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Abstract Activation-induced cytidine deaminase (AID)

is critically involved in class switch recombination and

somatic hypermutation of Ig loci resulting in diversification

of antibodies repertoire and production of high-affinity

antibodies and as such represents a physiological tool to

introduce DNA alterations. These processes take place

within germinal centers of secondary lymphoid organs.

Under physiological conditions, AID is expressed pre-

dominantly in activated B lymphocytes. Because of the

mutagenic and recombinogenic potential of AID, its

expression and activity is tightly regulated on different

levels to minimize the risk of unwanted DNA damage.

However, chronic inflammation and, probably, combina-

tion of other not-yet-identified factors are able to create a

microenvironment sufficient for triggering an aberrant AID

expression in B cells and, importantly, in non-B-cell

background. Under these circumstances, AID may tar-

get also non-Ig genes, including cancer-related genes as

oncogenes, tumor suppressor genes, and genomic stability

genes, and modulate both genetic and epigenetic informa-

tion. Despite ongoing progress, the complete understanding

of fundamental aspects is still lacking as (1) what are the

crucial factors triggering an aberrant AID expression/

activity including the impact of Th2-driven inflammation

and (2) to what extent may aberrant AID in human non-B

cells lead to abnormal cell state associated with an

increased rate of genomic alterations as point mutations,

small insertions or deletions, and/or recurrent chromosomal

translocations during solid tumor development and

progression.
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AID under physiological conditions

Adaptive immunity provides defense mechanisms ensuring

extreme specificity for foreign antigens with virtually

unlimited diversity. B lymphocytes have developed two

additional independent steps to further diversify their

receptors after antigen collision: somatic hypermutation

(SHM) and class switch recombination (CSR). These

reactions take place in secondary lymphoid tissues (lymph

nodes, tonsils, and spleen) and represent physiological

processes that modify variable (V) and constant (C) regions

of immunoglobulin (Ig) genes in activated B cells [1]. The

discovery of AID [2, 3] (in 1999—mouse ortholog; in

2000—human ortholog) transformed our understanding of

basic mechanisms for antibody diversity and the field of

immunology as a whole; both SHM and CSR were found to

be critically dependent on AID activity.

AID is a member of the APOBEC family of cytidine

deaminases, which acts via introduction of single-strand
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breaks into target DNA through deamination of cytosines

into uracils. AID is currently considered as the only B-cell-

specific factor required to trigger both SHM and CSR,

when DNA breaks are specifically introduced in the vari-

able or switch regions of Ig genes, respectively [4, 5].

Through further processing by DNA-repair enzymes upon

recognition of uracil in DNA, this initial single biochemi-

cal activity triggers different genetic modifications [6, 7].

As consequence, the production of Igs of various isotypes

with high affinity for antigen is achieved. This may espe-

cially account for IgE type immunoglobulins exhibiting

outstanding affinities for their specific epitopes or aller-

gens. In the germinal center (GC), the AID expression is

initiated in early centroblasts, is maximal in full-blown

centroblasts, significantly decreases in centrocytes, and is

downregulated again in plasma cells. Additionally, the

AID-positive cells could be also detected outside the GC; a

major fraction of these types of AID-positive cells reside

within the subset of interfollicular large B lymphocytes

[8, 9].

AID deficiency (as well as defects in the CD40L/CD40

pathway) is among essential causative factors of hyper-IgM

(HIGM) syndromes. HIGM are primary immunodeficien-

cies characterized by the absence of all the isotypes except

for elevated IgM [10]. The phenotype observed in HIGM

patients and paradoxical observation that AID-deficient

subjects often suffer from autoimmune conditions demon-

strate the absolute requirement for AID in several crucial

steps of B-cell terminal differentiation and suggest an

important role of AID for the establishment of both central

and peripheral B-cell tolerance. Thus, Meyers et al. [11]

identified a novel, previously unsuspected role for AID in

the removal of developing autoreactive B cells in humans.

Accumulating evidence suggests another essential role

of AID—in two forms of heritable information, namely

genetic and epigenetic. The underlying mechanisms behind

these two modes of inheritance have so far remained dis-

tinct. Given that cytosine deaminases, and particularly

AID, have been implicated both in genetic variation of

somatic cells and in epigenetic remodeling of germ and

pluripotent cells, an audacious hypothesis was proposed by

Chahwan et al. [12] that the AID/APOBEC family provide

crosstalk between genetic and epigenetic information

through cytosine deamination and, moreover, could be

important drivers of evolutionary adaptability.

