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Abstract Using a new geometrical method introduced by
Werner, we find the deflection angle in the weak limit approx-
imation by a spinning cosmic string in the context of the
Einstein–Cartan (EC) theory of gravity. We begin by adopt-
ing the String-Randers optical metric, then we apply the
Gauss–Bonnet theorem to the optical geometry and derive
the leading terms of the deflection angle in the equatorial
plane. Calculation shows that light deflection is affected by
the intrinsic spin of the cosmic string and torsion.

1 Introduction

Gravitational bending of light by a massive object is a well-
known phenomenon, which led to the first experimental evi-
dence of the general theory of relativity [1]. Remarkably,
even today, the deflection of light continues to be one of the
most important tools used in modern astrophysics and cos-
mology. This phenomenon has been studied in detail in vari-
ous astrophysical aspects, both in the weak limit [2,3] and the
strong limit approximation [4–7]. In the last few years, there
has been a growing interest in studying weak as well as strong
fields, and along this line of research many papers have been
written, addressing for instance the naked singularities and
relativistic images of Schwarzschild black hole lensing, the
role of the scalar field in gravitational lensing [8–10], worm-
holes [11], testing the cosmic censorship hypothesis [12],
gravitational lensing from charged black holes in the weak
field limit [13], Kerr black hole lensing [14], gravitational
lensing by massless braneworld black holes [15], and strong
deflection lensing by charged black holes in scalar-tensor
gravity [16].

Recently, Gibbons and Werner, introduced a new geomet-
rical method for calculating the light deflection [17]. Using
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the optical metric and applying the Gauss–Bonnet theorem
to the optical geometry they calculated the deflection angle
for some static and stationary spacetime metrics [18]. In this
context, we used this method to calculate the deflection of
light by charged black holes with topological defects [19],
and more recently the deflection angle for finite distances
for Schwarzschild–de Sitter and Weyl conformal gravity was
investigated [20]. Furthermore, Werner extended this method
to stationary metrics and calculated the deflection angle for
the Kerr black hole [21]. The deflection angles around a static
cosmic string and a global monopole were studied in Ref.
[22–24], however, much less effort has been devoted to stud-
ies of the deflection angle by a spinning cosmic string [25].
Motivated by this fact, we aim to calculate the deflection
angle by a spinning cosmic string in EC theory of gravity.

Topological defects like domain walls, cosmic strings
and monopoles may have been produced by phase transi-
tions involving spontaneous symmetry breaking in the early
universe [26]. Although without any experimental evidence
whatsoever, cosmic strings have been widely studied in the
literature. There are some interesting effects associated with
the presence of topological defects, in particular, the vac-
uum fluctuations [27,28], gravitational lensing of cosmic
string/global monopole [29], finite electrostatic self-forces
on an electric charged particle [30], Landau quantization
[31], and many others. Line defects containing torsion, like
dislocations, appear within Einstein–Cartan gravitation the-
ory [32] in Riemann–Cartan geometry. Furthermore, it was
shown that cosmic strings can be represented by disclina-
tions in the spacetime and the helical structure of the spinning
cosmic string is associated with the timelike and spacelike
dislocations with torsion effects in the EC theory was inves-
tigated here [33,34]. In Ref. [35] the effects of torsion on
the electromagnetic field is studied, in Ref. [36] torsion as
an alternative to cosmic inflation is investigated. Therefore,
in this context, it is natural to see if torsion affects the light
deflection by a spinning cosmic string.
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The remainder of the paper is organized as follows. In
Sect. 2, we briefly review the Finsler geometry and then we
introduce the String-Randers optical metric and discuss some
of its basic features. In Sect. 3, we calculate the correspond-
ing Gaussian optical curvature for a spinning cosmic string
and then, using the Gauss–Bonnet theorem, we calculate the
leading terms of the deflection angle in the weak limit approx-
imation. In Sect. 4, we comment on our results.

