
Environ Monit Assess (2011) 173:625–641
DOI 10.1007/s10661-010-1411-x

Spatial water quality assessment of Langat River Basin
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Abstract This study investigates the spatial water
quality pattern of seven stations located along
the main Langat River. Environmetric methods,
namely, the hierarchical agglomerative cluster
analysis (HACA), the discriminant analysis (DA),
the principal component analysis (PCA), and the
factor analysis (FA), were used to study the spatial
variations of the most significant water quality
variables and to determine the origin of pollution
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sources. Twenty-three water quality parameters
were initially selected and analyzed. Three spatial
clusters were formed based on HACA. These
clusters are designated as downstream of Langat
river, middle stream of Langat river, and upstream
of Langat River regions. Forward and backward
stepwise DA managed to discriminate six and
seven water quality variables, respectively, from
the original 23 variables. PCA and FA (varimax
functionality) were used to investigate the origin
of each water quality variable due to land use ac-
tivities based on the three clustered regions. Seven
principal components (PCs) were obtained with
81% total variation for the high-pollution source
(HPS) region, while six PCs with 71% and 79%
total variances were obtained for the moderate-
pollution source (MPS) and low-pollution source
(LPS) regions, respectively. The pollution sources
for the HPS and MPS are of anthropogenic
sources (industrial, municipal waste, and agricul-
tural runoff). For the LPS region, the domes-
tic and agricultural runoffs are the main sources
of pollution. From this study, we can conclude
that the application of environmetric methods can
reveal meaningful information on the spatial vari-
ability of a large and complex river water quality
data.
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Introduction

The State of Selangor, Malaysia, has a long history
of river pollution problems associated with land
use changes. The Langat River is one of the prin-
cipal river draining a densely populated and de-
veloped area of Selangor. Over the past 40 years,
it has served about half of the population of
Selangor and is a source of hydropower and con-
trol of flood discharges. More than two third of the
Selangor population inhabit the floodplain, which
provides highly fertile land for agriculture and
land for housing, recreation, and industrial devel-
opments. This scenario has brought humans into
conflict of harmony between human development
and river environment and increases the degree of
pollution into river channels. According to Aiken
et al. (1982), 42 tributaries in Peninsular Malaysia
have been categorized as very polluted, including
the Langat River. Until 1999, there were 13 pol-
luted tributaries all over Malaysia with 36 polluted
rivers due to human activities such as industry,
construction, and agriculture at the tributaries
(Department of Environment 1999). In 1990,
there were 48 clean rivers compared to only 32
rivers in 1999 that could still be classified as clean
(Rosnani 2001).

Almost 60% of the major rivers are regulated
for domestic, agricultural, and industrial purposes
(Department of Irrigation and Drainage 2001).
According to Rosnani (2001), the major pollution
sources affecting rivers in Malaysia are sewage
disposal, discharges from small- and medium-
sized industries that are still not equipped with
proper effluent treatment facilities and land clear-
ing and earthworks activities. In 1999, 42% of
the river basins were recorded to be polluted
with suspended solids (SS) resulting from poorly
planned and uncontrolled land clearing activities,
30% with biological oxygen demand (BOD) from
industrial discharges, and 28% with ammoniacal
nitrogen (AN) from animal husbandry activities
and domestic sewage disposal.

Surface water pollution is identified as the ma-
jor problem affecting the Langat River Basin in
Malaysia. The increase of developing areas within
the river basin increases pollution loading into the
Langat River. As an effort to avoid the Langat
River from becoming more polluted, the Depart-

ment of Environment (DOE) of Malaysia, Min-
istry of Natural Resources and Environment of
Malaysia, has installed telemetric stations along
the river basin to continuously monitor its water
quality. Based on the water quality data, the water
quality index (WQI) was developed to evaluate
the water quality status and river classification.
WQI provides a useful way to predict changes and
trends in the water quality by considering multiple
parameters. WQI is formed by six selected water
quality variables, namely, dissolved oxygen (DO),
BOD, chemical oxygen demand (COD), SS, AN,
and pH (DOE 1997).

Rapid urbanization along the Langat River
plays an important role in the increase of point
source (PS) and non-point source (NPS) pollution
loading. The water quality in the basin has been
deteriorating over the years, as evidenced from
the water quality database compiled for 15 years.
The recorded WQI ranged from 58.1 to 75, which
corresponds to polluted (WQI, 0–59) and moder-
ately polluted (WQI, 60–80). Based on the aver-
age values taken from the 2002 survey (Table 1
and Fig. 1), the major pollutants in the Langat
River Basin expressed as percentage of stations
exhibiting quality corresponding to class 3 and
above are as follows (figures in parenthesis indi-
cate percent sampling stations): AN (94%), TSS
and BOD (71%), COD (65%), and DO (53%;
UPUM 2002).

