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Abstract

In this work, a chain of N identical two-level atoms coupled with a quantized electromagnetic field, initially prepared
via a single-photon Fock state, is investigated. The N-particle state amplitude of the system is calculated for several
space configurations of the atoms in the Weisskopf-Wigner approximation. It was shown that the space configuration
of an atomic chain, the total number of atoms, and even the available volume for the field modes define the behavior
of the system state amplitude with time. Applying the condition of ‘cyclic bonds’, presented in this work, to the
elaborated theory allows to describe the system time evolution, practically, for any space configuration.
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Background
The collective absorption (emission) of photons by an
ensemble of identical atoms ‘provides valuable insights
into the many-body physics of photons and atoms’
(quoted from [1]). Taking into account the quantization
of electromagnetic field, many fundamental and interest-
ing properties of the coupled systems of atoms and field
are revealed. For example, when the average distances
between atoms are much less than the ‘resonant transi-
tion’ wavelength of emitted (absorbed) light, the cooper-
ative coupling leads to a substantial radiative shift of the
transition energy and significant change in decay rate of
the ensemble state. The latter was revealed through the
various theoretical (for example, some relatively modern
researches in [2-5]) and experimental investigations (see
starting, for example, from [6,7] to the modern applica-
tions like described in [8] and impressively effective exper-
imental realizations as in [1]). Some peculiar behavior in
spontaneous emission is proper even in a system of atoms
which can have a relative distance larger than the emission
wavelength (see, for instance, [9]), and initially, only one
atom or one-photon state is excited, as discovered in this
paper.
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In the present paper, a system (chain) of N identical
two-level non-interacting atoms, prepared ‘via a single-
photon Fock state’ in the one- or two-mode resonator,
is investigated. The main goal of the paper is to obtain
the information about the state of electromagnetic field
and atomic system (chain) in aWeisskopf-Wigner approx-
imation (see [10] chapter 6, page 206 and some com-
ments in [11]). The calculations of the state amplitudes
of the atomic system are made for several approxima-
tions in resonator (cavity) characteristics and for sev-
eral types of space configurations of the atoms in the
chain.
In this work, we study the case, in which the distances

between atoms are quite large, so that the average dis-
tances between atoms are greater or in the same order
than the ‘resonant transition’ wavelength. Therefore, we
prepare an ensemble of N two-level atoms initially in
ground state, and a single mode of the radiation field is
excited in a ‘Fock’ state (so called one-photon state). This
is the case of a purely monochromatic wave with zero
line width under the consideration. A laser output in sin-
gle mode operation can approximate this situation due
to its high degree of monochromaticity (small line width)
for instance. The mode of electromagnetic field is speci-
fied completely by giving its wave vectors k0 with atomic
transition frequency ω = c |k0| and its polarization j
(j = 1, 2).
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The main feature, differentiating our research from
others in this domain, is the developed direct and con-
sistent solution to the N-particle equations, describing
the time evolution of the N atomic probability state
amplitudes. Besides, in certain sense, we explained the
nature of the widely used Weisskopf-Wigner approxima-
tion that was not found in the reviewed by us scientific
literature.
The goal of this paper can be formulated as an attempt

to propose an adapted and simple in practical use the-
ory, for example in the highly applied nanoscale physics.
The proposed theoretical material requires correspond-
ing experimental verification. As an idea of an application,
the model system can be realized on atomic (develop-
ing the method proposed in [1] for the nuclei of 57Fe
in certain composites, but this time for a visible region),
chains of trapped ions (like in [8]), and molecular struc-
tures for further developing such techniques like FRET
(described for instance in [12]), atomic chains like carbyne
loops (for example, [13]), and microhole array synthe-
sized by femtosecond laser radiation (see [14], for an
instance).
Let us first provide below some general theoretical

premises. More detailed derivations of the corresponding
mathematical model can be found in [11].

