

 GR SPGR_SP .
2
* *
�  (5) 

Analyzing the correlation of GR_SP and natural gamma ray (GR) and 
spontaneous potentials (SP), there was found the correlation coefficient of 
GR_SP and GR equal to 0.94, and the correlation coefficient of GR_SP and 
SP equal to 0.73. This shows that the new parameter had higher correlation 
with natural gamma ray and spontaneous potentials. It can replace the origi-
nal parameters. 

4.2  Cycle identification and stratigraphic division 
Following the EMD decomposition process presented in Fig. 1 a program 
with MATLAB was prepared. Adopting EMD on GR_SP data of X well, 
Xujia River Group, middle section of West Sichuan Depression, Sichuan 
Basin, the intrinsic mode functions IMF were obtained (Fig. 2). 

IMF1-IMF4 reflected strong vibrations of the signal (Fig. 2). Yet, the po-
sitions of high amplitude value were different. This showed the influence of 
noise on high frequency component. As the frequency of all IMF signals de-
clined, the stable transform trend in signal became stronger and stronger. 

A different intrinsic mode function component can be obtained through 
the decomposition of EMD. Superposing the decomposed components, the 
original signal may be reproduced. Using such characteristics, we repeated 
the reverse accumulation of the intrinsic mode functions IMF1-IMF9 and 
trend item R of each stages of GR_SP in Fig. 2, namely, the combination 
from the component with low frequency to high frequency (Fig. 3).  

IMF9, IMF7, IMF6 or IMF5 acted importantly in original sequence 
(Fig. 3). The changes of original sequence were mainly caused by the oscil-
lation of these four functions. They all had consistent change pattern. This 
pattern reflected the characteristics of stable sedimentary environment of the 
stratum. 

Specifically, the wave scope of IMF5, IMF6, and IMF7 covered several 
meters to tens of meters and the wave width of IMF9 is over one hundred 
meters. The cycles with different base levels commonly are divided accord-
ing to time distribution. In practical layers, the thickness of short-term cycle 
is of several meters to dozens of meters. The middle term cycle is dozens of 
meters to nearly one hundred meters and the long term cycles are nearly one 
hundred meters to several hundred meters. Therefore, IMF5, IMF6, and 
IMF7 reflects the short-term circle characteristics, while IMF9 the middle 
and long term characteristics. 
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Fig. 2. EMD di-
agram of GR_SP 
(IMFs 1-9 are 
the empirical 
mode decompo-
sitions (EMD) of 
the signal which 
is the new com-
bined parameter 
between GR and 
SP). R repre-
sents the final 
residual which 
showed the data 
trend. 
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Fig. 3. Reconstruction of
GR_SP components by
using IMF (GS_SP – solid
line, reproduced sequence
– broken line, r – correla-
tion coefficient of repro-
duced sequence with
GR_SP). 
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Cycle grade was a division on stratigraphic characteristics at different 
scales. The high frequency component in every component of EMD showed 
that it had the details. These details included useful information and also 
contained noise interference. Sedimentary cycle was a relatively stable pro-
cess; the middle and low frequencies in the signals deserved more attention. 
Those high frequency signals were used but with caution.  

In Table 2 the set ri (i = 1-9) of correlation coefficients of GR_SP and its 
EMD functions is presented. Correlation coefficients of original signal and 
its mode functions (IMFi) were calculated by using the correlation function 
corrcoef () provided by MATLAB (Table 2). 

The minimal value in Table 2 is  r1 = 0.0962  which meant that IMF1 has 
the poorest correlation with GR_SP. That result showed that IMF1 contained 
a lot of noise components with high frequency. On the contrary, r9 is the 
maximum value showing the best correlation. That low-frequency appears in 
IMF9 indicates that it contains less noise. Furthermore, EMD functions of 
IMF5, IMF6, and IMF7 also had high correlation with GR_SP. These results 
are same as the conclusion drawn from the above-mentioned EMD diagram 
in Fig. 3. 

In the same way the mutual relationships were calculated between IMFs 
and the correlation coefficients were presented in Table 3. 

The correlation coefficients values of intrinsic mode functions were 
close to zero, so there was a conclusion that they had no linear correlation 
between them. Yet, they could have high local correlation of some segments. 

