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Abstract: We discuss consequences of assuming (i) that the (Majorana) neutrino mass

matrix Mν displays flavour antisymmetry, STνMνSν = −Mν with respect to some discrete

symmetry Sν contained in SU(3) and (ii) Sν together with a symmetry Tl of the Hermitian

combination MlM
†
l of the charged lepton mass matrix forms a finite discrete subgroup

Gf of SU(3) whose breaking generates these symmetries. Assumption (i) leads to at least

one massless neutrino and allows only four textures for the neutrino mass matrix in a

basis with a diagonal Sν if it is assumed that the other two neutrinos are massive. Two

of these textures contain a degenerate pair of neutrinos. Assumption (ii) can be used to

determine the neutrino mixing patterns. We work out these patterns for two major group

series ∆(3N2) and ∆(6N2) as Gf . It is found that all ∆(6N2) and ∆(3N2) groups with

even N contain some elements which can provide appropriate Sν . Mixing patterns can be

determined analytically for these groups and it is found that only one of the four allowed

neutrino mass textures is consistent with the observed values of the mixing angles θ13 and

θ23. This texture corresponds to one massless and a degenerate pair of neutrinos which can

provide the solar pair in the presence of some perturbations. The well-known groups A4

and S4 provide examples of the groups in respective series allowing correct θ13 and θ23. An

explicit example based on A4 and displaying a massless and two quasi degenerate neutrinos

is discussed.

Keywords: Neutrino Physics, Discrete and Finite Symmetries

ArXiv ePrint: 1506.00455

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP11(2015)186

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81796779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:anjan@prl.res.in
http://arxiv.org/abs/1506.00455
http://dx.doi.org/10.1007/JHEP11(2015)186


J
H
E
P
1
1
(
2
0
1
5
)
1
8
6

Contents

1 Introduction 1

2 Allowed textures for neutrino mass matrix 2

3 Group theoretical determination of mixing 4

3.1 ∆(3N2) 5

3.2 ∆(6N2) 9

3.2.1 Texture I 10

3.2.2 Texture IV 13

4 More predictive scenario: Z2 × Z2 symmetry 14

5 An A4 model with flavour antisymmetry 15

6 Summary 18

1 Introduction

Orderly pattern of neutrino mixing appears to hide some symmetry, discrete or continuous.

It is possible to connect a given mixing pattern with some discrete symmetries of the

leptonic mass matrices. Such symmetries may however be residual symmetries arising from

a bigger symmetry in the underlying theory. One can obtain a possible larger picture by

assuming that these symmetries are a part of a bigger group operating at the fundamental

level whose breaking leads to the symmetries of the mass matrices. There is an extensive

literature on study of possible residual symmetries of the mass matrices and of the groups

which harbor them [1–16], see [17–19] for reviews and additional references.

Starting point in these approaches is to assume the existence of some symmetries Sν
(usually a Z2×Z2) and Tl (usually ZN , N ≥ 3) of the (Majorana) neutrino and the charged

lepton mass matrices

T †l MlM
†
l Tl = MlM

†
l , (1.1)

STνMνSν = Mν . (1.2)

Matrices diagonalizing the 3 × 3 symmetry matrices Sν , Tl can be related to the mixing

matrices in each sector. The structures of these matrices can also be independently fixed if

one assume that Sν and Tl represent specific elements of some discrete group Gf in a given

three dimensional representation. In this way, the leptonic mixing can be directly related

to group theoretical structures. This reasoning has been used for the determination of the
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neutrino mixing angles in case of the three non-degenerate neutrinos [1–15, 20], two or three

degenerate neutrinos [21, 22] and one massless and two non-degenerate neutrinos [23, 24].

The residual symmetries may arise from the spontaneous breaking of Gf if the vacuum

expectation values of the Higgs fields responsible for generating neutrino (the charged

lepton) masses break Gf but respect Sν (Tl). We wish to study in this paper consequences

of an alternative assumption that the spontaneous breaking of Gf leads to an Mν which

displays antisymmetry instead of symmetry, i.e. assume that eq. (1.2) gets replaced by

STνMνSν = −Mν (1.3)

but eq. (1.1) remains as it is. These assumptions prove to be quite powerful and are able

to simultaneously restrict both the mass patterns and mixing angles when embedding of

Sν , Tl into Gf is considered. In the case of symmetry, the vacuum determining neutrino

masses is invariant under Sν . This invariance implies eq. (1.2). In the case of eq. (1.3),

the vacuum is not invariant under Sν but transforms under it in such a way that the

neutrino mass matrix displays a residual antisymmetry. We shall give an explicit example

based on A4 of this phenomena in section 5. Since Sν in the antisymmetric case does not

survive as a residual symmetry of Gf , eq. (1.3) and the requirement that Sν belongs to

Gf are logically independent requirements. But they both can be consistent. Assuming

that Sν belongs to Gf helps in determining the mixing pattern and we shall make this

assumption. We shall further assume that Gf is some finite discrete subgroup of SU(3).

Then the first consequence of imposing eq. (1.3) is that DetMν = 0, i.e. at least one of the

neutrinos remains massless. Since cases with two (or three!) massless neutrinos are not

phenomenologically interesting, we shall restrict ourselves to cases with only one massless

neutrino. Then as a second consequence of eq. (1.3), one can determine all the allowed

forms of Mν in a given basis for all possible Sν contained in SU(3). There exist only four

possible Mν (and their permutations) consistent with eq. (1.3) in a particular basis with

a diagonal Sν . Two of these give one massless and two non-degenerate neutrinos and the

other two give a massless and a degenerate pair of neutrinos which may be identified with

the solar pair.

We determine all the allowed textures of the neutrino mass matrix in the next section.

Subsequently, we discuss groups ∆(3N2) and ∆(6N2) and identify those which can give

correct description of mixing using flavour antisymmetry. In section 4, we introduce Z2×Z2

as neutrino residual symmetry and present an example in which neutrino mass matrix gets

fully determined group theoretically except for an overall scale. We discuss a realization

of the basic idea with a simple example based on the A4 group in section 5. Section 6

contains summary and comparison with earlier relevant works.

2 Allowed textures for neutrino mass matrix

We shall first consider the case of only one Sν satisfying eq. (1.3) and subsequently gen-

eralize it to include two. The unitary matrix Sν can be diagonalized by another unitary

matrix VSν :

V †SνSνVSν = S̃ν
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where S̃ν is a diagonal matrix having the form:

S̃ν = diag.(λ1, λ2, λ3) . (2.1)

Unitarity of Sν implies that λ1,2,3 are some roots of unity. They satisfy λ1λ2λ3 = 1 due

to the condition DetSν = +1. We now go to the basis with a diagonal Sν . Defining

M̃ν = V T
Sν
MνVSν , eq. (1.3) can be rewritten as:

(M̃ν)ij(1 + λiλj) = 0 (i, j not summed) . (2.2)

It follows that a given element (M̃ν)ij is non-zero only if the factor in bracket multiplying

it is zero. This cannot happen for an arbitrary set of λi and one needs to impose specific

relation among them to obtain a non-trivial M̃ν . We now argue that only two possible forms

of S̃ν and their permutations lead to neutrino mass matrices with two massive neutrinos.

The third mass will always be zero as a consequence of eq. (1.3) and the assumption that

Sν belongs to SU(3). These forms of S̃ν are given by:

S̃1ν = diag.(λ,−λ∗,−1) ,

S̃2ν = diag.(±i,∓i, 1) . (2.3)

λ is an arbitrary root of unity. This can be argued as follows. Assume that at least one

off-diagonal element of M̃ν is non-zero which we take as the 12 element for definiteness.

In this case, eq. (2.2) immediately implies the first of eq. (2.3) as a necessary condition.

One can distinguish three separate cases of this condition1 (I) λ = 1 (II) λ = ±i and

(III) λ 6= ±1,±i. The structures of M̃ν get determined in these cases from condition

eq. (2.2) as follows:

Texture I: S̃1ν = (1,−1,−1) ; M̃ν = m0

 0 c seiβ

c 0 0

seiβ 0 0

 , (2.4)

where c = cos θ, s = sin θ. This structure implies one massless and two degenerate neutrinos

with a mass |m0|. In case of (II),

Texture II: S̃1ν = (±i,±i,−1) ; M̃ν =

 x1 y 0

y x2 0

0 0 0

 . (2.5)

This case corresponds to one massless and two non-degenerate neutrinos. In the third case

one gets

Texture III: S̃1ν = (λ,−λ∗,−1) ; M̃ν = m0

 0 1 0

1 0 0

0 0 0

 , (λ 6= ±1,±i) (2.6)

which implies a massless and a pair of degenerate neutrinos.

1λ = −1 case corresponds to permutation of the case with λ = 1.

– 3 –



J
H
E
P
1
1
(
2
0
1
5
)
1
8
6

The cases (I, III) lead to the same mass spectrum but different mixing patterns. M̃ν

in eq. (2.4) is diagonalized as V T
ν M̃νVν = diag.(m0,m0, 0) with

Vν =


1√
2

− i√
2

0
c√
2

ic√
2

−s
s√
2
e−iβ is√

2
e−iβ ce−iβ


 cosφ − sinφ 0

sinφ cosφ 0

0 0 1

 . (2.7)

The arbitrary rotation by an angle φ originates due to degeneracy in masses. The texture II

in eq. (2.5) is diagonalized by a unitary rotation in the 12 plane while the one in eq. (2.6)

by a similar matrix with the angle π
4 .