From this survey, the NPS pollution is seen as
the main contributor to the pollution load com-
pared to PS pollution (UPUM 2002). Due to the
exponential increase in urbanization within the
Langat River Basin, a review of WQI, is required.
In this light, spatial temporal evaluation of river
water quality variations along the Langat River is
initiated.

Spatial analysis is conducted to evaluate the
most significant water quality parameters, taking
into account land use activities that affect the
health of the river. The transformation of a par-
ticular type of land use, such as agriculture and
forest area into industrial or municipal area, will
change the types of pollutant loadings into the
river system. Since there are numerous PS and
NPS pollution sources along the Langat River, it is
quite a challenge to identify the origin of each pol-
lutant. Regular monitoring by DOE provides the
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Table 1 Comparison
between total point
source and non-point
source pollution load
contribution in the
Langat River Basin based
on the event sampling
approach

UPUM (2002)

Pollution source Pollution loading (t/day)

COD BOD TSS TM AN

Industry 22.650 5.536 14.414 0.2440 1.513
Wet market 1.070 0.384 0.409 0.0050 0.056
Pig farm 1.020 0.201 0.460 0.0056 0.725
Public sewage treatment plants 20.680 5.047 5.692 0.0890 3.071
Private sewage treatment plants 4.340 1.060 1.200 0.0200 0.640
Individual sewage treatment plants 17.260 7.140 8.354 0.0000 2.784
Landfill 5.650 1.048 8.149 0.0310 0.664
Sand mining 20.880 0.820 206.670 2.7780 0.057
Total PS 93.550 21.240 245.350 3.1700 9.510
Total NPS (t/day) 614.950 132.690 2,791.030 15.2500 12.670
% PS 13.2 13.8 8 17.2 42.8
% NPS 86.8 86.2 92 82.8 57.2

available spatial variation data. However, inter-
preting the huge amount of data is a challenge
requiring one to use correct methods of data in-
terpretation (Chapman 1992; Dixon and Chiswell
1996).

Environmetrics can be considered as a branch
of environmental analytical chemistry that uses
multivariate statistical modeling and data treat-
ment also known as chemometrics; (Simeonov
et al. 2000). Environmetric is deemed to be
the best approach to avoid misinterpretation of
a large complex environmental monitoring data
(Simeonov et al. 2002). Environmetric methods
have been widely used in drawing meaning-
ful information from masses of environmental
data. These methods have often been used in
exploratory data analysis tools for classification
(Brodnjak-Voncina et al. 2002; Kowalkowski et al.

2006) of samples (observations) or sampling sta-
tions and the identification of pollution sources
(Massart et al. 1997; Vega et al. 1998; Shrestha and
Kazama 2007). Environmetrics have also been
applied to characterize and evaluate the surface
and freshwater quality as well as verifying spatial
variations caused by natural and anthropogenic
factors (Helena et al. 2000; Singh et al. 2005;
Juahir et al. 2008). Recently, environmetric meth-
ods have become an important tool in environ-
mental sciences (Brown et al. 1994, 1996) to reveal
and evaluate complex relationships in a wide vari-
ety of environmental applications (Alberto et al.
2001). The most common environmetric methods
used for clustering are the hierarchical agglomera-
tive cluster analysis (HACA) and the principal
components analysis (PCA) with factor analysis
(FA; Kannel et al. 2007). These methods are

Fig. 1 Percentage
contribution of each type
of point source of
pollution in the Langat
River Basin
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commonly supported by discriminant analysis
(DA) as a confirmation for HACA and PCA and
are usually referred to as pattern recognition
methods (Adams 1998). The application of dif-
ferent pattern recognition techniques to reduce the
complexity of large data sets has proven to give a
better interpretation and understanding of water
quality data (Brown et al. 1980; Qadir et al. 2007).

The objective of this study is to evaluate the
spatial variations in the river water quality data
matrix taken from the Langat River (Peninsular
Malaysia) using environmetric methods. The data
are taken from the river quality monitoring pro-
gram of 1995–2002. Environmetric methods were
used to identify the influence of land use activities
on the spatial variations of Langat River water
quality. Based on the information obtained from
this study, a critique on the WQI methodology will
be presented.

