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Abstract We consider Ad S2 solutions of M-theory which
are obtained by twisted compactifications of M2-branes on a
complex curve. They are of a generalized class, in the sense
that the non-abelian part of the connection for the holomor-
phic bundle over the supersymmetric cycle is nontrivial. They
are solutions of U (1)4 gauged supergravity in D = 4, with
magnetic flux over the curve, and then uplifted to D = 11. We
discuss the behavior of conformal fixed points as a function
of the non-abelian connection. We also describe how they fit
into the general description of wrapped M2-brane Ad S2 solu-
tions and their higher-order generalizations, by showing that
they satisfy the master equation for the eight-dimensional
Kähler base space.

1 Introduction

Since the proposal of AdS/CFT correspondence [1], we have
witnessed copious examples of Ad S solutions in String/M-
theory which are all potentially dual to strongly interact-
ing conformal field theories in various dimensions. The
basic examples are of course flat M2, D3 and M5 branes
which guarantee maximal supersymmetries in D = 3, 4, 6.
Notably, these branes may provide lower-dimensional, less
supersymmetric Ad S solutions when partially wrapped on
supersymmetric cycles. On the field theory side, this pro-
cedure corresponds to topologically twisting the theory [2]
through coupling to a combination of R-symmetry cur-
rents. The prescription for such configurations in lower-
dimensional gauge supergravity theories was first illustrated
in [3]. This work considered branes wrapped on 2-cycles
in a Calabi–Yau manifold, and the generalization to higher-
dimensional cycles was given in e.g. [4,5]. Schematically,
one turns on the magnetic fields for bulk gauge fields which
encode the twisting of the metric in higher dimensions, so that
the effect of curvature on the supersymmetric cycle is can-

a e-mail: nkim@khu.ac.kr

celed. In particular, for Kähler 2-cycles this means we assign
precisely the spin connection of the 2-cycle to the diagonal
U (1) part of the bulk gauge field. Then the supersymme-
try is retained, albeit the curvature on the world-volume of
the brane alone would not allow a constant spinor. Once the
branes and supersymmetric cycles are identified, at least in
the original prescription [3–7] one obtains unique BPS equa-
tions for each wrapped brane configuration when the cycles
are hyperbolic space.

For such magnetic brane solutions relevant to 2-cycles,
more general solutions were constructed with multiple non-
vanishing U (1) charges, where the sum of magnetic fields
still exactly cancel the spin-connection part in the Killing
equations [8–10]. Their interpretation as general wrapped
branes and the description of the dual conformal field theory
are given in [11,12]. For concreteness, let us take a 2-cycle in
a Calabi–Yau 3-manifold (CY3). For a holomorphic curve as
a Kähler 2-cycle in CY3, locally the geometry is a holomor-
phic C

2 bundle over the curve, so in general the connection
takes values in U (2). The supersymmetry constrains the diag-
onal U (1) part of the U (2), leaving the SU (2) part to one’s
disposal. It is pointed out in [12] that choosing the SU (2)
connection appropriately it should be possible to find a solu-
tion interpolating CY3 and CY2 as the embedding space.
In gauged supergravity the implementation is quite simple:
originally for 2-cycles in CY3 we take the diagonal U (1)
among SO(4) gauge fields (which of course represent the
isometry of a C

2 = R
4 bundle over the holomorphic curve)

and assign it the same value as the spin connection of the 2-
cycle. For the generalization we take U (1)×U (1) ⊂ SO(4),
and require the sum of two U (1) connections to be the same
as the spin connection of the 2-cycle. This prescription leads
to a one-parameter generalization of BPS equations for M5-
branes wrapping a 2-cycle in CY3 [11,12], and eventually
an infinite number of new N = 1 Ad S5/C FT4 examples.
The computation of central charges on both sides match per-
fectly. This is generalized to D3 branes and also to different
supersymmetric cycles in [13–15].
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We note that a very similar idea can be applied also to
the case of flat 2-cycles, leading to Ad S × T 2 or Ad S × R

2

solutions [16,17]. These were dubbed magnetic brane solu-
tions and studied further in [18–20]. More generally, black
holes of D = 4 gauged supergravity with the geometry of
Ad S2 × �g , with �g = S2, H2, T 2, have been extensively
studied in [21,22].