2 String-Randers optical metric

In order to deal with the corresponding optical geometry for
some stationary spacetime metrics, one needs to replace the
Riemannian geometry with the Finsler geometry. In particu-
lar, the Finsler metric on a smooth manifold, M , is defined as
a smooth, nonnegative function F(x, X), with the Hessian
given by [21,37]

gi j (x, X) = 1

2

∂2F2(x, X)

∂Xi∂X j
, (1)

where F2(x, X) = gi j (x, X)Xi X j . Note that the Randers
metric is a special Finsler metric, given by the metric

F(x, X) =
√
ai j (x)Xi X j + bi (x)X

i , (2)

where ai j denotes a Riemannian metric and bi a one-form
satisfying the condition ai j bi b j < 1. Furthermore, we can
make use of the Hessian (1) and construct the Christoffel
symbols, which are given by

Γ i
jk(x, X) = 1

2
gil(x, v)

×
(

∂gl j (x, X)

∂xk
+ ∂glk(x, X)

∂x j
− ∂g jk(x, X)

∂xl

)
, (3)

where gi j is the inverse of (1) and vi = gi j (x, X)X j . The
metric of an infinitely long spinning cosmic string with tor-
sion effects in cylindrical coordinates reads [33,34]

ds2 = −(dt + a dϕ)2 + dρ2 + α2ρ2dϕ2 + (dz + βdϕ)2

(4)

where a = 4GJ t is the rotational parameter of the string,
which has units of distance, β = 4GJ z is analogous to the
Burgers vector and is related to the torsion. The cosmic string
parameter is defined in terms of string energy density μ and
Newton’s constantG as α = (1−4Gμ) and 0 < α ≤ 1 (from
now on, we will always assume G = 1). The constants J t

and J z are the intrinsic spin of the string and dislocations of
the space, respectively. Using the coordinate transformations
z = r cos θ and ρ = r sin θ , we can write the above metric in
spherical coordinates. Without loss of generality by setting
θ = π/2, we can eliminate the cross-terms and study the
equatorial plane; in this way the metric (4) reads

ds2 = − (dt + a dϕ)2 + dr2 +
(
α2r2 + β2

)
dϕ2. (5)

Note that this stationary metric is locally flat, however,
asymptotically conical due the presence of a cosmic string
with energy density μ = 10−5. The cosmic string is extend-
ing along θ = 0 and θ = π , say, in the z-axes. To see how
the Randers metric (2) arises from the spinning cosmic string
metric (4), let dt = F(x, dx), and solve the last metric for
null geodesics with ds2 = 0. It follows that

ai j dxi dx j = dr2 +
(
r2 α2 + β2

)
dϕ2,

bi dxi = −a dϕ. (6)

As is well known, Fermat’s principle of general relativity
states that the light rays are selected by a stationary arrival
time at the observer,

0 = δ

∫

γ

dt = δ

∫

γ

F(x, ẋ)dt, (7)

where γF satisfies the geodesic equation. Therefore the cor-
responding optical (r, ϕ) plane describing the metric (5) is
represented by the following String-Randers metric:

F

(
r, ϕ,

dr

dt
,

dϕ

dt

)
=

√(
dr

dt

)2
+ (

r2α2 + β2
) (

dϕ

dt

)2
− a

dϕ

dt
.

(8)

Next, one can now apply the Nazim method to construct a
Riemannian manifold (M, ḡ), osculating the Randers man-
ifold (M, F). One can choose a smooth vector field X̄ over
M that contains the tangent vectors along the geodesic γF ,
and hence X̄(γF ) = ẋ . Then the Hessian (1) reads

ḡi j = gi j (x, X̄(x)), (9)

with the corresponding Levi-Civita connection �̄i
jk . With-

out going into details, by following the arguments presented
here [21], we note that one can show that the geodesic, γF
of (M, F), is also a geodesic γḡ of (M, ḡ), which is quite
a remarkable result. In other words, one can start from the
optical geometry (in our case String-Randers metric), and
then use the corresponding osculating Riemannian manifold
to compute the deflection angle of light rays in the equato-
rial plane. By taking the line r(ϕ) = b/ sin ϕ as the zeroth
approximation of the deflected angle, and taking into account
only the leading terms of the vector field X̄ = (X̄r , X̄ϕ)(r, ϕ)

near the boundary, one can make the following choice:

X̄r = dr

dt
= − cos ϕ+O(a), X̄ϕ = dϕ

dt
= sin2 ϕ

b
+O(a).

