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Abstract

Nearly 50% of HIV-infected individuals suffer from some form of HIV-associated neurocognitive disorders (HAND).
HIV-1 Tat (a key HIV transactivator of transcription) protein is one of the first HIV proteins to be expressed after infection
occurs and is absolutely required for the initiation of the HIV genome transcription. In addition to its canonical
functions, various studies have shown the deleterious role of HIV-1 Tat in the development and progression of HAND.
Within the CNS, only specific cell types can support productive viral replication (astrocytes and microglia), however Tat
protein can be released form infected cells to affects HIV non-permissive cells such as neurons. Therefore, in this review,
we will summarize the functions of HIV-1 Tat proteins in neural cells and its ability to promote HAND.
Review
Introduction
The HIV-1 Tat (transactivator of transcription) gene
codes for a 14-kDa protein and as its name suggests, it
is a key activator of HIV-1 transcription. It is one of the
first proteins to be expressed after infection occurs. Un-
like typical transcription factors that are DNA binding
proteins, Tat is a RNA binding protein that recognizes a
specific sequence, TAR (Transactivator Response Element),
from the HIV-1 RNA molecule [1]. Tat is the protein
responsible for the recruitment of the host positive
transcription elongation factor b (p-TEFb) to the RNA
hairpin formed at the 5’-end of nascent viral RNAs
(TAR) [2,3]. P-TEFb is a complex composed of cdk9
and cyclin T1 (CycT1) subunits that play a key role in
regulating RNA polymerase II dependent transcription.
Tat mediated recruitment of p-TEFb drives the phosphor-
ylation of the C-terminal domain (CTD) repeats of RNAP
II by cdk9. In its inactive form, p-TEFb binds to the inhibi-
tory 7SK snRNP complex, which can be dissociated by Tat
in order to activate cdk9. In neurons, Tat has been linked
to progressive neuronal deregulation leading to the de-
velopment of HIV-Associated Neurocognitive Disorders
(HAND) and accelerating brain aging [4]. Although the
deregulatory effect of Tat protein in the Central Nervous
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System (CNS) has been studied extensively, the molecular
mechanisms involved remain to be elucidated. In this re-
view we aim to summarize not only the conventional
functions of HIV-1 Tat, but its contributing role in the
overall complex picture of HAND as well.

Conventional functions of HIV-1 Tat protein
Tat stimulates HIV-1 gene expression during transcrip-
tion initiation and elongation. It contains a very strong
transcriptional activation domain composed of a Cys-
rich region and a hydrophobic core motif, along with an
arginine-rich RNA-binding motif (ARM) that specifies
the binding of Tat to a base triple in the bulge region of
the TAR RNA structure [5]. Binding of purified Tat to
TAR-RNA does not require the cis-acting sequence
within the loop of the TAR structure. The interaction of
Tat with a transcriptional co-activator is required for high
affinity, loop-specific binding to TAR RNA [6]. The Tat
transactivation domain can function independently of
the ARM when tethered to the DNA-or RNA- binding
domain of a heterologous protein [5]. Although HIV-1
transactivation by Tat in most cell types requires intact
TAR sequences, previous reports demonstrated that Tat
activates HIV-1 long terminal repeat (LTR)-directed gene
expression in several central nervous system-derived
astrocytic/glial cell lines in the absence of TAR [7]. Fur-
thermore, genetic experiments have suggested that Tat
transactivation of the human immunodeficiency virus
type 1 (HIV-1) LTR requires functional upstream en-
hancer sequences: the kappa B and GC-rich regions.
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Experiments done with HeLa cell nuclear extracts when
using matrices containing chemically synthesized or
bacterially expressed HIV-1 Tat, revealed the presence
of the Sp1 transcription factor as one of the Tat-
binding cellular proteins. Other transcription factors
(Oct and NF-κB) also bound to Tat matrices but with
less affinity [8].
Tat enhances the processivity of RNA polymerase II

complexes that would otherwise terminate transcription
prematurely and generate short transcripts, and is thus
required to stimulate efficient elongation of viral tran-
scripts [6]. Recently, a new elongation factors were identi-
fied, as part of two main protein complexes: TATcom1,
which includes the p-TEFb (positive transcription elong-
ation factor b), MLL-fusion partners involved in leukemia
(AF9, AFF4, AFF1, ENL, and ELL), and the PAF1 complex
[5,9]. This 42-kDa protein was later known as cdk9 which
binds to 87-kDa protein, cyclin C-related protein, desig-
nated Cyclin T [5]. Neither cdk9 nor cyclin T, cyclin K
and Tat activity appear to be cell cycle regulated (this is
also true for TFIIH and cdk8 -other factors involved in
the phosphorylation elongation phenomenon-) [10]. The
addition of Tat to nuclear extracts induces the binding of
cdk9-containing TAK/p-TEFb complexes to TAR RNA.
Moreover, the nuclear Tat-TAK/p-TEFb complexes did
not associate with loop mutant TAR RNA, indicating that
the interaction of Tat with TAK/p-TEFb might alter its
RNA-binding specificity [5]. While Tat/p-TEFB complexes
bind to TAR, cdk9 modifies RNA polymerase II for the ef-
ficient copying of the viral genome [11]. The interaction
between Tat and cyclin T1 requires zinc and a critical cyst-
eine residue at position 261, and the lack of this residue
(C261) greatly reduces the binding of Tat/p-TEFb com-
plexes to TAR-RNA [5]. Acetylation of Tat at residues
Lys28 and Lys50 is crucial for Tat function [12]. Mechan-
istically, acetylation at Lys28 by P/CAF enhanced Tat
binding to the Tat-associated kinase, cdk9/p-TEFb, while
acetylation by p300 at Lys50 of Tat promoted the dis-
sociation of Tat from TAR RNA that occurs during early
transcription elongation [13].

II- effect of HIV-1 proteins on the central nervous system
One of the most studied secondary manifestations of
chronic HIV-1 infection is HAND (HIV-Associated
Neurocognitive Disease). HAND encompasses a specific
group of neuropathological conditions that emerge from
the continued exposure of the CNS tissue to the HIV-1,
HIV-1 viral proteins (Tat, Vpr, gp120, and Nef), immune
inflammation and the combination of antiretroviral ther-
apy (cART) [14]. HAND is generally divided into three
main groups depending on the severity of the neurocogni-
tive impairment as well as the impact on everyday lives of
the infected individual: HIV-Associated Dementia (HAD)
is the most severe form followed by Mild Neurocognitive
disorder (MND) and the Asymptomatic Neurocognitive
Impairment (ANI). Since the introduction of cART, HAD
cases have decreased significantly, however more chronic-
ally infected individuals are diagnosed with the milder
MND and ANI [15]. This can be attributed to the fact that
in the cART era, while viral detection is at its minimum,
in low penetration immune privilege system such as the
nervous system, the transcription of viral proteins con-
tinues [16]. This leads to a constant cytotoxic stress,
inflammatory response and tissue integrity damage, all
of which are major contributors to HAND development
and progression. Recently, it has been shown that viral
replication might occur and could evade the innate im-
mune recognition through the recruitment of (CPSF6)
and cyclophilins (Nup358 and CypA) factors [17]. Due
to its endless mutation, this new discovery might some-
how explain the continuous shedding of viral proteins
in the brain, even at minimum and undetectable level,
leading to neuronal damage.

a- HIV-1 Tat and the BBB endothelial cells HIV-1 in-
filtrates the brain soon after the initial infection (Figure 1).
The initial “crossing” site of the virus is the Blood Brain
Barrier (BBB). The BBB is composed of highly specialized
monolayer of Brain Micro-Vascular Endothelial Cells
(BMEC) lying on a relatively thick basal lamina. Astrocytes
processes extend to the basal lamina and are in direct con-
tact with it. They form a membrane structure that is sup-
ported by tight junctions between the cells. The integrity
of the BBB is important for the support of brain homeo-
stasis, since it has a selective permeability. It is a physical
barrier to pathogenic agents such as bacteria and viruses
and to large hydrophilic molecules, but is readily perme-
able to other small or hydrophobic molecules such as O2,
hormones and CO2 [18]. Several theories have been pro-
posed that explain the mechanism of HIV-1 entry into the
CNS. The “Trojan Horse” theory, a widely accepted, sug-
gests that infected immune cells from the blood stream
can accumulate and migrate through the BBB into the
brain. Because of the inability of endothelial cells to be
productively infected by HIV-1 [19], numerous deleterious
vascular effects are thought to be mediated by secondary
mediators, including the HIV-1-specific protein Tat.
Moreover, cART treatment seems to have little or no ef-
fect on the secretion rate of Tat from infected cells in the
CNS [20]. Since Tat can be released by infected monocytes
and macrophages accumulated at the BBB [21], it can in-
duce those changes either via receptor-mediated pathway
or through a direct uptake of the protein in an active
endocytosis manner [21,22]. Tat is responsible for changes
in expression pattern of proteins important for the integ-
rity of the endothelial tight junctions: claudins, occludins
and junction adhesion molecules (JAMs). Those changes
result in an increase permeability of the BBB [23-25].