Methodology

Description of study area

The Langat River has a total catchment area of
approximately 1,815 km2. It lies within latitudes
2◦40′ M 152′′ N to 3◦16′ M 15′′ and longitudes
101◦19′ M 20′′ E to 102◦1′ M 10′′ E. The catch-
ment is illustrated in Fig. 2. The Langat River
Basin formed by 15 sub-basins, namely, Pangsoon,
Hulu Lui, Hulu Langat, Cheras, Kajang, Putra-
jaya, Hulu Semenyih, Semenyih, Batang Benar,
Batang Labu, Beranang, Bangi Lama, Rinching,
Teluk Datok, and Teluk Panglima Garang. The
main river course length is about 141 km, mostly
situated around 40 km east of Kuala Lumpur.
The Langat River has several tributaries with
the principal ones being the Semenyih River,
the Lui River, and the Beranang River. There
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Fig. 2 Seven water quality stations (Sb) were selected in this study along the main river
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are two reservoirs, the Langat Reservoir and the
Semenyih Reservoir catchments, respectively. The
Langat Reservoir, built in 1981, has a catchment
area of 54 km2, while the Semenyih Reservoir,
built in 1982 with the purpose to supply domes-
tic and industrial water, has a catchment area of
41 km2. For the Langat Reservoir, it is also used
to generate power supply at moderate capacity for
the population within the Langat Valley.

This climate in the study area is characterized
by high average and uniform annual tempera-
tures, high rainfall, and high humidity. This cli-
mate has a dominant impact on the hydrology and
geomorphology of the study area. Generally, the
study area experiences two types of season: the
wet season in April to November and a relatively
drier period from January to March. The weather
is very much influenced by the SW monsoon that
blows across the Straits of Malacca. Flooding is
common in the study area.

The study areas include selected impacted
and non-impacted stretches of the Sungai Langat
Basin. Starting from the Semenyih and Hulu
Langat Dams, down to the lowest area at the
estuary near Permatang Pasir, with a total distance
of 78 km. Due to immense area (1,987.7 km2), it is
crucial that critically impacted areas be identified.

The data and monitoring sites

The water quality data in this study were ob-
tained from seven stations along the main Langat
River (Fig. 2). The water quality monitoring sta-
tions are manned by the Department of Environ-

ment (DOE), Ministry of Natural Resource and
Environment of Malaysia. The selected stations
are illustrated in Table 2. All the stations were
identified based on the availability of recorded
data from 1995 to 2002. The data collected from
September 1995 to May 2002 were selected for
this study. Referring to the sampling sites manned
by DOE in the present study, a total of seven
sites represent the eight Langat sub-basin, namely,
Teluk Panglima Garang (site 7), Teluk Datok
(site 6), Putrajaya (site 5), Kajang (site 4), Cheras
(site 3), Hulu Langat (site 2), Pangsoon, and Ulu
Lui (site 1). Sites 3–7 are located in the region of
high pollution load, as there are several wastewa-
ter drains situated in the middle and downstream
of the Langat River Basin. Site 2 is partly situated
in the middle stream region of moderate river
pollution. Site 1 and a part of site 2 are located
upstream of the Langat River, in the area of rel-
atively low river pollution. It is worth mentioning
that some stations have missing data and not all
stations were consistently sampled.

Although there are 30 water quality parame-
ters available, only 23 consistently sampled pa-
rameters were selected. A total of 254 samples
were used for the analysis. The 23 water quality
parameters are DO, BOD, electrical conductivity
(EC), COD, AN, pH, SS, temperature (T), salinity
(Sal), turbidity (Tur), dissolved solid (DS), total
solid (TS), nitrate (NO−

3 ), chlorine (Cl), phos-
phate (PO−

4 ), zinc (Zn), calcium (Ca), iron (Fe),
potassium (K), magnesium (Mg), sodium (Na),
Escherichia coli, and coliform. The descriptive sta-
tistics of the measured 8-year data set are summa-
rized in Table 3.