In this article we consider M2-branes wrapped on H2,
especially the generalization with non-abelian part of con-
nection on H2. The relevant D = 4 gauged supergravity has
U (1)4 gauge fields and is a consistent truncation of maxi-
mal SO(8) gauged supergravity theory. One may consider
in this case 2-cycles in CY2, CY3, CY4, and CY5 mani-
folds. For each of them in the original construction [23] we
turn on one, two, three, and four U (1)’s, respectively, to can-
cel out the effect of the spin connection on the 2-cycle. Then
it turns out [23] that there exist Ad S2 fixed points for CY4
and CY5. The generalization mentioned above leads to a one-
parameter family of Ad S2 fixed points interpolating CY4 and
CY5. We also describe various holographic renormalization
group flows between Ad S4 and Ad S2 × H2 solutions.

We will also discuss the uplifted D = 11 solutions of
Ad S2 × H2 solutions. Containing an Ad S2 factor and being
supersymmetric together imply that the solutions can be
rewritten in the canonical form, where the internal nine-
dimensional space is a warped and twisted circle fibration
over an eight-dimensional Kähler space, satisfying [24]

�8 R − 1

2
R2 + Ri j Ri j = 0. (1)

It is in principle possible to solve this equation first and
then, using the geometric data of the Kähler base, to con-
struct the whole D = 11 solution. In this paper we start
with the uplifted D = 11 solution and employ a natu-
ral ansatz to check whether the above equation is indeed
satisfied.

Supersymmetric solutions written in canonical form can
provide useful information more readily. The supersymme-
try relations are derived from the existence of Killing spinors
and also by exploiting the properties of all spinor bi-linears.
As such, solutions in canonical form immediately give full
information on the Killing spinors. This can be very use-
ful for instance when one looks for supersymmetric brane
embeddings in a given supersymmetric background. Refer-
ences which successfully applied this technique to nontrivial
backgrounds are e.g. [25,26].

In the next section we give the action, the BPS equations
and solve for the fixed points. In Sect. 3 we discuss the uplift
to D = 11, and as a consistency check we verify that the
nine-dimensional internal space satisfies the general condi-
tion given in [24] and discuss generalization to other dimen-
sions. We conclude in Sect. 4.

2 Ad S2 solutions

In this section we present multiply charged magnetic brane
solutions in D = 4 gauged supergravity. As far as we know
such solutions are first systematically constructed in [9],
especially in Section 8.

The supergravity model we employ here is the U (1)4 trun-
cated action of N = 8, D = 4 gauged supergravity [27,28].
After truncation, the bosonic field content reduces to a gravi-
ton, four vector fields Aα (α = 1, 2, 3, 4), and three real
scalar fields �φ. The action is

L = 1

2κ2

√−g

[
R − 1

2
(∂ �φ)2 − 2

∑
α

e�aα · �φF2
α − V

]
, (2)

where

V = − 4

L2 (cosh φ12 + cosh φ13 + cosh φ14). (3)

L is a constant which sets the curvature of the Ad S4 vac-
uum solution. The three scalars �φ = (φ12, φ13, φ14) can be
alternatively expressed in terms of Xα in the following way:

Xα = exp(−�aα · �φ/2), (4)

where

�a1 = (1, 1, 1), �a2 = (1,−1,−1),
�a3 = (−1, 1,−1), �a4 = (−1,−1, 1).

(5)

Note that
∏4
α=1 Xα = 1.

It is well known that the maximal gauged supergravity in
D = 4, and in particular its U (1)4 truncated version, (2), is a
consistent truncation of D = 11 supergravity. It means that
any solution of (2) we may find leads to an exact solution in
D = 11. The uplifting formula for the metric tensor is

ds2 =�2/3ds2
4 +2L2�−1/3

×
∑
α

X−1
α (dμ2

α+μ2
α(dφα+2Aα/L)2), (6)

where μa are angular variables parametrizing S4, i.e.∑4
α=1 μ

2
α = 1. The warp factor is � = ∑

Xαμ
2
α .