Methods
The equations of motion for the state amplitudes
We have assumed that the atomic energy levels have
no linewidth, so that, only if ω = ωk0 = �Eab/�,
the atoms can be able to absorb a photon. Obviously,
this is an unrealistic case since it is impossible to have
a completely monochromatic wave. In addition, for the
case of the Fock initial state, in which we measured the
energy precisely of the mode, the average electric field
will be zero. In the forth of the law of energy conser-
vation, an emitted photon will correspond to the same
frequency ωk0 (we can say it will occur with a high prob-
ability after a quite long time interval if the system has a
damping).
Therefore, consider a collection of N identical atoms,

at positions r1, . . . , rα , . . . , rN , coupled to a one mode
electromagnetic (EM) field. Each atom α = 1..N is
assumed to have only the two states |a〉α and |b〉α , sep-
arated by energy Eα = Eaα − Ebα = �ω. In the dipole
approximation, the closed conservative system of identi-
cal atoms with the electromagnetic field in a cavity can
be described by the Hamiltonian consisting of free atoms
and electromagnetic field items with dipole-field cou-
pling between the atoms and the electromagnetic field
modes.
Inasmuch as at the initial time moment t = 0 all atoms

α = 1..N of the ensemble are in the ground state |b〉α

and EM field is in Fock state |1k0〉 (that presents one pho-
ton with the wave vector k0), we look for a solution of
the corresponding Schrödinger equation in the interacting
picture in the following form:

� =
N∑

α=1
βα(t)|b1b2 . . . aα . . . bN 0〉

+
∑
k,j

γk,j(t)|b1b2 . . . bN1k,j〉
(1)

with the initial conditions:

βα(0) = 0, γk,j(0) = δk,k0 , (2)

where δk,k0 is Kroneker’s delta symbol. δk,k0 = 1 if k =
k0, and δk,k0 = 0 if k �= k0. βα(t) (α = 1..N) and γk,j(t)
(j = 1, 2) are the αth atom excited state amplitude with
the others in the ground states and excited Fock field state
amplitude of the jth polarization with the wave vector k,
accordingly.
Then, the corresponding Schrödinger equation in

the interacting picture yields the following system of
equations:

β̇α(t) = i
∑
k,j

g∗
α(k, j)γk,j(t) exp(−i(νk−ω)t+ikrα); (3)

γ̇k,j(t) = i
N∑

δ=1
gδ(k, j)βδ(t) exp(i(νk − ω)t − ikrδ), (4)

where

gα(k, j) =
√

νk
2�ε0V

℘α · ek,j, (5)

where

℘α · ek,j = |℘α| cos θk,j. (6)

Here, θk,j is the angle between dipole transition vector
℘α (more accurately, non-diagonal dipole matrix element)
and the jth unit polarization vector ek,j (j = 1, 2 and
ek,j · k = 0). V is the available by the system of atoms and
field space volume. The frequencies νk correspond to the
modes with the module of the wave vectors k equal to |k|.
Therefore, substituting Equation 4 into 3 and differenti-

ating one more time, after applying theWeisskopf-Wigner
approximation (details in [11]), we can derive the follow-
ing system of evolution equations:

d2

dt2
βα(t) = −

N∑
δ=1

βδ(t)αδ − 2Dα

d
dt

βα(t), (7)

where

αδ =
∑

j, |k|=k0

g∗
α(k, j)gδ(k, j) exp[ ik(rα − rδ)] . (8)
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And the decay rates Dα in the approximation can be
estimated by the formula:

Dα = 1
2
8π
3

2π
2�ε0

(
1

2π c

)3
|℘|2ω3 = 1

2
1

3π �ε0c3
|℘|2ω3.

(9)

The coefficient Dα (α = 1..N) describes the respective
rate of decay for αth atom excited state. Note, that the
‘non-resonant’ items for the particle with distinguished
from α indexes were disregarded in here in an assumption
of quite large interatomic distances (see details in [11]).

Results and discussion
An atomic chain with cyclically distanced atoms:
N∑

α
sin(krα) cos(krα) = 0

Next, we try to make the calculations, using here the par-
ticular case of space configuration for the system atoms
field. Below, for simplicity, only one polarized mode (j =
1) of the resonant field modes is taken into account with
the common parameters gα and ℘α for α = 1..N :

gα(k, j) = gα = g > 0 (10)

and

℘α · ek,j = |℘| (11)

for |k| = k0. In other words, the space angle distribution
for the components αδ is disregarded here, assuming the
direction of the transition dipole moment℘α for any atom
in the system coincides with the photon polarization in
absorbing or emitting a resonant photon.
Then, from the system of Equation 7, in the case of a

cavity with two resonant modes k = ±k0 and identical
atoms with Dα ≡ D for α = 1..N , one derives that

d2

dt2
βα(t) = −2g2

N∑
δ=1

βδ(t) cos(k(rα − rδ))−2D
d
dt

βα(t).

