
Hindawi Publishing Corporation
EURASIP Journal on Information Security
Volume 2007, Article ID 52965, 15 pages
doi:10.1155/2007/52965

Research Article
Digital Video Encryption Algorithms Based on
Correlation-Preserving Permutations

Daniel Socek,1 Spyros Magliveras,2 Dubravko Ćulibrk,1 OgeMarques,1 Hari Kalva,1 and Borko Furht1

1Department of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
2Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA

Correspondence should be addressed to Daniel Socek, dsocek@fau.edu

Received 28 February 2007; Accepted 19 June 2007

Recommended by Qibin Sun

A novel encryption model for digital videos is presented. The model relies on the encryption-compression duality of certain types
of permutations acting on video frames. In essence, the proposed encryption process preserves the spatial correlation and, as such,
can be applied prior to the compression stage of a spatial-only video encoder. Several algorithmic modes of the proposed model
targeted for different application requirements are presented and analyzed in terms of security and performance. Experimental
results are generated for a number of standard benchmark sequences showing that the proposed method, in addition to providing
confidentiality, preserves or improves the compression ratio.

Copyright © 2007 Daniel Socek et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Application-specific video encryption represents an impor-
tant problem in multimedia security. In order to support a
wide range of real-world video applications, an encryption
algorithm should be designed within a specific video com-
pression framework. Conventional encryption is designed
for generic data, and as such, it does not support many spe-
cific video application requirements. For instance, video en-
cryption algorithms that support one or more of the follow-
ing application requirements are often needed.

(1) Perceptual quality control. An encryption algorithm
can be used to intentionally degrade the quality of per-
ception, but still keep the video visually perceivable.

(2) Format compliance. It could be desired that the encryp-
tion algorithm preserves the video compression for-
mat, so that the ordinary decoders can still decode the
encrypted video without crashing.

(3) Codec standard compliance. A typical video system
is likely to consist of a premanufactured standard-
conforming encoder and decoder modules, and a
video encryption method that requires no modifica-
tion to either of the two modules is often desirable.

(4) Minimal processing speed. In many real-time video ap-
plications, it is important that the encryption and de-

cryption algorithms are fast enough to ensure the min-
imal processing speed needed for the normal video
system functioning.

(5) Constant/near-constant bitrate. It is often required
that the encryption transformation preserves the size
of a bitstream, where the output produced by an
encryption-equipped encoder and the output pro-
duced by an ordinary encoder have same or similar
sizes.

In general, two basic research methodologies for digi-
tal video encryption are used to provide support to afore-
mentioned application requirements. Selective encryption al-
gorithms perform conventional or nonconventional encryp-
tion only on certain selected parts of the video bitstream.
In this type of algorithms the encryption step occurs either
during or after encoding. For instance, Meyer and Gade-
gast [1] proposed to encrypt only the headers of the high-
est four layers in MPEG stream (sequence layer, GOP layer,
picture layer, and slice layer), and optionally also the first
macroblock after each slice header or all I-frames and all in-
tracoded macroblocks. Spanos and Maples [2] suggested to
encrypt I-frames of all MPEG groups of frames, the MPEG
video sequence header (which contains all of the decoding
initialization parameters such as the picture width, height,

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Springer - Publisher Connector

https://core.ac.uk/display/81798098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 EURASIP Journal on Information Security

frame rate, bit rate, and buffer size), and the ISO end code.
Bhargava et al. [3] proposed to encrypt only the sign bits of
the DCT coefficients and differential values of motion vec-
tors in P- and B-frames of MPEG video. In approach by Li et
al. [4] only the fixed length coded (FLC) data elements of a
video stream are encrypted. However, the following security
issues regarding selective encryption have been identified: (1)
encrypting only I-frames of a video sequence does not pro-
vide enough security against ciphertext-only attacks, since
the unencrypted B- and P-frames can reveal partial visible
information [5]; (2) neither encrypting the sign bits nor en-
crypting multiple significant bits of the DCT coefficients is
secure enough against ciphertext-only attacks utilizing the
unencrypted bits [6]; (3) if all encrypted DCT coefficients
are set to fixed values, it is possible to recover a rough view
of the plaintext frame [7, 8]. In addition, many selective ap-
proaches require modification to both standard encoder and
decoder, and a number of approaches result in a format defi-
ant video stream.

The second type of algorithms use a nonconventional full
encryption methodology, where the encryption is performed
on the entire bitstream using a nonconventional encryption
algorithm. Most of these algorithms are targeted for speed.
Methods relying on fast chaotic maps are promising due to
their fast performance. Although many chaotic encryption
approaches were shown to be insecure, there are chaotic en-
cryption algorithms that, up to date, remain unbroken, such
as the method of Li et al. [9]. An excellent overview of these
approaches, along with their comparative security analysis is
presented in [10, 11]. There are a few recently proposed fast,
hardware-friendly full encryption methods that are based
on a class of neural networks [12]. However, these methods
were later shown to be less secure than originally anticipated
[13]. There are also nonconventional full approaches based
on other mathematically hard problems, but most of them
have been shown insecure due to oversimplification. For ex-
ample, Yi et al. [14] proposed a new fast encryption algo-
rithm for multimedia (FEA-M), which bases the security on
the complexity of solving nonlinear Boolean equations. The
scheme was shown insecure against several different attacks
[15, 16]. In addition to questionable security, most noncon-
ventional full encryption approaches are applied after en-
coding which does not support format compliance require-
ments. Also many of these algorithms are obsolete in recent
years after the wide adoption of advanced encryption stan-
dard (AES) that offers much faster performance in compar-
ison to the previous conventional cryptosystems, including
data encryption standard (DES).

An approach to video encryption where the encryption
step occurs before encoding is attractive since many of the
application requirements are inherently supported. However,
most encryption algorithms have a property to randomize
the source data and thus negatively affect compression per-
formance of an encoder. The first attempt to creating an
encryption scheme that preserves the compressibility of the
source was made by Pazarci and Dipçin [17], in which the en-
cryption occurs in the RGB color space using four secret lin-
ear transforms before the video is compressed by the MPEG-
2 encoder. However, in [4] it was shown that the scheme is

not secure against brute force attacks where searching com-
plexity is estimated to a computationally feasible number
of possibilities, and that the scheme is not secure against
known/chosen-plaintext attacks. Also, the scheme by Pazarci
and Dipçin necessarily produces a perceivable output with
degraded quality but does not offer a mode where the output
encrypted video is nonperceivable.

An encryption scheme of much stronger security based
on permutations of video frames was proposed in [18], and
in this work we extend this approach to a family of algo-
rithms that can be used for a variety of video applications.
The scheme from [18] is based on the correlation-preserving
“almost sorting” permutations which are derived from the
previous frames. The proposed methodology is based on the
fact that both sorting and “almost sorting” permutations can
serve to preserve or improve compressibility of frames, and
at the same time to disguise the frames to a nonperceivable
form. This duality represents the main principle upon which
our proposed algorithms rely.

The rest of the paper is organized as follows. Section 2
introduces permutations and examines their dual role in ar-
eas of data compression and data encryption. The proposed
video encryption algorithms based on permutation trans-
formations are presented in Section 3, while in Section 4 a
thorough security analysis is performed. Experimental re-
sults showing the performance of proposed algorithms are
given in Section 5. Finally, Section 6 serves to present our
conclusions and ideas for future work related to this research.