(10)
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3 Optical curvature and the deflection angle

The famous Gauss–Bonnet theorem relates the intrinsic
geometry of the spacetime with its topology. For reasons
presented in the previous section, we can now apply the
Gauss–Bonnet theorem to the osculating Riemannian man-
ifold (DR, ḡ), for the region DR in M , with boundary
∂DR = γḡ ∪ CR , which states that [17,18,21]

∫∫

DR

K dS +
∮

∂DR

κ dt +
∑
i

εi = 2πχ(DR), (11)

where K is the Gaussian curvature and κ is the geodesic
curvature. The latter quantity is defined as κ = ḡ (∇γ̇ γ̇ , γ̈ ),
such that ḡ(γ̇ , γ̇ ) = 1, in which γ̈ is the unit acceleration
vector and εi is the corresponding exterior angle at the i th
vertex. As R → ∞, both jump angles become π/2, hence
θO + θS → π . Since DR is non-singular, the Euler charac-
teristic is χ(DR) = 1, and finally we are left with

∫∫

DR

K dS +
∮

∂DR

κ dt = 2πχ(DR) − (θO + θS) = π. (12)

Since γḡ is geodesic, clearly κ(γḡ) = 0, therefore our goal
first is to calculate κ(CR)dt where κ(CR) = |∇ĊR

ĊR |, as
R → ∞. In this way for very large R given by CR :=
r(ϕ) = R = const., the radial component of the geodesic
curvature can be given by

(
∇ĊR

ĊR

)r = Ċϕ
R

(
∂ϕĊ

r
R

) + Γ̄ r
ϕϕ

(
Ċϕ
R

)2
. (13)

The first term in the last equation vanishes, therefore we
are left only with the second term. If we use the fact that
ḡϕϕ Ċ

ϕ
RĊ

ϕ
R = 1 and then compute the Levi-Civita connection

�̄r
ϕϕ , it is not difficult to show that for very large r(ϕ) = R =

const , the geodesic curvature gives κ(CR) → R−1. On the
other hand, for constant R, from the metric (8), it follows that
dt = (

√
α2R2 + β2 − a)d ϕ, and hence

lim
R→∞ κ(CR)dt = lim

R→∞
1

R

(√
α2R2 + β2 − a

)
d ϕ = α d ϕ.

(14)

This is not a surprising result since our spacetime is glob-
ally conical due to the presence of the cosmic string and
therefore the corresponding optical metric is not asymp-
totically Euclidean. The last result can also be written as
κ(CR)dt/dϕ = α �= 1, which reduces to asymptotically
Euclidean κ(CR)dt/dϕ = 1, only if one takes the limit
α → 1. Now, if we use this result and go back to Eq. (11), it
follows that

∫∫

DR

K dS +
∮

CR

κ dt
R→∞=

∫∫

S∞

K dS + α

π+α̂∫

0

dϕ. (15)

In the weak deflection limit we may assume that the light ray
is given by r(t) = b/ sin ϕ at zeroth order; using (12) and
(15) for the deflection angle one finds

α̂ = 4μπ − 1

α

π∫

0

∞∫

b
sin ϕ

K
√

det ḡ dr dϕ, (16)

where we have expressed the first term in terms of the cosmic
string energy density μ, using α = 1 − 4μ, and we have
neglected higher order terms μ2.

In order to solve the last integral we need to compute the
quantity KdS, where dS = √

det ḡ dr dϕ. Therefore let us
now first compute the metric components of the osculating
Riemannian manifold by using the String-Randers optical
metric (8), and then by using the Eqs. (1), (9), and (10), one
finds that

ḡrr = 1 − a
(
α2 r2 + β2

)
sin6 ϕ

b3
(

cos2 ϕ + (α2 r2+β2) sin4 ϕ

b2

)3/2 , (17)

ḡϕϕ = α2r2 + β2

−
a

(
α2 r2 + β2

)
sin2 ϕ

(
3 cos2 ϕ + 2

(
α2 r2+β2

)
sin4 ϕ

b2

)

b
(

cos2 ϕ + (α2 r2+β2) sin4 ϕ

b2

)3/2 ,

(18)

ḡrϕ = a cos3 ϕ
(

cos2 ϕ + (α2 r2+β2) sin4 ϕ

b2

)3/2 . (19)

Note that we have neglected higher order terms like a2. On
the other hand the determinant of this metric can be written

det ḡ =
(
α2r2 + β2

)
⎡
⎣1 − 3 a sin2 ϕ

b
√

cos2 ϕ + (α2r2+β2) sin4 ϕ

b2

⎤
⎦ .