The permutations of entries in M̃ν give equivalent structures and are obtained by

permuting entries in S̃1ν . The case which is not equivalent to above textures follows with

a starting assumption that one of the diagonal elements of M̃ν 6= 0 say, (M̃ν)11 6= 0. In

this case one requires S̃ν = diag.(±i, λ′,∓iλ∗′) with |λ′| = 1. The case with λ′ = ±i gives

S̃1ν which is already covered. λ′ = ∓i implies the condition S̃2ν in (2.3). This leads to a

new texture

Texture IV: S̃ν = (i,−i, 1) ; M̃ν =

 x1 0 0

0 x2 0

0 0 0

 . (2.8)

For λ′ = ±1 one gets permutation of S̃1ν or S̃2ν and for λ′ 6= ±1,±i only 11 element

of M̃ν is non zero and two neutrinos remain massless. Thus conditions eq. (2.3) and

their permutations exhaust all possible textures of M̃ν consistent with the antisymmetry

of Mν , eq. (1.3) and two massive neutrinos. Any Gf admitting an element with these

sets of eigenvalues will give a viable choice for flavour antisymmetry group. Note that

texture III (IV) can be obtained from I (II) by putting s(y) to zero. But the residual

symmetries in all four cases are different. Because of this, the embedding groups Gf can

also be different. We therefore discuss all these cases separately.

The mixing matrix in texture I contains two unknowns θ and β apart from an overall

complex scale m0. This is a reflection of the fact that the corresponding Sν is a Z2 symmetry

and contains two degenerate eigenvalues −1. These unknowns can be fixed by imposing

another residual Z2 symmetry commuting with Sν and satisfying eq. (1.2) or (1.3). We

shall discuss such choices in section 4.

3 Group theoretical determination of mixing

The physical neutrino mixing matrix UPMNS ≡ U depends on the structure of Mν and

MlM
†
l . The latter can be determined if the symmetry Tl as in eq. (1.1) is known. We

now make an assumption that Sν satisfying eq. (1.3) and Tl as in eq. (1.1) are elements

of some discrete subgroup (DSG) of SU(3) denoted by Gf . The DSG of SU(3) have been

classified in [25–27]. They are further studied in [28–38]. These can be written in terms

of few 3 × 3 presentation matrices whose multiple products generate various DSG. Two

main groups series called C and D [37] constitute bulk of the DSG of SU(3). Of these, we

shall explicitly study two infinite groups series ∆(3N2) and ∆(6N2) which are examples
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of the type C and D respectively. See [39–41] for earlier studies of neutrino mixing using

the groups ∆(3N2) and ∆(6N2) and neutrino symmetry rather than antisymmetry.

Eq. (1.1) implies that Tl commutes with MlM
†
l . Thus, the matrix Ul diagonalizing

the former also diagonalizes MlM
†
l and corresponds to the mixing matrix among the left

handed charged leptons. Similarly, the matrix Uν diagonalizing Mν gets related to the

structure of Sν . In this way, the knowledge of Sν and Tl can be used to determine the

mixing matrix

U ≡ UPMNS = U †l Uν . (3.1)

This is the strategy followed in the general approach and we shall also use this to determine

all possible mixing pattern for a given Gf consistent with eqs. (1.1) and (1.3).

Not all the groups Gf can admit an Sν which will provide a legitimate antisymmetry

operator Sν , i.e. an element with eigenvalues specified by eq. (2.3). Our strategy would be

to determine a class of groups which will have one or more allowed Sν and then look for all

viable Tl within these groups. There would be different mixing patterns associated with

each choice of Sν , Tl and it is possible to determine all of them analytically for ∆(3N2)

and ∆(6N2) groups.

3.1 ∆(3N2)

The ∆(3N2) groups are isomorphic to (ZN × ZN ) o Z3, where o denotes the semi-direct

product. The group theoretical details for ∆(3N2) are discussed in [29, 42]. For our

purpose, it is sufficient to note that all the elements of the group are generated from the

multiple product of two basic generators defined as:

F =

 1 0 0

0 η 0

0 0 η∗

 , E =

 0 1 0

0 0 1

1 0 0

 (3.2)

with η = e
2πi
N . Here F generates one of the ZN groups and E generates Z3 in the semi-direct

product (ZN ×ZN )oZ3. The other ZN group is generated by EFE−1. The above explicit

matrices provide a faithful three dimensional irreducible representation of the group and

multiple products of these matrices therefore generate the entire group whose elements can

be labeled as:

W ≡W (N, p, q) =

 ηp 0 0

0 ηq 0

0 0 η−p−q

 , R ≡ R(N, p, q) =

 0 0 ηp

ηq 0 0

0 η−p−q 0

 ,

V ≡ V (N, p, q) =

 0 ηp 0

0 0 ηq

η−p−q 0 0

 . (3.3)

All elements of ∆(3N2) are obtained by varying p, q over the allowed range p, q = 0, 1, 2, . . .,

N −1 in the above equation. Thus each matrices W,R, V have N2 elements giving in total

3N2 elements corresponding to the order of ∆(3N2). The eigenvalue equation for the 2N2
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non-diagonal elements R and V is simply given by λ3 = 1. These elements therefore have

eigenvalues (1, ω, ω2) with ω = e
2πi
3 . These are not in the form of eq. (2.3) required to

get the neutrino antisymmetry operator Sν . Thus Sν has to come from the N2 diagonal

elements. This requires that N, p, q should be such that W (N, p, q) = diag.(ηp, ηq, η−p−q)

matches the required eigenvalues S̃ν of Sν given by eq. (2.3) or their permutations. This

cannot happen for all the values of variables and one can easily identify the viable cases.

It is found that

• W can match any of S̃ν only for even N . Thus only ∆(12k2) groups with k = 1, 2, . . .

contain neutrino antisymmetry operator Sν .

• The eigenvalue set S̃ν = (1,−1,−1) is always contained as a diagonal generator for

all ∆(12k2) groups and can be chosen as Sν = W (2k, 0, k). Hence the texture I with

two degenerate and one massless neutrino can follow in any ∆(12k2). The smallest

such group is ∆(12) = A4 which is one of the most studied flavour symmetry from

other points of view [43–52].

• The set S̃ν = (±i,±i,−1) arises only for N multiple of 4, i.e. in case of groups ∆(48l2),

l = 1, 2 . . .. These groups also contain a S̃ν satisfying the second of eq. (2.3). Thus

textures I, II, IV are possible for all ∆(48l2) groups.

• The set S̃ν = (λ,−λ∗,−1) with λ 6= ±1,±i and the associated texture III is viable

in ∆(12k2) with k ≥ 3.

Let us now turn to the mixing pattern allowed within the ∆(12k2) groups. Sν has to be a

diagonal operator identified above. Then Tl can be any other diagonal operator W (2k, p, q)

or any of R(2k, p, q) or V (2k, p, q). In the former case, Ul = 1, where 1 denotes a 3 × 3

identity matrix. The neutrino mixing in this case coincides with Vν diagonalizing any of

the four textures of M̃ν giving UPMNS = Vν . None of the allowed Vν are suitable to give the

correct mixing pattern with a non-zero θ13. Thus, Tl needs to be any of the non-diagonal

element R, V . The matrices VR,V diagonalizing R, V are given by

VR(N, p, q) = diag.(1, ηq, η−p)Uω ,

VV (N, p, q) = diag.(1, η−p, η−p−q)U∗ω , (3.4)

where,

Uω =
1√
3

 1 1 1

1 ω2 ω

1 ω ω2

 . (3.5)

The final mixing matrix depends upon the choice of specific texture for M̃ν . Consider

the texture I which arises within all the ∆(12k2) groups. Uν = Vν in this case is given

by eq. (2.7) and UPMNS = V †R,V Vν . Since a neutrino pair is degenerate, the solar mixing

angle θ12 remains undetermined in the symmetry limit. This is reflected by the presence

of an unknown angle φ in eq. (2.7). In this case, the neutrino mass hierarchy is inverted
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and the third column of UPMNS ≡ U needs to be identified with the massless state. It is

independent of the angle φ. We get for Tl = R(N, p, q),

Ui3 =
1√
3

(ce−iβηp+q − s, cωe−iβηq+p − sω2, cω2e−iβηq+p − sω)T (3.6)

with η = e
πi
k for the group ∆(12k2). p, q take discrete values 0 . . . 2k− 1 in above equation

while β and θ are unknown quantities appearing in the neutrino mixing matrix eq. (2.7).

The entries in Ui3 can be permuted by reordering the eigenvalues of Tl. We will identify

the minimum of |Ui3|2 with s213. If the minimum of the remaining two is identified with

c213s
2
23 then one will get a solution with the atmospheric mixing angle θ23 ≤ 45◦. In the

converse case, one will get a solution ≥ 45◦. The experimental values of the leptonic angles

are determined through fits to neutrino oscillation data [53–55]. Throughout, we shall

specifically use the fits presented in [53] for definiteness. The texture I corresponds to

the inverted hierarchy and the best fit values and 3σ ranges appropriate for this case are

given [53] by:

sin2 θ12 = 0.308 (0.259–0.359) ,

sin2 θ23 = 0.455 (0.380–0.641) ,

sin2 θ13 = 0.0240 (0.0178–0.0298) . (3.7)

Let us mention salient features of results following from eq. (3.6).

• It is always possible to obtain correct θ13, θ23 by choosing unknown quantities θ and

β of M̃ν . This should be contrasted with situation found in [22] which used neutrino

symmetry instead of antisymmetry to obtain a degenerate pair of neutrinos. As

discussed there, none of the ∆(3N2) groups could simultaneously account for the

values of θ13, θ23 within 3σ.