Multiple levels of AID regulation

Clearly, such a potent mutagenic and recombinogenic

enzyme needs to be tightly regulated on different levels to

minimize the risk of unwanted DNA damage (Fig. 1).

Indeed, a number of mechanisms restricting AID

expression/activity to a distinct cell type, time, and loci

were identified. On the transcriptional level, AID is

induced in vitro in B cells by Th2 cytokines as IL4 and

ligation of CD40; in mice, other inducers have been

identified, including LPS [3, 13, 14]. E-protein, NFjB,

PAX5, STAT6, and IRF8 transcription factors participate

in inducible expression of AID; potential negative regula-

tors, such as IRF4, BLIMP1, ID3, and ID2, may control the

stage-specific expression (reviewed by [15]); however, our

understanding of the transcriptional regulation of AID gene

is not yet complete. In one of the recent publications,

HoxC4 was implemented into the AID promoter regulation

via binding to a highly conserved HoxC4-Oct site; this site

functions in synergy with a conserved binding site for the

transcription factors Sp1, Sp3, and NF-jB [16]. Further-

more, AID is known to be regulated on the level of mRNA

stability by microRNAs [17–19]. An additional controlling

mechanism, which is not yet fully elucidated, is the splic-

ing of AID mRNA. The naturally occurring splice variant

lacking exon 4, AID-Dex4 (AY536517), encodes a C-ter-

minally truncated product, which, in contrast to the full-

length transcript, is characterized by the complete lack of

Fig. 1 AID-associated gene network. Gene network displaying AID

as key gene was created using the Ingenuity Pathway Analysis

Software (IPA; http://www.ingenuity.com). Different gene modules

are spatially separated for visualization: stimuli controlling AID

expression and activity (green color code); transcriptional regulators

(red color code); an additional level of AID regulation is displayed by

a group of miRNAs (brown color code); direct and indirect AID-

interacting molecules associated with functional activity of AID (blue
color code); molecules modulated by AID activity including various

Ig isotypes as consequence of CSR events and examples of affected

pluripotency genes as a result of AID-mediated reprogramming and

DNA demethylation as well as TP53 being a prominent target of AID

as genome-wide mutator (cyan color code)
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CSR activity, while showing hyper-SHM activity [20]. It is

essential to note that based on our recent data, both AID

full-length and AID-Dex4 mRNAs can be detected in

chronically inflamed tissues such as nasal polyps and in

some normal non-lymphatic tissues as well [21]. Post-

translational modification as phosphorylation of threonine

27, threonine 140, and/or serine 38 also regulates AID

activity [22–24]. One of the crucial post-translational

mechanisms controlling AID functionality including the

balance between antibody diversification and off-target

mutations and translocations is based on the nucleo-cyto-

plasmic shuttling: the subcellular localization of AID

determines how much AID is in contact with genome.

Currently, the following mechanisms influencing human

AID subcellular distribution have been characterized:

nuclear export [25–27], active nuclear import and cyto-

plasmic retention [28], and rapid degradation in the nucleus

[29]. Finally, even when AID expression/activity is being

controlled by multiple mechanisms, one important cellular

mechanism, which determines the target specificity of AID,

still must function properly. This is yet one of the most

interesting questions in AID biology: how does the pref-

erential targeting to Ig loci work and why the specificity of

AID is not absolute? It seems that AID recruitment to the

particular genes requires a combination of high transcrip-

tional activity of a gene, the presence of high levels of AID

targeting hotspots, the presence and activity of protein

kinase A, which phosphorylates AID at DNA site, and a

complex of cis elements (reviewed in [30, 31]). Future

comprehensive genome-wide screening of mutated genes

and gene fusions will provide a more defined picture of the

mechanisms regulating AID targeting.