Table 2  
Correlation coefficients of EMD functions of IMFi and GR_SP 

r1 r2 r3 r4 r5 r6 r7 r8 r9 
0.0962 0.1656 0.2463 0.2303 0.4167 0.3698 0.3333 0.1858 0.5255 

Table 3  
Correlation coefficient value of intrinsic mode functions (IMFi) under EMD 

 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 
IMF1 0.086813 –0.00652 –0.01767 –0.00617 –0.0059 0.00204 0.000747 0.00209 
IMF2  –0.01602 –0.02439 –0.04389 0.033146 0.039231 –0.04593 –0.00704 
IMF3  0.072093 0.016625 –0.04814 –0.00913 0.025364 0.03056 
IMF4  0.046212 –0.00958 –0.01612 –0.01182 –0.01455 
IMF5  0.097756 0.051052 –0.11136 0.106921 
IMF6  0.118184 –0.1617 –0.07389 
IMF7  –0.00862 –0.04254 
IMF8  –0.09877 



N. ZHAO  and  R. LI 
 

1268

Fig. 4. IMF components scatter plot. 

IMF1-IMF2 and IMF3-IMF4 with less correlation to GS_SP were se-
lected as one group and MF5-IMF9 and IMF6-IMF7 with better correlation 
to GS_SP were selected as the other group, the scatter diagrams were made 
in depth domain (Fig. 4). The scatter diagram for the combination of IMF1 
and IMF2 as well as IMF3 and IMF4 were disorderly. They all had poor cor-
relation with GR_SP. Furthermore, the correlation coefficients in Table 3 
were comparatively low. So, the combination of IMF5 and IMF9 as well as 
IMF6 and IMF7 not only revealed better correlation, they also had higher 
correlation coefficients values. Their scatter diagrams were smooth curves, 
which showed their rules.  

In order to further the explanation of the discussed problem, the periodic 
functions and non-periodic functions with lower correlation coefficients as 
well as random sequences were selected, respectively (Figs. 5a-c) (Bogle et 
al. 1994, Hoste and Zirbel 2006). 

In the first plot in each group in Figs. 5a-c there are presented two origi-
nal signals; r is the correlation coefficient. In the second plot of each group 
in Figs. 5a-c there is the overlapped signal of those two original signals giv-
en in the first figure. In the third plot there is the scatter diagram of those two 
original signals. 
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Fig. 5a. Scatter diagram of two groups of non-linear correlation periodic functions. 

Fig. 5b. Scatter diagram of non-linear correlation and non-periodic functions. 

Fig. 5c. Scatter diagram of random sequences for non-linear correlation. 

In Fig. 5a there is an example of periodic function adopted to make the 
scatter diagram of functions with same frequency and different phases as 
well as the functions with same phase and different frequency. The curves of 
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two periodic functions of non-linear correlation still had periodicity after 
overlapping. Then, their scatter diagrams were stable closed curves. In 
Fig. 5b the presented examples belong to non-periodic functions of non-
linear correlation. After combination they are still non-periodic functions 
and their scatter diagrams are the curves that will never close. In Fig. 5c 
there are random sequences of non-linear correlation; when they are com-
bined, they still belong to non-periodic random sequence and their scatter  
diagrams are disordered. 

 

Fig. 6. Comparison of low frequency signals combination: (a) comparison with the 
related signal of IMF5+IMF9, and (b) comparison with the related signal of 
IMF6+IMF7; r – correlation coefficient. 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
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The scatter diagrams of IMF5 and IMF9, IMF6 and IMF7 are smooth 
curves (Fig. 4c and d). Figure 4c has the correlative characteristics of piece-
wise curve and they have no obvious closed diagram while Fig. 4d has many 
staged closed diagrams in the scatter diagram. According to sedimentology, 
the stratum in different periods may have different sedimentation rules while 
the stratum in the same period may have similar characteristics; these con-
form to the rules reflected by scatter diagram. Accordingly, the combination 
of IMF5 and IMF9 is suitable for researching sedimentation rules of the stra-
tum in middle or long-term and the combination of IMF6 and IMF7 is suita-
ble for researching the short term sedimentation rules of the stratum.  

In Fig. 6, from the correlation of combined signals we can further prove 
that the overlapped sequences of IMF5 and IMF9 as well as IMF6 and IMF7 
can best reveal the rules of long-term cycles and the short-term cycle. 