• It is possible to obtain more definite predictions by choosing specific values of θ and

or β. In contrast to θ and β which are unknown, the choice of p, q is dictated by

the choice of Tl and it is possible to consider any specific choice of p, q in the range

0, . . . N − 1. Consider a very specific choice of real M̃ν , i.e. β = 0 and a residual

symmetry Tl = E2 corresponding to putting p = q = 0 in eq. (3.6). This equation in

this case gives a prediction |U23| = |U33| which holds for all values of θ. This relation

is equivalent to a maximal θ23 which lies within the 1σ range of the global fits [53].

θ then can be chosen to get the correct θ13. Since the specific choice p = q = 0 is

allowed within all the ∆(12k2) groups, all of them can predict the maximal θ23 and

can accommodate correct θ13.

• The relation |U23| = |U33| does not hold for a complex ηp+q even if β = 0. Such

choices of Tl give departures from maximality in θ23. It is then possible to reproduce

both the angles correctly by choosing θ. This is non-trivial since a single unknown

θ determines both θ13 and θ23 for a specific choice of group (i.e. N) and a residual

symmetry Tl (i.e. p and q). The resulting prediction can be worked out numerically

– 7 –



J
H
E
P
1
1
(
2
0
1
5
)
1
8
6

Figure 1. Predictions for sin2 θ23 for the groups ∆(12k2) as a function of k when sin2 θ13 is allowed

to vary within the 1σ range as obtained through global fits in [53]. Horizontal lines show 1σ limits

on sin2 θ23.

by varying p, q,N over the allowed integer values and θ over continuous range from

0 to 2π. Values of s223 obtained this way are depicted in figure 1. This is obtained

by requiring that s213 lies within the allowed 1σ range. The phase β is put to zero.

It is seen from the figure 1 that all the ∆(12k2) groups always allow maximal θ23 as

already discussed. But solutions away from maximal are also possible for k ≥ 4. The

minimal group capable of doing this is ∆(192). The next group ∆(300) can lead to

near to the best fit values of the parameters. Specifically the choice Tl = R(10, 0, 7),

Sν = W (10, 0, 5) within the group and θ ∼ 54.3◦ gives s213 ∼ 0.024 and s223 ∼ 0.442

to be compared with the best fit values 0.024 and 0.455 in [53].

• p, q can only be zero or 1 and η is real for the smallest group ∆(12) = A4. In this case,

one immediately gets the prediction θ23 = π
4 for β = 0. µ-τ symmetry is often used

to predict the maximal θ23. This is not even contained in A4 which has only even

permutations of four objects. Still the use of antisymmetry rather than symmetry

allows one to get the maximal θ23 and it also accommodates a non-zero θ13 within A4.

This should be contrasted with the situation obtained in case of the use of symmetry

condition eq. (1.2) instead of (1.3). It is known that in this case A4 group gives

democratic value 1
3 for s213, see for example [6].

We now argue that the other three textures though possible within ∆(12k2) groups

do not give the the correct mixing pattern. Texture II has one massless and in general

two non-degenerate neutrinos. This texture can give both the normal and the inverted

hierarchy. The mixing matrix Vν is block-diagonal with a 2 × 2 matrix giving mixing

among two massive states. Given this form for Vν and a general Ul as given in eq. (3.4),

one finds that the case with inverted hierarchy leads to the prediction sin2 θ13 = 1
3 while

the normal hierarchy gives instead cos2 θ13 cos2 θ12 = 1
3 . Neither of them come close to

their experimental values.

The texture III having degenerate pair corresponds to the inverted hierarchy. Vν in

this case is block diagonal with an unknown solar angle. Given the most general form,

– 8 –
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eq. (3.4) for Vl one obtains once again the wrong prediction sin2 θ13 = 1
3 ruling out this

texture as well. Likewise, texture IV also gets ruled out. This corresponds to a diagonal

M̃ν with Vν = 1 and |UPMNS| = |Ul| has the universal structure |U | = 1
31.

To sum up, all the groups ∆(12k2) contain a neutrino antisymmetry operator Sν and

allow a neutrino mass spectrum with two degenerate and one massless neutrino and can

reproduce correctly two of the mixing angles θ13, θ23. The values for the solar angle and

the solar scale have to be generated by small perturbations within these group. We shall

study an example based on the minimal group A4 = ∆(12) in this category in section 5.

3.2 ∆(6N2)

∆(6N2) groups are isomorphic to (ZN × ZN ) o S3 with N = 1, 2, 3 . . .. The S3 group in

the semi-direct product is generated by E in eq. (3.2) and a matrix

G = −

 1 0 0

0 0 1

0 1 0

 . (3.8)

The matrices E,F,G provide a faithful irreducible representation of ∆(6N2) [30] and gener-

ate the entire group with 6N2 elements. 3N2 elements generated by E,F give the ∆(3N2)

subgroup. The additional 3N2 elements are generated from the multiple products of G

with elements of ∆(3N2). These new elements can be parameterized by:

S ≡ S(N,m, n) = −

 ηm 0 0

0 0 ηn

0 η−m−n 0

 , T ≡ T (n,m, n) = −

 0 0 ηn

0 ηm 0

η−m−n 0 0

 ,

U ≡ U(n,m, n) = −

 0 ηn 0

η−m−n 0 0

0 0 ηm

 . (3.9)

Here 0 ≤ (m,n) < N − 1. Since ∆(3N2) is a subgroup of ∆(6N2), the neutrino mass

and mixing patterns derived in the earlier section can also be obtained here. But the

new elements S, T, U allow more possibilities now. In particular, they allow more elements

which can be used as neutrino antisymmetry Sν . To see this, note that the eigenvalues of

S, T, U are given by (η−m/2,−η−m/2,−ηm). This can have the required form, eq. (2.3) when

m = 0 or m = N/2. The eigenvalues in respective cases are (1,−1,−1) or (−i, i, 1) and

one gets the textures I or IV by using any of S, T, U as neutrino antisymmetry with m = 0

and m = N/2 respectively. Similarly, possible choices of the charged lepton symmetry Tl
also increases. It can be any of the six types of elements: W ,R, V as before or S, T, U .

Important difference compared to ∆(3N2) is that the texture I can now be obtained for

both odd and even values of N by choosing any of the S, T, U with m = 0 as neutrino

antisymmetry. Texture IV still requires m = N/2 and hence even N for its realization. We

determine mixing matrix U for each of these textures and discuss them in turn.
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Case Sν Tl Ul Uν UPMNS

1A W (2k, 0, k) W (N, p, q) 1 Vν Vν

1B W (2k, 0, k) P (N, p, q) VP (N, p, q) Vν V †P (N, p, q)Vν

1C W (2k, 0, k) Q(N, p, q) VQ(N, p, q) Vν V †Q(N, p, q)Vν

2A P (N, 0, n) W (N, p, q) 1 VP (N, 0, n)Vν VP (N, 0, n)Vν

2B P (N, 0, n) P ′(N, p, q) VP ′(N, p, q) VP (N, 0, n)Vν V †P ′(N, p, q)VP (N, 0, n)Vν

2C P (N, 0, n) Q(N, p, q) VQ(N, p, q) VP (N, 0, n)Vν V †Q(N, p, q)VP (N, 0, n)Vν

Table 1. All possible choices of the residual symmetries Sν and Tl within ∆(6N2) groups and the

corresponding PMNS mixing matrices. P, P ′ collectively denote any of S, T, U defined in the text.

Q denotes R and V . The mixing matrices VP , VQ and Vν appearing above are given in eq. (3.10),

eq. (3.4) and eq. (2.7) respectively.

3.2.1 Texture I

The residual anti symmetries which lead to texture I can be either (1) Sν = W (2k, 0, k)

or (2) Sν = P (N, 0, n) where P = S, T, U . The residual symmetry Tl of MlM
†
l can

be any elements in the group which we divide in three classes: (A) Tl = W (N, p, q),

(B) Tl = P (N, p, q) and (C) Tl = Q(N, p, q). Here and in the following, we use symbols

P and Q to collectively denote P = S, T, U and Q = R, V . We use the basis as specified

in eqs. (3.9), (3.3) for Sν , Tl. Then the neutrino mixing matrix is given by Uν = Vν in

case (1) while it is given by Uν = VP (N, 0, n)Vν in case (2). This follows by noting that

the texture M̃ν given in eq. (2.4) holds in a basis with diagonal Sν but Sν in the chosen

group basis of eq. (3.9) is non-diagonal in case (2). The neutrino mass matrix in this basis

is thus given by Mν = V ∗P M̃νV
†
P where VP diagonalizes P (N, 0, n). The matrix Uν which

diagonalizes Mν is then given by Uν = VP (N, 0, n)Vν where Vν diagonalizes M̃ν . Explicitly,

V †P (N, p, q)P (N, p, q)VP (N, p, q) = diag.(η−p/2,−η−p/2,−ηp) with

VS(N, p, q) =
1√
2

 0 0
√

2

1 ηq+p/2 0

−η−q−p/2 1 0

 ; VU (N, p, q) =
1√
2

 1 ηq+p/2 0

−η−q−p/2 1 0

0 0
√

2

 ,

VT (N, p, q) =
1√
2

 1 ηq+p/2 0

0 0
√

2

−η−q−p/2 1 0

 . (3.10)

We have chosen the ordering of columns of VP in such a way that the first column always

corresponds to the eigenvalue η−p/2. With this ordering one gets the texture I given in

eq. (2.4) when P (N, 0, n) is used as neutrino antisymmetry.

The matrices Ul diagonalizing Tl in three cases above are given in the same basis

by Ul = 1, VP (N, p, q), VQ(N, p, q) in cases (A), (B), (C) respectively where VQ are given in

eq. (3.4). Thus we have six (four) different choices for Ul (Uν) giving in all 24 leptonic mixing

matrices UPMNS. We list these choices and the corresponding UPMNS matrices in table 1.