Table 2 DOE sampling
station at the study area

DOE Study Distance from Grid reference Location
station no. code estuary (km)

2814602 Sb07 4.19 2◦52.027′ 101◦26.241′ Air Tawar Village
2815603 Sb06 33.49 2◦48.952′ 101◦30.780′ Telok Datuk,

near Banting town
2817641 Sb05 63.43 2◦51.311′ 101◦40.882′ Bridge at Dengkil Village
2918606 Sb04 81.14 2◦57.835′ 101◦47.030′ Near West Country Estate
2917642 Sb03 86.94 2◦59.533′ 101◦47.219′ Kajang Bridge
3017612 Sb02 93.38 2◦02.459′ 101◦46.387′ Junction to Serdang,

Cheras at Batu 11
3118647 Sb01 113.99 3◦09.953′ 101◦50.926′ Bridge at Batu 18
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Cluster analysis

In this study, HACA was employed to inves-
tigate the grouping of the sampling sites (spa-
tial). HACA is a common method to classify
(Massart and Kaufman 1983) variables or cases
(observations/samples) into clusters with high ho-
mogeneity level within the class and high het-
erogeneity level between classes with respect to
a predetermined selection criterion (McKenna
2003). Ward’s method using euclidean distances
as a measure of similarity (Willet 1987; Adams
1998; Otto 1998) within HACA has proved to be
a very efficient method. The result is illustrated
by a dendogram, presenting the clusters and their
proximity (Forina et al. 2002). The euclidean dis-
tance (linkage distance) is reported as Dlink/Dmax,
which represents the quotient between the linkage
distance divided by the maximal distance. The
quotient is usually multiplied by 100 as a way to
standardize the linkage distance represented by
the y-axis (Singh et al. 2004, 2005; Shrestha and
Kazama 2007).

Discriminant analysis

Discriminant analysis determines the variables
that discriminate between two or more naturally
occurring groups/clusters. It constructs a discrim-
inant function (DF) for each group (Johnson and
Wichern 1992). DFs are calculated using Eq. 1:

f (Gi) = ki +
n∑

j=1

wij Pij (1)

where i is the number of groups (G), ki is the
constant inherent to each group, n is the number
of parameters used to classify a set of data into
a given group, and wj is the weight coefficient
assigned by DF analysis (DFA) to a given para-
meter (pj).

In this study, DA was applied to determine
whether the groups differ with regard to the mean
of a variable and to use that variable to pre-
dict group membership. Three groups for spatial
analysis (three sampling regions represents up-
stream, middle stream, and downstream), which
were determined from CA, were selected. The
DA was applied to the raw data using the stan-

dard, forward stepwise, and backward stepwise
modes. These were used to construct DFs to eval-
uate spatial variations in the river water quality.
The stations (spatial) were the grouping (depen-
dent) variables, while all the measured parameters
constitute the independent variables. In the for-
ward stepwise mode, variables are included step
by step beginning with the most significant vari-
able until no significant changes were obtained.
In the backward stepwise mode, variables are re-
moved step by step beginning with the less sig-
nificant variable until no significant changes were
obtained.

Principal component analysis/factor analysis

The most powerful pattern recognition technique
that is usually coupled with HACA is the PCA.
It provides information on the most significant
parameters due to spatial and temporal variations
that describes the whole data set by excluding
the less significant parameters with minimum loss
of original information (Singh et al. 2004, 2005;
Kannel et al. 2007). The principle component
(PC) can be expressed as

zij = ai1x1 j + ai2x2 j + ... + aimxmj (2)

where z is the component score, a is the compo-
nent loading, x is the measured value of the vari-
able, i is the component number, j is the sample
number, and m is the total number of variables.

The FA is usually applied as a method to in-
terpret a large complex data matrix and offers a
powerful means of detecting similarities among
variables or samples (Reghunath et al. 2002). The
PCs generated by PCA are sometimes not readily
interpreted; therefore, it is advisable to rotate
the PCs by varimax rotation. Varimax rotations
applied on the PCs with eigenvalues more than 1
are considered significant (Kim and Mueller
1987) in order to obtain new groups of variables
called varimax factors (VFs). The number of VFs
obtained by varimax rotations is equal to the num-
ber of variables in accordance with common fea-
tures and can include unobservable, hypothetical,
and latent variables (Vega et al. 1998). The VF
coefficients having a correlation greater than 0.75
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are considered as “strong”; 0.75–0.50, as “moder-
ate”; and 0.50–0.30, as “weak” significant factor
loadings (Liu et al. 2003).

Source identification of different pollutants was
made on the basis of different activities in the
catchment area in light of previous literatures. The
basic concept of FA is expressed as

zij = a f 1 f1i + a f 2 f21 + .... + a f m fmi + e f i (3)

where z is the measured value of a variable, a
is the factor loading, f is the factor score, e is
the residual term accounting for errors or other
sources of variation, i is the sample number, j is
the variable number, and m is the total number of
factors.