AID in inflammatory processes

It is generally accepted that expression of AID and class

switch process occur in lymphoid tissue. Important novel

aspect linking B-cell biology and inflammation is based on

the discovery of GC-like structures outside of secondary

lymphoid organs. Accumulating evidences demonstrate the

existence of AID-positive ectopic follicular structures at

sites of inflammation within different tissues, suggesting

class switch recombination and somatic hypermutation

events to take place locally. One of the pioneer work [32]

has demonstrated that IgE-committed B cells do not nec-

essarily need to migrate through the circulation to the nasal

mucosa; detection of AID mRNA, multiple germline gene

transcripts, and e circle transcripts in the nasal mucosa of

allergic subjects indicated that CSR occurs locally in

allergic rhinitis. Later, local expression of AID and CRS

to IgE was shown in the bronchial mucosa of atopic and

non-atopic patients with asthma [33]. Additionally, the

esophageal mucosa was proposed to be a site for initiation

and development of humoral responses given the occur-

rence of AID expression, local immunoglobulin class

switching to IgE, and IgE production in the esophageal

mucosa of patients with eosinophilic esophagitis [34].

Indeed, the esophageal mucosa possesses a strong immu-

nological capacity based on a diversity of resident immune

cell types, in particular, B lymphocytes, T cells, mast cells,

and dense eosinophilic infiltration as well as the presence

of Th2 cytokines IL4 and IL13. The authors suggested that

sensitisation and activation of mast cells involving local

IgE may critically contribute to the pathogenesis of

eosinophilic esophagitis. Furthermore, recent findings

indicate that the presence of AID-positive ectopic lym-

phoid structures can be detected in chronically inflamed

tissues in several autoimmune disorders [35]; in synovium

of rheumatoid arthritis, the AID-positive follicular struc-

tures are directly implemented in promoting the production

of pathogenic autoantibodies [36]. The data suggest that

tissues under constant antigenic challenge (e.g., the intes-

tinal, nasal and bronchial mucosa) support B-cell activa-

tion, AID expression, isotype switching, and Ig production.

It is yet unclear what the crucial endogenous checkpoints

are being necessary for mounting a limited, positively

effective inflammatory response with participation of B

lymphocytes and what the borderline is converting the

physiological ectopic follicles to the pathophysiological

autoantibody-producing structures.

Multigene signature approach to delineate the role

of AID-driven events under Th2 supervision

The establishment and validation of gene-, pathway-, or

disease-relevant signatures provides tools for understand-

ing the functional relevance of gene alterations in human

diseases not only for basic research but also for therapeutic

target proposal, diagnostic tools, and therapy response

monitoring [37–40]. The implemented methodology to

study gene expression profiles of modules with particular

biological function(s) in the etiology of disease may vary:

(1) in silico data-driven approaches using microarray data

analysis offer the advantage of a transcriptome-wide

screening procedure but often lack the sensitivity for genes

expressed at low levels; (2) a knowledge-driven approach

offers the detailed characterization of the input of one

particular pathway while keeping the amount of genes

limited at the beginning of the study. In this case, the

composition of a core set of genes can be assembled based

on the data mining (scientific literature, creation of gene

interactive networks) with subsequent application of the

designed multigene signature for real-time PCR-based

gene profiling. Thereby, the important advantages are the
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high sensitivity and reproducibility allowing quantitative

profiling even of low-copy genes that are below the

detection limits of microarray platforms.

We have used recently the second approach to create the

multigene signature using AID (NM_020661) as a node

gene [21]. The self-designed 25-gene ‘‘AID signature’’

included the full-length AID-FL and the alternative AID

splice variant AID-Dex4; activators and suppressors in AID

regulation; immune cell markers; Th2 cytokines; low- and

high-affinity IgE receptors; and IgM, IgG, IgE mature

transcripts (Fig. 2). This signature was evaluated in a dis-

ease model of benign, chronically inflamed tissue, namely

in nasal polyposis. In this study, we have shown, to our

knowledge, for the first time that AID is expressed within

the nasal polyp tissue. Comparison of gene expression

patterns for chronic rhinosinusitis with and without nasal

polyps confirmed an AID-specific gene signature for the

disease state with nasal polyps. The data suggested that the

local environment created within nasal polyp tissue may

trigger formation of ectopic follicular structures with AID

expression/activity and consequently initiate CSR. This

was in turn proven by the detection of strongly elevated

IgG and, particularly, IgE mature transcripts, fully sup-

ported by immunostaining. Notably, AID mRNA was

found to have a strong positive correlation with Th2

players IL13 and IL5. Furthermore, arrangement of data-

sets for each specimen across all genes was able to provide

the gene expression pattern characteristic for each indi-

vidual sample and therefore being patient orientated. Thus,

using a multigene signature covering one particular dis-

ease-associated module with AID as the key gene, we

further explored associations between AID and other

molecules involved in the etiology of human inflammation-

driven disease such as nasal polyposis: in addition to the

previously highlighted biomarkers/targets such as IgE and

IL5, novel players were suggested including among others

IL13 and CD23 [21].