(12)

Using the notation

Bc(t) =
N∑

α=1
βα(t) cos (krα) (13)

and the ‘cyclic’ condition
N∑
α

sin(krα) cos(krα) = 0 yields

the following relatively simple linear differential equation:

d2

dt2
Bc(t) = −2g2

∑
α

cos2(krα)Bc(t) − 2D
d
dt

Bc(t).

(14)

Therefore, taking into account the initial conditions
βδ(0) = 0 for α = 1..N , the solution of the above equation
is as follows:

Bc =
∑
α

βα(t) cos(krα) = C (exp (�2+t) − exp (�2−t)) ,

(15)

where �2 = g
√
2

∑
α

cos2(krα) and

�2± = −D ±
√
D2 − �2

2. (16)

By analogy,

Bs =
∑
α

βα(t) sin(krα) = C
′ (
exp

(
�

′
2+t

)
− exp

(
�

′
2−t

))
,

(17)

where �
′
2 = g

√
2

∑
α

sin2(krα) and

�
′
2± = −D ±

√
D2 − �

′2
2. (18)

It is easy to see, that �
′2
2 + �2

2 = 2g2N .
The field probability amplitudes can be obtained using

the subsystem of Equation 4 of the full ‘conservative’ sys-
tem of Equations 3 and 4. Therefore, substituting (15) and
(17) into the Equation 4, and then taking into account the
restrictions βα(0) = 0 for α = 1..N , we obtain that

γk(t) = 2ig
[
C

{
�2+f (�2+, t) − �2−f (�2−, t)

}
−iC′ {

�
′
2+f

(
�

′
2+, t

)
− �

′
2−f

(
�

′
2−, t

)}]
+ 1;

(19)

and

γ−k(t) = 2ig
[
C

{
�2+f (�2+, t) − �2−f (�2−, t)

}
+ iC′ {

�
′
2+f

(
�

′
2+, t

)
− �

′
2−f

(
�

′
2−, t

)}]
.

(20)

where

f (�, t) = exp
(

�t
2

)
�2 sinh

(
�t
2

)
. (21)

Note, here, we neglected the possible space angle dis-
tribution for the direction of the resonant wave vector
k.
Inasmuch as cos (k(rα − rδ)) = cos (krα) cos (krδ) +

sin (krα) sin (krδ), then, after substitution of the found
superpositions (15) and (17) into the initial Equation 12,
we derive the following integrable differential equation:

d2

dt2
βα(t) + 2D

d
dt

βα(t) = − 2g2 {cos (krα)Bc(t)

+ sin (krα)Bs(t)} .
(22)
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Integrating the left and right sides of the equation above
(22) over time yields

d
dt

βα(t) + 2Dβα(t) = Tα(t), (23)

where

Tα(t) = − 2g2 {cos (krα) Fc(t) + sin (krα) Fs(t)}
+ d

dt
βα(0) + 2Dβα(0),

(24)

and

Fc,s(t) =
t∫

0

[
Bc,s(t)

]
dt. (25)

According to the definition of the functions Fc,s(t)

Fc(t) = C
{

1
�2+

[
exp (�2+t) − 1

] − 1
�2−

[
exp (�2−t) − 1

]}
;

(26)

and

Fs(t) = C
′
{

1
�

′
2+

[
exp

(
�

′
2+t

)
− 1

]
− 1

�
′
2−

[
exp

(
�

′
2−t

)
− 1

]}
.