(20)

The Gaussian optical curvature is given by [21]

K = R̄rϕrϕ

det ḡ
= 1√

det ḡ

×
[

∂

∂ϕ

(√
det ḡ

ḡrr
Γ̄ ϕ
rr

)
− ∂

∂r

(√
det ḡ

ḡrr
Γ̄ ϕ
rϕ

)]
, (21)

in which by using the above metric components for the Levi-
Civita connections we find
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Γ̄ ϕ
rr = 3ab2 cos ϕ sin4 ϕ G(r, ϕ)

2
(
α2r2 + β2

) (
b2 cos2 ϕ + (

α2r2 + β2
)

sin4 ϕ
)5/2

,

(22)

Γ̄ ϕ
rϕ = rα2

α2r2 + β2 + arα2 sin6 ϕ H(r, ϕ)

2
(
b2 cos2 ϕ + (

α2r2 + β2
)

sin4 ϕ
)5/2

,

(23)

where we have used the following functions:

G(r, ϕ) =
(
α2r2 + β2

)
sin3 ϕ

+2 cos2 ϕ
((

α2r2 + β2
)

sin ϕ − brα2
)

,

H(r, ϕ) = 5b2 cos2 ϕ + 2
(
α2r2 + β2

)
sin4 ϕ.

Therefore, one finds

KdS =
[
− α2r2

(
α2r2 + β2

)3/2 − a

4α3 r3 f (r, ϕ) + O(a2)

]
drdϕ.

(24)

As we can see, the Gaussian curvature of the optical metric,
K , is negative, and here appears the role played by the global
topology and the role of the Gauss–Bonnet theorem on the
light deflection. The negative sign indicates that, locally, light
rays diverge; therefore the light rays can converge only by
considering the global topology of the spacetime. In the last
equation f (r, ϕ) is a very long and complicated function of
r and ϕ and the parameter α, given by

f (r, ϕ) = sin2 ϕ (A(r, ϕ) + B(r, ϕ) + C(r, ϕ))(
b2 cos2 ϕ + r2α2 sin4 ϕ

)7/2 . (25)

In general, this function f (r, ϕ) depends also on the parame-
terβ. For the sake of simplicity, in the second term of Eq. (24),
we will focus only on the effects of the intrinsic spin of the
string on the light deflection by setting β → 0. Herein, the
functions A(r, ϕ), B(r, ϕ), and C(r, ϕ) are also some func-
tions expressed in terms of r , ϕ, and the parameter α, given
by

A(r, ϕ) = r3α4 sin ϕ[r3α2(6b2 − r2α4 + r2α4 cos(2ϕ)) sin9 ϕ

+ 12b4 cos6 ϕ(4b − 5r sin ϕ)], (26)

B(r, ϕ) = −b2r4α4 cos2 ϕ sin6 ϕ[24b2 − 27r2α2 − r2α4

+ r2α2(27 + α2) cos(2ϕ) + 36brα2 sin ϕ], (27)

C(r, ϕ) = b2r3α4 cos4 ϕ sin3 ϕ[36 b r2α2 cos(2ϕ)

+ r(45r2α2 + b2(34α2 − 66)) sin ϕ

+ 3(8b3 − 12br2α2 − 5r3α2 sin(3ϕ))]. (28)

In the following we will make use of the last three equations
and compute the deflection angle. Substituting the result (24)

into the Eq. (16), the deflection angle reads

α̂ ≈ 4πμ+ 1

α

π∫

0

∞∫

b
sin ϕ

(
α2 β2

(
α2r2 + β2

)3/2 + a f (r, ϕ)

4 r3 α3

)
drdϕ.

(29)

The first integral reduces to a complete elliptic integral of the
first kind, and after some approximations we find

π∫

0

∞∫

b
sin ϕ

α2 β2

(
α2r2 + β2

)3/2 drdϕ = β2π

4 b2α2 , (30)

where b is the impact parameter. On the other hand, after
some long calculations, for the second integral we find the
following result (see Appendix A):

π∫

0

∞∫

b
sin ϕ

a f (r, ϕ)

4 r3α3 drdϕ = 3 a π

8 b

(
1

α
− α

)
. (31)

Now using these results and going back to Eq. (29) for the
total deflection angle we find

α̂ 
 4μπ + β2π

4b2α3 ± 3 a π

8 b

(
1 − 1

α2

)
, (32)

in which the positive (negative) sign is for a retrograde (pro-
grade) light ray, respectively. The first term refers to the
deflection angle by a static cosmic string, which is indepen-
dent of the impact parameter b. Since μ = 10−5, this angle is
of the order of 3 arcsec, which is a small effect but within the
observable range. The second term is a direct consequence of
the EC theory and is related to torsion. Finally, the third term
is related to the intrinsic spin effects on the light deflection.