2. DUALITY OF PERMUTATIONS

Permutation-based transformations are basic building
blocks for many compression and encryption techniques.
However, the dual use of these transformations has not
been extensively studied. In this work we analyze the
compression-encryption duality of permutations and
develop actual methodologies for the dual use of certain
permutation-based transformations in domain of digital
video compression and encryption. To set the stage for the
later discussion, some preliminary definitions are established
next.

2.1. Permutations on sequences

A video frame can be represented in a one-dimensional fi-
nite sequence using raster scan order. A permutation of a fi-
nite sequence s is a bijection from s onto itself. Permutation
P is often represented by its Cartesian form or brackets form
denoting the indices for the rearrangement of s:

P =
[
i1 i2 · · · in

]
, (1)

where i j , 1 ≤ j ≤ n, is a sequence of n unique indices of
elements of s, and n is the size of s. The family of all per-
mutations on a sequence of size n forms an algebraic group
under functional composition, denoted by Sn. P is called sort-
ing permutation of s if it rearranges s in ascending order. We

use s
f1
1 , . . . , s

fk
k to denote the histogram of s, where s1, . . . , sk

Daniel Socek et al. 3

are distinct elements of s in the ascending order and fi the
frequency of element si.

Theorem 1. If a histogram of finite sequence s is s
f1
1 , . . . , s

fk
k ,

there are exactly f1!× · · · × fk! sorting permutations of s.

Proof. Let P be a sorting permutation of s. The indices cor-
responding to the positions of s1 appear in the first f1 places
of the Cartesian form of P, the indices of s2 appear in the
second f2 places, and so on. Thus, one can partition P into
k segments of indices of sizes f1, . . . , fk, and rearranging the
indices within each segment results in another sorting per-
mutation of s since the indices correspond to same values.
At the same time, exchanging elements across segments dis-
rupts ascending order of the resulting rearrangement of s,
and the corresponding permutation is not a sorting permu-
tation. Since there are fi! ways of rearranging indices of the
ith segment of the Cartesian form of P, there are exactly
f1!× f2!× · · · × fk! sorting permutations of s.

Thus, if a frame F is of dimension w × h, rearrange-
ments of pixel values from F are achieved when permutations
from Sw×h act on the corresponding raster scan sequence.
If F has k colors, and f1, . . . , fk are frequency values of the
color histogram of F, then according to Theorem 1 there are
f1!× · · · × fk! permutations in Sw×h that sort frame F.

2.2. Permutations and compression

Permuting a sequence affects the correlation of the neighbor-
ing samples. If a random permutation acts on a sequence, the
correlation of the neighboring samples is likely destroyed and
the compressibility is decreased. On the other hand, if a sort-
ing permutation acts on a sequence, the sample-to-sample
correlation of the symbols is the best possible, and thus very
suitable for run-length encoding (RLE) and similar compres-
sion primitives that exploit such correlation.

Many compression algorithms that assume neighboring
sample correlation in the source, such as the image and video
coding methods, are likely to take advantage of the sorted sig-
nal and produce very good compression. Figure 1 illustrates
how compressibility of a natural image dramatically changes
when pixel values are rearranged according to either a ran-
dom permutation or a sorting permutation.

2.2.1. Compressing a sorting permutation

Even though certain permutations, such as sorting permuta-
tions, can affect the compression of source data in the posi-
tive way, compression of the permutation itself is usually not
efficient. If a permutation P of degree n, that is, P ∈ Sn, is to
be transmitted, an obvious way is to represent P as a sequence
of length n, consisting of unique log2 n-bit indices corre-
sponding to a Cartesian form of P. Total transmission cost
is in that case n log2 n bits. If an ordering of permutations
from Sn is fixed, such as the lexicographic ordering, each per-
mutation have its own index according to that ordering. For
permutations with small indices transmitting the index it-
self could be more efficient, but in the worst case the cost

of this transmission is log2 n!. This approach is analogous
to a fixed dictionary compression approach. Unfortunately,
sorting permutations of a natural image usually do not have
lexicographically small index to compress well. Furthermore,
for frames with k-bit color palette, where k < log2 n, it is
cheaper to send an uncompressed frame (nk bits) from which
the sorting permutation can be calculated, than to directly
transmit the sorting permutation using n log2 n bits.

Thus, directly compressed source data is usually smaller
in size than compressed permuted source data plus the com-
pressed permutation that is used to recover the original order
of the source. If efficient compression can be performed on
a source data, which is the case for natural images and video
frames, it is likely that the cheapest way to transmit a sort-
ing permutation is to transmit the compressed source from
which the receiver can calculate the sorting permutation after
uncompressing the received data. This reveals the rationale
used in the proposed algorithms.

2.3. Role of permutations in data compression

Permutation-based transformations were considered to serve
as a compression primitive in the past. In [19], Burrows
and Wheeler introduced one such transformation, which is
referred to as the Burrows-Wheeler transformation (BWT).
The authors presented an approach called block sorting loss-
less data compression algorithm, which combined BWT with
move-to-front coding and a standard compressor such as
Huffman coding or arithmetic coding. The algorithm report-
edly achieves compression rates similar to that of content-
based lossless methods, but at execution times comparable to
that of the fast general-purpose lossless compressors, such as
Ziv-Lempel techniques. The work by Burrows and Wheeler
was further investigated and improved by Deorowicz [20].
Using the concept of permutation codes, Arnavut and others
also studied applications of permutations and permutation
codes to the compression of digital images [21]. According
to study by Arnavut and Otu a good compression is achieved
when BWT is used in lossless compression of color-mapped
images where pixel values represent indices that point to
color values in a look-up table [21]. In [22], Arnavut and
Magliveras introduced lexical permutation sorting algorithm
(LPSA), a more generalized version of BWT which has bet-
ter performance than BWT when transmitting permutations.
Sample reordering is used in many transform-based image
and video coding methods. Specifically, in JPEG and MPEG
type of image and video compression, a special reordering
(permutation) is used to reorder transform coefficients (e.g.,
DCT coefficients) in a fixed order that allows for a more ef-
ficient symbol entropy coding. Although some alternate re-
orderings exist for certain applications, best performance on
average is expected when the coefficients are permuted ac-
cording to a zigzag ordering.

2.4. Permutations and encryption

Permutations are used extensively as an encryption prim-
itive in modern symmetric-key cryptography. In addition,
there is a significant number of permutation-only encryption

4 EURASIP Journal on Information Security

(a) (b) (c)

Figure 1: Compressibility of a natural image affected by permutations: (a) the original 256× 256 greyscale image Lena [GIF = 66.5 KB], (b)
randomly permuted image Lena [GIF = 85.3 KB], and (c) sorted image Lena [GIF = 7.38 KB].

Raw video

Output video

Encryption

Decryption

Encoding

Decoding

Encrypted
encoded video

Figure 2: Block diagram of an approach where encryption occurs before video encoding (compression).

algorithms proposed for both analog and digital image and
video encryption.

In most modern symmetric-key cryptosystems, permu-
tations are used for data diffusion. Systems such as AES or
DES are essentially a substitution-permutation networks, or
shortly S-P networks, where permutation transformations
are employed in every round. In fact, most symmetric-key
block ciphers rely on permutations of symbols (e.g., bits) in
order to provide data diffusion [23]. In addition, there are
cryptosystems based solely on transformations that use per-
mutation groups. For instance, cryptosystem PGM (permu-
tation group mapping) is based on logarithmic signatures of
finite permutation groups [24].