Multifaceted AID: functional link to tumorigenesis

Last years findings clearly indicate that, in addition to

diversifying the immune repertoire, AID can also target

non-Ig genes. Thus, an aberrant hypermutation activity

targeted multiple loci, including the proto-oncogenes

PIM1, MYC, RhoH/TTF (ARHH), and PAX5, in more than

50 % of diffuse large-cell lymphomas (DLCLs), which are

tumors derived from germinal centers [41]; human BCL6

gene was shown to be also hypermutated in peripheral

blood memory B cells and tonsils [42]. Intriguingly, even

the T-cell receptor in AID-transgenic mice [43] and a GFP

plasmid reporter gene in AID-transgenic fibroblasts [5]

were shown to hypermutate. Wang et al. demonstrated that

hypermutation requires no Ig gene sequences; instead, AID

(and possibly other trans-acting hypermutation factors)

may function as general, genome-wide mutator [44]. Thus,

by mutating multiple genes, and possibly by favouring

chromosomal translocations, AID-driven aberrant, non-

physiological hypermutation likely represents one of the

major contributors to lymphomagenesis. In support, AID

acts as mutator in the Philadelphia chromosome plus (Ph?)

BCR-ABL1-transformed acute lymphoblastic leukemia

(ALL) cells [45].

If to look deeply and make approximation to other types

of tumors, the link between functionality of AID and

malignancies becomes more transparent and logical: cancer

cells acquire tumor-specific DNA alterations, including

multiple somatic mutations of tumor-promoting genes and/

or recurrent chromosomal translocations and their corre-

sponding gene fusions at the precise timing during cellular

development. A total of 358 gene fusions involving 337

different genes have been identified (reviewed in [46]). An

increasing number of gene fusions are being recognized as

important diagnostic and prognostic parameters in distinct

malignant disorders. Then, abnormal AID expression and

Fig. 2 Th2-type AID-associated multigene signature. The composi-

tion of the signature created around AID as a node gene allows to

assess (1) AID expression and AID activity as proven by the class

switch recombination-based formation of IgG and IgE mature

transcripts; (2) the presence of tissue infiltrating immune cells such

as B cells, T cells, monocytes, and follicular dendritic cells being

indicative for various stages of lymphoid organization; (3) the

expression pattern of low- and high-affinity IgE receptors mediating

numerous IgE-related immune responses; and Th2 polarization [21]

1594 Cancer Immunol Immunother (2012) 61:1591–1598

123



functionality in non-B cells could have a strong contribu-

tion to human malignancy in general, including solid

tumors (Fig. 3); probably, not only the level of overex-

pression but also constitutive versus transient manner is

important. Indeed, accumulating evidences suggest that an

aberrant AID activity in epithelial tissues may provide the

critical link between inflammation, somatic mutations, and

cancer development [47]. Given the analogy to the mech-

anisms of AID activation in B cells, Th2 direction might

play an essential role. Thus, the potential contribution of

AID to the development of gastric cancers was proposed

[48]. Constitutive AID expression was detected in 6 out of

6 malignant epithelial cells of breast cancer origin and the

cell line derived from uterine cervix, suggesting a potential

for inducible aberrant mutational activity [49, 50]. AID

expression leading to increased mutation rate of TP53 was

recently shown in human lung cancer cell lines [51]. The

proinflammatory cytokine-induced production of AID was

proposed to link bile duct inflammation to cholangiocar-

cinogenesis [52]. AID expression was shown to be

triggered by TNF-a or IL-1b in human hepatocytes [53].