Figure 1 Tat enters the brain through the BBB. Schematic representation of Tat-modulation of the blood brain barrier. Some of the cellular
factors involved are also shown.
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Recent reports suggest that Tat protein is able to loosen
up the tight junctions of the brain endothelial cells
through occluding, by inhibiting it’s expression and
cleaving it by matrix metalloproteinase 9 (MMP-9) [26].
In addition, Tat can trigger nuclear localization of ZO-1
via Rho signaling pathway which appears to be c-AMP
response element-binding protein (CREB)-dependent
response [20]. Interestingly, Tat is also able to penetrate
a bi-lipid layer in a non-receptor transport mediated
mechanism. This important characteristic of the protein
is attributed to its transduction domain and it seems to
be critical for the trans-endothelial transport of the pro-
tein [27-29]. More specifically, Cooper and his colleagues
were able to show that CAYGRKKRRQRRR region of Tat
is able to induce internalization of high molecular weights
molecules [28]. All these studies have been predominantly
performed in vitro using primary human brain micro-
vascular endothelial cells (HBMECs) and astrocytes using
Tat B peptide. It is known however that HIV-1C infected
individuals are less likely to develop neurocognitive de-
cline (see HIV-1 subtypes below). It seems that one reason
for that is the reduced ability of Tat C to drive similar
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changes described above in the BBB as Tat B [24]. The
ability of Tat to directly cross the BBB was also confirmed
in vivo by Nath and colleagues [23]. They used radio-
actively labeled Tat (1–72) peptide injected intravenously.
Interestingly, the areas of the mouse brain with highest
permeably to Tat was the hippocampus, occipital cortex
and hypothalamus, areas that are shown to be affected in
Tat transgenic animals models as well in postmortem aut-
opsies in HAND patients [30,31]. This ability of Tat to
enter HIV-1 non-permissive cells could open new avenues
for research not only in the context of HAND develop-
ment but drug delivery as well. Tat protein is also consid-
ered to be an immune response activator. For example, in
Tat treated endothelial cells, cAMP dependent protein
kinase pathway is involved in protein kinase C dependent
induction of IL-6 [32] which is associated with higher
endothelial permeability.

b- HIV-1 Tat and Microglia Once in the CNS, beyond
the BBB, productive replication of HIV-1 can be supported
by two cell types: microglia and the astrocytes. Microglia
is a subtype of CNS immune cells that unlike the neuronal
cells and astrocytes, which have neuro-ectoderm embry-
onic lineage, share the same origin as macrophages and
other hematopoietic cells [33,34]. Previously, the involve-
ment of this type of cells in brain diseases was largely seen
as secondary to their progression. Currently, more evi-
dence suggests the leading role that microglia cells play in
brain pathologies including infections, facial nerve axot-
omy, Alzheimer's disease (AD), Parkinson's disease (PD),
amyotrophic lateral sclerosis (ALS), HAND and stroke
[35-37]. Microglia cells carry a specific role in the pro-
gression of HAND and Tat is shown to be cytotoxic and
pro-inflammatory in the context of this pathological
condition [38]. One of the physiological markers in ad-
vanced stages of HAND is microglial activation and
multinuclear giant cells nodule formation. This can lead
to changes in their immune effector functions, phago-
cytosis and pro-inflammatory signaling pathways such
as TNF-alpha and beta-chemokine production [39,40].
Recently, novel leucine-rich repeat kinase 2 (LRRK2) was
identified as a potential pharmaceutical target for micro-
glia activation inhibitor [41]. Protein-tyrosine phosphatase
(PTP), CD45 is another promising molecule, since it is
an upstream target of the pro-inflammatory intracellular
signaling mediators [42]. Additionally, IL-6 induction in
microglia cells is NAPDH dependent and reversible by the
use of specific inhibitors [43]. This correlates with recent
data showing increase in the release of glutamate, a pos-
sible explanation of the neuronal hyper excitability medi-
ated toxicity [44]. Cautious optimism in alleviating HAND
symptoms brings the fact that Ibudilast, known non-
selective cyclic AMP phosphodiesterase inhibitor, that has
recently showed promise as a treatment for neuropathic
pain via its ability to attenuate glial cell activation, also
seems to attenuate Tat induction of the nuclear factor-
kappa B (NF-κB) and TNF-alpha signaling activation
[40,45]. Interestingly subtype C Tat protein was able to
modulate the levels of tumor necrosis factor-receptor-
associated factor 3 TRAF3 in a miR-32 dependent manner
and can change the downstream expression of IRF3
and IRF7 [46]. The last finding might be an important
insight, since both molecules are in the base of im-
mune activation in response to various stimuli. Fur-
ther, recently non-muscular myosin light chain kinase
(nmMYLK) was described to be critical for microglial
migration in Tat-treated cells and in Tat-transgenic
mice, a phenomenon that is important during the innate
immune response [47].

c- HIV-1 Tat and astrocytes Unlike microglia cells, As-
trocytes rise from the same neuro-ectoderm embryonic
lineage as neurons [48]. They are in direct contact with
neuronal cells and play critical supportive role in main-
taining their homeostasis. Additionally, astrocytes have
mechanical and signaling function in the formation of
the Blood Brain Barrier (BBB) [49]. Although, astrocytes
support productive HIV-1 infection in the CNS, they re-
main inaccessible to almost all known anti-retroviral
treatments available [50]. Astrocytes are major con-
tributor to the increased MCP-1 levels in the CNS in
the context of HAND, Multiple Sclerosis (MS) and
other neurodegenerative conditions as well [51-53].
Studies have demonstrated the ability of Tat protein to
induce several genes in astrocystes such as MCP-1
through up-regulation of the (PDGF)-B [54,55]. Tat also
activates the EGR-1 promoter via specific serum re-
sponse sequences within the promoter. This could be
interpreted as probably one of the upstream molecular
events that initiate Tat-induced astrocyte dysfunction
and subsequent Tat neurotoxicity [56,57]. As a target of
MCP-1, Akt and Erk1/2 signaling proteins are indirectly
affected by Tat. Additionally, reports suggest that Tat
was able to induce COX-2 and PGE2 synthesis in astro-
glial cells through an NFAT/AP-1-dependent mechanism
[58,59]. Another interesting finding demonstrates the
importance of Tat cysteine-rich domain in regulating
wnt/β-catenin signaling pathway. As a result wnt/β-
catenin cascade is silenced [60,61]. This leads to abol-
ishment of one of the natural HIV-1 transcriptional
suppression mechanisms. Moreover, a clear difference
was observed between subtypes B and C Tat proteins
regarding their abilities to modify the wnt/β-catenin
pathway.
Similar to microglia cells, HIV-1 Tat is associated with

increased levels of nuclear factor-kappa B (NF-κB) in
astrocytes as well, which in terms is linked to upregula-
tion of adherence molecules such as vascular cell



Bagashev and Sawaya Virology Journal 2013, 10:358 Page 5 of 20
http://www.virologyj.com/content/10/1/358
adhesion molecule-1 (VCAM-1) and intercellular adhe-
sion molecule-1 (ICAM-1) [62,63]. Additionally, signifi-
cant increases in TLR2 with reciprocal decreases in
TLR9 expression in response to Tat are observed. This
is usually associated with an increase in nitric oxide
levels [64]. Interestingly, NADPH oxidase is responsible
for HIV-1 Tat-induced generation of ROS and plays an
important role in the up-regulation of adhesion mole-
cules such as VCAM-1/ICAM-1 [63]. This is important
since increased levels of those molecules correlates with
increased adhesion of monocytes to astrocytes. These
results suggest that Tat disrupts the innate immune
response of the central nervous system (CNS) that may
lead to increased pathogenicity.
Cell death cascade also appears to be activated as data

suggest that the p53 family of proteins plays a suppress-
ing role in HIV-1 Tat acetylation by P/CAF, a required
interaction for activation of HIV-1 LTR promoter [65,66].
This appears to be mostly a defensive response to the
HIV-1 infection, since it does not necessarily leads to
astrocytes apoptosis.
Further, Tat has been shown to cause cell cycle disturb-

ance through its interaction with p53 protein [67]. Extra-
cellular Tat is rapidly internalized by neurons and
astrocytes and this may inhibit p53 ubiquitination leading
to p53 accumulation. Also, p53 accumulates in microglia
and astrocyte nuclei in a subset of AIDS patients without
dementia, while increased neuronal p53 was only observed
in HAD cases ([65,66] and references within). Tat perform
these functions through its physical interaction with p53
protein [68]. Finally, while Tat may physically associate
with p53, it remains unable to activate p53 directly. Al-
though, direct or indirect mechanisms, which lead to p53
activation in neurons in the context of HIV-1 remain un-
clear, it is highly likely that, like many other viruses, HIV-1
may stimulate p53 activation, which thereby alters the
phenotype of uninfected microglia, and leads to neuronal
loss. Note that p53 cannot induce apoptosis in response
to DNA damage without p73 [66]. This illustrates that
p73 is vital for p53-induced apoptosis and furthermore,
that p73 is an important component of the tumor sup-
pressor activity of p53. Finally, using astroglioma cell
line, we recently demonstrated that HIV-Tat physically
associates and induces the endogenous levels of p73,
however, it inhibits its apoptotic activity and vice versae
[65,66]. Tat induction leads to variety of different inclu-
sions characteristic of lysosomes, autophagic vacuoles,
and lamellar bodies, which were typically present within
distal cytoplasmic processes that correlate with disrupted
Long Term Potentiation (LTP) and memory formation in
Tat-transgenic Mice [69].