As discussed above, our generalized ansatz interpolates
the two Ad S2 solutions of M2-branes wrapped on 2-cycles
in Calabi–Yau four-folds and five-folds. For the gauge fields,

F1 = F2 = F3 =−zl L

2
vol(�), F4 =−(1 − 3z)l L

2
vol(�).

(7)

Here we may choose the 2-cycle � to have constant curva-
ture, like S2, T 2, and H2. l is the scalar curvature of � and
without losing generality we may scale it to be 1,−1 when
it is nonzero. For T 2, we may first rewrite l → l/z before
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sending l to zero. In particular, for T 2 we have in general

F1 = F2 = F3 = − zL

2
vol(�), F4 = 3zL

2
vol(�). (8)

Now for the rest of the bosonic fields, in order to respect
the same symmetry we constrain the scalar fields as follows:

X1 = X2 = X3 = e−φ/2, X4 = e3φ/2. (9)

We note here that z = 1/3 corresponds to the Calabi–Yau
four-fold case, while z = 1/4 is for the Calabi–Yau five-fold
solution in [23]. For the metric our ansatz is

ds2
4 = e2 f (−dt2 + dr2)+ e2gds2(�). (10)

The supersymmetry transformation rules for the U (1)4

model can be found for instance in [18,23]. There are four
spinor parameters εα (α = 1, 2, 3, 4) and just like the 1/8-
BPS condition in [23], we choose εα = 0 for α = 2, 3, 4.
For generic values of z the BPS equations are given as

e− f f ′ =− 1

2
√

2L
(3e−φ/2+e3φ/2)

+ le−2g L

2
√

2
(3zeφ/2+(1 − 3z)e−3φ/2), (11)

e− f g′ =− 1

2
√

2L
(3e−φ/2+e3φ/2)

− le−2g L

2
√

2
(3zeφ/2+(1 − 3z)e−3φ/2), (12)

e− f φ′ =− 1√
2L
(e−φ/2−e3φ/2)

+ le−2g L√
2

(zeφ/2−(1 − 3z)e−3φ/2). (13)

One can readily check that for z = 1/3 our equations are the
same as (3.19) of [23] (up to the redefinition L = 1/e in the
notation of [23]). On the other hand, for z = 1/4 an obvious
solution is φ = 0 and the rest of the above equations become
(3.23) of [23].

In general the above equations determine the holographic
RG flow obtained by twisting the maximally supersymmetric
Ad S4 solution. To identify the Ad S2 fixed points, we demand
g′ = φ′ = 0, and it is straightforward to deduce

ze4φ + (1 − 6z)e2φ + 1 − 3z = 0. (14)

Solving for e2φ , we have

e2φ = 6z − 1 ± √
(12z − 1)(4z − 1)

2z
. (15)

This equation is essentially the same as the first equation of
(8.9) in [9].

Since e2φ > 0 by construction, this result provides a con-
straint for z. One can easily check that the roots are both
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Fig. 1 The value of e2φ and RAd S2 vs. parameter z for Ad S2 solutions.
The upper (lower) branch is for positive (negative) sign in (15)

positive for 1/4 < z < 1/3, i.e. between the two Ad S2 solu-
tions in [23]. When z ≥ 1/3 only one of the solutions give a
positive value for e2φ . The result in (15) is independent of l,
but when we evaluate e−2g we find that it is negative if l > 0.
l = 0 leads to interesting solutions of type Ad S2 ×R

2, which
was studied in detail in [18,19].

In Fig. 1 we show the behavior of e2φ and e2g as func-
tions of z at Ad S2 fixed points. We can also construct the
flow solutions starting from the maximally supersymmet-
ric Ad S4 solutions and going down to Ad S2 or other sin-
gular configurations. The plots of such flow solutions for
z = 0.250, 0.275, 0.300, 0.315, 0.333, 0.360 are given in
Fig. 2. One can see how the conformal fixed points “move”
in (e2g, e2φ) space, as we smoothly vary the parameter z.