In this study, PCA/FA was applied to the nor-
malized data sets (23 variables) separately for the
three different spatial regions, HPS, MPS, and
LPS, as delineated by the CA technique. The in-
put data matrices (variables × cases) for PCA/FA
were 23 × 69 for HPS, 23 × 120 for MPS, and
23 × 65 for LPS regions.

Results and discussion

Classification of sampling station based on
historical water quality data

This section examines the historical values of wa-
ter quality parameters in order to classify the
water quality station based on their similarity level
using HACA. HACA was performed on the wa-
ter quality data set to evaluate spatial variation
among the sampling sites. This analysis resulted

in the grouping of sampling stations into three
clusters/groups (Fig. 3).

Cluster 1 (stations Sb01 and Sb02) represents
the low-pollution source (LPS) from the sub-
basin Pangsoon and Ulu Lui, cluster 2 (stations
Sb03, Sb04, and Sb05) represents the moderate-
pollution sources (MPS) from Cheras and Hulu
Langat, and cluster 3 (stations Sb06 and Sb07)
represents the high-pollution sources (HPS) from
sub-basin Kajang, Putrajaya, Teluk Datok, and
Teluk Panglima Garang.

This result implies that for rapid assessment of
water quality, only one station in each cluster is
needed to represent a reasonably accurate spatial
assessment of the water quality for the whole
network. The CA technique reduces the need
for numerous sampling stations. Monitoring from
3 stations that represent three different regions
is sufficient. It is evident that the HACA tech-
nique is useful in offering reliable classification
of surface water for the whole region and can be
used to design future spatial sampling strategies
in an optimal manner. Figure 4 shows the three
regions given by HACA and the possible pollu-
tion sources within the study regions. The clus-
tering procedure generated three groups/clusters
in a very convincing way, as the sites in these
groups have similar characteristics and natural
backgrounds.

Spatial variations of river water quality

To study the spatial variation among the different
stream regions, DA was applied on the raw data
post grouping of the Langat Basin into three main
clusters/groups defined by CA. Groups (HPS,

Fig. 3 Dendogram
showing different clusters
of sampling sites located
on the Langat River
Basin based on water
quality parameters
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Fig. 4 Classification of regions due to surface river water quality by HACA for the Langat River Basin

MPS, and LPS) were treated as dependent vari-
ables, while water quality parameters were treated
as independent variables. DA was carried out
via standard, forward stepwise, and backward
stepwise methods. The accuracy of spatial clas-
sification using standard, forward stepwise, and
backward stepwise mode DFA were 90.5% (23
discriminant variables), 88.1% (six discriminant
variables), and 88.9% (seven discriminant vari-
ables), respectively (Table 4). Using forward step-
wise, DA, DO, BOD, pH, AN, Cl, and E. coli were
found to be the significant variables. This indicates
that these parameters have high variation in terms
of their spatial distribution. Backward stepwise
mode on the other hand included coliform as the
seventh parameter to have a high spatial variation.
Box and whisker plots of three of these water
quality parameters over the 8-year period (1995–
2002) are shown in Fig. 5. Seven selected water

Table 4 Classification matrix for DA of spatial variations
in Langat River

Sampling regions % Correct Regions assigned by DA

HPS LPS MPS

Standard DA mode (23 variables)
HPS 95.65 66 1 2
LPS 90.63 0 58 6
MPS 87.50 2 13 105
Total 90.51 68 72 113

Forward stepwise mode (6 variables)
HPS 91.30 63 1 5
LPS 92.19 0 59 5
MPS 84.17 3 16 101
Total 88.14 66 76 121

Backward stepwise mode (7 variables)
HPS 91.30 63 1 5
LPS 93.75 0 60 4
MPS 85.00 3 15 102
Total 88.93 66 76 111



634 Environ Monit Assess (2011) 173:625–641

HPS MPS LPS

HPS MPS LPS

HPS MPS LPS HPS MPS LPS

HPS MPS LPS

HPS MPS LPS

0

1

2

3

4

5

6

7

8

9
D

O
 (

m
g

/L
)

LPSMPSHPS
0

5

10

15

20

25

30

B
O

D
 (

m
g

/L
)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

p
H

0

1

2

3

4

5

6

A
N

 (
m

g
/L

)

0

2000

4000

6000

8000

10000

12000

14000

16000

C
l (

m
g

/L
)

0

0.2

0.4

0.6

0.8

1

E
-c

ol
i (

M
P

N
)

0

0.005

0.01

0.015

0.02

0.025

C
o

lif
o

rm
 (

M
P

N
)

Fig. 5 Box and whisker plots of some parameters sepa-
rated by spatial DA associated with water quality data of
Langat River

quality parameters that gave high variations (the
most significant) by backward stepwise DA were
then used for further discussion.