d- HIV-1 Tat and oligodendrocytes Oligodendrocytes
are the myelin producing cells in the CNS. A single cell
can maintain the myelin sheath of multiple neuronal cells,
which is a key morphological characteristic for the proper
function of the neuronal cell. Even though, this subtype of
resident glial cells has not been shown to support any ac-
tive HIV-1 infection, their crucial role suggests that any
disruption in their function can potentially contribute to
HAND progression. Although the biological significance
in vivo is yet to be determined, it has been demonstrated
in vitro that oligodendrocytes are susceptible to the HIV-1
Tat protein in a Caspase-3 dependent manner [70]. Fur-
ther, progressive multifocal leukoencephalopathy (PML) is
evident in HIV-1 infected individuals; however reports at-
tributed that to be the result of a co-infection with a JC
virus [71,72]. Recently, evidence emerges that the cART
treatment might be further contributing to this condition
as well [73,74]. Unfortunately, much more detailed studies
are required to fully understand the effects of chronic
HIV-1 infection and the various viral factors on oligoden-
drocytes in the CNS.
e- HIV-1 Tat and neuronal cells Unlike microglial and
astrocytes, neuronal cells does not support productive
HIV-1 infection, however they experience a severe stress
in the form of viral proteins, pro-inflammatory cytokines,
disrupted BBB and cART [14,16,75,76]. Using Tat trans-
genic mice, studies have shown the deleterious effect that
Tat has on the hippocampal, subcortical and cerebellum
areas [4,30]. Those pathophysiological changes are not
only the results of astrocytes and microglia deregulation,
but Tat protein can directly affect the function and viabil-
ity of neurons as well. Two main theories emerge from the
literature about the mechanism of direct Tat neurotoxicity:
1) Tat is able to induce changes in the neuronal cell
homeostasis via extracellular signaling mechanism in-
cluding receptors, changes in membrane permeability
and composition; 2) Internalization of Tat protein leads
to direct interaction with cellular factors involved with
Ca2+ regulation, transcription and translation.
Tat has been extensively studied in in vitro systems and

has been shown to increase Ca++ flux and to impair synap-
tic plasticity leading to neuronal deregulation. NMDA re-
ceptor for example catches often the researcher’s attention,
because of its key importance in Ca++ regulation and mem-
brane polarization [77]. Recent studies suggest that neur-
onal cell susceptibility relies on the expression levels of
NMDAR. Not only that, but different subunits appear also
to exacerbate the effect of Tat. For example rat hippocam-
pal neurons appear less susceptible to Tat even though they
highly express NMDA receptor. This might be related to
low levels of NR2A subunit [78]. Moreover, in differentiated
human primary neurons, Tat is able to promote the
phosphorylation of Tyr1184, 1325, and Tyr1425 within
the NR2A subunit [79].
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Another example supporting the extracellular receptor
mediated signaling theory is the growing evidence that
indicates that HIV-1 Tat protein may affect the function
of the dopamine transmission system. In turn, molecular
components of dopamine neurotransmission may partici-
pate in a complex network of Tat-induced cell responses
that result in neurodegenerative conditions. It appears that
Tat induced-neurotoxicity has a reverse correlation with
the D1 dopamine receptor expression levels and function.
Higher levels of D1 will be related to lower apoptosis
and blocked function of D1 to increased apoptosis rate
in Tat-treated cells [80,81]. Interestingly, Tat inhibits
dopamine (DA) transporter (DAT) function through a
PKC and trafficking-dependent mechanism and that Tat
impacts the dopaminergic tone by regulating both DAT
and vesicular monoamine transporter (VMAT2) proteins
[82]. Those changes, at least in DAT function are related
to activation of ryanodine receptor (RyRs) via a calcium-
and calpain-mediated mechanism, and is independent of
DAT protein synthesis, reinforcing the feasibility of RyR
and GSK-3β inhibition as clinical therapeutic approaches
for HAND [83]. However, the question to which specific
RyRs are responsible for this signaling cascade is open
for discussion. These findings further provide insight
into understanding the mechanisms of HIV-1 viral protein-
induced dysfunction of DA neurotransmission in HIV-1
infected patients.
In addition to cell surface receptor mediated signaling,

HIV-1 Tat has the unique property of entering the cell
in a calveolar and lipid rafts dependent manner. This
property of the Tat protein is widely used for mediating
the delivery of large protein cargos into cells when present
in the extracellular milieu [84]. However, it seems like that
this is an understudied area in the subfield of Tat induced-
neurotoxicity. In BBB endothelial cells for example, Tat
treatment leads to elevated GTP-RhoA levels and its
downstream effectors, such as myosin phosphatase target
subunit 1 and myosin light chain. In addition, Tat upregu-
lates expression and promoter activity of P-gp gene as well
as its efflux function. Inhibition of the Rho signaling cas-
cade effectively blocked P-gp overexpression at the level of
promoter activity. Disruption of lipid rafts by depletion of
membrane cholesterol by methyl-beta-cyclodextrin, but
not caveolin-1 silencing, also abolished Tat-mediated
RhoA activation and P-gp upregulation [85]. This shows
the critical function of intact lipid rafts and the Rho
Table 1 Cellular factors cleaving Tat (http://www.ncbi.nlm.nih

Protein name Protein Acc Ref PMID Interaction descripti

Calpain-1 catalytic subunit NP_005177.2 19022302 Calpain-mediated clea
amino acids 68 and 6
protein

Furin preproprotein NP_002560.1 15135058 Furin cleaves HIV-1 Ta
transactivation activity
signaling in HIV-1 Tat-mediated upregulation of P-gp at
least in endothelial cells even though it plausible that
similar model might be applied to neuronal cells as well.
Additional reports suggest that Tat uses numerous
receptor- mediated pathways including CD26, CXC
chemokine receptor type 4(CXCR4), heparin sulphate
proteoglycans and LDL (low-density lipoprotein) receptor-
related proteins [86-89]. This also suggests an active
endocytosis mediated entry of HIV-1 Tat in neurons.
Endocytosis is a fundamental function that plays critical
role for the maintenance of neuronal function [90].
Recently, endolysosome pathway has been implicated

in a variety of neurological disorders including AD
(Alzheimer's disease), Parkinson's disease and HAND
[91,92]. HIV-1 Tat can accumulate in endolysosomes,
which leads to endolysosomes size increased, membrane
integrity disruption, pH elevation, and autophagy inhib-
ition. Once inside the cells, the protein can be released in
the cytoplasm and latter translocated in the nucleus [93].
Moreover, Tat peptide contains binding motifs for two
specific protease enzymes: Furin and Calpain (Table 1).
Interestingly, both enzymes are Ca++ dependent and while
Furin cleavage leads to inactivation of Tat function as LTR
activator, Clapain cleavage leads to increased neurotoxic
activity. It is an open question whether truncation of Tat
leads to increased neurotoxic activity and if so, which
parts of the peptide are responsible.
Tat is associated with higher levels of nuclear and mito-

chondrial genomic DNA damage in the brain. High level
of nuclear and mtDNA 8-oxoG damages were identified
in the cortex autopsy tissue of HAND patients. Increased
accumulation of mtDNA mutations and/or depletion was
also detected to occur in brain tissue in a subset of HAND
individuals [94]. However, these results do not discrimin-
ate between different cell types in the brain and further
validation is required. Additionally, HIV-1 Tat can
cause a rapid dissipation of the mitochondrial trans-
membrane potential, as well as cytochrome c release in
isolated mitochondria. Pharmacological studies reveal
that Tat induces mitochondrial membrane permeabilization
(MMP), which is Bax/Bak, Bcl-2 and Bcl-xL independent
and can be rescued by the anion-channel inhibitor 4,4’-
diisothiocyanostilbene-2,2’-disulfonic acid (DIDS), but
not by the ruthenium red, or ryanodine receptor blocker.
Moreover, Tat is able to inhibit the cytochrome c oxidase
(COX) activity in disrupted mitochondria making it the
.gov/projects/RefSeq/HIVInteractions/)