Besides, the combined sequence of IMF5+IMF9 has higher correlativity 
with IMF9 of low frequency component, which obviously improves the cor-
relativity of IMF9 and GS_SP due to participation of IMF5. Similarly, 
IMF6+IMF7 not only well reflect the rule of IMF5+IMF6+IMF7, but also 
have good correlation with GS_SP. 

 

Fig. 7. Plots illustrating identification of short and middle-term cycle sequence stra-
tum of X well using EMD method. 
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Further analysis showed that combining the decomposition signals under 
EMD resulted in strengthening of intrinsic information reflecting stratum 
characteristics and declined the influence of noise interference. The com-
pared result defined that in the all combined signals of IMFs, only those 
which have good correlation index between each other and also have good 
correlation index with the original signal can better reveal the cycle charac-
teristics of stratum. In Fig. 7 the results of EDM analysis are presented.  

GR_SP was a new combined parameter between natural gamma ray and 
spontaneous potential. IMFs were the results of empirical mode decomposi-
tion (EMD) of GR_SP. The IMF6+7 denoted IMF6 plus IMF7 and IMF5+9 
denoted IMF5 plus IMF9. Both iIMF6+7 and iIMF5+9 represented their mir-
ror image, respectively. Therefore, IMF5+6+7 and iIMF5+6+7, IMF9 and 
iIMF9 have the same rule as before. 

These combined curves not only contained changes of the lithology, but 
also revealed the trend in cycle of sequence stratum. In order to identify 
short and middle-term cycle sequence stratum effectively, we should refer to 
Table 1 (discussed in Section 3.2.2); we analyzed the classification of these 
curves and found out the normal graded bed sequence and reverse grading. 

5. DISCUSSION 
X well is located at Xiaoquan-Fenggu Structure Belt, middle section of West 
Sichuan Depression, Sichuan Basin. In Fig. 7 there are shown the character-
istics of base level cycle of the stratum, the second section of Xujia River 
group. Its lithology includes mainly fine and middle grained sandstone and 
shale, belonging to delta front sub-facies. The combined signals with differ-
ent frequencies were analyzed after EMD of curve characteristics according 
to Table 1. Short-term or long-term cycle characteristics were obviously 
identified and the sedimentary micro-facies were presented as follows: 

Under water distributary channel: its lithology includes grey fine-
grained to middle coarse particle sandstone. It represents the characteristics 
of cycle of positive graded bedding. It belongs to cross bedding, inclined 
bedding, and plot bedding. The scour and fill structure can be seen.  

Mouth bar: its lithology chiefly is well sorted silt or fine sand and filled 
with cross-bedded sandstone, which has the characteristics of reverse grain 
size order cyclic-sequence. 

Branch channel shoal: its lithology chiefly includes clay and contains 
less fine sand or silt. It is horizontally bedding.  

Sheet-like sand: its lithology is separated into sorted fine sand or silt. It 
is cross-bedding and has the characteristics of reverse grain size order cyclic-
sequence. 
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Distal sandbar: it is located at the farther part before estuary dam and 
its lithology mainly is silt and filled with cross-bedded sandstone, which has 
the characteristics of reverse grain size order cyclic-sequence. 

6. CONCLUSIONS 
� Logging indices reflected the physical property characteristics of 

stratum’s lithology, formation, sequence, and reservoir rocks. Sensitive indi-
ces were selected to improve the accuracy of logging interpretation.  

� Spontaneous potential and natural gamma ray were the sensitive in-
dices reflecting geological formation and lithology. The mathematical meth-
ods were adopted for selecting new parameters and combining them. The 
new parameters strengthened the intrinsic characteristics and improved the 
results of partition. 

� EMD is an innovative time-frequency analysis method; not only 
does it guarantee the inherent characteristics in non-linear and non-stationary 
processes after the decomposition of signal, but also avoids the limitation of 
windowed Fourier Transform being constrained by time window and wave-
let transform influenced by basis function. It can accurately describe the 
time-varying characteristics of signals. In fact, every IMFi may has a physi-
cal meaning (i.e., it may be related to geological phenomena.), and, as al-
ready highlighted, an important issue in practical application is how to judge 
the existence of this meaning in each IMFi. This calls for further study and 
discussion.  

� EMD method was adopted for various combined logging indices; a 
discussion on relativity of mode functions and a search for the valued com-
binations are presented. Creating IMFi combined signal helps to obtain ab-
normal dots (e.g., mutations in different sedimentary layer interface) and 
better identify the cycle of stratigraphic base level.  
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