Permutations are extensively used in analog video en-
cryption. Techniques such as scan line shuffling [25] or pixel
position shuffling [26–28] represent common approaches for
analog video encryption. Similarly, in digital video encryp-
tion domain, secret permutations are widely used to shuffle
the positions of pixels [29], but also to shuffle DCT/wavelet
coefficients [30, 31], Huffman table codewords [3], and even
blocks or macroblocks [32]. These algorithms are based
solely on secret permutations that are generated by a secret
key.

Video encryption algorithms based solely on secret per-
mutations often receive harsh criticism. In [32] it is pointed
out that these algorithms are inherently and necessarily inse-
cure against several types of cryptanalysis, including known-
plaintext, chosen-plaintext, and chosen-ciphertext attacks.
The authors even discuss cryptanalytic techniques that are
universally applicable to all permutation-only encryption al-
gorithms. While the methods proposed in this work techni-
cally belong to this category of algorithms, there is a cru-
cial difference between the algorithms proposed here and

the previously proposed permutation-only encryption algo-
rithms. In Section 4 it is discussed in detail why this differ-
ence makes the proposed algorithms robust against the vari-
ous attacks presented in [32].

3. CORRELATION-PRESERVING VIDEO ENCRYPTION

Most encryption algorithms have a randomization effect on
the source data, and as such, cannot be effectively applied
before the compression stage. In this section we present a set
of encryption algorithms for spatial-only video coding based
on permutation transformations that have a correlation-
preserving property. Using these algorithms, one can per-
form encryption prior to video encoding, as illustrated in
Figure 2.

The basic idea behind the permutation-based methodol-
ogy for correlation-preserving video encryption is as follows.
Sorted, as well as “almost sorted” frames are strongly spa-
tially correlated. Such permuted frames are in many instances
even more compressible in terms of spatial-only coding than
the original source frames. When a sorting permutation of
the previous frame acts on the current frame, it produces
what we refer to as an “almost sorted” frame. Transmitting a
compressed frame from which the initial permutation can be
computed is efficient. Once an initial permutation is trans-
mitted through a secure channel, the sender uses it to “al-
most sort” the next frame. In Section 4 it is shown that, ex-
cept in rare circumstances, a sorted or “almost sorted” frame
can be safely sent through the regular, nonsecure channel.
By calculating a sorting permutation of the received frame,
the receiver uses it to recover the next frame, and so on.
This way the spatial correlation within frames of a video se-
quence is expected to be preserved, if not improved, when

Daniel Socek et al. 5

Initialization: Set a to a copy of w× h frame F, p to [0 1 2 · · · (w× h)− 1]
(the identity permutation with zero-based index), l to 0, and r to (w × h)− 1.

Input: a, p, l and r.

(1) Set i = l − 1, j = r, and v = a[r]

(2) If r ≤ l return from the algorithm

(3) Start an infinite loop and do the following:

(a) Set i = i + 1

(b) While a[i] < v do the following:

(i) Set i = i + 1

(c) Set j = j − 1

(d) While v < a[j] do the following:

(i) If j = l break from this while loop

(ii) Set j = j − 1

(e) If i ≥ j break from the infinite loop

(f) Exchange a[i] and a[j]

(g) Exchange p[i] and p[j]

(4) Exchange a[i] and a[r]

(5) Exchange p[i] and p[r]

(6) Recursively call this algorithm with a = a, p = p, l = l and r = i− 1

(7) Recursively call this algorithm with a = a, p = p, l = i + 1 and r = r.

Algorithm 1: Modified recursive quicksort algorithm for computing the unique sorting permutation of a given frame.

Input: Raw video sequence (or scene) F1, . . . ,Fm.

(1) Alice first computes the permutation P1 from frame F1.

(2) Alice calculates E(F1) and transmits it through ChS.

(3) For each subsequent frame Fi, i = 2, . . . ,m, Alice does the following:

(a) She computes the permutation Pi and the frame Pi−1(Fi);

(b) Alice then applies the standard encoder to the frame Pi−1(Fi) and

transmits the encoded frame E(Pi−1(Fi)) to Bob through ChR.

Algorithm 2: Basic encryption algorithm for lossless spatial-only video coding.

static-camera low motion sequences (e.g., video conferenc-
ing or telephony) and spatial-only video codecs (e.g., motion
JPEG) are used.

3.1. Global system settings

The system is assumed to have two channels of communica-
tion (in physical or abstract sense). ChR denotes a regular,
nonsecure channel where all messages are plain and open for
eavesdropping, while ChS denotes a secure channel that can
also be eavesdropped, however, the messages are encrypted
using a secure communication protocol based on a conven-
tional cryptosystem such as AES. In our model, a video con-
sists of one or more scenes and each scene consists of a se-
quence of frames F1,F2, . . . ,Fm. For a given frame, there are
likely a large number of sorting permutations of it (see The-
orem 1). The system must fix a method by which a unique
sorting permutation is always selected for a given image. Al-

gorithm 1 illustrates a method that we used for computing a
unique sorting permutation for a given frame. This particu-
lar method is based on a modification to a recursive quicksort
algorithm, however, similar approach can be used with other
sorting methods.

3.2. Basic algorithms

If F is a frame of size n = width of F × height of F, let P(F)
be a frame obtained by permuting the elements of F accord-
ing to a permutation P from Sn. The inverse of permutation
P is denoted by P−1. For a given frame Fi, let Pi denote the
unique sorting permutation obtained by the modified quick-
sort method from Algorithm 1. The encoding of frame F is
denoted by E(F), and D(F) denotes the decoding of F. The
basic algorithm for lossless video coding is described in Al-
gorithms 2 and 3 (encryption and decryption, resp.). The al-
gorithm for spatial-only lossless video encryption faithfully

6 EURASIP Journal on Information Security

Input: Encoded first frame E(F1) and encrypted encoded subsequent frames
of a video sequence (or scene) E(P1(F2)), . . . ,E(Pm−1(Fm)).

(1) Bob computes D(E(F1)) = F1 and obtains the permutation P1.

(2) For each successive received frame E(Pi−1(Fi)), i = 2, . . . ,m, Bob does

the following:

(a) Computes D(E(Pi−1(Fi))) = Pi−1(Fi) and calculates Fi =
P−1
i−1(Pi−1(Fi)) where P−1

i−1 is the inverse permutation of Pi−1;

(b) Calculates the permutation Pi of Fi.

Algorithm 3: Basic decryption algorithm for lossless spatial-only video coding.

Input: Raw video sequence (or scene) F1, . . . ,Fm.

(1) Alice first computes E(F1) and then F′1 = D(E(F1)) from which she

obtains the unique sorting permutation P′1.

(2) Alice sends E(F1) through ChS to Bob.

(3) She computes E(P′1(F2)) and sends it through ChR to Bob.

(4) Next, she computes F′2 = D(E(P′1(F2))) and then F′′2 = (P′1)−1(F′2) from

which she calculates the unique sorting permutation P′′2 .

(5) For each subsequent frame Fi, i = 3, . . . ,m, Alice does the following:

(a) Computes E(P′′i−1(Fi)), and sends it to Bob through ChR;

(b) Computes F′i = D(E(P′′i−1(Fi)));

(c) Applies (P′′i−1)−1 to get F′′i = (P′′i−1)−1(F′i);

(d) Calculates the canonical sorting permutation P′′i .