on

vage of HIV-1 Tat occurs in the C-terminus of this viral protein, between
9. The cleavage of Tat by calpain 1 increases neurotoxic effect of this viral

t at amino acid residue 56, resulting in greatly reduced Tat

http://www.ncbi.nlm.nih.gov/projects/RefSeq/HIVInteractions/
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first viral protein to be a plausible COX inhibitor [95]. All
this is an indicator that Tat can induce mitochondrial dys-
function in neurons independently from the Ca++ flux and
receptor mediated pathways previously described. Taking
into account the central role that mitochondria have in
neuronal function, it is easy to see why neuronal cell ex-
hibit high susceptibility to HIV-1 Tat protein. Another im-
portant aspect is the synaptic and axonal injury observed
in HAND individuals and in Tat transgenic mice as well.
In the context of HAND, synaptic loss can be a defense
mechanism that allows the neuronal cells to deal with the
over excitatory conditions in the CNS [96]. On the other
hand it can be a consequence of the physical infiltration of
phagocytic leucocytes, which directly target for destruc-
tion synapse endings [97]. Although some studies suggest
that Tat induced synaptic loss is Ca++ dependent via
NMDAR and low-density lipoprotein receptor-related
protein (LRP), the molecular mechanism involved is not
quite clear [98]. Release of dopamine, glutamate, GABA
and acetylcholine neurotransmitters are all shown to be af-
fected by Tat protein and it can lead to diminished LTP,
induction of LTD or even an impaired signal transduction
between neuronal cells [99-101].
Recent studies reveal that some of the pathways

already described to be involved in neuronal deregulation
are affected by expression levels of micro RNA molecules
(miRNAs). miRNAs introduce a novel concept of regula-
tory control over gene expression, and there is increasing
evidence that they may play a profound role in neuronal
cell identity as well as multiple aspects of disease patho-
genesis [102]. In support of this observation, a link be-
tween miRNAs and neurodegenerative diseases (e.g.
Alzheimer, Huntington, and Parkinson) is becoming
increasingly evident [103,104]. Interestingly, Tat treat-
ment of primary human neurons leads to alteration of
the expression profile of miRNAs which in term affects
critical pathways required for the neuronal cell function
[4]. For example, miRs-1, -7, and -34a were examined
and validated to deregulate the levels of SERP1 (stress-
associated endoplasmic reticulum protein 1 involved in
Endoplasmic Reticulum stability), Drp-1 (Dynamin-related
protein nvolved in proper mitochondria distribution
among the neuronal cell), as well as CREB (a key Ca++

dependent transcription factor in LTP/LTD). The im-
portance of CREB role was also described to be a part of
the Pyk2/Erk/CREB pathway, where TRPC channels
have been shown to prevent Tat toxicity by inducing the
Platelet-derived growth factor-BB (PDGF) [105].

f- HIV-1 Tat outside the CNS additional contributing
factors, concerns and alternatives The deleterious
effect of Tat in CNS is not without a precedent and has
been shown in different organs. In this regard, it has been
shown, that the effect of Tat on osteoclast/ osteoblast
crosstalk and homeostasis. HIV-1 infected individuals
often suffer from secondary bone remodeling conditions
osteopenia/osteoporosis. Key estrogenic factors such as
RANKL and M-CSF are deregulated in Tat dependent
manner, which leads to hyperactive osteoclast [106].
Another organ system affected is the Urinary system. In

the context of HIV-Associated Nephropathy, Tat protein
increased albumin permeability and rapidly induced the re-
distribution and loss of nephrin in isolated glomeruli [107].
Furthermore, studies investigating other HIV-Associated
conditions such as HIV-Associated Thrombocytopenia,
Pulmonary vesicular remodeling as well as Cancer de-
velopment suggest that HIV-1Tat protein plays signifi-
cant role in the pathological progression of those
diseases [108-111].
HIV-1 Tat is only one of the many contributing factors

that lead to HIV neurocognitive impairment progression.
Gp120, Vpr and Nef proteins are all shown to affect
normal neuronal function, neurotropic molecules release
and immune activation. Gp120 for example is shown to
up-regulate Matrix metalloproteinases (MMPs) 2 and 9
which highly correlates with Blood Brain Barrier disrup-
tion [112]. VPR is able to induce neuronal cells death and
Nef is linked to spatial and recognition memory lost by
targeting specifically CA3 Hippocampal neurons in in vivo
mouse models [113,114]. One of the pushbacks whenever
investigating the effect of viral proteins in vitro is the use
of viral protein concentrations that does not necessarily
correspond to physiological conditions in the CNS. This is
very critical and one should be extremely careful how to
interpret results from in vitro neuronal cells experiments,
since there is no active production of viral proteins in this
cell type. Studying abnormal function in Astrocytes and
Microglia cells, which in most cases include overexpres-
sion approach, is much more physiologically relevant since
these cell types have been shown to support active HIV-1
infection and viral proteins release. This is why in vitro
studies involving viral proteins and neuronal cells should
be always validated using appropriate transgenic mice and
co-culture assays, which represent more physiologically
similar conditions.
Another aspect in studying factors contributing to

neurocognitive impairment in HIV-1 positive individuals
is the link between the evident immune activation and
co-existing predisposing conditions such as alcohol and
drugs of abuse.

g- impact of Tat on different subtypes Analyses of dif-
ferent strains of HIV-1 show that isolates can be subdivided
into groups, subtypes, and circulating recombinant forms
(CRFs), based on phylogenetic sequence differences. So far,
HIV-1 can be divided into three distinct and highly diver-
gent groups: M (major), O (outlier), and N (non-M/O).
Several genetic variants can be recognized within group M,
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including 9 subtypes/clades and 15 major CRFs [115,116].
Subtype C predominates globally and, in the year 2000,
caused 47.2% of all new HIV-1 infections. The second most
common clade was A, which caused 30% of all new in-
fections, (including CRF01-AE and CRF02-AG) [115].
Clade D is generally limited to Eastern and Central
Africa, E appears as an A/E mosaic detected in South
and East Asia [117-120]. F has been reported in Central
Africa, South America and Eastern Europe. G and A/G
recombinant viruses have been observed in Western
and Eastern Africa as well as in Central Europe [120]. H
and K have only been detected in central Africa [121-123].
J has been reported in Central America and Central
Africa [124].
Since B is the predominant subtype in the western

world, antiretroviral drugs used to treat HIV were de-
veloped using in vitro studies of subtype-B isolates, and
most data on HIV-1 drug resistance mechanisms are
from subtype-B viruses. Nevertheless, subtype B is re-
sponsible for only 12% of global infections [116]. This
leads to the question whether or not HIV-1 subtypes do
have any consequences on therapy outcome and the de-
velopment of drug resistance, especially in regards to
the implementation of antiretroviral drugs in areas with
high non-B subtypes. Further, one may wonder whether
subtype variations affect disease progression. For example,
several groups demonstrated that, due to some unknown
reasons, patients infected with HIV-1 clade C manifested
less neurocognitive disorders than those infected with
clade B.
The problem of subtype diversities is becoming more

significant in the western world [125], especially with
increasing migration and globalization where at least
25% of new infections in Europe are presently non-B
African and Asian variants. The relationship between
HIV-1 subtype diversities, disease transmissibility and
progression is poorly understood especially regarding
development of neurocognitive disorders (HAND) that
display in the brain as the “white matter disease” due to
neuronal degeneration and loss. Even though introduction
of HAART diminishes the incidence rates for HIV demen-
tia in the USA where HIV-1 clade B is the predominant
genotype however, with continued survival, the prevalence
of this disorder has actually increased. All these signify
the importance for the development of new therapeutic
measures, which will also address the HIV-1 subtype
diversities.
Since inter-subtype studies may be complicated by