3 Uplift to D = 11 and general description

It is straightforward to construct D = 11 supergravity solu-
tion using the uplifting formula given above in (6). For the
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Fig. 2 Holographic RG flows
for different values of z. The
horizontal (vertical) axis is e2g

(e2φ). Red dots represent the
Ad S2 fixed point
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metric, we have

ds2
11 = �2/3

[
R2

Ad S2
ds2(Ad S2)+ e2gds2(H2)+ e−3φ/2 L2

�

×
(

e2φ
3∑
α=1

(dμ2
α + μ2

αDφ2
α)+ dμ2

4 + μ2
4 Dφ2

4

) ]
.

(16)

The radius R of Ad S2 part in D = 4 is given by

1

RAd S2

= 3e−φ/2 + e3φ/2

√
2L

, (17)

Here it is understood that φ is determined by the BPS con-
dition (15). We note that the ratio of radii for Ad S2 part and
H2 part is given simply as

R2
H2/R2

Ad S2
= 12z − 1. (18)

For our general ansatz, the warp factor is

� = e−φ/2(μ2
1 + μ2

2 + μ2
3)+ e3φ/2μ2

4. (19)

And the twists are such that

d(Dφ1) = d(Dφ2) = d(Dφ3)

= −zvol(H2), d(Dφ4) = (3z − 1)vol(H2). (20)
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It is well known that for a pure M2-brane configuration
with unbroken supersymmetry and an Ad S2 factor, the solu-
tion can be always expressed (at least locally) in the following
form [24,29]:

ds2
11 = e−2B/3[ds2(Ad S2)+ eBds2

8 + (du + P)2]. (21)

Here the eight-dimensional space M8 with metric ds2
8 should

be Kähler and its Ricci tensor and the scalar curvature satisfy

�8 R − 1

2
R2 + Ri j Ri j = 0. (22)

Then the entire D = 11 supergravity configuration is deter-
mined by the data of M8. In particular, dP is the Ricci two-
form for M8, i.e. for the Ricci 2-form R, R = dP . The
four-form gauge field of D = 11 supergravity is given by
G4 = F ∧ Vol(Ad S2). We have

eB = R/2, (23)

F = −J + d[e−B(du + P)], (24)

where J is the Kähler form of M8. The equation (22) was
in fact first derived from a study of D3-branes wrapped on
Kähler 2-cycle in [30].

One can rewrite the D = 11 solutions (16) in a form
compatible with (21) and check the supersymmetry condi-
tions given above, in particular (22). The symmetry of the
solutions in D = 11 imply that the eight-dimensional base
manifold should contain factors of H2 and CP

2. Instead of
just checking the BPS conditions for our D = 11 solutions,
we here propose an ansatz suitable for a generalization to
other dimensions [29]. The point is that the same equation,
(22), when solved for six-dimensional Kähler space, can be
used to construct Ad S3 solutions in IIB supergravity from
D3-branes wrapped on 2-cycles [30]. And it was also shown
that there exists a generalization to arbitrary higher dimen-
sions [29], with a gravity action coupled to a vector field,
a dilaton, and an associated set of BPS equations. In fact
such a generalization was already obtained in [31], for the
old wrapped M2-brane Ad S2 solutions in [23] and the result
here presents a slight generalization.

For the Ad S2 solutions from wrapped M2-branes our met-
ric ansatz for Kähler space is

ds2
2n+4 = �1ds2(H2)+�2dθ2 + sin2 2θ

�2
Dψ2

+ cos2 θds2(K E+
2n), (25)

where K E+
2n is CP

2 for wrapped M2-brane solutions. In gen-
eral they are Kähler–Einstein space with unit radius and sat-
isfy

d�2 = i P2 ∧�2, dP2 = −J2, (26)

d�2n = i P2n ∧�2n, dP2n = J2n . (27)

The nontrivial U (1) fibration Dψ in our metric ansatz is
given as

Dψ = dψ − a P2 − P2n . (28)

where a is a constant. Recall that for the old solutions in
[23], the uplifted solution has a = 1. One may check that
z 	= 1/3 leads to a 	= 1, after straightforward re-phrasing of
our uplifted solution (16) into the form of (21).