Algorithm 4: Basic encryption algorithm for lossy spatial-only video coding.

corresponds to the model from Figure 2 where encryption
completely precedes video encoding. This is achieved by cre-
ating “almost sorted” frames that are sent through open
channel ChR. In spatial-only lossless video encoding, adap-
tive dictionary-based compression primitives are often used
to exploit neighboring pixel correlation prior to applying en-
tropy coding. In particular, this technique is employed in an-
imated GIF and motion PNG coding. Sorted and “almost
sorted” data is well suited to this type of compression. Com-
pression with a pixel prediction model such as the one used
in motion JLS (lossless JPEG) also relies on correlation of
the currently encoded pixel and the pixels in the neighbor-
hood area. In motion JLS, for instance, a current pixel is pre-
dicted in raster order, from pixels directly on top, to the diag-
onal and to the left of the current pixel. Sorted and “almost
sorted” data are also suitable for this compression model.

Similar, but slightly different approach to video encryp-
tion can be taken when dealing with lossy spatial-only video
coding. However, to compensate for the loss of data and to
prevent error propagation issues, “almost sorting” permuta-
tions must be calculated on the compressed frames which re-
sults in somewhat more involved encryption step. The algo-
rithm (encryption and decryption) targeted for lossy video
coding is depicted in Algorithms 4 and 5, respectively. This
algorithm requires a compression stage as a preprocessing to

the encryption, so technically it does not exactly correspond
to Figure 2. When compression is seen as a preprocessing
step, the algorithm should still be considered to be a pre-
compression encryption approach, and as such, inherently
possesses the nice properties such as codec-standard compli-
ance and format compliance.

In lossy transform-based coding of digital images and
video frames, typically a block of pixels undergoes the trans-
formation such as DCT or wavelet. For instance, this is the
case with motion JPEG (M-JPEG) coding. The given block
of pixels represents a small subimage of the image or frame,
thus containing a set of two-dimensional neighboring pix-
els. In this setting sorted and “almost sorted” images and
frames compress well. If the sorted and “almost sorted” data
is grouped in to the blocks of the same size that is used in
transform coding, the compression is further improved, as
indicated by an example in Figure 3.

The computational complexity of the proposed method
is very low at the decoder side for both lossless and lossy
video coding, since the only additional computation that has
to be performed involves the calculation of a sorting permu-
tation. The algorithm from Algorithm 1 used to calculate the
unique sorting permutation of a given frame has a computa-
tional complexity of only O(N logN). Inverting or applying
a permutation is equivalent to a table lookup.

Daniel Socek et al. 7

Input: Encoded first frame E(F1), encrypted encoded second frame E(P′1(F2))
and encrypted encoded subsequent frames of a video sequence (or scene)
E(P′′2 (F3)), . . . ,E(P′′m−1(Fm)).

(1) Bob calculates D(E(F1)) = F′1 ≈ F1 and sorting permutation P′1.

(2) From E(P′1(F2)) he computes F′2 = D(E(P′1(F2))).

(3) Bob approximates F2 ≈ F′′2 = (P′1)−1(F′2).
(4) He then recovers the unique sorting permutation P′′2 of F′′2 .

(5) For each received frame E(P′′i−1(Fi)), i = 3, . . . ,m, Bob:

(a) Decodes E(P′′i−1(Fi)) into F′i = D(E(P′′i−1(Fi)));

(b) Approximates Fi ≈ F′′i = (P′′i−1)−1(F′i);

(c) If i < m he calculates a sorting permutation P′′i of F′i .

Algorithm 5: Basic decryption algorithm for lossy spatial-only video coding.

(a) (b) (c)

Figure 3: Improving compressibility by adhering to block size used in transform-based coding: (a) 256 × 256 greyscale image Lena [JPEG
= 6.95 KB], (b) sorted image Lena in raster order [JPEG = 1.81 KB], and (c) image Lena fully sorted and arranged according to 8× 8 blocks
conforming to the encoder’s transform coding block size [JPEG = 1.09 KB]. The compression quality parameter of JPEG encoder was set to
50 (where 0 is the best quality and 100 the worst).

The basic algorithms proposed in this section can be ex-
tended to accommodate for additional application require-
ments. For instance, these algorithms do not offer perceptual
quality control, cannot handle global camera motion such as
translation, and do not support VCR-like functionality. Next,
we introduce several extensions to the basic algorithms in or-
der to support these additional application requirements.

3.3. Extensions to basic algorithms

The following extensions to the basic algorithms from Algo-
rithms 2, 3, 4, and 5 are established in order to broaden their
applicability.

(i) Block-based extension for perceptual quality control.

(ii) Extension for handling global camera translational
motion.

(iii) Extension for hiding the histogram.

(iv) Extension for enabling VCR-like functionality and bet-
ter error resilience.

3.3.1. Block-based approach

The proposed algorithm can be applied on individual blocks
within a frame the same way it is applied on the entire frame.
By doing so, two different features are achieved: (1) the algo-
rithm is more robust to high motion within a frame as long
as the motion is limited to small number of blocks, and (2)
by controlling the block size one can also control the degree
of perception in the sense that the video becomes degraded
(blocky) but perceivable for smaller blocksizes. This algorith-
mic mode is illustrated in Figures 6(g), 6(h), and 6(i).

3.3.2. Extensions for handling global cameramotion

Unfortunately, the basic algorithms cannot handle camera
motion well, since the sorting permutation of the previous
frame will, in the case of global motion, not create almost
sorted data when applied to the data of the current frame.
However, if a global translational camera motion is known,
for instance, by using some motion estimation methods as
a preprocessor, it is possible for the receiver to readjust the
sorting permutation accordingly by sending this information
to the receiver’s side.

8 EURASIP Journal on Information Security

Fixed content

(a)

Fixed content

New
area

xx

(b)

Fixed content

New areay

y

(c)

Fixed content

New area y

y

x

x

(d)

Figure 4: Translational camera motion.

Assuming that the camera moves in a simple transla-
tional motion, as illustrated in Figure 4, where x and y rep-
resent the amount of pixels that camera moved within x-axis
and y-axis, respectively, the sorting permutation can be read-
justed to almost sort the current frame provided that the val-
ues of x and y are given.

Suppose a scene in which no movement occurred is cap-
tured with a camera that solely moved horizontally on x-axis
a distance that translates to exactly x pixels and vertically on
y-axis a distance that translates to exactly y pixels. Note that
the value of x is positive if the camera moves to the right, and
negative if it moves to the left, while value of y is positive if
the camera moves down, and negative if it moves up. The al-
gorithm presented in Algorithm 6 is used for readjusting the
sorting permutation of frame Fi, represented with zero-based
index and denoted by Pi, into P′i to make it more suitable “al-
most sorting” permutation of the next frame Fi+1.

3.4. Histogram-hiding extension

Histogram information in the basic model is known when
the “almost sorted” frames are sent through the regular chan-
nel. Thus, from a security point of view, it is a good idea to
hide the histogram from the adversary. Since the original his-
togram is actually secret, it is possible to hide the rest of the
video histograms by subtracting the sorted image (the his-
togram) of the previous frame from the currently “almost
sorted” frame, which introduces some computational over-
head in order to compute the differences. This extension can
be combined with a block-based extension to either pro-
vide some limited perceptual encryption and to restrict the
motion-related permutation noise to the block where motion
occurred, as illustrated in Figures 6(k) and 6(l). This trans-
formation is equivalent to applying a secret permutation (or
secret permutations in the case of block-based approach with
histogram-hiding extension) on the ordinary frame differ-
ences, where a given permutation changes significantly from
frame to frame.