host, sequence variations, societal and virological factors
that are difficult to control, several groups suggest that
AIDS progression differs as a function of infecting subtype
[126,127]. Their results focused mainly on polymerase
(Pol), reverse transcriptase (RT), envelope (gp120, gp41)
and the promoter (LTR) sequences variations. Variations
in these regions may therefore affect drug susceptibility
and development of drug resistance [128,129]. For ex-
ample Ethiopian clade C isolates differ (with respect to
RT) from clade B by 6.8-10%. Also intra-clade differences
of 3.5–5.8% have been reported for strains from Africa,
India and South America [127]. It should be stressed that
any given percentage variation in nucleotide sequence
translates into lower amino acid sequence variation is not-
able because many genetic mutations are silent. Addition-
ally, it has been shown that the LTR sequences, which
contain transcriptional promoters of HIV-1 vary substan-
tially from clade to clade [130]. Each clade has its own
LTR copy number as well as an exact nucleotide sequence
of enhancer and promoter structures, despite the uniform-
ity in other LTR features, i.e. Sp1 sites, TATA box and
TAT-responsive element [131,132]. However, diversity was
observed in numbers of transcriptional promoters. These
include the NF-κB binding sites (3 to 4 in C, 2 in B and
just 1 in E), the AP-1 transcriptional factor-binding site
(1 site in subtypes C, E and G, 2 in A and F, and none in
B or D) and the C/EBP-β binding-site (exists only in
clade B but not in A or C). Further, subtype discrepancies
arise also between the negative regulatory element seen in
clades C and E versus that detected in clade B [133]. Given
these genetic distinctions between HIV-1 promoters, it is
not surprising to find that clades respond differentially to
various transcriptional factors. For example, the NF-κB
transcription factor stimulates HIV-1 clade C to a far
greater extent than clade B or E [134,135]. Likewise, tumor
necrosis factor (TNF-α) activates the LTRs of clade C
more impressively than those of clades A, B, D, F and G,
with the lowest stimulation seen in clade E [136]. Thus,
one might suggest that these intra-sequence variations
might implicate the recruitment of different transcription
factors through the recruitment of diverse clusters of small
RNAs that regulate expression of these factors. If so, these
RNAs also play a role in HIV-1 latency and disease
progression leading to HAND.
Sequence variations were also observed within the viral

genes (e.g. Tat). The transactivator regulatory protein (Tat)
plays a major role in viral gene expression and replication.
In addition, it has been described to be involved in the
process of disruption of neuronal function [137]. Several
studies examined the functions of Tat prepared from
different clades especially since significant amino acid
variations have been observed among the clade-specific
Tat proteins. It has been shown that acetylation of
subtype-specific Tat proteins may correlate with their
transactivation efficiency [136]. Further, Tat proteins de-
rived from HIV-1 clades C and E were strong transacti-
vators of the HIV- promoter compared to other Tat
proteins from clades A and B [138]. Tat was also used as
a candidate for vaccine. Studies showed that macaques
immunized with clade B Tat developed strong antibody



Table 2 Cellular factors interacting synergistically with Tat (http://www.ncbi.nlm.nih.gov/projects/RefSeq/HIVInteractions/)

Protein name Protein Acc Ref PMID(s) Interaction description

Beta-nerve growth factor precursor NP_002497.2 8178451 Nerve growth factor synergizes with HIV-1 Tat to induce HIV-1 gene expression in neuronal and glial cell lines

CD40 ligand NP_000065.1 Recombinant CD40L synergizes with HIV-1 Tat to increase TNF-alpha release from primary human monocytes and
microglia in an NF-kappaB-dependent manner. This synergism is attributed to a Tat-mediated up-regulation of CD40

CDK-activating kinase assembly factor MAT1
isoform 1

NP_002422.1 8934526 TFIIH synergizes with HIV-1 Tat to induce transcription elongation from the HIV-1 LTR promoter

Cyclin-dependent kinase 7 NP_001790.1

Cyclin-H isoform 1 NP_001230.1 8934526

Cytochrome B-245 heavy chain NP_000388.2 21029719 Nox2 is involved in HIV-1 Tat-induced NADPH oxidase p65 and IKK phosphorylation

E3 SUMO-protein ligase EGR2 isoform a NP_000390.2 11909874 HIV-1 Tat (through amino acids 30–40) binds to Egr-2 and synergizes with this protein to super induce the FasL
promoter

Early growth response protein 3 isoform 1 NP_004421.2

Endothelial transcription factor GATA-2 isof. 1 NP_116027.2 9517987 GATA-2 synergizes with HIV-1 Tat to enhance transcriptional activity from the HIV-1 LTR promoter

Fibroblast growth factor 2 NP_001997.5 HIV-1 Tat synergizes with bFGF to promote Kaposi's sarcoma, endothelial cell growth and locomotion, and secretion
of matrix-metalloproteinase-2

General transcription factor IIF subunit 1 & 2 NP_002087.2 TFIIF synergizes with HIV-1 Tat and the cellular co-activator Tat-SF1 during Tat-mediated transactivation of the HIV-1
LTR promoter

NP_004119.1

General transcription factor IIH subunit 1, 2, 3 and 4 NP_005307.1 8934526 TFIIH synergizes with HIV-1 Tat to induce transcription elongation from the HIV-1 LTR promoter

NP_001506.1

NP_001507.2

NP_001508.1

Histone acetyltransferase KAT2B NP_003875.3 HIV-1 Tat synergizes with P/CAF to activate the HIV-1 LTR promoter

Histone acetyltransferase p300 NP_001420.2 18226242 HIV-1 Tat, NAP-1, and p300 synergistically activate HIV-1 transcription

Interferon gamma precursor NP_000610.2 IL-1beta, TNF-alpha, and IFN-gamma synergize with HIV-1 Tat to promote in nude mice the development of
angioproliferative Kaposi's sarcoma-like lesions

10446807 HIV-1 Tat synergizes with IFN-gamma to induce iNOS activity in purified rat microglial cultures

18569454 Tat and IFN-gamma synergistically induce the expression of CXCL10, which is inhibited by MEK1/2 inhibitor and the
p38 mitogen-activated protein kinase (MAPK) inhibitor

HIV-1 Tat in combination with IFN-gamma and TNF-alpha increases CXCL10 mRNA and protein in human astrocytes
through the activation of the p38, Jnk, and Akt signaling pathways and their downstream transcription factors,
NF-kappaB and STAT-1alpha

19941336 HIV-1 Tat increases CXCL10 expression in IFN-gamma and TNF-alpha stimulated human astrocytes via NADPH oxidase

Interleukin-1 beta protein NP_000567.1 10438928 IL-1beta, TNF-alpha, and IFN-gamma synergize with HIV-1 Tat to promote in nude mice the development of
angioproliferative Kaposi's sarcoma-like lesions

Nuclear factor 1C-type isoform 5 NP_005588.2 HIV-1 Tat synergizes with CTF to activate transcription and enhance transcript elongation and exon skipping

Nuclear factor of activated T-cells, cytoplasmic 1
isoform A

NP_765978.1 NFATc synergizes with NF-kappa B and HIV-1 Tat in transcriptional activation of the HIV-1 LTR promoter and enhances
HIV-1 replication in T cells

Nucleosome assembly protein 1-like 1 NP_004528.1 18226242 HIV-1 Tat, NAP-1, and p300 synergistically activate HIV-1 transcription
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Table 2 Cellular factors interacting synergistically with Tat (http://www.ncbi.nlm.nih.gov/projects/RefSeq/HIVInteractions/) (Continued)

RISC-loading complex subunit TARBP2 isoform a NP_599150.1 TRBP2 binds to HIV-1 TAR RNA and synergizes with HIV-1 Tat to activate the HIV-1 LTR promoter

TATA-box-binding protein isoform 1 NP_003185.1 TBP synergizes with HIV-1 Tat during Tat-mediated transactivation of the HIV-1 LTR promoter

T-box transcription factor TBX21 NP_037483.1 18300036 Pretreatment of THP-1 cells with HIV-1 Tat/T-bet co-cultures with CD4 + T cells, resulting in increased levels of
IFN-gamma

TFIIH basal transcription factor complex helicase
XPB subunit

NP_000113.1 8934526 TFIIH synergizes with HIV-1 Tat to induce transcription elongation from the HIV-1 LTR promoter

TFIIH basal transcription factor complex helicase
XPD subunit isoform 1

NP_000391.1

Thyroid hormone receptor alpha isoform 2 NP_003241.2 HIV-1 Tat synergizes with thyroid hormone (T3) receptor alpha to activate the HIV-1 LTR promoter in the absence of
T3, which is relieved in its presence, suggesting a possible role for T3 in the control of HIV-1 gene expression

Transcription elongation factor A protein 1
isoform 1/ protein 2 isoform α/ protein 3

NP_006747.1 1559613 TFIIS synergizes with HIV-1 Tat during transactivation of the HIV-1 LTR promoter

NP_003186.1

NP_003187.1

Transcription factor Sp1 isoform a Sp1 synergizes with HIV-1 Tat to activate HIV-1 transcription

Tumor necrosis factor 15246652 HIV-1 Tat synergizes with TNF-alpha to enhance IL-6 secretion and activate human central nervous system-derived
endothelial cells

19479051 HIV-1 Tat synergizes with TNF-alpha to induce the expression of adhesion molecules ICAM-1, VCAM-1 and ELAM-1

19941336 IL-1beta, TNF-alpha, and IFN-gamma synergize with HIV-1 Tat to promote in nude mice the development of angiopro-
liferative Kaposi's sarcoma-like lesions

HIV-1 Tat and TNF-alpha synergistically activate the adhesion of leukocytes to endothelial cells