Not all of 24 mixing matrices listed in table 1 give independent predictions for the

third column of UPMNS which determines s13 and s23. We discuss the independent ones

below.
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The choice (1A) giving UPMNS = Vν has one of the entries zero and thus cannot lead

to correct θ13 or θ23. The choice (1C) involves only elements belonging to the ∆(3N2)

subgroup and its predictions are already discussed in the previous section. The remaining

choices give new predictions.

The case (1B) leads to three different UPMNS. One obtained with Tl = S(N, p, q)

contains a zero entry in the third column and can be used only as a zeroeth order choice.

One gets the following result in (1B) if Tl = T (N, p, q)

|U23|2 =
c2

2
, |U33|2 =

c2

2
, |U13|2 = s2. (3.11)

The ordering of the entries |Ui3|2 can be changed by rearranging the eigenvectors of of Tl
appearing in Ul. We have chosen here and below an ordering which is consistent with the

values of the parameters s213, s
2
23 when U is equated with the standard form of the mixing

matrix. The result in the third case with Tl = U(N, p, q) can be obtained from above by

the replacement s ↔ c. All the three entries above follow for all the choices of p, q and

the phase β. The case (1B) in this way gives a universal prediction. Two of the |Ui3|2 are

equal within this choice and they correspond to c213c
2
23 and c213s

2
23. Equality of the two then

implies a θ independent prediction θ23 = π
4 . s213 in the above case is then given by s2 and

can match the experimental value with appropriate choice of the unknown θ. Since the

choice of Sν within (1B) is possible only for even N it follows that all the groups ∆(24k2)

lead to a prediction of the maximal atmospheric mixing angle and can accommodate the

correct θ13.

The choice (2A) also gives the same result for |Ui3|2 as (1B) with an important dif-

ference. The neutrino residual symmetry used in this choice is allowed for all N and not

necessarily N = 2k. Thus one gets a universal prediction of the maximal θ23 for all p, q, θ, β

within all ∆(6N2) groups. The smallest group in this category is the permutation group

S4 = ∆(24) which contain symmetries appropriate for both the cases (1B) and (2A).

There are two independent structures within nine possible choices contained in

case (2B). The example of the first one is provided by the choice Sν = S(N, 0, n) and

Tl = S(N, p, q). The elements in the third column of mixing matrix are given in this

case by

|U23|2 =
1

4
s2|ηn − ηq+p/2|2,

|U33|2 =
1

4
s2|η−n + η−q−p/2|2,

|U13|2 = c2. (3.12)

While this choice does not give universal prediction as in the case (1B) discussed above it

still leads to a prediction for θ23 which is independent of the unknown angle θ and phase β:

tan2 θ23 or cot2 θ23 =
|ηn − ηq+p/2|2

|η−n + η−q−p/2|2

This follows from eq. (3.12) when |U13|2 is identified with s213. The predicted θ23 now

depends only on the group theoretical factors N, p, q, n.
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Group Tl Sν Predictions

∆(24k2) T (2k, p, q) W (2k, 0, k) Maximal θ23 for all β, p, q, n

sin2 θ13 = sin2 θ

∆(6N2) W (N, p, q) P (N, 0, n) Maximal θ23 for all β, p, q, n

sin2 θ13 = cos2 θ

∆(6N2) S(N, p, q) S(N, 0, n) Maximal θ23 for all β, |n−q−p/2||N = (2l+1)
4

sin2 θ13 = cos2 θ

∆(294) S(7, 0, 2) S(7, 0, 0) s223 = 0.39 or 0.61 for all θ, β

cos2 θ = s213
∆(486) S(9, 0, 2) S(9, 0, 0) s223 = 0.41 or 0.59 for all θ, β

cos2 θ = s213
∆(6N2) S(N, 0, 0) T (N, 0, n) sin2 θ = 2s213

s223 = 0.345 for β = 0 and the best fit s213
∆(150) S(5, 2, 3) T (5, 0, 0) sin2 θ = 2s213

s223 = 0.452 for the best fit θ13

∆(6N2) R(N, 0, 0) S(N, 0, 0) s223 = 1/2 for β = 0 and all θ

s213 = 0.028 for β = 0, maximal θ

∆(150) R(5, 3, 1) S(5, 0, 0) s223 = 0.484, s213 = 0.022

for β = 0 and θ ∼ 80◦

Table 2. Some illustrative predictions of the mixing angles sin2 θ13 and sin2 θ23 using ∆(6N2)

groups as flavour symmetry. sin2 θ12 remains undetermined due to degeneracy in two of the masses

in all these cases.

Unlike (1B), both the maximal and non-maximal values are allowed for θ23 in this

case. The former occurs whenever cos 2π(n−q−p/2)
N = 0. The latter occurs for other choices.

It is possible to find values of parameters which lead to a non-maximal θ23 within the

experimental limits. The minimal such choice occurs for N = 7, i.e. the group ∆(294)

which leads as shown in table 2 to a sin2 θ23 within the 2σ range as given in [53]. The next

example of the group ∆(486) fairs slightly better.

The other prediction of the case (2B) is obtained with Sν = S(N, 0, n) and Tl =

T (N, p, q). One obtains in this case

|U23|2 =
1

4
|
√

2ce−iβ + sηq+p/2|2,

|U33|2 =
1

4
|
√

2ce−iβ − sη−q−p/2|2,

|U13|2 =
1

2
s2. (3.13)

In this case, θ23 is necessary non-maximal if θ13 is to be small but non-zero. We may

identify, |U13|2 with s213 and fix s2 = 2s213. This determines the other two entries of |Ui3|2

for a given p, q, β. For p = q = β = 0 one obtains sin2 θ23 either 0.345 or 0.655. Thus all

the ∆(6N2) groups with this specific choice give results close to the 3σ range in the global

fits. This prediction can be improved by turning on β or choosing different Tl. An example
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based on the group ∆(150) giving sin2 θ23 close to the best fit value [53] is shown in the

table 2.

Predictions of the case (2C) can also be similarly worked out. Six different UPMNS are

associated with this choice but not all give different predictions for the third column. One

of the independent structures corresponds to choosing Tl = R(N, p, q) and Sν = S(N, 0, n).

The UPMNS = V †RVSVν gives

|U13|2 =
1

6
| − s(ηp + ηn−q) +

√
2ce−iβ |2,

|U23|2 =
1

6
| − s(ηpω + ηn−qω2) +

√
2ce−iβ |2,

|U33|2 =
1

6
| − s(ηpω2 + ηn−qω) +

√
2ce−iβ |2. (3.14)

Rest of the choices within (2C) differ from the above only in the powers of η. Their

predictions can be obtained from the above by choosing different values of p, q, n.

Eq. (3.14) gives s13, s23 withing 3σ range for a suitable choice of N, p, q, θ, β. In par-

ticular, one predicts a maximal θ23 if p = q = β = 0 as in the earlier cases. But now the

maximal value of θ also becomes a viable choice for all the groups ∆(6N2). This makes

the choice in this class particularly interesting since such value of θ can be forced by some

additional symmetry. With the choice Tl = E2 corresponding to p = q = 0, eq. (3.14) gives

for n = β = 0,

θ23 =
π

4
, s213 =

1

3
|c−
√

2s|2.

The maximal value of θ then leads to s213 ∼ 0.029 which is close to 2σ range as obtained

in [53]. One can obtain a better solution with a different choice for p and q and θ. One

particular solution based on the group ∆(150) is shown in the table 2.

3.2.2 Texture IV

The diagonal texture IV given in eq. (2.8) can be realized in ∆(6N2) for even N with the

choice Sν = P (2k, k, n). This texture has two non-degenerate and one massless neutrino.

Thus both the normal and the inverted hierarchies are possible. The massless state has to be

identified with the third (first) column of the mixing matrix for the inverted (normal) hier-

archy. The neutrino mixing matrix Uν in this case is given by the matrix which diagonalizes

P (2k, k, n). This is given for the inverted hierarchy by VP (2k, k, n) as defined in eq. (3.10).

For the normal hierarchy, one instead gets Uν = VP (2k, k, n)Z13 where Z13 exchanges the

first and the third column of of the mixing matrix obtained in case of the inverted hier-

archy. Possible choice of Tl can be any of the six types of generators and corresponding

mixing matrices Ul are the same as given in table 1 with the choice (2A), (2B), (2C). It

is then straightforward to work out the final mixing matrices UPMNS. As the massless

state in the basis with diagonal Sν is given by (1, 0, 0)T and its cyclic permutation for

Sν = S, T, U , the third column of the UPMNS is given by (UPMNS)i3 = (U †l )i1, (U
†
l )i2, (U

†
l )i3

when Sν = S, T, U . It follows from the structure of Ul that the third column has either one

or two zero entries or all elements have equal magnitudes. The same applies to the first

column of UPMNS in case of the normal hierarchy. In either case, the texture IV cannot

give phenomenologically consistent result at the zeroeth order.
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4 More predictive scenario: Z2 × Z2 symmetry

The neutrino mass matrix Mν has been assumed so far to be antisymmetric with respect to

only one Sν . This fails in determining M̃ν completely in case of the texture I which still has

two unknown quantities θ and β. The situation changes if Mν is assumed to be symmetric

or antisymmetric with respect to one more generator. We give here an example in which

an additional residual symmetry of M̃ν determines it completely apart from an overall

complex mass scale. We use a generator S′ν commuting with Sν for this purpose. It should

be such that Sν , S
′
ν and Tl together are contained in some Gf . Mν may be antisymmetric

with respect to transformation by S′ν also. In this case, it will be symmetric with respect

to the product SνS
′
ν . Instead we assume that S′ν is a symmetry of Mν , i.e.