Strong evidence indicates that AID might contribute to

the development of colitis-associated and inflammatory

bowel disease (IBD)-associated colorectal cancers by

linking colonic inflammation to an enhanced genetic

susceptibility to oncogenic mutagenesis [54–56]. Impor-

tantly, aberrant AID expression in human colonic epithe-

lial cells was induced by TNF-a via NFjB-dependent

pathway and by Th2-driven cytokines IL4 and IL13 in a

STAT6-dependent manner. Both cytokines are critical

mediators of mucosal inflammation; accordingly, IL13

secreted by natural killer T cells is an important patho-

logic factor for ulcerative colitis [57]. Furthermore, it has

been shown that several oncogenic viruses can induce

AID expression. Hepatitis C virus (HCV)—one of the

leading causes of hepatocellular carcinoma—strongly

triggers AID expression in hepatocytes in collaboration

with proinflammatory cytokines [53], and ectopic AID

expression is observed in human liver specimens with

chronic hepatic inflammation caused by HCV infection

B cells

Ig locus

AID

SHM CSR

mutations

epigenetic modification(s)

chromosomal 
rearrangements

non-Ig genes
oncogenes

tumor suppressors

Pathophysiological

Physiological

diversification of antibodies 
repertoire 

genomic stability genes

central and peripheral 
B-cell tolerance

epigenetic modification(s)

AID

evolutionary adaptabilityGerm and pluripotent cells

pluripotency genes

B cells 
(lymphoma, leukemia)

Cancer cells 
(solid tumors)

a

b

Fig. 3 AID from immunity to cancer. a Somatic hypermutation

(SHM) and class switch recombination (CSR) of B-cell immuno-

globulin (Ig) genes are AID driven. Recently, a new role for AID in

active DNA demethylation and reprogramming of mammalian

somatic cells toward pluripotency has been identified [65]. Further-

more, requirement for AID in several crucial steps of B-cell terminal

differentiation and for the establishment of both central and peripheral

B-cell tolerance was proposed [11]. Accumulating evidence suggests

that the AID/APOBEC family members could be important drivers of

evolutionary adaptability [12]. b Under pathophysiological circum-

stances, AID may target non-Ig genes, including cancer-related genes

as oncogenes, tumor suppressor genes, genomic stability genes, and

pluripotency genes [42, 45, 47, 51, 66]. Picture insert; AID-positive

GCs within tonsil tissue. To detect AID, mouse IgG1-kappa

antibodies, clone ZA001 (Invitrogen) and DAKO EnVision?,

Peroxidase system (DAKO, Glostrup, Denmark) was used as

previously described [21]
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[58]. Another intriguing evidence linking oncogenic

infection with ectopic AID expression is attributed to

Epstein–Barr virus (EBV); LMP2A, EBV latent mem-

brane protein 2A, is able to strengthen B-cell receptor

(BCR)-mediated signaling pathways leading to the AID

activation [59]. However, thus far such mechanism was

demonstrated only for B cells, emphasizing a potential

role for the development of the EBV-positive, GC-asso-

ciated lymphomas [60]. Next potential link of AID to

tumorigenesis is based on the fact that the Aid and Apo-

bec1 genes are located in a cluster of pluripotency genes

including Nanog and Stella and are co-expressed with

these genes in oocytes, embryonic germ cells, and

embryonic stem cells. These data suggest that AID and

perhaps some of other APOBEC family members may

have roles in epigenetic reprogramming and cell plastic-

ity, contributing to tumor etiology [61]. An important

functional link was identified between estrogen and AID:

estrogen directly activates expression of AID [62]

revealing yet another connection between AID regulation

and cancer, particularly the gender aspect for some can-

cers. Therefore, in tissues where estrogen levels are

continuously high, AID-driven aberrations may accumu-

late with time, which in turn might contribute to the

development and/or progression of estrogen-dependent

tumor types. In analogy, female gender bias in allergy

associated with endogenous and exogenous estrogens [63]

may be caused by the AID/estrogen axis.

Although the major focus of the data summary in this

sub-chapter of the article was given to the AID-positive

tumor cells, tumor-associated AID-positive B cell should

not be underestimated. Hypothetically, identification of

AID-positive B-cell infiltrates indicates local maturation

and priming for class switching. Moreover, infiltrating

B cells might modulate the malignant potential of

tumor cells via the production of certain chemokines or

cytokines. Therefore, the biological responses initiated

within AID-positive ectopic follicular structures in the

tumor or tumor-stroma microenvironment may influence

the disease pathogenesis, progression and/or disease

resolution.

Increasing knowledge about AID, understanding the

AID-associated responses, both in B cells and tumor cells,

might allow stratifying the prognosis of various cancer

types and considering whether targeting of AID is benefi-

cial for AID-positive tumors as suggested recently for

plasmocytoma [64] and colitis-associated colon carcino-

genesis [55].
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