HIV-1 Tat in combination with IFN-gamma and TNF-alpha increases CXCL10 mRNA and protein in human astrocytes
through the activation of the p38, Jnk, and Akt signaling pathways and their downstream transcription factors,
NF-kappaB and STAT-1alpha

HIV-1 Tat increases CXCL10 expression in IFN-gamma and TNF-alpha stimulated human astrocytes via NADPH oxidase

Zinc finger protein GLI2 NP_005261.2 11160734 GLI-2 physically interacts with HIV-1 Tat (demonstrated in GST pull-down experiments) and strongly synergizes with
Tat during transactivation of the HIV-1 LTR promoter
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Table 3 Cellular factors binding to Tat (http://www.ncbi.nlm.nih.gov/projects/RefSeq/HIVInteractions/)

Protein name Protein Acc Ref PMID Interaction description

Activated RNA polymerase II transcriptional coactivator
p15

NP_006704.3 Through amino acids 22–91, PC4 binds to the basic TAR binding domain of HIV-1 Tat (amino acids 49–57)
and enhances activation of the HIV-1 LTR promoter in a Tat dependent manner

Adenylate kinase isoenzyme 6 NP_003178.1 HIV-1 Tat binds, through amino acids 36–50, directly to the TBP subunit of the TFIID holoenzyme complex
(which includes at least TFIID subunits p250, p125, p70, TBP, and p30), and increases the interaction of TFIID
with the HIV-1 LTR promoter

Aggrecan core protein isoform 1 precursor NP_001126.3 HIV-Tat peptide interferes with polyamine uptake via competition for proteoglycan binding sites rather than
a putative downstream transporter in human carcinoma cells

AT-rich interactive domain-containing protein 1A isoform
a

NP_006006.3 Acetylated HIV-1 Tat binds efficiently to BRG1 and BAF200 (component of PBAF complex) and weakly to
BAF250 (component of BAF complex). BAF250 has a preference to bind to unmodified Tat

AT-rich interactive domain-containing protein 2 NP_689854.2 Acetylated HIV-1 Tat binds efficiently to BRG1 and BAF200 (component of PBAF complex) and weakly to
BAF250 (component of BAF complex)

B-cell lymphoma/leukemia 11B isoform 1 NP_612808.1 CTIP2 harbors two HIV-1 Tat interaction interfaces (amino acids 145–434 and 717–813) and binds to the
N-terminus (amino acids 1–48) of Tat

Bone marrow proteoglycan isoform 1 preproprotein NP_002719.3 HIV-Tat peptide interferes with polyamine uptake via competition for proteoglycan binding sites rather than
a putative downstream transporter in human carcinoma cells

C-C chemokine receptor type 2 isoform A NP_001116513.2 HIV-1 Tat binds to CCR2 and displaces MCP-1 from this beta-chemokine receptor, an effect mediated by Tat
amino acids 24-51

C-C chemokine receptor type 3 isoform 1 NP_001828.1

CCAAT/enhancer-binding protein beta NP_005185.2 9169458 HIV-1 Tat induces an increase in C/EBPbeta binding activity through a direct binding interaction between Tat
and C/EBPbeta that is mediated through the N-terminal, cysteine rich, and core regions of Tat (amino acids
1–47)

CDK-activating kinase assembly factor MAT1 isoform 1 NP_002422.1 Amino acids 1–48 of HIV-1 Tat, which includes the Tat activation domain, mediate the binding of Tat to CAK
and the TFIIH complex through a direct interaction with CDK7 and possibly other TFIIH subunits, including
p62 and ERCC3

Cellular tumor antigen p53 isoform a NP_000537.3 HIV-1 Tat binds to p53, an interaction mediated by the basic region of Tat (amino acids 49–57) and the
acidic O2 domain of p53 (amino acids 341-354

NP_000537.3 The p53 tetramerization domain (residues 326–355) binds directly to residues 1–35 and 47–57 in HIV-1 Tat as
evidenced by using peptide mapping, fluorescence anisotropy, and NMR spectroscopy

Complement component 1 Q subcomponent-binding
protein, mitochondrial precursor

NP_001203.1 7778269 Using a yeast two-hybrid system, the splicing factor SF2-associated protein p32 has been shown to bind to
the basic domain of HIV-1 Tat (amino acids 47–59), suggesting a role for p32 in mediating the biological
activity of Tat during HIV-1 replication

NP_001203.1 Splicing factor SF2-associated protein p32 preferentially binds acetylated HIV-1 Tat and co-localizes with Tat
in HIV-1 infected cells

Core histone macro-H2A.1 isoform 1 NP_613075.1 HIV-1 Tat peptides bind core histones H2A, H2B, H3 and H4, and Tat protein recruits histone
acetyltransferases to the HIV-1 LTR promoter leading to acetylation of histones H3 and H4, de-repressing
chromatin structure and increasing NF-κB responsivenessCore histone macro-H2A.2 NP_061119.1

CREB-binding protein isoform a NP_004371.2 HIV-1 Tat binds to the minimal histone acetyltransferase domain of the CBP/p300 complex (amino acids
1253–1710 of p300) and E1a binding domain (amino acids 1542–1710) of p300, an effect mediated by the
basic domain (amino acids 48–57) of Tat

The N-terminal 24 amino acids of HIV-1 Tat mediate its binding to the KIX domain (amino acids 589–679)
of CBP
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Table 3 Cellular factors binding to Tat (http://www.ncbi.nlm.nih.gov/projects/RefSeq/HIVInteractions/) (Continued)

C-X-C chemokine receptor type 4 isoform b NP_003458.1 HIV-1 Tat binds to CXCR4, competes with the natural ligand of CXCR4, SDF-1alpha, and selectively inhibits
the entry and replication of ×4-tropic HIV-1 in peripheral blood mononuclear cells (PBMCs), indicating a role
for Tat in selecting against ×4 virus

Cyclin-dependent kinase 2 isoform 1 NP_001789.2 HIV-1 Tat 41/44 peptide TAALS from the core domain of Tat inhibits Tat-mediated HIV-1 gene expression
and replication by binding the Cdk2/Cyclin E complex and inhibiting the phosphorylation of serine 5 of
RNAPII

Cyclin-dependent kinase 7 NP_001790.1 Amino acids 1–48 of HIV-1 Tat, which includes the Tat activation domain, mediate the binding of Tat to CAK
and the TFIIH complex through a direct interaction with CDK7 and possibly other TFIIH subunits, including
p62 and ERCC3

TFIIH subunits CDK7 and cyclin H have been identified as two components associated with the Tat-
associated CTD kinase (TTK) that binds to HIV-1 Tat

Cyclin-dependent kinase 9 NP_001252.1 7853496 The N-terminus (amino acids 1–48, including activation domain) of HIV-1 Tat binds to P-TEFb through a dir-
ect interaction with the N-terminus (amino acids 1–290) of cyclin T1 during Tat-mediated transactivation of
the HIV-1 LTR promoter8676484

9356449

Cyclin-H isoform 1 NP_001230.1 Amino acids 1–48 of HIV-1 Tat, which includes the Tat activation domain, mediate the binding of Tat to CAK
and the TFIIH complex through a direct interaction with CDK7 and possibly other TFIIH subunits, including
p62 and ERCC3

NP_001230.1 TFIIH subunits CDK7 and cyclin H have been identified as two components associated with the
Tat-associated CTD kinase (TTK) that binds to HIV-1 Tat

Cyclin-T1 NP_001231.2 7853496 The N-terminus (amino acids 1–48, including activation domain) of HIV-1 Tat binds to P-TEFb through a
direct interaction with the N-terminus (amino acids 1–290) of cyclin T1 during Tat-mediated transactivation
of the HIV-1 LTR promoter8676484

9356449

Cyclin-T2 isoform a NP_001232.1 Amino acids 260–263 of cyclin T1 are critical for HIV-1 Tat-mediated transcriptional activation, and site-
directed mutations in this region of cyclin T2 (asparagine to cysteine at residue 260) allow it to bind Tat and
stimulate transcription

Dipeptidyl peptidase 4 NP_001926.2 The N-terminal nine amino acids of HIV-1 Tat mediate the binding of Tat to CD26

DNA-dependent protein kinase catalytic subunit isoform 1 NP_008835.5 9525578 Amino acids 56–101 of HIV-1 Tat mediate Tat binding to DNA-PK, an effect that augments DNA-PK-mediated
phosphorylation of Sp1 during Tat transactivation of the HIV-1 LTR promoter

E3 ubiquitin-protein ligase TRIM32 NP_036342.2 7778269 HT2A specifically and precisely binds to the activation domain of HIV-1 Tat (amino acids 1–48), suggesting a
role for HT2A in mediating the biological activity of Tat during HIV-1 replication

Early growth response protein 1 NP_001955.1 HIV-1 Tat binds to Egr-1, an interaction that is mediated through Tat amino acids 30-40