PCA was employed on the data set to compare
the compositional patterns between the examined

water parameters and to identify the factors that
influence each of the identified regions (HPS,
MPS, and LPS). Seven PCs were obtained for the
HPS region; and six PCs, for the other two regions
(MPS and LPS), with eigenvalues larger than 1
summing almost 80.8%, 71.0%, and 78.7% of the
total variance in the data set, respectively. Equal
numbers of VFs were obtained for the three re-
gions via FA performed on the PCs. Correspond-
ing VFs, variable loadings, and variance explained
are presented in Table 5.

1. HPS
For HPS, among the seven VFs, VF1 accounts
for 36.9% of the total variance, showing
strong positive loadings on EC, DS, TS, Cl,
Ca, K, Mg, and Na. This factor contains chem-
ical parameters that are responsible for the
water hardness (Ca and Mg) and those at-
tributed to products from anthropogenic ac-
tivities (DS, TS, and Cl). DS and TS can be
identified to originate from both wastewa-
ter treatment plants (PS) and NPS pollution
sources (USGS 1999; Ha and Bae 2001). The
presence of Ca, Mg, K, and Na (Zampella
1995) may be possibly linked with parent rock
materials (earth crust) of the HPS region.
VF2, explaining 8.2% of the total variance,
has strong positive loadings on organic pol-
lution parameters, BOD and AN, thus rep-
resenting the influence of organic pollutants
from point sources such as discharge from
wastewater treatment plants, domestic waste-
water, and industrial effluents. The presence
of BOD and AN in the HPS region, also possi-
bly contributed by pollution loading from pig
farms that contribute 200.8 kg/day of BOD
and 725.4 kg/day of AN, attributed to the
absence of a treatment system (UPUM 2002).
VF3, explaining 10.0% of the total variance,
has strong positive loadings on SS and Tur.
This factor, within the HPS region, can be
attributed to runoffs from fields with high load
of soil and waste disposal activities.
VF4 explains 6.2% of the total variance and
has strong positive loading on Zn. This can
be explained by considering the large number
of houses and buildings in the area that use
metallic roofs coated with zinc. These, when
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in contact with acid rainwater and smog, could
readily mobilize zinc into the atmosphere
and waterways. Moderate positive loading on
NO−

3 is possibly due to agricultural runoff
because nitrogen and potassium fertilizers are
commonly used. The positive correlation of
NO−

3 and agricultural land in the HPS re-
gion (located downstream) is consistent with
many others studies (Hill 1978; Neill 1989;
Johnson and Gage 1997; Tufford et al. 1998).
There are also weak positive and negative
loadings on T, and E. coli temperature is most
possibly related to seasonal effects, while E.
coli is strongly related to municipal sewage
and wastewater treatment plants (Frenzel and
Couvillion 2002) along the river in the HPS
region.
VF5 explains 4.9% of the total variance and
has strong positive loading on Fe and moder-
ate positive loadings on NO−

3 and PO3−
4 . The

presence of Fe basically represents the metal
group originating from industrial effluents.
The presence of NO−

3 and PO3−
4 are due

to agricultural runoff such as livestock waste
and fertilizers (Buck et al. 2003), indus-
trial effluents, municipal sewage, and existing
sewage treatment plants because PO3−

4 is an
important component of detergents (Vega
et al. 1998). VF6 explains 4.9% of the total
variance and has strong positive loading on
coliform, while VF7 explained 5.8% of the
total variance with strong loading on COD.
These are mainly due to municipal sewage and
sewage treatment plants.