If now one assumes that the light ray is propagating from
the source S, to an observer O , such that both S and O lie
on the same surface and are perfectly aligned [29], then we
can rewrite the deflection angle in terms of the mass density
of the cosmic string and d and l, as follows:

α̂ 
 4μπl (l + d)−1 + β2π

4 b2 + 3πβ2μ

b2 ± 3πaμ

b
, (33)

where d and l are the corresponding distances from the cos-
mic string to the observer O , and to the source S, respectively.
From Eq. (33), it is clear that the effects of the intrinsic spin
and torsion on the light deflection are negligible compared
with the deflection angle of the static cosmic string.

In the special case if |J z | = 0, this metric represents a
spinning cosmic string with no cosmic dislocations,
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ds2 = −(dt + a dϕ)2 + dρ2 + α2ρ2dϕ2 + dz2, (34)

setting a = 1, and b = 10 pc, the deflection angle is
extremely small: α̂spin ≈ 10−23 rad. On the other hand if
we choose |J t | = 0, then this metric represents a cosmic
dislocations given by the following metric:

ds2 = −dt2 + dρ2 + α2ρ2dϕ2 +
(

dz2 + βdϕ
)2

. (35)

The torsion effects are even smaller, in fact, if we choose
β = 1, then α̂torsion ≈ 10−34 rad; therefore, from a practical
point of view they are impossible to detect experimentally. In
the special case that α → 1, β → 0, and a → 0, we recover
the Minkowski spacetime, α̂flat = 0, as expected. However, it
will be interesting to see the torsion effects on light deflection
if we apply this method to the Kerr black hole or some other
black hole configuration.

4 Conclusion

In summary, we have calculated the leading terms of the
deflection angle in the weak limit approximation caused by
a spinning cosmic string within the Einstein–Cartan theory
of gravity. For this reason we have introduced the String-
Randers optical metric and applied the Gauss–Bonnet theo-
rem to this optical metric. The results show that the effects
of the intrinsic spin of the string and torsion on light deflec-
tion are negligible compared with the deflection angle of the
static cosmic string; nevertheless, they are present in the final
result for the total deflection angle.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

5 Appendix A

In order to solve the integral (31), we can first integrate with
respect to r and find the following integral:

I =
π∫

0

∞∫

b
sin ϕ

a f (r, ϕ)

4 r3α3 drdϕ

=
∫ π

0

⎡
⎣aα sin2 ϕ

(
M(r, ϕ) + N (r, ϕ) + Q(r, ϕ)

)

b
√

2 �5/2

⎤
⎦

∣∣∣∣∣∣

∞

b
sin ϕ

dϕ

(36)

where

�(r, ϕ) = 4b2 + 3r2α2 + 4(b2 − r2α2) cos(2ϕ) + r2α2 cos(4ϕ),

M(r, ϕ) = sec2 ϕ(b + b cos(2ϕ) + 10r sin ϕ + 2r sin(3ϕ))

×(4b2 + 3r2α2 + 4(b2 − r2α2) cos(2ϕ)

+ r2α2 cos(4ϕ))2, (37)
N (r, ϕ) = 48α−2b4 cot2 ϕ(19b − bα2 + 12b cos(2ϕ)

+ b(1 + α2) cos(4ϕ) + 14rα2 sin ϕ − 3rα2 sin(3ϕ)

− rα2 sin(5ϕ)), (38)
Q(r, ϕ) = −2b2α−2 csc2 ϕ(4b2 + 3r2α2 + 4(b2 − r2α2) cos(2ϕ)

+ r2α2 cos(4ϕ))(42b + bα2 + 36b cos(2ϕ)

− b(α2 − 2) cos(4ϕ) − 14rα2 sin(ϕ) + 3rα2 sin(3ϕ)

+ rα2 sin(5ϕ)). (39)

Now one can go back to Eq. (37) and take the limit of the inte-
grand when r → ∞, and we show that in fact the following
integral vanishes:

∫ π

0

(a csc ϕ sec2 ϕ sin2 ϕ (3 + cos(2ϕ))

b

)
dϕ = 0. (40)

Therefore we are left only with the contribution of the second
term. After evaluating the integral (37) when r = b/ sin ϕ,
we find the following result:

I = a

2bα

(1 + α2)E(π,m2) − 2α2F(π,m2)

1 − α2 , (41)

where m2 = 1 − α2. Note that E(π,m2) and F(π,m2) rep-
resent the complete elliptic integrals of the second and first
kind, respectively. We can expand these functions in a Taylor
series around the point m and find

E(π,m2) ≈ π−πm2

4
−O(m4), F(π,m2) ≈ π+πm2

4
+O(m4).

(42)

Finally making use of the last two equations we find the
following result for the integral (37):

I = 3aπ

8 b

(
1

α
− α

)
. (43)
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