S′Tν MνS
′
ν = Mν . (4.1)

We can transform above equation to the basis with a diagonal Sν by defining S̃′ν ≡
V †SνS

′
νVSν . In this basis, we get

S̃ν
′T
M̃ν S̃ν

′
= M̃ν . (4.2)

As before, we demand S̃′ν to be contained in SU(3). If it is diagonal, then S̃′ν = diag.(λ1, λ2,

λ∗1λ
∗
2) with λ1,2 being roots of unity. Then eq. (4.2) when applied to M̃ν in eq. (2.7) implies

that either S̃ν
′

is proportional to identity or s = 0 or c = 0. A non-trivial prediction can

be obtained if S̃ν
′

is non-diagonal. Since S̃ν = diag.(1,−1 − 1), a general S̃ν
′

commuting

with S̃ν should have a block diagonal structure with the lower 2 × 2 block non-trivial.

This block gets further restricted from the requirement that Sν , S
′
ν , Tl are elements of some

discrete group Gf . These requirements can be met within the already considered groups

∆(6N2).

Consider the group ∆(12k2). The choice Sν = S̃ν = W (2k, 0, k) = diag.(1,−1,−1)

within it leads to texture I as already discussed. This commutes with all the discrete

symmetries having a general form S(M,m,n) as in eq. (3.9). Thus a viable choice for

S′ν is provided by S′ν = S(M,m,n). Note that since Sν is already diagonal, S̃ν
′

= S′ν =

S(M,m,n). Then eq. (4.2) and the form of M̃ν implies a restriction:

m = 0 , θ = ±π
4
, β =

2πn

M
(4.3)

which fixes the unknown angle θ and phase β. Mixing pattern can be determined by

choosing appropriate Tl and let us choose Tl = R(N, p, q). Since both Tl and Sν are

contained in ∆(12k2) mixing pattern is determined by the corresponding eq. (3.6) but

now with θ and β satisfying eq. (4.3) which follows from the inclusion of S′ν as a residual

symmetry. We can vary p, q,M,N, n in eq. (3.6) and look for a viable choice. Consider

M = N in which case Tl, Sν , S
′
ν are contained in ∆(6N2). By varying p, q,N one finds that

the minimum group giving acceptable θ13, θ23 is ∆(600) corresponding to N = 10. One

possible set of residual symmetries within ∆(600) is given by

Sν = W (10, 0, 5) , Tl = R(10, 4, 0) , S′ν = S(10, 0, 0) .
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With this choice, the S′ν coincides with the µ-τ symmetry and eqs. (3.6), (4.3) give a

prediction

s213 ≈ 0.029 , s223 ≈ 0.38 or 0.62

to be compared with the 3σ region given in eq. (3.7).

5 An A4 model with flavour antisymmetry

Our discussion so far has been at the group theoretical level. We now present an explicit

realization of flavour antisymmetric neutrino mass matrix using A4 as an example. A4 has

been extensively used for several different purposes, for obtaining degenerate neutrinos [43,

44], to realize tri-bimaximal mixing [45, 48] for obtaining maximal CP phase δ [46, 47, 49,

51, 52] or to obtain texture zeros [50] in the leptonic mass matrices. As we discuss here,

it also provides a viable alternative to get a massless and two quasi degenerate neutrinos

with correct mixing pattern. In the following, we discuss the required symmetry, Higgs

content and obtain the vacuum needed to obtain antisymmetry. We also discuss possible

perturbations which can split the degenerate pair and lead to the solar scale and mixing

angle.

The group theory of A4 is discussed extensively in many papers. We follow the basis

choice as given for example in [48]. In this basis, all the 12 elements of A4 = ∆(12) can be

generated from the two elements E and F defined in eq. (3.2) with η = −1. We will use

the following product rule between two three dimensional representations x = (x1, x2, x3)

and y = (y1, y2, y3):

x× y = 1 + 1′ + 1′′ +

 x2y3 + x3y2
x3y1 + x1y3
x1y2 + x2y1


3S

+

 x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1


3A

(5.1)

with 1 = x1y1 + x2y2 + x3y3, 1′ = x1y1 + ωx2y2 + ω2x3y3, 1′′ = x1y1 + ω2x2y2 + ωx3y3.

The explicit model presented below is based on the flavour symmetry A4 × Z3 × Z5.

The added symmetry Z3 × Z5 plays an important role in restricting the structure of the

model in a way that leads to correct vacuum alignment and the required antisymmetric

Mν . The A4 symmetry determines the mixing angle structure obtained group theoretically

in the earlier section.

The model uses the following ingredients (1) supersymmetry with unbroken R symme-

try (2) flavon fields with zero R-charge which break the A4 symmetry and (3) the driving

fields with R = 2 which appear linearly in suprepotential and lead to correct vacuum align-

ment among flavons. R symmetry is assumed to be unbroken and driving fields have zero

vacuum expectation values. These ingredients have been used in several papers to solve

the difficult vacuum alignment problem in case of flavour symmetry, see for a review and

references [18]. We use the same mechanism to get antisymmetry. The quantum numbers

of the required flavonic superfields under A4 × Z3 × Z5 symmetry are listed in table 3

and that of the driving fields in table 4. The MSSM Higgs fields Hu, Hd and triplet ∆

are invariant under A4 × Z3 × Z5 symmetry. The model also needs and additional triplet

superfield ∆̄ for consistency.
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Fields lL (ec, , µc, τ c) χe χ1 χ2 ξ1 ξ2

A4 3 (1, 1′, 1′′) 3 3 3 1 1

Z3 ω ω2 1 ω ω 1 1

Z5 1 β3 β2 β β4 β4 β

Table 3. Transformation properties of leptons and the required flavon fields under the symmetry

group A4 × Z3 × Z5. ω and β satisfy ω3 = β5 = 1.

Driving Fields (σ0
e , σ

0
µ, σ

0
τ ) χ0

1 χ0
2 σ0

ν σ0
ξ σ′01 σ′02

A4 (1, 1′′, 1′) 3 3 1 1 1 1

Z3 1 ω ω ω 1 ω ω

Z5 β β3 β2 1 1 β3 β2

Table 4. Transformation properties of the required driving fields under the symmetry group

A4 × Z3 × Z5. ω and β satisfy ω3 = β5 = 1.

The complete superpotential consists of several parts. We discuss significance of each

of them below.

Wl =
Hd

M

(
he(lLχe)1 eR + hµ(lLχe)1′′ µR + hτ (lLχe)1′ τR

)
, (5.2)

Wν =
1

2M2
(lTLC∆lL)3S (h1χ1ξ1 + h2χ2ξ2) , (5.3)

Wld = βµ(χeχe)1′σ
0
µ + βτ (χeχe)1′′σ

0
τ , (5.4)

Wνd = δ1(χ1χ1χ
0
1)1 + δ2(χ2χ2χ

0
2)1 + δ3(χ1χ2)1σ

0
ν + δ4(ξ1ξ2 − µ2ξ)σ0ξ , (5.5)

W ′d = βe
(
(χeχe)1 − µeξ1

)
σ0e + β′1

(
(χ1χ1)1 − µ21

)
σ′01 + β′2

(
(χ2χ2)1 − µ22

)
σ′02 . (5.6)

The subscript a in (. . .)a in the above equations labels the A4 representation according

to which the quantity (. . .) transforms. C is the charge conjugation matrix. The cut-off

scale M and the flavon vacuum expectation values generate the effective Yukawa couplings

in the model. We have kept only the leading order terms in the above superpotential.

Wl and Wν respectively determine Ml and Mν . Note that the assignments given in

table 3 forbid terms having only one flavon field in Wν . Thus neutrino masses contain

an extra flavon and suppression factor M compared to the charged lepton masses. The

residual symmetry properties of the leptonic mass matrices are determined from the above

superpotential by the flavon vacuum expectation values (vev) at the minimum. We shall

show that these vev lead to the required symmetries in accordance with the discussion

given in section 2. The symmetry Tl of MlM
†
l is obtained as E or E2. Only possible choice

within A4 for Sν leading to flavour antisymmetry is given by F or its cyclic permutations

and this can come from the minimization of Wνd.

The minimum of the potential is obtained in the supersymmetric limit by setting F

terms corresponding to each superfield to zero. Wld and Wνd are responsible for the vacuum

alignment in the model. Consider derivatives of Wνd with respect to each component

i = 1, 2, 3 of triplets χ0
1,2 and σ0ν

Fχ0
1i

= Fχ0
2i

= Fσ0
ν

= 0 . (5.7)
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Using the product rules as given in eq. (5.1), one finds that the first two conditions

imply that at most one component of the each of the flavon fields χ1,2 can have non-zero

vev.2 The additional constraint Fσ0
ν

then implies that 〈χ1〉 and 〈χ2〉 form an orthogonal

pair of vectors. Thus only possible non-zero vev for these fields are given by

〈χ1〉 = v

 0

0

1

 , 〈χ2〉 = u

 0

1

0

 , (5.8)

or

〈χ1〉 = v

 0

0

1

 , 〈χ2〉 = u

 1

0

0

 (5.9)

and their cyclic permutations which are related to the above by A4 symmetry. The last

term of Wνd assures through Fσ0
ξ

= 0 that the fields ξ1,2 assume non-zero vev. Flavon vev

given in eq. (5.8) displays antisymmetry

F 〈χ1,2〉 = −〈χ1,2〉 .

These vevs when substituted in eq. (5.3) lead to a neutrino mass matrix given by texture I,

eq. (2.4) with tan θ = |h2〈ξ2〉u|
|h1〈ξ1〉v| , β = Arg

(
h2〈ξ2〉uh∗1〈ξ∗1〉v∗

)
and appropriately defined m0.

Similarly, the vev given in eq. (5.9) display similar antisymmetry with respect to Sν =

diag.(−1, 1,−1) which is also an element of A4 and leads to a permutation of the texture I.