2. MPS
In the case of MPS, VF1 explains 28.2% of the
total variance and has strong loadings on AN,
EC, DS, Cl, Ca, K, Mg, and Na; moderate
positive and negative loadings on temperature
and DO; weak positive loadings on BOD
and Sal; and weak negative loading on Tur.
This first factor could be explained by con-
sidering the chemical components of various
anthropogenic activities that constitute point
source pollution especially from industrial,
domestic, and commercial and agricultural
runoff areas located at the Hulu Langat,
Cheras, and Kajang districts. VF2 explains
13.3% of the total variance and shows strong

positive loadings on SS, TS, and Tur, which
are related to discharge from urban develop-
ment areas involving clearing of lands (USGS
2007), the erosion of road edges due to sur-
face runoff (Goonetilleke et al. 2005), as well
as agricultural runoff (Schlosser and Karr
1981). The conversion of forest or agricul-
ture land to urban areas has indeed caused
large negative impacts to the ecosystem (Wahl
et al. 1997) of Langat Basin in the form
of mud flood, land slide, and river floods.
Urbanization is, until now, actively pursued,
in line with various developmental plans pro-
posed by the government within the MPS
area (Shah et al. 2002). Moderate loading
on Fe is possibly generated from industrial
activities such as electroplating. Weak loading
on COD is related to the discharge of munici-
pal and industrial waste.
VF3 explains 8.5% of the total variance and
shows strong positive loading on NO−

3 , mod-
erate positive loading on Zn and Sal, and
weak positive loading on Fe. Strong positive
loading on NO−

3 is suspected to originate from
agricultural fields (Vega et al. 1998), where
irrigated horticultural crops are grown and the
use of inorganic fertilizers (usually as ammo-
nium nitrate) is rather frequent. This practice
could also explain the high levels of ammo-
nia, but this pollutant may also originate from
decomposition of nitrogen containing organic
compounds via degradation process of organic
matters (USGS 2007), such as proteins and
urea occurring in municipal wastewater dis-
charges. VF4 and VF5 explain 7% and 5.6%
of the variance, respectively, and have strong
positive loadings on E. coli and pH, which are
related to municipal wastes, oxidation ponds,
and animal husbandry. The presence of E. coli
in river water consumes large amount of oxy-
gen, and as the amount of available DO de-
creases, they undergo anaerobic fermentation
processes leading to the production of am-
monia and organic acids. Hydrolysis of these
acidic materials causes a decrease of water
pH values. VF6 explains 8.5% of the variance
and has strong positive loadings on BOD and
COD that, as explained before, are related to
anthropogenic pollution sources and are sus-
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pected to come from point sources pollution
such as sewage treatment plants and industrial
effluents.

3. LPS
Finally, for the LPS region, the first VF (VF1)
explains about 32.2% of the total variance and
has strong positive loadings on AN, COND,
Cl−, Ca, K, and Na, and moderate positive
and negative loadings on E. coli and pH. The
presence of AN is related to the influence
of domestic waste and agricultural runoff
(Fisher et al. 2000; Osborne and Wiley 1988).
McFarland and Hauck (1999), in their study,
found that higher nitrogen levels were de-
tected in agricultural waters, where fertiliz-
ers, manure, and pesticide have been applied.
Loadings on EC, Cl−, Ca, K, and Na are prob-
ably due to the mineral component of the river
water (Barnes et al. 1981; Dahlgren and Singer
1994; Holloway and Dahlgren 2001). This as-
sumption is reasonable, as the water quality
in this region is good and land use activities
are mostly limited to agriculture and forest
areas. Strong negative loadings on DO can
be related to high levels of dissolved organic
matter consuming large amounts of oxygen,
suspected to come from agricultural activities
and forest areas that are the dominant land
use type within this region.
VF2, which explains 13.2% of the total vari-
ance, has strong positive loading on SS, Tur,
and TS. Lately, urban developments have
been carried out within the LPS region (Siwar
et al. 2004), and at times, especially during wet
seasons, solids, especially mud, and soil fol-
low runoff into the river. Agricultural runoff
also contributes toward this loading as well as
construction. Farming and construction were
more frequent near stream areas and sedi-
ment deposited as a result of these activi-
ties. Thus, SS, Tur, and TS increments may
be due to overland inputs, increased stream-
bank erosion, and increased entrainment of
bedload sediments during stormflow (Bolstad
and Swank 1997) especially in forested area
(Yusoff and Haron 1999; Yusoff et al. 2006).
VF3 explains about 13% of the total variance
and has strong positive loadings on BOD,
COD, and Zn. BOD and COD are considered