(27)

The solution of such linear first order differential
equation, like (23), has the form:

βα(t) = 1
exp (2Dt)

∫ [
Tα(t) exp (2Dt)

]
dt. (28)

The integration in the last expression can be performed,
yielding
∫ [

Tα(t)e(2Dt)
]
dt

= − 2g2
{
cos (krα)C

{
1

�2+

[
1

�2+ + 2D

(
e((2D+�2+)t) − 1

)

− 1
2D

(
e(2Dt) − 1

)]
− 1

�2−

[
1

�2− + 2D

(
e((2D+�2−)t) − 1

)

− 1
2D

(
e(2Dt) − 1

)]}
+ sin (krα)C

′

×
{

1
�

′
2+

[
1

�
′
2+ + 2D

(
e
(
(2D+�

′
2+)t

)
− 1

)

− 1
2D

(
e(2Dt) − 1

)]
− 1

�
′
2−

[
1

�
′
2− + 2D

(
e
(
(2D+�

′
2−)t

)
− 1

)

− 1
2D

(
e(2Dt) − 1

)]}}

+
(
d
dt

βα(0) + 2Dβα(0)
)

1
2D

(
e(2Dt) − 1

)
+ C0.

(29)

Therefore,

βα(t) =
= −2g2

{
cos (krα)C [H (�2+,D, t) − H (�2−,D, t)]

+ sin (krα)C′ [H (
�

′
2+,D, t

)
− H

(
�

′
2−,D, t

)]}

+
(

d
dtβα(0) + 2Dβα(0)

)
1
2D

(
1 − e−(2Dt)) + C0e−(2Dt),

(30)

where

H (�,D, t) = 1
�

[
1

� + 2D

(
e(�t) − e−(2Dt)

)

− 1
2D

(
1 − e−(2Dt)

)]
.

(31)

The initial condition βα(0) = 0, for α = 1..N , sets
the coefficient C0 equals 0. The initial time derivative
d
dtβα(0) can be determined, for example, if the system of
Equation 3 from the initial ‘conservative’ full system of
Equations 3 and 4 is chosen as a basis at the time moment
t = 0. Then, the initial condition for the field state ampli-
tude γk(0) = 1, where k = k0, sets the time derivative
d
dtβα(0) to the following expression:

d
dtβα(0) = ig

{
ekrαγk(0) + e−krαγ−k(0)

}
= ig {cos (krα) + i sin (krα)} .

(32)

Now, the question arises how to choose correctly the coef-
ficients C and C′ . First of all, the choice has to satisfy
the limitations on the probability amplitude, yielding the
corresponding probability limited above by unit (the sum
of all the modules squared of the introduced amplitudes
equals unit probability). Secondly, the solution with the
coefficients have to be consistent with the model decay
(damping).
We observe that, formally, when the real part of the

variable � is a negative quantity, that is Re (�) < 0, the
introduced functionsH and f have the following limits for
quite long time intervals:

lim
t→∞H (�,D, t) = − 1

2D�
, when Re (�) < 0; (33)

lim
t→∞ f (�, t) = − 1

2�2 , when Re (�) < 0. (34)

Then,

lim
t→∞ γk(t) = ig

[
C

{
1

�2−
− 1

�2+

}
− iC

′
{

1
�

′
2−

− 1
�

′
2+

}]
+ 1;

(35)

lim
t→∞ γ−k(t) = ig

[
C

{
1

�2−
− 1

�2+

}
+ iC

′
{

1
�

′
2−

− 1
�

′
2+

}]
;

(36)
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lim
t→∞ βα(t) = − 1

Dg
2
{
C

{
1

�2− − 1
�2+

}
cos (krα)

+C′
{

1
�

′
2−

− 1
�

′
2+

}
sin (krα)

}
+ 1

2D
d
dtβα(0).

(37)

As for an open system, in our case, it should be expected
for a quite long time interval the total electromagnetic
energy of the atoms-field system to be emitted into the
subsystem causing the state damping. Therefore, let us
define the coefficients C and C′ in the following manner:

C = i�2−�2+
2g (�2+ − �2−)

(38)

and

C
′ = − �

′
2−�

′
2+

2g
(
�

′
2+ − �

′
2−

) . (39)

Then, after substitution into the expressions for the time
limits, one derive the logical finale of the system evolution:

lim
t→∞ γk(t) = 0; (40)

lim
t→∞ γ−k(t) = 0; (41)

lim
t→∞ βα(t) = 0. (42)

The possible space configurations of the atomic system,
satisfying the condition of ‘circularity’, can be easily found.
For example, the set s3a1 (the notation ‘s3a1’ is just intro-
duced here): kr1 ≡ k · r1 = π

6 , kr2 = 2π
3 , and kr3 = π .