G1/S-specific cyclin-E1 NP_001229.1 HIV-1 Tat 41/44 peptide TAALS from the core domain of Tat inhibits Tat-mediated HIV-1 gene expression
and replication by binding the Cdk2/Cyclin E complex and inhibiting the phosphorylation of serine 5 of
RNAPII

G2/mitotic-specific cyclin-B1 NP_114172.1 HIV-1 Tat stimulates polyubiquitination-mediated degradation of cyclin B1 through binding to the N-terminal
of cyclin B1 (amino acids 61–129) that is just downstream of the D box

General transcription factor IIH subunit NP_005307.1 Amino acids 1–48 of HIV-1 Tat, which includes the Tat activation domain, mediate the binding of Tat to CAK
and the TFIIH complex through a direct interaction with CDK7 and possibly other TFIIH subunits, including
p62 and ERCC3
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Table 3 Cellular factors binding to Tat (http://www.ncbi.nlm.nih.gov/projects/RefSeq/HIVInteractions/) (Continued)

Granulins precursor NP_002078.1 The cysteine rich region of HIV-1 Tat (amino acids 21–37) mediates the binding of Tat to granulin amino
acids 206–337 (granulin regions B + A) suggesting a role for granulin growth factors as biologically important
extracellular Tat co-factors

Growth factor receptor-bound protein 2 isoform 1 NP_002077.1 The binding between HIV-1 Tat and Grb2 is mediated by the proline-rich sequence (residues 1–18) of Tat
and the SH3 domain (residues 160–212) of Grb2, which impairs activation of the Raf/MAPK pathway and
increases the PKA/Raf inhibitory pathway

Histone acetyltransferase KAT2A NP_066564.2 Binding of HIV-1 Tat to hGCN5 is mediated by amino acids 20–48 of Tat (includes cysteine rich, core, and
minimal activation domains of Tat) and by amino acids 111–151 (histone acetyltransferase domain) and
389–476 (bromodomain) of hGCN5

Histone acetyltransferase KAT2B NP_003875.3 The bromodomain (amino acids 712–832) of P/CAF mediates its binding to amino acids 20–40 of
non-acetylated HIV-1 Tat, to amino acids 48–57 in the arginine rich motif of Lys50 acetylated Tat, while
Lys28 acetylation of Tat abrogates P/CAF binding to Tat

Histone acetyltransferase KAT5 isoform 1 NP_874369.1 Tip60 is a nuclear histone acetyltransferase that binds to the N-terminal 31 amino acids of HIV-1 Tat

Histone acetyltransferase p300 NP_001420.2 HIV-1 Tat binds to the minimal histone acetyltransferase domain (amino acids 1253–1710) and E1a binding
domain (amino acids 1542–1710) of p300, an effect mediated by the basic domain (amino acids 48–57) of
Tat

Histone H2A/H2B/H3/H4 NP_003500.1 HIV-1 Tat peptides bind core histones H2A, H2B, H3 and H4, and Tat protein recruits histone
acetyltransferases to the HIV-1 LTR promoter leading to acetylation of histones H3 and H4, derepressing
chromatin structure and increasing NFkappaB responsiveness

Histone-lysine N-methyltransferase SETD7 NP_085151.1 SET7/9-KMT7 binds directly to HIV-1 Tat and enhances recruitment of the Tat/P-TEFb complex to HIV-1 TAR
RNA

Importin subunit alpha-2 NP_002257.1 HIV-1 Tat peptide (amino-acids 47–57) binds to importin alpha and beta receptors

Importin subunit beta-1 NP_002256.2 9891055 The binding of HIV-1 Tat with importin beta is inhibited by RanGTP; HIV-1 Tat peptide (amino-acids 47–57)
binds to importin alpha and beta receptors

Insulin-like growth factor-binding protein 4 precursor NP_001543.2 7778269 Using a yeast two-hybrid system, HIV-1 Tat has been shown to bind the human insulin-like growth factor
binding protein 4, suggesting a role for this protein in mediating the biological activity of Tat during HIV-1
replication

Integrin alpha NP_002196.2 The arginine-glycine-aspartic acid (RGD) sequence present at the carboxy-terminal of HIV-1 Tat mediates
vascular cell and monocyte migration and invasion by binding to the alpha-5-beta-1 and alpha-v-beta-3
integrins

Interferon regulatory factor 1 NP_002189.1 HIV-1 Tat represses transcription of the LMP2 gene by competing with STAT1 (signal transducer and
activator of transcription 1) for binding to IRF-1 (interferon-regulatory factor-1) at the LMP2 promoter

Interferon-induced, double-stranded RNA-activated protein
kinase isoform a

NP_002750.1 Binding of HIV-1 Tat to PKR has been mapped to residues 40–58 of Tat, overlapping the hydrophobic core
and basic region of Tat

Lamin isoform A NP_733821.1 Purified HIV-1 Tat has been shown to bind with high affinity to the nuclear matrix from H9 cells and to link
viral RNAs to the nuclear matrix

Lediator of RNA polymerase II transcription subunit 6 NP_005457.2 The interaction of HIV-1 Tat with MED21 hypothetically induces the binding of Tat to MED6

mRNA-capping enzyme NP_003791.3 HIV-1 Tat binding to mammalian capping enzyme (Mce1) is mediated through the C-terminal domain of Tat
(amino acids 49–86) and amino acids 211–597 of Mce1

myoD family inhibitor NP_005577.1 I-mfa (inhibitor of MyoD family a) and HIC (human I-mfa-domain-containing) proteins serve as substrates for
P-TEFb. Their I-mfa domains bind the activation domain of HIV-1 Tat and inhibit Tat- and P-TEFb-dependent
HIV-1 transcription
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Table 3 Cellular factors binding to Tat (http://www.ncbi.nlm.nih.gov/projects/RefSeq/HIVInteractions/) (Continued)

NAD-dependent protein deacetylase sirtuin-1 isoform a NP_036370.2 HIV-1 Tat binds the deacetylase domain (amino acids 341–512) of SIRT1 and inhibits SIRT1 deacetylase
activity, which results in the induction of NF-kappaB hyperacetylation

NF-kappa-B inhibitor alpha NP_065390.1 Amino acids 72 to 287 of IkappaB-alpha are required for Tat inhibition. Amino acids 263 to 269 within the
sixth ankrin of IκB-alpha are required for the binding to Tat

Nuclear factor NF-κB p100 subunit isoform b NP_002493.3 HIV-1 Tat has been shown to bind NFkappaB in vitro in gel shift, GST-pull down and affinity matrix assays

Nuclear factor of activated T-cells, cytoplasmic 2 isoform B NP_036472.2 HIV-1 Tat binds to NFAT1, an interaction mediated by the N-terminus of Tat (amino acids 1–26) and the
transactivation domain of NFAT1 (amino acids 1–96)

Nuclear inhibitor of protein phosphatase 1 isoform alpha NP_054829.2 PP1 interacts with Tat in part through the binding of Val (36) and Phe (38) of Tat to PP1, and Tat is involved
in the nuclear and subnuclear targeting of PP1

Nuclease-sensitive element-binding protein 1 NP_004550.2 Binding of YB-1 to HIV-1 Tat is mediated through the C-terminal region of Tat (amino acids 48–72) and
through amino acids 75–203 of YB-1

nucleophosmin isoform 1 NP_002511.1 The nucleolar shuttle protein B23 binds to HIV-1 Tat and data indicates B23 is necessary for the nucleolar
localization of Tat

POU domain, class 2, transcription factor 1 isoform 1 NP_002688.3 7690421 Oct binds to HIV-1 Tat affinity matrices and also confers Tat responsiveness on a basal HIV-1 promoter

Prolow-density lipoprotein receptor-related pr otein 1
precursor

NP_002323.2 LRP binds to the core domain of HIV-1 Tat (amino acids 37–48) and promotes the efficient uptake of Tat into
neurons, suggesting Tat may mediate HIV-1 induced neuropathology through disruption of LRP ligands and
activation of neuronal genes

Proteasome subunit alpha type NP_002778.1 HIV-1 Tat binds to the alpha2, alpha4, alpha6, alpha7, beta1, beta2, beta3, beta5, beta6, beta7, LMP7/beta5i,
and MECL1/beta2i subunits of the proteasome 20 S core structure and can inhibit cellular proteasome
function

Proteoglycan 3 precursor NP_006084.2 HIV-Tat peptide interferes with polyamine uptake via competition for proteoglycan binding sites rather than
a putative downstream transporter in human carcinoma cells

Retinoblastoma-like protein 2 NP_005602.3 HIV-1 Tat protein specifically binds to pRb2/p130 and data suggest this interaction results in the
deregulation of the control exerted by pRb2/p130 on the cell cycle, indicating a potential role in AIDS-
related oncogenesis