Given two w×h video frames I and J , the frame difference
between I and J , denoted by Δ(I , J), is defined as follows:

Δ(I , J)[x, y] = clip
(
I[x, y]− J[x, y] +

⌊
xpeak

2

⌋)
,

1 ≤ x ≤ w, 1 ≤ y ≤ h,
(2)

where I[x, y] denotes the pixel value of I at coordinates
(x, y), xpeak is the maximum pixel value (e.g., 2n − 1 for n-
bit-per-pixel frames), and clip(·) is the following function:

clip(x) =

⎧⎪⎪⎨
⎪⎪⎩

xpeak, x > xpeak;

0, x < 0;

x, 0 ≤ x ≤ xpeak.

(3)

One should note the following property regarding frame
differencing and permutations. For two given w× h frames I
and J and a permutation P ∈ Sw×h, the following holds:

Δ
(
P(I),P(J)

) = P
(
Δ(I , J)

)
. (4)

In the proposed extension, it is more efficient from the
computational point of view to perform the transformation
Pi(Δ(Fi,Fi+1)) than the transformation Δ(Pi(Fi),Pi(Fi+1)).

In the histogram-hiding extension, the spatial correlation
is likely improved over the base approach (see Section 5).
When additional computation is allowed, this extension usu-
ally reduces bitrate. A sole frame differencing technique can
be used to achieve a limited form of perceptual encryption
provided that the initial frame is kept secret, however, it is
not an effective perceptual encryption mechanism since dif-
ference frames carry too much visible information about the
content and additional encryption transformation is neces-
sary to provide confidentiality. When combined with block-
based extension, histogram-hiding approach achieves per-
ceptual encryption with a considerably limited quality con-
trol. Thus, the recommended use of this extension is with the
basic algorithms where entire frames are permuted.

3.5. Extension for enabling VCR-like functionality and
improved error resilience

Just like in MPEG video coding, there is a need for having
self-decodable frames, ones that are independent of previous
or future frames. In the base scheme, the current frame is
always recoverable from the sorting permutation of the pre-
vious frame, and as such, the scheme cannot handle VCR-like
functionality or frame dropping caused by noisy channels or
other communication errors. However, these functionalities
can be achieved in the following way. The sorting permuta-
tion of the first frame (the key frame) can be used to “almost
sort” every kth frame. The loss in compression gain is ex-
pected to be small since the assumption that all frames are
part of a single scene holds. By doing so, the receiver can fast
forward or rewind the video up to a kth frame, and frame
dropping will affect only frames up to the next kth frame.
This strategy is analogous to the strategy used in MPEG-like
algorithms, where GOP (group of pictures) with repetitive
I-frames are utilized.

Daniel Socek et al. 9

Input: Sorting permutation Pi of w × h frame Fi, and a global horizontal and
vertical camera translational motion from frame Fi to frame Fi+1, denoted by
x and y, respectively.

(1) Set c = 0 and d = w × h

(2) For 0 ≤ k < w × h do the following:

(a) Set i = x + Pi[k] modw

(b) Set j = y + �Pi[k]/w�
(c) If j < h, j ≥ 0, i < w and i ≥ 0 then set P′i [c] = j ×w + i and

increment c by 1

(d) Otherwise, set P′i [d] = (j modh)×w + (imodw) and decrease

d by 1.

Algorithm 6: Permutation readjustment algorithm to handle global translational motion.

(a) (b) (c) (d)

Figure 5: Readjustment of the sorting permutation: (a) previous frame, (b) current frame with global motion x = 6, y = −4, (c) frame
sorted with a sorting permutation of the previous frame, and (d) frame sorted with a readjusted sorting permutation of the previous frame.

4. SECURITY ANALYSIS

This section serves to analyze security aspects of the proposed
methods. The security strengths and weaknesses are pointed
out.

Brute-force attack

Brute-force attack is based on exhaustive key search, and
is feasible only for the cryptosystems with relatively small
key space. In our case, the brute-force attack consists of
two possible venues: one could either attack the underly-
ing conventional cryptosystem used for encryption in chan-
nel ChS, or the proposed permutation-based method used
in channel ChR. For that reason, it is recommended to
use a strong conventional symmetric-key cryptosystem such
as AES with 128-bit or stronger keys. The size of the key
space related to our permutation-based method is equiva-
lent to the following: given a color histogram of a w × h
image F, how many different images can be formed out
of the histogram color values? Note that F is just one of
these images.

Let s
f1
1 , . . . , s

f k

k be the histogram of frame F. In [18] it
was shown that the number of different images that can be
formed by permuting F is equal to the size of the Sw×h-
orbit of F, denoted by Sw×h(F), under the group action of

Sw×h on the set of all possible images of dimension w × h.
Since

∣∣Sw×h(F)
∣∣ = (wh)!∏k

i=1 fi!
, (5)

there are exactly (wh)!/
∏k

i=1 fi! different images with the

same color histogram s
f1
1 , . . . , s

f k

k . These distinct images de-
termine the effective key space of our method. If one uses
an n-bit conventional cryptosystem to encrypt key frames
in channel ChS, the actual key space of the proposed
method is

min

(
2n,

(wh)!∏k
i=1 fi!

)
. (6)

The size of the key space depends on the color histogram
of the encrypted frame. As one can see, this number is ex-
tremely large when considering any meaningful images of
reasonable dimensions, and it is usually much larger than
brute-forcing 2n keys of the used conventional symmetric-
key cryptosystem.

In the case of block-based algorithmic mode, the attacker
is faced with a smaller key space. If a blocksize of b×c is used,
there are wh/bc blocks within a frame. Suppose that each ith

10 EURASIP Journal on Information Security

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6: 150th frame of the following sequences: (a) original Akiyo, (b) sequence obtained by encrypting Akiyo with the basic encryption
algorithm for lossless coding and decoding it without decryption, (c) sequence obtained by properly decrypting an encrypted Akiyo with
lossless coding, (d) sequence obtained by encrypting Akiyo with the basic encryption algorithm for lossy MJPEG coding (with quality 90)
and decoding it without decryption, (e) sequence decoded from a regular, not encrypted encoded Akiyo (compressed size 16 KB, PSNR
45.198 dB), (f) sequence obtained by properly decrypting an encrypted Akiyo using the proposed basic algorithm with M-JPEG coding
(compressed size 12 KB, PSNR 41.737 dB), (g) (h) (i) sequence obtained by encrypting Akiyo with the block-based approach (blocksizes
32 × 32, 16 × 16, and 8 × 8, resp.) for lossless coding and decoding it without decryption, and (j) (k) (l) sequence obtained by encrypting
Akiyo with the histogram-hiding approach combined with the basic encryption algorithm and the block-based approach (blocksizes 32×32
and 8× 8, resp.) for lossless coding and decoding it without decryption.

Table 1: Sequences used in the experiments.

Sequence No. of frames Format Bits/pixel

Hall monitor 250 CIF 8

Akiyo 250 CIF 8

Mother daughter 250 CIF 8

Grandma 100 QCIF 8

Claire 100 QCIF 8

Miss America 100 QCIF 8

Daniel Socek et al. 11

Table 2: Compression performance of the proposed encryption algorithms with lossless spatial-only video coding.