Obviously the Kähler form should be

J2n+4 = �1 J2 + sin 2θ dθ ∧ Dψ + cos2 θ J2n (29)

From its closure, we easily get (b is a constant)

�1 = a sin2 θ + b. (30)

We may calculate the Ricci tensor from the exterior derivative
of the (n + 2, 0) form �,

� = e−iψ�2 ∧ cosn θ
(√
�1�2dθ

+i
√
�1/�2 sin2 θDψ

)
∧�2n (31)

From d� = i P ∧�, we have

P2n+4 = − 1

cosn θ
√
�1�2

d

dθ

[√
�1/�2 sin 2θ cosn θ

]
−dψ + P2 + P2n . (32)

It is also straightforward to compute the Ricci scalar and
other invariants such as Ri j Ri j etc.

Not surprisingly, for the most general case the expres-
sion for the scalar curvature R for Kähler base space is quite
involved. It simplifies greatly if we assume �2 = c2�1,
which is of course consistent with our uplifted solution. If
we further demand that R ∝ (a sin2 θ + b)−1 as the identifi-
cation of warp factor � as e−B very clearly shows, we need
to set c2 = 2(n + 1)/(a + b). Then we have

R = 2(2a + (n + 2)b − 1)

a sin2 θ + b
. (33)

Furthermore, if we consider the entire expression in (22),
we find that it is factorized with a numerical coefficient, so
the fourth order differential equation can be reduced to a
quadratic equation,

a2 − 2nab − b(n(n + 2)b − 2(n + 1)) = 0. (34)

One can easily check the old solution of M2-branes wrapped
on 2-cycle in CY4 [23,31], which corresponds to a = 1, b =
1/n.

Although it is a good sign that we again have obtained
a quadratic equation, it is not immediately clear that the
two quadratic equations (14) and (34) in fact encode the
same D = 11 solutions. A neat way would be to com-
pare two physically significant quantities. One is the ratio
of radii as given in (18), and the other is the ratio of the
maximal and minimal values of the warp factor �1 and
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equivalently � as a function of θ . By identifying these
two quantities, we find the following mapping of parame-
ters:

e2φ = 1 + a/b, z = (a + 2b)/6. (35)

Then it is easy to check the equivalence of (14) and (34).

4 Discussion

In this work we studied Ad S2 solutions in M-theory by
applying the prescription of [11,12] to M2-branes wrapped
on 2-cycles with non-abelian connections. As one varies
the parameter z, the solutions interpolate CY4 and CY5.
As a consistency check we have verified that the uplifted
D = 11 solutions satisfy the general supersymmetry con-
dition (22) and we also presented a generalization to other
dimensions.

With new Ad S solutions in String/M-theory in general, it
is natural to try to identify the dual conformal field theory
and check the validity. For the solutions at hand, the duals
are (strongly coupled) quantum mechanics. The problem is,
unlike M5- and D3-branes wrapped on 2-cycles, that there is
not yet a protected quantity such as central charges which can
be conveniently calculated on both sides for comparison. The
parameter z dictates how U (1)R symmetry should be given
as a linear combination of global U (1) symmetries, and a
rule such as a-maximization [32] or c-extremization [13] is
yet to be discovered. It would be certainly very nice if we
can establish AdS/CFT duality pairs in a quantitative man-
ner, probably in a way similar to F-maximization [33] where
one uses the non-divergent part of the partition function as a
function of the R-charges. We hope that the one-parameter
extensions and their Killing spinor geometry in this paper
help to uncover such relations.

The wrapped brane constructions in gauged supergravity
theories were generalized to 3- and 4-cycles in [4–6]. It would
be interesting to find new solutions which interpolates dif-
ferent wrapped brane Ad S solutions with different amount
of supersymmetries. We plan to come back to this issue in
the near future.
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