RNA polymerase II subunit A C-terminal domain phosphat-
ase isoform 1

NP_004706.3 FCP1 is required for Tat-mediated transactivation in vitro and amino acids 562–685 of FCP1 are necessary for
binding to Tat in yeast two-hybrid studies

Serine/threonine-protein phosphatase PP1-alpha catalytic
subunit isoform 1

NP_002699.1 PP1 interacts with Tat in part through the binding of Val (36) and Phe (38) of Tat to PP1, and Tat is involved
in the nuclear and subnuclear targeting of PP1

Succinate dehydrogenase [ubiquinone] iron-sulfur subunit,
mitochondrial precursor

NP_002991.2 7778269 Using a yeast two-hybrid system, HIV-1 Tat has been shown to bind the human succinate-ubiquinone
oxidoreductase iron sulfur subunit, suggesting a role for this protein in mediating the biological activity of
Tat during HIV-1 replication

SWI/SNF-related matrix-associated actin-dependent regula-
tor of chromatin subfamily B member 1 isoform a

NP_003064.2 Integrase interactor 1 (INI1)/hSNF5 binds to HIV-1 Tat and co-activates Tat-mediated transcription; both the
repeat (Rpt) 1 and Rpt 2 domains of INI1 are required for efficient co-activation

Syndecan-1 precursor NP_002988.3 Binding of HIV-1 Tat to heparan sulfate proteoglycans is competed out by the heparin-binding factor bFGF;
Cell membrane heparin sulfate proteoglycans bind to the basic region of HIV-1 Tat (amino acids 49–57) and
act as receptors for extracellular Tat uptake, an effect that may contribute to the angiogenic properties of
Tat in promoting Kaposi's sarcoma

TATA-binding protein-associated factor 172 NP_003963.1 HIV-1 Tat binds, through amino acids 36–50, directly to the TBP subunit of the TFIID holoenzyme complex
(which includes at least TFIID subunits p250, p125, p70, TBP, and p30), and increases the interaction of TFIID
with the HIV-1 LTR promoter
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Table 3 Cellular factors binding to Tat (http://www.ncbi.nlm.nih.gov/projects/RefSeq/HIVInteractions/) (Continued)

TATA-box-binding protein isoform 1 NP_003185.1 Binding of HIV-1 Tat to TBP has been mapped to the cysteine rich and core domains (amino acids 20–50) of
Tat and the H1 alpha helical and S2 domains (amino acids 163–220) of TBP

TFIIH basal transcription factor complex helicase XPB
subunit

NP_000113.1 Amino acids 1–48 of HIV-1 Tat, which includes the Tat activation domain, mediate the binding of Tat to CAK
and the TFIIH complex through a direct interaction with CDK7 and possibly other TFIIH subunits, including
p62 and ERCC3

Thrombospondin-1 precursor NP_003237.2 Thrombospondin-1 (TSP) binds to HIV-1 Tat, an interaction that can be inhibited by heparin which can bind
to both TSP and Tat

Thyroid hormone receptor alpha isoform 2 NP_003241.2 7609079 Thyroid hormone (T3) receptor alpha (T3Ralpha) binds to HIV-1 Tat, an interaction mediated through the
DNA-binding domain of T3Ralpha (amino acids 51–118) and the arginine-rich basic region (amino acids
49–57) and possibly amino acids 58–72 of Tat

Transcription activator BRG1 isoform B NP_003063.2 Acetylated HIV-1 Tat binds efficiently to BRG1 and BAF200 (component of PBAF complex) and weakly to
BAF250 (component of BAF complex)

Transcription factor AP-1 NP_002219.1 7690421 Crosslinking experiments suggest a direct binding interaction between HIV-1 Tat and AP1 that is relatively
inefficient and that correlates with the ability of AP1 to support Tat transactivation

Transcription factor p65 isoform 1 NP_068810.3 HIV-1 Tat has been shown to bind NFkappaB in vitro in gel shift, GST-pull down and affinity matrix assays

Transcription factor RelB NP_006500.2

Transcription factor Sp1 isoform a NP_612482.2 HIV-1 Tat amino acids 30–55 mediate binding of Tat to Sp1, an effect that some reports indicate is a direct
binding interaction, while other reports suggest it is indirect and possibly mediated through interaction with
other cellular factors

Transcription initiation factor TFIID subunit 1 isoform 1 NP_004597.2 HIV-1 Tat binds, through amino acids 36–50, directly to the TBP subunit of the TFIID holoenzyme complex
(which includes at least TFIID subunits p250, p125, p70, TBP, and p30), and increases the interaction of TFIID
with the HIV-1 LTR promoter; Amino acids (aa) 67–101 (C-term. domain) of HIV-1 Tat bind to aa 848–1279 of
TAFII250, while Tat aa 18–36 (cysteine-rich domain) and 36–56 (includes basic domain) bind to TAFII250 aa
885–984 (AT domain) and 1120–1279 (Rap74 binding domain), respectively

Transcriptional activator protein Pur-alpha NP_005850.1 HIV-1 Tat downregulates the expression of p35, a neuron-specific activator of cdk5, and also binds to
Puralpha, which associates with cdk5, leading to deregulation of neuronal differentiation and survival

Transportin-1 isoform 1 NP_002261.3 9891055 The binding of HIV-1 Tat with importin beta is inhibited by RanGTP

Tubulin alpha/beta NP_006000.2 HIV-1 Tat (amino acids 36–39) binds tubulin alpha/beta dimers and polymerized microtubules leading to the
alteration of microtubule dynamics and activation of a mitochondria-dependent apoptotic pathway that is
facilitated by the Bcl-2 relative Bim

Tumor suppressor protein p73 isoform a NP_005418.1 Association of tumor protein p73 with HIV-1 Tat prevents the acetylation of Tat on lysine 28 by PCAF, and
requires the cysteine-rich domain (amino acids 30 to 40) of Tat, which binds to the N-terminal region (amino
acids 1 to 120) of p73

Vascular endothelial growth factor receptor 1 isoform 1
precursor

NP_002010.2 9269752 The mechanism of monocyte activation by HIV-1 Tat involves the binding of Tat to VEGFR-1/Flt-1 and
activating signals through this receptor

Zinc finger and BTB domain-containing protein 7A NP_056982.1 Binding of FBI-1 to HIV-1 Tat is mediated by the zinc finger (ZF) domain of FBI-1 (amino acids 377–584) and
is diminished by point mutations in Tat at amino acids 18, 30, and 31
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responses when compared to Tat prepared from clade C
[139]. Moreover, in mice, cross-clade immune responses
between HIV-1 subtype B and C Tat proteins mapped
to this T-helper epitope was identified [136]. These re-
sults led to the conclusion that a cross-clade immune
response between subtypes B and C is important for a
more rational design of an HIV vaccine. This conclusion
was later confirmed when Tat B-clade was similarly rec-
ognized by sera from individuals infected by different
virus clades A, B, C and D supporting the concept of a
cross-clade vaccine [140]. Finally, using primary human
neurons, subtype C Tat was shown to be less toxic than
subtype B Tat [141]. In addition, clade B Tat protein was
shown to increase the level of neuropathogenic agents,
such as IDO and KYN in human primary astrocytes
when compared to clade C Tat [142]. Taken together,
these studies provide further evidence that the preva-
lence of HAND may be correlated with the difference in
clades of HIV-1 especially since Tat has been shown to
be involved in AIDS neuropathogenesis.

Concluding remarks
Thirty years of HIV-1 research have led to great advances
in the control and treatment of the infection, but there
still is a long way ahead in the quest of controlling the
virus. The new generation of cART allows HIV-1 infected
patients to live longer, almost normal life expectancy lives.
Unfortunately secondary complications from the chronic
infections and even the drugs themselves are degrading
the quality of live for these individuals. Understanding
in greater details how the virus and its proteins affect
the cells on a basic molecular level will greatly increase
the opportunity to design proper defensive strategies
that will allow us to alleviate those pathologies. This re-
view summarizes the advancements in only one aspect
of the problem: HIV-1 Tat protein. It is surely one of
the many factors in the big picture of HIV-1 infection,
but as research suggests it is a very important one. With
its unique ability to travel between cells and affect fun-
damental pathways that are important for the proper
function of the cell, Tat reveals the very complex and
unconventional network of tasks that this protein caries
and the potential for future research. The findings from
such a research can be applied not only in the field of
HIV-1, but in other biological areas as well. One example
today is the use of Tat peptides to drive different size
molecules internalization. This property can be used in
designing new strategies for drug deliveries even beyond
the blood brain barrier. The role of small noncoding RNA
species in the progression of the disease is another prom-
ising topic since there is an increasing body of research
describing their fundamental importance in the neurode-
velopment. In conclusion we have listed several tables with
cellular factors important for Tat functions both canonical
and secondary containing endogenous proteins that inter-
act synergistically (Table 2) and cellular factors described
to be functionally involved (Table 3) with Tat in general.
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