organic factors (Simeonov et al. 2003) and
may be interpreted as representing influences
from NPS such as agricultural activities and
forest areas. Presence of Zn, as explained be-
fore, is due to village houses with zinc roofs.
VF4, VF5, and VF6, which explain about
8.2%, 6.4%, and 5.6% of the total variance,
respectively, have strong negative loading on
temperature and strong positive loadings on
Sal, PO4 and coliform. Salinity and phosphate
have their origin in soils due to the use of
phosphate fertilizers in this region as well as
high salt content. Arheimer and Swank (2000)
and Hill (1981), in their studies, conclude
that agricultural land use strongly influences
stream phosphorous. The presence of col-
iform is due to discharge into the river via
surface runoff of domestic waste and fertilizer
(animal waste) used in agricultural activities.
According to Bolstad and Swank (1997), the
transport of coliform is probably primarily
through the soil or direct input by a warm-
blooded animal (e.g., livestock). This region,
formed by the Pangsoon and Ulu Lui sub-
basins, is dominated by agriculture, forest, and
recreation activities along the river.

The application of WQI for river classification

The DOE started the river monitoring program
since 1978. There are 927 manual stations located
within 120 river basins throughout Malaysia. Wa-
ter quality data were used to determine the water
quality status and to classify the rivers based
on WQI and the Interim National Water Qual-
ity Standards for Malaysia. Although WQI is an
effective tool for the purpose of monitoring, there
have been questions of its relevance in particular
parameters, namely, DO, BOD, COD, AN, pH,
and SS. Despite the use of AN in the WQI cal-
culation, AN is not listed in the standard A and B,
the Environmental Quality Acts. However, recent
study reported that 43% of the rivers are polluted
with AN (Hashim 2001). SS is another pollutant
that is not monitored in the DOE-approved pro-
grams, but the level of SS that originated from
NPS increases during a storm event. From the
critical evaluation of the DOE data, pH has min-
imal influence of the water quality. Therefore its
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weightage in the WQI calculation should be re-
duced (Azni Idris et al. 2003; Juahir et al. 2004).

Results from our study indicate that land use
activities significantly influence water quality vari-
ations. Looking at the WQI, land use-based para-
meters have not been considered in the equation.
Taking these into consideration, we feel that to
better classify the river, parameters should be
reviewed. For example, within MPS and HPS,
which industrial activity dominates, there is COD
contribution. COD exhibited positive correlation
(0.82 and 0.7) for VF7 and VF6, which explained
only 5.8% and 8.5% of the total variance for both
regions. This study agreed, as reported by Juahir
et al. (2004), where upon using multiple linear
regression and artificial neural networks methods
in predicting WQI at the Langat River, COD con-
tributed little to the variance of the WQI. Hence,
the WQI is not accurate in representing the sur-
face water quality indicator for this region. WQI
is less sensitive to the changes in pollutant types.
Due to rapid changes in technology as well as a
more diverse use of chemical, pollutant changes
with respect to space and time are more drastic.
WQI, if not revised, is unable to capture these
drastic changes. We recommended that parame-
ters used in the WQI equation be revised.

Conclusions

In this study, environmetric techniques were used
to investigate the spatial variations of surface river
water quality data of the Langat River. HACA
successfully classified the seven monitoring sta-
tions into three different cluster regions namely
DLR, MLR and ULR. With this classification,
optimal sampling strategy can be designed, which
could reduce the number of sampling stations and
associated costs. For spatial variations, DA gives
encouraging results in discriminating the seven
monitoring station with six and seven discriminant
variables assigning 89% cases correctly using for-
ward and backward stepwise modes. Application
of the PCA coupled with the FA on the available
data for each of the identified regions resulted in
seven parameters responsible for major variations
in surface water quality along the Langat River
contributed by the regions (DLR, MLR, and

ULR). The main sources of variations come from
industrial effluents, wastewater treatment plants,
and domestic and commercial areas. For MLR
and ULR regions, six parameters were found to be
responsible for the major variations. The sources
of these variations at MLR are mainly attributed
to industrial areas, waste water treatment plants,
domestic and commercial areas, and agricultural
runoffs. For the ULR region, the major source
of variations mainly comes from domestic, com-
mercial, agricultural runoff, and forest areas. For
a better Langat River Basin management, review
of surface water quality changes within the devel-
oping regions of MLR and DLR was compared to
that of the ULR region.

Additionally, the present WQI has some draw-
backs. It is generally unable to represent the water
quality status of specifics locations. There is a
need for a holistic approach where spatial analysis
is one of the most important aspects. Thus, this
study illustrates the of environmetric techniques
for the analysis and interpretation of complex
data, water quality assessment, identification of
pollution sources, and investigating spatial varia-
tions of water quality as an effort toward a more
effective river basin management.
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