As an instance, it can also be the set s3a2: kr1 = 2π
3 ,

kr2 = 3π
2 , and kr3 = π

6 + 2π . A space configuration for
five atoms can be represented, for example, by such set like
s5a1: kr1 ≡ k · r1 = 2π

3 , kr2 = 3π
2 , kr3 = 5π

2 , kr4 = 7π
2 ,

and kr5 = 19π
6 . Specifically, a combination, such like

kri = ± π
n + oi

(
π
n
) + 2iπ with i = 1..N , n > 2, and∣∣oi (π

n
)∣∣ << π

n , can generate the necessary magnitudes
of the characteristic system frequencies �2 and �

′
2 (that,

actually, are the corresponding Rabi frequencies), compa-
rable with the given magnitude of the decay coefficient
D.
Below we depict the atomic system behavior in the sev-

eral introduced above configurations. Note, that the cited
thereby Rabi frequencies were calculated in the SI sys-
tem of units with the following notations: � ≈ 1.05457 ×
10−34 J sec/rad; the electric permittivity of free space ε0 ≈
8.8542 × 10−12 F/m; the speed of light in free space c =
299792458m/sec; resonant wavelength close to the D2-
line of a sodium atom λD ≈ 589.29×10−9 m; correspond-
ing circular (in radians per second) resonant frequency
ωres = 2πc

λD
≈ 0.101747 × 1016π rad/sec; non-diagonal

so called ‘transition’ dipole matrix element (in the same
order as for the D2-line transition, that is about 1 Debye)
ρex = 1 × 3.33564 × 10−30 C m. For instance, if the avail-
able for the system of atoms and field volume has the

value equal to V = 0.001m3, then g = ρex
√

ωres
2�ε0V ≈

77.8597
√

π rad/sec.
Assume, for example, the available volume V =

10−13 m3 is somehow filled by the set s3a1 with D ≈
107 rad/sec, initially coupled with one-photon Fock state.
Then, g = ρex

√
ωres

2�ε0V ≈ 77.8597 × 105
√

π rad/sec,

�2 ≈ 155.7195 × 105
√

π rad/sec, and �
′
2 ≈ 77.8597 ×

105
√
2π rad/sec. The corresponding graphs for probabil-

ity to find each atom in the excited state are shown in
Figure 1.
Let us see what happens when the available volume is

increased by one order. This yieldsV = 10−12 m3 with the
same three atoms (D ≈ 107 rad/sec) of the configuration
s3a1. Then, g ≈ 24.6214×105

√
π rad/sec;�2 ≈ 49.2428×

105
√

π rad/sec and �
′
2 ≈ 24.6214 × 105

√
2π rad/sec .

The corresponding graphs for each atom excited state
probability are depicted in Figure 2.
Suppose now that the available volume isV = 10−13 m3,

somehow filled by the set s5a1 with D ≈ 107 rad/sec
initially coupled with one-photon Fock state. Then, g =
ρex

√
ωres

2�ε0V ≈ 77.8597 × 105
√

π rad/sec; �2 ≈ 77.8597 ×
105

√
2π rad/sec, and �

′
2 ≈ 155.7195 × 105

√
2π rad/sec.

The corresponding graphs for each atom excited state
probability are shown in Figure 3.
And again, let us see what happens when the avail-

able volume is increased by one order. This yields V =
10−12 m3 with the same five atoms (D ≈ 107 rad/sec)
of the configuration s5a1. Then, g ≈ 24.6214 ×
105

√
π rad/sec; �2 ≈ 24.6214 × 105

√
2π rad/sec, and

�
′
2 ≈ 49.2428 × 105

√
2π rad/sec. The corresponding

graph is in Figure 4. Note that the graphs Figures 3 and
4 of excited state probabilities are for the chosen three

space phase = Pi/6
space phase = 2Pi/3
space phase = Pi

Probability of an atomic excited
 state as a function of time (in sec.)