Animated GIF

Algorithm Hall monitor Akiyo Mother Grandma Claire Miss Am

Basic 0.746 0.433 0.745 0.685 0.776 0.867

blk32 0.959 0.597 0.955 — — —

blk16 0.976 0.655 0.968 0.845 0.908 0.981

blk8 0.980 0.745 0.975 0.877 0.941 0.990

Basic+hh 0.633 0.254 0.634 0.438 0.475 0.683

blk32+hh 0.657 0.264 0.654 — — —

blk16+hh 0.657 0.262 0.652 0.444 0.487 0.686

blk8+hh 0.658 0.259 0.650 0.445 0.487 0.688

Motion PNG

Algorithm Hall monitor Akiyo Mother Grandma Claire Miss Am

Basic 0.813 0.421 0.789 0.695 0.765 0.891

blk32 0.993 0.555 0.969 — — —

blk16 1.007 0.631 0.982 0.869 0.941 0.995

blk8 1.011 0.738 0.993 0.915 0.990 1.011

Basic+hh 0.699 0.302 0.709 0.510 0.571 0.729

blk32+hh 0.713 0.314 0.713 — — —

blk16+hh 0.715 0.310 0.710 0.517 0.587 0.740

blk8+hh 0.716 0.307 0.708 0.518 0.583 0.743

Motion JLS

Algorithm Hall monitor Akiyo Mother Grandma Claire Miss Am

Basic 1.113 0.693 1.135 0.757 0.954 1.131

blk32 1.120 0.691 1.122 — — —

blk16 1.128 0.750 1.132 0.818 1.037 1.142

blk8 1.150 0.854 1.147 0.882 1.135 1.163

Basic+hh 1.053 0.441 1.085 0.662 0.789 1.069

blk32+hh 1.049 0.445 1.056 — — —

blk16+hh 1.048 0.440 1.047 0.660 0.794 1.064

blk8+hh 1.046 0.433 1.035 0.664 0.797 1.064

b×c block in F has the color histogram s
fi1
i1 , . . . , s

fik
ik . Then, the

size of the key space is

min

(
2n,

wh/bc∏

j=1

(bc)!∏k
i=1 f ji!

)
, (7)

which is for reasonable blocksizes, such as 8×8 or larger, still
computationally infeasible.

Known/chosen-plaintext and chosen-ciphertext attacks

Permutation-only video encryption is considered weak
against known/chosen-plain-text attack, and a chosen-
ciphertext attack [32]. However, all of the previously pro-
posed methods rely on generating the secret permutation
using a secret key. Under this scenario, all of the aforemen-
tioned attacks are trying to recover the secret key (or a part
of it) that was used for the current or future encryptions.
Our algorithms do not rely on such a principle, and there
is no secret key upon which a permutation is generated. The

proposed approaches rely on the sorting permutation of pre-
vious frame, and thus, a key is directly dependant of the
plaintext. Under a chosen-plaintext attack, the adversary can
compute the sorting permutation for the chosen frame, but
this gives no information about the sorting permutations for
the unknown frames. Under a chosen-ciphertext attack, the
adversary can recover the unsorting permutation for the cho-
sen encrypted frame, but this gives no information regarding
other unknown ciphertexts.

Knownweaknesses and consequential
applicability limitations

A limited known-plaintext attack is applicable to our meth-
ods, because the adversary can recover all frames that follow
the known frame until the scene changes and key frame is
updated. This, however, only reveals that one scene, since the
key is completely changed as soon as the scene changes. This
is a feature of all systems whose key depends on the plain-
text. In addition, if the adversary has the information on the

12 EURASIP Journal on Information Security

Table 3: Compression performance of the proposed encryption algorithms with lossy spatial-only video coding.

Motion JPEG (quality 90)

Algorithm Hall monitor Akiyo Mother Grandma Claire Miss Am

Basic 0.923 0.797 1.035 0.602 0.756 1.015

blk32 0.904 0.826 1.010 — — —

blk16 0.925 0.863 0.999 0.716 0.947 1.003

blk8 0.945 0.876 0.987 0.779 0.954 0.995

Basic+hh 0.741 0.373 0.801 0.349 0.397 0.732

blk32+hh 0.709 0.340 0.700 — — —

blk16+hh 0.690 0.327 0.666 0.324 0.361 0.691

blk8+hh 0.664 0.305 0.636 0.317 0.346 0.658

Motion JPEG (quality 70)

Algorithm Hall monitor Akiyo Mother Grandma Claire Miss Am

Basic 0.825 0.796 0.968 0.589 0.687 0.999

blk32 0.803 0.870 0.972 — — —

blk16 0.845 0.886 0.955 0.740 0.913 0.984

blk8 0.888 0.893 0.937 0.805 0.945 0.976

Basic+hh 0.524 0.314 0.527 0.261 0.328 0.570

blk32+hh 0.487 0.309 0.460 — — —

blk16+hh 0.465 0.301 0.434 0.256 0.321 0.538

blk8+hh 0.449 0.288 0.418 0.255 0.316 0.522

Motion JPEG (quality 50)

Algorithm Hall monitor Akiyo Mother Grandma Claire Miss Am

Basic 0.764 0.750 0.889 0.580 0.657 0.938

blk32 0.763 0.849 0.917 — — —

blk16 0.822 0.867 0.911 0.757 0.895 0.962

blk8 0.882 0.885 0.893 0.814 0.939 0.951

Basic+hh 0.403 0.340 0.442 0.291 0.356 0.550

blk32+hh 0.374 0.332 0.409 — — —

blk16+hh 0.364 0.325 0.395 0.291 0.356 0.542

blk8+hh 0.372 0.320 0.390 0.293 0.355 0.535

possible videos to be encrypted, he or she may be able to rec-
ognize which video sequence is being transmitted from Alice
to Bob by observing the publicly given pixel value histograms
of frames. Another related problem is the adversary’s ability
to analyze the properties of a given histogram for rough clues
about the content. Namely, cartoon pictures and real photos
have different histograms, and photos of human faces usu-
ally have narrower histograms than photos of natural scenes
[10]. Finally, since the encrypted frames look less smooth
when a fast motion occurs within a scene, it is possible to
gain a limited knowledge about the scene dynamics by ob-
serving the “almost sorted” frames. Although limited, these
attacks are unavoidable in the proposed methodology and
our video encryption algorithms should not be used in ap-
plications where these attacks are of interest to an adversary.

Histogram-hiding extension of the proposed algorithms
is much more robust against the second type of the known
histogram attack since the adversary does not have the ac-
tual color histograms of the frames needed to analyze the
properties of a given histogram for rough clues about the
content. Source recognition attack still holds since the adver-

sary have the access to the distribution of frame differences in
the encrypted video, a statistics that can reveal the previously
known video.

Even though some weaknesses have been identified, the
proposed video encryption algorithms are applicable to a
majority of real-word video security scenarios.

5. EXPERIMENTAL RESULTS

To evaluate the performance of our method in terms of com-
pression, experiments are performed on six benchmark se-
quences in CIF (352 × 288) and QCIF (176 × 144) formats.
Table 1 shows the technical summary of the used sequences.
The following is a legend of acronyms used in Tables 2, 3, and
4:

(i) basic—basic algorithm operating on entire frames;

(ii) blk32—block-based extension operating on 32 × 32
blocks;

(iii) blk16—block-based extension operating on 16 × 16
blocks;

Daniel Socek et al. 13

Table 4: Resulting PSNR (in dB) with lossy spatial-only video coding.