The supersymmetric solution corresponding to F -terms Fσ0
µ

= Fσ0
τ

= 0 lead from eq. (5.4)

(χeχe)1′ = (χeχe)1′′ = 0 .

A solution of these two equations is given by

〈χe1〉2 = 〈χe2〉2 = 〈χe3〉2. (5.10)

Equality of vev of all three components is one of the solutions of the above equation. This

leads to an MlM
†
l having a residual symmetry Tl = E,E2 as has been discussed in several

papers on A4. Other solutions of eq. (5.10) corresponds to equal magnitudes but relative

minus sign between one or two components. Such solutions are invariant under A4 elements

fiEfi, with f1 = F , f3 = EFE2, f2 = E2FE. The texture I obtained here is diagonalized

by Uν = Vν . The resulting mixing pattern is a special case of eq. (3.6) obtained for ∆(12k2)

with Tl = R(2k, p, q) and Sν = W (2k, 0, k). The choices Tl = E, fiEfi are obtained from

above by a suitable allowed value of p, q. Consider the case with Tl = E2 corresponding

to R(2, 0, 0) and Sν = F = W (2, 0, 1). Thus Ui3 can be obtained by putting p = q = 0

and η = −1 in eq. (3.6). As already discussed, this leads to a prediction θ23 = π
4 for β = 0

independent of the choice of θ. The latter can be chosen to give the correct θ13 while the

solar angle and scale remain unpredicted at this stage due to degeneracy in mass.

2All components of χ1,2 = 0 is also a solution. Such solutions do not contribute to the leptonic masses

and can be avoided in the presence of suitable supersymmetry breaking mass terms. We shall assume

throughout that vev of none of the flavon fields are identically zero.
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The flavon vev v, u remain undetermined at this stage. The last piece W ′d of the

superpotential given in eq. (5.6) is introduced to fix these vev. The price for this to be

paid in the model is introduction of soft Z3×Z5 breaking mass parameters µ1 and µ2. Apart

from introduction of these mass parameters, the superpotential given by eqs. (5.2)–(5.6)

is the most general superpotntial invariant under the A4 × Z3 × Z5 symmetry. The soft

breaking masses may result from the neglected higher order terms, e.g. µ21 may come from
ξ1
M χ

2
2σ
′0
1 and µ22 may come from ξ2

M χ
2
1σ
′0
2 allowed in the superpotential by the A4×Z3×Z5

symmetry. Rather than considering full higher order corrections, we discuss model only

at the leading order and regard for the present the masses µ21,2 as effective soft Z3 × Z5

breaking parameters. This is a technically natural assumption.

Perturbations are needed to split the degenerate pair and stabilize the solar angle. We

now discuss possible perturbations within the model. One source of perturbation arises

from the shift in the vev of χ1,2 which may arise from higher order effects. Consider for

example,

〈χ1〉 = v

 δv1
δv2
1

 ,

where, |δv1,2| � 1. The δv1 generates a non-zero 23 elements in Mν , eq. (2.4). The δv2
corrects the already existing entries s, c and can be absorbed in their redefinition. Zero

entries in the diagonal part of Mν can be generated through an A4 singlet contribution

(lTLC∆lL)1 which can arise for example from from the higher order A4 ×Z3 ×Z5 invariant

terms, e.g., 1
M3 (lTC∆l)1(χeχ2)1ξ1. Motivated by this, we consider the following perturbed

neutrino mass matrix.

M̃ν = m0

 ε1 c seiβ

c ε1 ε2
seiβ ε2 ε1

 . (5.11)

Inclusion all possible non-leading effects may result in more complex Mν and would also

correct Ml. All these corrections will add more parameters to the model and we assume

their contribution to be small. Here we show that two parameters ε1,2 are sufficient to

reproduce the neutrino mixing and scales correctly. They split the degeneracy and generate

the solar scale and angle correctly. For example,

(θ, β, ε1, ε2) = (0.5904,−0.1818− 0.0579, 0.1186) (5.12)

give the following values of the observables

sin2 θ13 ∼ 0.024 , sin2 θ23 ∼ 0.455 , sin2 θ12 ∼ 0.307 ,
∆�
|∆atm|

∼ 0.0317 (5.13)

which corresponds to (nearly) best fit values obtained for example with a global fits in [53].

6 Summary

The bottom up approach of finding discrete symmetry groups starting with possible sym-

metries of the residual mass matrices has been successfully used in last several years to
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predict leptonic mixing angles. The residual symmetry assumed in these works leaves the

neutrino mass matrix Mν invariant. We have proposed here a different possibility in which

Mν displays antisymmetry as defined in eq. (1.3) under a residual symmetry. The use of

antisymmetry is found to be more predictive than symmetry. It is able to restrict both

neutrino masses and mixing angles unlike all the previous works in this category which [1–

15] could predict only mixing angles. Moreover, the antisymmetry condition by itself is

sufficient for determining all possible discrete residual antisymmetry operators Sν residing

in SU(3). This in turn leads to very specific textures of the neutrino mass matrix satisfying

antisymmetry condition. These are given by eqs. (2.4), (2.5), (2.6), (2.8).

Just like symmetry, the antisymmetry of Mν can also come from the spontaneous

breaking of some discrete group Gf . We have demonstrated it through a supersymmetric

model based on the group A4 × Z3 × Z5. Just like its counterparts in the case of symme-

try [18, 56–58], the present model leading to antisymmetry also needs an elaborate set of

flavons and driving fields.

We studied the mixing angle predictions in the specific context of the groups ∆(3N2)

and ∆(6N2). The main results obtained are:

• Only the groups ∆(12k2) with k = 1, 2 . . . and all ∆(6N2) groups contain the residual

antisymmetry operator.

• Of the four possible neutrino mass textures allowed by antisymmetry, only texture I

having one massless and two degenerate neutrinos can lead to correct mixing pattern.

This case provides a very good zeroeth order approximation to reality if the neutrino

mass hierarchy is inverted.

• There always exists within these groups residual symmetries of MlM
†
l and Mν such

that the atmospheric neutrino mixing angle is maximal. Correct value of θ13 can be

accommodated by choosing the unknown angle in eq. (2.4) appropriately. There also

exists other choices of residual symmetries which for some groups allow non-maximal

values of the atmospheric neutrino mixing angle as well. The results of various cases

are summarized in figure 1 and table 2.

• The successful texture I still has two free parameters apart from an overall mass

scale. But as we have shown here, predicted atmospheric mixing angle in many cases

is independent of these unknowns. The reactor angle θ13 depends on it but it is

possible to determine these unknown also by enlarging the residual symmetry and

we have given an example of a Z2 × Z2 residual symmetry which can determine the

complete neutrino mass matrix up to an overall scale in terms of group theoretical

parameters alone and have identified ∆(600) as a possible group which can give

correct θ13 and θ23 with this symmetry.

We end this section with a comparison of the present work with some earlier relevant works.

• The texture I, eq. (2.4) has been extensively studied since long in the context of

Le − Lµ − Lτ global symmetry which implies it, see for example [59] and references
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therein. Imposition of this symmetry on the charged lepton mass matrix Ml makes

it diagonal after redefinition of θ appearing in (2.4). Thus the matrix Vν as given

in eq. (2.7) corresponds to the final mixing matrix which is now not allowed by

the present experimental constraints. This is not the case here since the MlM
†
l is

non-trivial with the imposed discrete symmetry.

• Neutrino mass matrix displaying a specific flavour antisymmetry namely, µ-τ anti-

symmetry was studied in [60]. This antisymmetry was assumed there to hold in the

neutrino flavour basis. In our terminology, this would correspond to study of a spe-

cific example within the choice (2A) discussed in section 3.2.1. The structure of the

neutrino mass matrix and the mixing angle predictions obtained here for this choice

agrees with ref. [60] after suitable basis change. The study presented here is not lim-

ited to the µ-τ antisymmetry but encompasses all possible antisymmetry operators

within SU(3) and leads to many new phenomenological predictions.

• The antisymmetry condition, eq. (1.3), can be converted to the usually assumed

symmetry condition by redefining the operator Sν → iSν . The new operator does not

however have unit determinant and would belong to a U(3) group. The occurrence

of massless state within such group with condition, eq. (1.2) was discussed in [23,

24]. The residual symmetry operators used there had eigenvalues (η, 1,−1) (or its

permutations) with η 6= ±1. This coincides with eigenvalues of iSν for texture IV

when η = i. Only texture IV was considered in [23, 24] and it was shown there that

a large class of DSG of U(3) imply sin2 θ13 to be either 0 or 1
3 with condition (2).

The same conclusion is found to be true here with eq. (1.3) and texture IV in case

of the group series ∆(3N2) and ∆(6N2).

• It is possible to obtain a degenerate pair of neutrinos using symmetry condition,

eq. (1.2) and DSG of SU(3). This was studied for the finite von-Dyck groups in [21]

and for all DSG of SU(3) having three dimensional IR in [22]. Here, the third state

is not implied to be massless. The case of one massless and two degenerate neutrinos

can follow from the symmetry condition if DSG of U(3) are used. This was also

discussed in [22]. The successful examples found in these two works are different

from here because of the difference in the assumed residual symmetries. The cases

studied in the context of DSG of SU(3) and U(3) [22] have texture similar to the

texture II in the present terminology. It was found there that this texture can give

non-trivial values of s213, s
2
23 in several ∆(6N2) groups when symmetry condition (1.2)

is used. This does not happen with the antisymmetry condition in case of texture II

as argued here. On the other hand, one can obtain correct values for θ13 and θ23
in all the ∆(3N2) groups with texture I when antisymmetry condition is employed.