0

0.02

0.04

0.06

0.08

0.1

0.12

5e–08 1e–07 1.5e–07 2e–07 2.5e–07 3e–07
t

Figure 1 Time evolution of |βα(t)|2. V = 10−13 m3. Atoms are
arranged in the set s3a1 with D ≈ 107 rad/sec. The bold solid line
represents the atom with the space phase kr1 = π/6, the dot line is
for the space phase kr2 = 2π/3, and the thin solid line corresponds
to kr3 = π .
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Probability of an atomic excited
 state as a function of time (in sec.)
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t

Figure 2 Atom excited state probability |βα(t)|2. V = 10−12 m3.
Atoms are arranged in the set s3a1 with D ≈ 107 rad/sec. The bold
solid line represents the atom with the space phase kr1 = π/6, the
dot line is for the space phase kr2 = 2π/3, and the thin solid line
corresponds to kr3 = π .

atoms with the following phases: kr1 = 2π
3 , kr3 = 5π

2 , and
kr5 = 19π

6 .
As it was supposed in the derivative of the differential

equations with the damping items such like (12) (see the
details in the work [11], the available volume V for the
system of atoms and field defines the ‘available’ modes
for the electromagnetic field. The value of volume V can
determine one of the inequalities D < �2 and D > �2
(D < �

′
2 and D > �

′
2), therefore defining the char-

acter of the system relaxation. Such fundamental system
property was illustrated in the figures. It is interesting
to note that increasing the system volume V, therefore
increases the ‘available’ number of quantized field modes,
the maximum probability to find an atom in its excited
state decreases. Other interesting feature, shown in the
proposed graphs, is the different character of relaxation

space phase = 2Pi/3
space phase = 19Pi/6
space phase = 5Pi/2

Probability of an atomic excited
 state as a function of time (in sec.)

0

0.02

0.04

0.06

0.08

0.1

5e–08 1e–07 1.5e–07 2e–07 2.5e–07 3e–07
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time. V = 10−13 m3. Atoms are arranged in the set s5a1 with
D ≈ 107 rad/sec. The bold solid line represents the atom with the
space phase kr1 = 2π/3, the dot line is for the space phase
kr5 = 19π/6, and the thin solid line corresponds to kr3 = 5π/2.
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the set s5a1 with D ≈ 107 rad/sec. The bold solid line represents the
atom with the space phase kr1 = 2π/3, the dot line is for the space
phase kr5 = 19π/6, and the thin solid line corresponds to
kr3 = 5π/2.

for each excited atom. The latter depends, as shown here,
on the space phase krα , where α = 1..N .
On this note, therefore, let our narration to come to the

following conclusions, in short.

Conclusions
Thus, in this work, we investigated a chain of N identical
two-level long distanced atoms prepared ‘via a single-
photon Fock state’. The functional dependence of the
atomic state amplitudes on a space configuration and time
is derived in the Weiskopf-Wiegner approximation.
It was shown that in increasing the system volume V,

the maximum value of probability to find an atom in its
excited state decreases. The feature can be experimentally
investigated at the proposed nanoscale limit for the space
configuration of atoms.
Hence, the Weiskopf-Wiegner approximation was

revealed through the provided application to the many-
body system at the nanoscale limit for the atomic space
phases. The found solution (30) cannot be counted as a
particular one, or as a limit of such, for the initial systems
of Equations 3 and 4 that represent only a closed con-
servative system of atoms and an electromagnetic field.
Thus, we can say that the model described in this work ,
besides the atoms and the electromagnetic field, implicitly
contains a third participant guaranteeing a total system
relaxation with time. It is interesting to note here that the
‘complete’ decay of the system excitations was strongly
imposed by the choice of the coefficients C (38) and
C′ (39).
The methods, described in this work, of solving the

system of linear differential equations can be applied
even for more general situations when the boundary
‘circular’ conditions are not satisfied. In certain cases,
the problem allows to extend the system by adding a
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subsystem of non-sufficient number of atoms (or an
atom when the expression

∣∣∣∑N
α sin(krα) cos(krα)

∣∣∣ < 1
is actual) without influencing the main characteristics
under our interest. Besides, it is interesting to investigate
the dependence of value of the mentioned construction∣∣∣∑N

α sin(krα) cos(krα)

∣∣∣ on the location of the origin of a
coordinate system.
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