Motion JPEG (quality 90)

Algorithm Hall monitor Akiyo Mother Grandma Claire Miss am

None 43.03 45.10 45.05 40.62 44.74 45.18

basic 38.76 41.50 39.61 41.14 41.81 41.14

blk32 39.03 43.04 40.64 — — —

blk16 39.94 43.17 40.93 41.66 43.16 42.10

blk8 40.23 43.25 41.22 41.40 43.16 42.37

Basic+hh 39.98 46.15 41.35 45.05 46.12 43.47

blk32+hh 40.37 46.66 42.13 — — —

blk16+hh 40.57 47.00 42.47 45.44 46.80 43.96

blk8+hh 40.85 47.52 42.82 45.63 47.18 44.32

Motion JPEG (quality 70)

Algorithm Hall monitor Akiyo Mother Grandma Claire Miss am

None 37.97 40.23 40.73 36.11 39.46 41.10

basic 33.38 36.04 34.27 35.98 36.23 35.61

blk32 34.90 37.42 35.42 — — —

blk16 35.42 37.70 35.88 36.34 37.26 36.70

blk8 35.72 38.03 36.39 36.19 37.35 37.18

Basic+hh 36.09 42.91 38.36 43.47 43.53 40.67

blk32+hh 36.74 43.19 38.90 — — —

blk16+hh 37.13 43.56 39.27 43.72 44.11 41.03

blk8+hh 37.64 44.15 39.79 43.90 44.49 41.49

Motion JPEG (quality 50)

Algorithm Hall monitor Akiyo Mother Grandma Claire Miss am

None 35.80 38.04 38.71 34.46 37.13 39.32

basic 31.27 33.84 32.33 33.72 34.01 33.49

blk32 32.76 35.03 33.47 — — —

blk16 33.25 35.43 33.98 34.05 34.83 34.55

blk8 33.63 35.81 34.61 33.99 35.04 35.10

Basic+hh 34.95 41.02 37.51 42.35 42.09 39.78

blk32+hh 35.42 41.14 37.88 — — —

blk16+hh 35.82 41.39 38.21 42.51 42.49 39.93

blk8+hh 36.43 41.82 38.73 42.65 42.78 40.32

(iv) blk8—block-based extension operating on 8 × 8
blocks;

(v) basic+hh—basic algorithm with histogram-hiding ex-
tension operating on entire frames;

(vi) blk32+hh—block-based extension operating on 32 ×
32 blocks with histogram-hiding extension;

(vii) blk16+hh—block-based extension operating on 16 ×
16 blocks with histogram-hiding extension;

(viii) blk8+hh—block-based extension operating on 8 × 8
blocks with histogram-hiding extension;

(ix) none—encoding without encryption.

Each sequence from Table 1 was encrypted with the pro-
posed video encryption algorithms and encoded with both
lossless and lossy spatial-only video coding. The encrypted
sequences are evaluated in terms of compression perfor-
mance, and in case of lossy coding, also in terms of re-
sulting PSNR. The goal was to measure how the proposed

correlation-preserving algorithms affect compressibility. Ta-
bles 2 and 3 show the ratio of encrypted encoded bitsize and
the unencrypted encoded bitsize.

Finally, Table 4 shows the resulting PSNR for the lossy
coding case. There is often a modest loss of quality due
to slight salt-and-pepper noise that is added to the recon-
structed (decrypted) video due to quantization, as depicted
in Figures 6(e) and 6(f).

6. CONCLUSIONS AND FUTUREWORK

In this work, we present a methodology for encrypting a
video content before the compression phase, without sig-
nificantly impacting the compression ratio. In its core, the
proposed approaches are based on permuting the current
frame with a specific sorting permutation of a previous
frame. The proposed algorithms preserve, and in some in-

14 EURASIP Journal on Information Security

stances even improve the spatial correlation of the source
data since “almost sorted” frames on average have a better
spatial sample-to-sample correlation than the actual frames.
Therefore, spatial-only video codecs can be enhanced with
an encryption-equipped preprocessor and a decryption-
equipped postprocessor that can result in similar or im-
proved compression performance but in the same time pro-
viding a significant level of computationally provable se-
curity. In effect, the algorithms produce fully application-
friendly output and require no modification to the codec
modules. Both security and performance analysis of the
proposed methodology show that the algorithms are com-
putationally efficient and resistant to typical cryptanalytic
attacks.

There are several obvious applications in practice for
which the proposed algorithms are suitable. Industrial and
business-related video telephony and videoconferencing of-
ten requires confidentiality. The types of videos and price of
spatial-only codecs, such as M-JPEG, clearly suit the require-
ments of the proposed encryption approaches. Surveillance
video monitoring is also a suitable application. In this appli-
cation it is important not to use motion-based coding since
motion coding tends to reduce the spatial resolution, but
more importantly, interpolated video is inadmissible as ev-
idence in many legal jurisdictions. Due to recent terrorist at-
tacks on western countries such as United States and United
Kingdom, airplane cockpits and other public transportation
places are monitored by their governments. Here, M-JPEG
is currently the preferred method as it allows each picture
to be wholly compressed into a data file, whereas MPEG de-
rives frames from a sequence, storing mainly the differences
and use interpolated frames which really do not stand up
in court [33]. Digital multimedia captured for medical pur-
poses is likely to be encoded with lossless video coding and
without any kind of interpolation since the highest precision
is necessary for correct diagnosis, and many medical multi-
media videos are indeed represented by a single scene with
low-motion.

Future directions should include an investigation of ex-
tending or modifying the proposed principle to achieve ef-
ficiency in exploiting temporal correlation as well, in order
to achieve applicability to more advanced video codecs such
as H.26x and MPEG family. The proposed algorithms could
be combined with an object segmentation approach to im-
prove their robustness against movement of objects within
the scene, for instance, by using the sorting permutations
of each object from the previous frame (including back-
ground). Another possibility for future research include the
extension to spatial selectivity (e.g., to achieve anonymity)
where only objects of interest (such as human face, etc.) are
encrypted, while other objects are kept unencrypted.

REFERENCES

[1] J. Meyer and F. Gadegast, “Security mechanisms for multime-
dia data with the example MPEG-1 video,” Project Description
of SECMPEG, Technical University of Berlin, 1995.

[2] G. Spanos and T. Maples, “Performance study of a selective
encryption scheme for the security of networked, real-time
video,” in Proceedings of the 4th International Conference on
Computer Communications and Networks (ICCCN ’95), pp. 2–
10, IEEE Press, Las Vegas, Nev, USA, September 1995.

[3] B. Bhargava, C. Shi, and S.-Y. Wang, “MPEG video encryption
algorithms,” Multimedia Tools and Applications, vol. 24, no. 1,
pp. 57–79, 2004.

[4] S. Li, G. Chen, A. Cheung, B. Bhargava, and K.-T. Lo, “On
the design of perceptual MPEG-Video encryption algorithms,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 17, no. 2, pp. 214–223, 2005.

[5] I. Agi and L. Gong, “An empirical study of secure MPEG
video transmissions,” in Proceedings of the Symposium on Net-
work and Distributed System Security (SNDSS ’96), pp. 137–
144, IEEE Computer Society, San Diego, Calif, USA, February
1996.

[6] C.-P. Wu and C.-C. J. Kuo, “Fast encryption methods for au-
diovisual data confidentiality,” in Multimedia Systems and Ap-
plications III, vol. 4209 of Proceedings of SPIE, pp. 284–295,
Boston, Mass, USA, November 2000.