Thus symmetry and antisymmetry conditions appear complementary to each other

and allow more possibilities for flavour symmetries Gf .

– 20 –



J
H
E
P
1
1
(
2
0
1
5
)
1
8
6

Acknowledgments

It is pleasure to thank Ketan M. Patel for a careful reading of the manuscript and helpful

suggestions. I also thank Department of Science and Technology, Government of India

for support under the J.C. Bose National Fellowship programme, grant no. SR/S2/JCB-

31/2010.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] C.S. Lam, Determining horizontal symmetry from neutrino mixing,

Phys. Rev. Lett. 101 (2008) 121602 [arXiv:0804.2622] [INSPIRE].

[2] C.S. Lam, The unique horizontal symmetry of leptons, Phys. Rev. D 78 (2008) 073015

[arXiv:0809.1185].

[3] C.S. Lam, A bottom-up analysis of horizontal symmetry, arXiv:0907.2206 [INSPIRE].

[4] C.S. Lam, Group theory and dynamics of neutrino mixing, Phys. Rev. D 83 (2011) 113002

[arXiv:1104.0055] [INSPIRE].

[5] R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Discrete flavour symmetries in light of

T2K, Phys. Lett. B 703 (2011) 447 [arXiv:1107.3486] [INSPIRE].

[6] R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Finite modular groups and lepton

mixing, Nucl. Phys. B 858 (2012) 437 [arXiv:1112.1340] [INSPIRE].

[7] G. Altarelli, F. Feruglio and L. Merlo, Tri-bimaximal neutrino mixing and discrete flavour

symmetries, Fortschr. Phys. 61 (2013) 507 [arXiv:1205.5133] [INSPIRE].

[8] M. Holthausen, K.S. Lim and M. Lindner, Lepton mixing patterns from a scan of finite

discrete groups, Phys. Lett. B 721 (2013) 61 [arXiv:1212.2411] [INSPIRE].

[9] B. Hu, Neutrino mixing and discrete symmetries, Phys. Rev. D 87 (2013) 033002

[arXiv:1212.2819] [INSPIRE].

[10] D. Hernandez and A.Y. Smirnov, Lepton mixing and discrete symmetries,

Phys. Rev. D 86 (2012) 053014 [arXiv:1204.0445] [INSPIRE].

[11] D. Hernandez and A.Y. Smirnov, Discrete symmetries and model-independent patterns of

lepton mixing, Phys. Rev. D 87 (2013) 053005 [arXiv:1212.2149] [INSPIRE].

[12] M. Holthausen and K.S. Lim, Quark and leptonic mixing patterns from the breakdown of a

common discrete flavor symmetry, Phys. Rev. D 88 (2013) 033018 [arXiv:1306.4356]

[INSPIRE].

[13] L. Lavoura and P.O. Ludl, Residual Z2 × Z2 symmetries and lepton mixing,

Phys. Lett. B 731 (2014) 331 [arXiv:1401.5036] [INSPIRE].

[14] R.M. Fonseca and W. Grimus, Classification of lepton mixing patterns from finite flavour

symmetries, arXiv:1410.4133 [INSPIRE].

[15] B. Hu, Lepton mixing, residual symmetries and trigonometric Diophantine equations,

Phys. Rev. D 90 (2014) 073012 [arXiv:1407.4722] [INSPIRE].

– 21 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRevLett.101.121602
http://arxiv.org/abs/0804.2622
http://inspirehep.net/search?p=find+EPRINT+ARXIV:0804.2622
http://dx.doi.org/10.1103/PhysRevD.78.073015
http://arxiv.org/abs/0809.1185
http://arxiv.org/abs/0907.2206
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2206
http://dx.doi.org/10.1103/PhysRevD.83.113002
http://arxiv.org/abs/1104.0055
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.0055
http://dx.doi.org/10.1016/j.physletb.2011.08.013
http://arxiv.org/abs/1107.3486
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3486
http://dx.doi.org/10.1016/j.nuclphysb.2012.01.017
http://arxiv.org/abs/1112.1340
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.1340
http://dx.doi.org/10.1002/prop.201200117
http://arxiv.org/abs/1205.5133
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5133
http://dx.doi.org/10.1016/j.physletb.2013.02.047
http://arxiv.org/abs/1212.2411
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2411
http://dx.doi.org/10.1103/PhysRevD.87.033002
http://arxiv.org/abs/1212.2819
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2819
http://dx.doi.org/10.1103/PhysRevD.86.053014
http://arxiv.org/abs/1204.0445
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0445
http://dx.doi.org/10.1103/PhysRevD.87.053005
http://arxiv.org/abs/1212.2149
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2149
http://dx.doi.org/10.1103/PhysRevD.88.033018
http://arxiv.org/abs/1306.4356
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4356
http://dx.doi.org/10.1016/j.physletb.2014.03.001
http://arxiv.org/abs/1401.5036
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.5036
http://arxiv.org/abs/1410.4133
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.4133
http://dx.doi.org/10.1103/PhysRevD.90.073012
http://arxiv.org/abs/1407.4722
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.4722


J
H
E
P
1
1
(
2
0
1
5
)
1
8
6

[16] J. Talbert, [Re]constructing finite flavour groups: horizontal symmetry scans from the

bottom-up, JHEP 12 (2014) 058 [arXiv:1409.7310] [INSPIRE].

[17] G. Altarelli and F. Feruglio, Discrete flavor symmetries and models of neutrino mixing,

Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].

[18] S.F. King and C. Luhn, Neutrino mass and mixing with discrete symmetry,

Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].

[19] A.Y. Smirnov, Discrete symmetries and models of flavor mixing,

J. Phys. Conf. Ser. 335 (2011) 012006 [arXiv:1103.3461] [INSPIRE].

[20] W. Grimus, L. Lavoura and P.O. Ludl, Is S4 the horizontal symmetry of tri-bimaximal lepton

mixing?, J. Phys. G 36 (2009) 115007 [arXiv:0906.2689] [INSPIRE].

[21] D. Hernandez and A.Y. Smirnov, Relating neutrino masses and mixings by discrete

symmetries, Phys. Rev. D 88 (2013) 093007 [arXiv:1304.7738] [INSPIRE].

[22] A.S. Joshipura and K.M. Patel, Discrete flavor symmetries for degenerate solar neutrino pair

and their predictions, Phys. Rev. D 90 (2014) 036005 [arXiv:1405.6106] [INSPIRE].

[23] A.S. Joshipura and K.M. Patel, Horizontal symmetries of leptons with a massless neutrino,

Phys. Lett. B 727 (2013) 480 [arXiv:1306.1890] [INSPIRE].

[24] A.S. Joshipura and K.M. Patel, A massless neutrino and lepton mixing patterns from finite

discrete subgroups of U(3), JHEP 04 (2014) 009 [arXiv:1401.6397] [INSPIRE].

[25] G.A. Miller, H.F. Blichfeldt and L.E. Dickson, Theory and applications of finite groups,

John Wiley & Sons, New York U.S.A. (1916).

[26] W.M. Fairbairn, T. Fulton and W.H. Klink, Finite and disconnected subgroups of SU3 and

their application to the elementary-particle spectrum, J. Math. Phys. 5 (1964) 1038 [INSPIRE].

[27] A. Bovier, M. Luling and D. Wyler, Finite subgroups of SU(3),

J. Math. Phys. 22 (1981) 1543 [INSPIRE].

[28] C. Luhn, S. Nasri and P. Ramond, Simple finite non-abelian flavor groups,

J. Math. Phys. 48 (2007) 123519 [arXiv:0709.1447] [INSPIRE].

[29] C. Luhn, S. Nasri and P. Ramond, Flavor group ∆(3n2), J. Math. Phys. 48 (2007) 073501

[hep-th/0701188] [INSPIRE].

[30] J.A. Escobar and C. Luhn, The flavor group ∆(6n2), J. Math. Phys. 50 (2009) 013524

[arXiv:0809.0639] [INSPIRE].

[31] P.O. Ludl, Systematic analysis of finite family symmetry groups and their application to the

lepton sector, arXiv:0907.5587 [INSPIRE].

[32] P.O. Ludl, On the finite subgroups of U(3) of order smaller than 512,

J. Phys. A 43 (2010) 395204 [Erratum ibid. A 44 (2011) 139501] [arXiv:1006.1479]

[INSPIRE].

[33] R. Zwicky and T. Fischbacher, On discrete minimal flavour violation,

Phys. Rev. D 80 (2009) 076009 [arXiv:0908.4182] [INSPIRE].

[34] K.M. Parattu and A. Wingerter, Tribimaximal mixing from small groups,

Phys. Rev. D 84 (2011) 013011 [arXiv:1012.2842] [INSPIRE].