[7] J. Wen, M. Severa, W. Zeng, M. Luttrell, and W. Jin, “A format-
compliant configurable encryption framework for access con-
trol of multimedia,” in Proceedings of the 4th IEEE Workshop
on Multimedia Signal Processing (MMSP ’01), pp. 435–440,
Cannes, France, October 2001.

[8] T. Lookabaugh, D. C. Sicker, D. M. Keaton, W. Y. Guo, and
I. Vedula, “Security analysis of selectively encrypted MPEG-2
streams,” in Multimedia Systems and Applications VI, vol. 5241
of Proceedings of SPIE, pp. 10–21, Orlando, Fla, USA, Septem-
ber 2003.

[9] S. Li, X. Zheng, X. Mou, and Y. Cai, “Chaotic encryption
scheme for real-time digital video,” in Real-Time Imaging VI,
vol. 4666 of Proceedings of SPIE, pp. 149–160, San Jose, Calif,
USA, January 2002.

[10] S. Li, G. Chen, and X. Zheng, “Chaos-based encryption for
digital images and videos,” in Multimedia Security Handbook,
vol. 4 of Internet and Communications Series, pp. 133–167,
CRC Press, Boca Raton, Fla, USA, 2004.

[11] B. Furht, E. Muharemagic, and D. Socek, Multimedia Encryp-
tion and Watermarking, vol. 28 of Multimedia Systems and Ap-
plications, Springer, Berlin, Germany, 2005.

[12] D. Guo, L. M. Cheng, and L. L. Cheng, “A new symmetric
probabilistic encryption scheme based on chaotic attractors of
neural networks,” Applied Intelligence, vol. 10, no. 1, pp. 71–84,
1999.

[13] D. Socek and D. Ćulibrk, “On the security of a clipped hopfield
neural network-based cryptosystem,” in Proceedings of the 7th
ACMWorkshop on Multimedia and Security (MM-Sec ’05), pp.
71–76, New York, NY, USA, August 2005.

[14] X. Yi, C. H. Tan, C. K. Siew, and M. R. Syed, “Fast encryption
for multimedia,” IEEE Transactions on Consumer Electronics,
vol. 47, no. 1, pp. 101–107, 2001.

[15] A. M. Youssef and S. E. Tavares, “Comments on the security
of fast encryption algorithm for multimedia (FEA-M),” IEEE
Transactions on Consumer Electronics, vol. 49, no. 1, pp. 168–
170, 2003.

[16] M. J. Mihaljević, “On vulnerabilities and improvements of fast
encryption algorithm for multimedia FEA-M,” IEEE Transac-
tions on Consumer Electronics, vol. 49, no. 4, pp. 1199–1207,
2003.

[17] M. Pazarci and V. Dipçin, “A MPEG2-transparent scrambling
technique,” IEEE Transactions on Consumer Electronics, vol. 48,
no. 2, pp. 345–355, 2002.

Daniel Socek et al. 15

[18] D. Socek, H. Kalva, S. Magliveras, O. Marques, D. Ćulibrk,
and B. Furht, “A permutation-based correlation-preserving
encryption method for digital videos,” in Proceedings of the
3rd International Conference on Image Analysis and Recognition
(ICIAR ’06), vol. 4141 of Lecture Notes in Computer Science,
pp. 547–558, Springer, Póvoa de Varzim, Portugal, September
2006.

[19] M. Burrows and D. J. Wheeler, “A block-sorting lossless data
compression algorithm,” Research Report 124, Digital Systems
Research Center, Palo Alto, Calif, USA, 1994.

[20] S. Deorowicz, “Improvements to Burrows-Wheeler compres-
sion algorithm,” Software-Practice and Experience, vol. 30,
no. 13, pp. 1465–1483, 2000.

[21] Z. Arnavut and H. Otu, “Lossless compression of color-
mapped images with Burrows-Wheeler transformation,” in
Proceedings of the IASTED Signal Processing Conference, pp.
185–189, Acta-Press, Rhodes, Greece, July 2001.

[22] Z. Arnavut and S. Magliveras, “Lexical permutation sorting al-
gorithm,” The Computer Journal, vol. 40, no. 5, pp. 292–295,
1997.

[23] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Hand-
book of Applied Cryptography, CRC Press, Boca Raton, Fla,
USA, 1996.

[24] S. Magliveras, “A cryptosystem from logarithmic signatures of
finite groups,” in Proceedings of the 29th Midwest Symposium
on Circuits and Systems, pp. 972–975, Elsevier, Lincoln, Neb,
USA, August 1986.

[25] L. Brown, “Technical options for implementing pay-TV in
Australia,” Australian Telecommunication Research Journal,
vol. 24, no. 2, pp. 1–8, 1990.

[26] A. D. Wyner, “An analog scrambling scheme which does not
expand bandwidth—part I: discrete time,” IEEE Transactions
on Information Theory, vol. 25, no. 3, pp. 261–274, 1979.

[27] A. D. Wyner, “An analog scrambling scheme which does not
expand bandwidth—part II: continuous time,” IEEE Transac-
tions on Information Theory, vol. 25, no. 4, pp. 415–425, 1979.

[28] Y. Matias and A. Shamir, “A video scrambling technique based
on space filling curves,” in Proceedings of the Conference on the
Theory and Applications of Cryptographic Techniques on Ad-
vances in Cryptology (CRYPTO ’87), vol. 293 of Lecture Notes in
Computer Science, pp. 398–417, Springer, Santa Barbara, Calif,
USA, August 1987.

[29] J.-C. Yen and J.-I. Guo, “Efficient hierarchical chaotic image
encryption algorithm and its VLSI realisation,” IEE Proceed-
ings: Vision, Image and Signal Processing, vol. 147, no. 2, pp.
167–175, 2000.

[30] L. Tang, “Methods for encrypting and decrypting MPEG video
data efficiently,” in Proceedings of the 4th ACM International
Multimedia Conference, pp. 219–229, ACM Press, Boston,
Mass, USA, November 1996.

[31] A. Uhl and A. Pommer, Image and Video Encryption: From
Digital Rights Management to Secured Personal Communica-
tion, vol. 15 of Advances in Information Security, Springer,
Berlin, Germany, 2005.

[32] S. Li, C. Li, G. Chen, N. G. Bourbakis, and K.-T. Lo, “A gen-
eral cryptanalysis of permutation-only multimedia encryp-
tion algorithms,” IACR’s Cryptology ePrint Archive: Report
2004/374, 2004.

[33] M. Horne, “Future video accident recorder,” in Proceedings
of the International Symposium on Transportation Recorders,
The National Transportation Safety Board and International
Transportation Safety Association, Arlington, Va, USA, May
1999.

	1. INTRODUCTION
	2. DUALITY OF PERMUTATIONS
	2.1. Permutations on sequences
	2.2. Permutations and compression
	2.2.1. Compressing a sorting permutation

	2.3. Role of permutations in data compression
	2.4. Permutations and encryption

	3. CORRELATION-PRESERVING VIDEO ENCRYPTION
	3.1. Global system settings
	3.2. Basic algorithms
	3.3. Extensions to basic algorithms
	3.3.1. Block-based approach
	3.3.2. Extensions for handling global cameramotion

	3.4. Histogram-hiding extension
	3.5. Extension for enabling VCR-like functionality and improved error resilience

	4. SECURITY ANALYSIS
	Brute-force attack
	Known/chosen-plaintext and chosen-ciphertext attacks
	Known weaknesses and consequential applicability limitations

	5. EXPERIMENTAL RESULTS
	6. CONCLUSIONS AND FUTURE WORK
	REFERENCES