[35] W. Grimus and P.O. Ludl, Principal series of finite subgroups of SU(3),

J. Phys. A 43 (2010) 445209 [arXiv:1006.0098] [INSPIRE].

– 22 –

http://dx.doi.org/10.1007/JHEP12(2014)058
http://arxiv.org/abs/1409.7310
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.7310
http://dx.doi.org/10.1103/RevModPhys.82.2701
http://arxiv.org/abs/1002.0211
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.0211
http://dx.doi.org/10.1088/0034-4885/76/5/056201
http://arxiv.org/abs/1301.1340
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.1340
http://dx.doi.org/10.1088/1742-6596/335/1/012006
http://arxiv.org/abs/1103.3461
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.3461
http://dx.doi.org/10.1088/0954-3899/36/11/115007
http://arxiv.org/abs/0906.2689
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.2689
http://dx.doi.org/10.1103/PhysRevD.88.093007
http://arxiv.org/abs/1304.7738
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.7738
http://dx.doi.org/10.1103/PhysRevD.90.036005
http://arxiv.org/abs/1405.6106
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.6106
http://dx.doi.org/10.1016/j.physletb.2013.11.003
http://arxiv.org/abs/1306.1890
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.1890
http://dx.doi.org/10.1007/JHEP04(2014)009
http://arxiv.org/abs/1401.6397
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.6397
http://dx.doi.org/10.1063/1.1704204
http://inspirehep.net/search?p=find+J+"J.Math.Phys.,5,1038"
http://dx.doi.org/10.1063/1.525096
http://inspirehep.net/search?p=find+J+"J.Math.Phys.,22,1543"
http://dx.doi.org/10.1063/1.2823978
http://arxiv.org/abs/0709.1447
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.1447
http://dx.doi.org/10.1063/1.2734865
http://arxiv.org/abs/hep-th/0701188
http://inspirehep.net/search?p=find+EPRINT+hep-th/0701188
http://dx.doi.org/10.1063/1.3046563
http://arxiv.org/abs/0809.0639
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.0639
http://arxiv.org/abs/0907.5587
http://inspirehep.net/search?p=find+EPRINT+ARXIV:0907.5587
http://dx.doi.org/10.1088/1751-8113/44/13/139501
http://arxiv.org/abs/1006.1479
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.1479
http://dx.doi.org/10.1103/PhysRevD.80.076009
http://arxiv.org/abs/0908.4182
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.4182
http://dx.doi.org/10.1103/PhysRevD.84.013011
http://arxiv.org/abs/1012.2842
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.2842
http://dx.doi.org/10.1088/1751-8113/43/44/445209
http://arxiv.org/abs/1006.0098
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0098


J
H
E
P
1
1
(
2
0
1
5
)
1
8
6

[36] W. Grimus and P.O. Ludl, Finite flavour groups of fermions, J. Phys. A 45 (2012) 233001

[arXiv:1110.6376] [INSPIRE].

[37] W. Grimus and P.O. Ludl, On the characterization of the SU(3)-subgroups of type C and D,

J. Phys. A 47 (2014) 075202 [arXiv:1310.3746] [INSPIRE].

[38] A. Merle and R. Zwicky, Explicit and spontaneous breaking of SU(3) into its finite subgroups,

JHEP 02 (2012) 128 [arXiv:1110.4891] [INSPIRE].

[39] S.F. King, T. Neder and A.J. Stuart, Lepton mixing predictions from ∆(6n2) family

symmetry, Phys. Lett. B 726 (2013) 312 [arXiv:1305.3200] [INSPIRE].

[40] G.-J. Ding, S.F. King and T. Neder, Generalised CP and ∆(6n2) family symmetry in

semi-direct models of leptons, JHEP 12 (2014) 007 [arXiv:1409.8005] [INSPIRE].

[41] C. Hagedorn, A. Meroni and E. Molinaro, Lepton mixing from ∆(3n2) and ∆(6n2) and CP,

Nucl. Phys. B 891 (2015) 499 [arXiv:1408.7118] [INSPIRE].

[42] H. Ishimori et al., Non-abelian discrete symmetries in particle physics,

Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].

[43] E. Ma and G. Rajasekaran, Softly broken A4 symmetry for nearly degenerate neutrino

masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [INSPIRE].

[44] K.S. Babu, E. Ma and J.W.F. Valle, Underlying A4 symmetry for the neutrino mass matrix

and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [INSPIRE].

[45] G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A4 and the modular symmetry,

Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [INSPIRE].

[46] S. Gupta, A.S. Joshipura and K.M. Patel, Minimal extension of tribimaximal mixing and

generalized Z2 × Z2 symmetries, Phys. Rev. D 85 (2012) 031903 [arXiv:1112.6113]

[INSPIRE].

[47] E. Ma, Transformative A4 mixing of neutrinos with CP-violation,

Phys. Rev. D 92 (2015) 051301 [arXiv:1504.02086] [INSPIRE].

[48] X.-G. He, Y.-Y. Keum and R.R. Volkas, A4 flavor symmetry breaking scheme for

understanding quark and neutrino mixing angles, JHEP 04 (2006) 039 [hep-ph/0601001]

[INSPIRE].

[49] G.-N. Li and X.-G. He, CP violation in neutrino mixing with δ = −π/2 in A4 type-II seesaw

model, Phys. Lett. B 750 (2015) 620 [arXiv:1505.01932] [INSPIRE].

[50] M. Hirsch, A.S. Joshipura, S. Kaneko and J.W.F. Valle, Predictive flavour symmetries of the

neutrino mass matrix, Phys. Rev. Lett. 99 (2007) 151802 [hep-ph/0703046] [INSPIRE].

[51] A. Dev, P. Ramadevi and S.U. Sankar, Non-zero θ13 and δCP in a neutrino mass model with

A4 symmetry, JHEP 11 (2015) 034 [arXiv:1504.04034] [INSPIRE].

[52] X.-G. He, A model of neutrino mass matrix with δ = −π/2 and θ23 = π/4,

arXiv:1504.01560 [INSPIRE].

[53] F. Capozzi et al., Status of three-neutrino oscillation parameters, circa 2013,

Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].

[54] D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted,

Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].

– 23 –

http://dx.doi.org/10.1088/1751-8113/45/23/233001
http://arxiv.org/abs/1110.6376
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.6376
http://dx.doi.org/10.1088/1751-8113/47/7/075202
http://arxiv.org/abs/1310.3746
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.3746
http://dx.doi.org/10.1007/JHEP02(2012)128
http://arxiv.org/abs/1110.4891
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4891
http://dx.doi.org/10.1016/j.physletb.2013.08.052
http://arxiv.org/abs/1305.3200
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3200
http://dx.doi.org/10.1007/JHEP12(2014)007
http://arxiv.org/abs/1409.8005
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.8005
http://dx.doi.org/10.1016/j.nuclphysb.2014.12.013
http://arxiv.org/abs/1408.7118
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.7118
http://dx.doi.org/10.1143/PTPS.183.1
http://arxiv.org/abs/1003.3552
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.3552
http://dx.doi.org/10.1103/PhysRevD.64.113012
http://arxiv.org/abs/hep-ph/0106291
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0106291
http://dx.doi.org/10.1016/S0370-2693(02)03153-2
http://arxiv.org/abs/hep-ph/0206292
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0206292
http://dx.doi.org/10.1016/j.nuclphysb.2006.02.015
http://arxiv.org/abs/hep-ph/0512103
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0512103
http://dx.doi.org/10.1103/PhysRevD.85.031903
http://arxiv.org/abs/1112.6113
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.6113
http://dx.doi.org/10.1103/PhysRevD.92.051301
http://arxiv.org/abs/1504.02086
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.02086
http://dx.doi.org/10.1088/1126-6708/2006/04/039
http://arxiv.org/abs/hep-ph/0601001
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0601001
http://dx.doi.org/10.1016/j.physletb.2015.09.061
http://arxiv.org/abs/1505.01932
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.01932
http://dx.doi.org/10.1103/PhysRevLett.99.151802
http://arxiv.org/abs/hep-ph/0703046
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0703046
http://dx.doi.org/10.1007/JHEP11(2015)034
http://arxiv.org/abs/1504.04034
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.04034
http://arxiv.org/abs/1504.01560
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.01560
http://dx.doi.org/10.1103/PhysRevD.89.093018
http://arxiv.org/abs/1312.2878
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.2878
http://dx.doi.org/10.1103/PhysRevD.90.093006
http://arxiv.org/abs/1405.7540
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.7540


J
H
E
P
1
1
(
2
0
1
5
)
1
8
6

[55] M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing:

status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].

[56] G. Altarelli and D. Meloni, A simplest A4 model for tri-bimaximal neutrino mixing,

J. Phys. G 36 (2009) 085005 [arXiv:0905.0620] [INSPIRE].

[57] S.F. King and C. Luhn, A4 models of tri-bimaximal-reactor mixing, JHEP 03 (2012) 036

[arXiv:1112.1959] [INSPIRE].

[58] S.F. King and C. Luhn, Trimaximal neutrino mixing from vacuum alignment in A4 and S4

models, JHEP 09 (2011) 042 [arXiv:1107.5332] [INSPIRE].

[59] H.S. Goh, R.N. Mohapatra and S.-P. Ng, Testing neutrino mass matrices with approximate

Le − Lµ − Lτ symmetry, Phys. Lett. B 542 (2002) 116 [hep-ph/0205131] [INSPIRE].

[60] W. Grimus, S. Kaneko, L. Lavoura, H. Sawanaka and M. Tanimoto, µ-τ antisymmetry and

neutrino mass matrices, JHEP 01 (2006) 110 [hep-ph/0510326] [INSPIRE].

– 24 –

http://dx.doi.org/10.1007/JHEP11(2014)052
http://arxiv.org/abs/1409.5439
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.5439
http://dx.doi.org/10.1088/0954-3899/36/8/085005
http://arxiv.org/abs/0905.0620
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.0620
http://dx.doi.org/10.1007/JHEP03(2012)036
http://arxiv.org/abs/1112.1959
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.1959
http://dx.doi.org/10.1007/JHEP09(2011)042
http://arxiv.org/abs/1107.5332
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5332
http://dx.doi.org/10.1016/S0370-2693(02)02335-3
http://arxiv.org/abs/hep-ph/0205131
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0205131
http://dx.doi.org/10.1088/1126-6708/2006/01/110
http://arxiv.org/abs/hep-ph/0510326
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0510326

	Introduction
	Allowed textures for neutrino mass matrix
	Group theoretical determination of mixing
	Delta (3 N**2)
	Delta (6 N**2)
	Texture I
	Texture IV


	More predictive scenario: Z(2) x Z(2) symmetry
	An A(4) model with flavour antisymmetry
	Summary

