
RESEARCH Open Access

A comparative study of k-spectrum-based
error correction methods for next-
generation sequencing data analysis
Isaac Akogwu1, Nan Wang1, Chaoyang Zhang1 and Ping Gong2*

Abstract

Background: Innumerable opportunities for new genomic research have been stimulated by advancement in high-
throughput next-generation sequencing (NGS). However, the pitfall of NGS data abundance is the complication of
distinction between true biological variants and sequence error alterations during downstream analysis. Many error
correction methods have been developed to correct erroneous NGS reads before further analysis, but independent
evaluation of the impact of such dataset features as read length, genome size, and coverage depth on their
performance is lacking. This comparative study aims to investigate the strength and weakness as well as
limitations of some newest k-spectrum-based methods and to provide recommendations for users in selecting
suitable methods with respect to specific NGS datasets.

Methods: Six k-spectrum-based methods, i.e., Reptile, Musket, Bless, Bloocoo, Lighter, and Trowel, were compared
using six simulated sets of paired-end Illumina sequencing data. These NGS datasets varied in coverage depth
(10× to 120×), read length (36 to 100 bp), and genome size (4.6 to 143 MB). Error Correction Evaluation Toolkit
(ECET) was employed to derive a suite of metrics (i.e., true positives, false positive, false negative, recall, precision,
gain, and F-score) for assessing the correction quality of each method.

Results: Results from computational experiments indicate that Musket had the best overall performance across
the spectra of examined variants reflected in the six datasets. The lowest accuracy of Musket (F-score = 0.81)
occurred to a dataset with a medium read length (56 bp), a medium coverage (50×), and a small-sized genome
(5.4 MB). The other five methods underperformed (F-score < 0.80) and/or failed to process one or more datasets.

Conclusions: This study demonstrates that various factors such as coverage depth, read length, and genome size
may influence performance of individual k-spectrum-based error correction methods. Thus, efforts have to be
paid in choosing appropriate methods for error correction of specific NGS datasets. Based on our comparative
study, we recommend Musket as the top choice because of its consistently superior performance across all six
testing datasets. Further extensive studies are warranted to assess these methods using experimental datasets
generated by NGS platforms (e.g., 454, SOLiD, and Ion Torrent) under more diversified parameter settings (k-mer
values and edit distances) and to compare them against other non-k-spectrum-based classes of error correction
methods.

Keywords: Next-generation sequencing (NGS), k-mer, k-spectrum, Error correction, Sequence analysis, Bloom filter

* Correspondence: Ping.Gong@usace.army.mil
2Environmental Laboratory, U.S. Army Engineer Research and Development
Center, Vicksburg, MS 39180, USA
Full list of author information is available at the end of the article

© 2016 Akogwu et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Akogwu et al. Human Genomics 2016, 10(Suppl 2):20
DOI 10.1186/s40246-016-0068-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81796563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s40246-016-0068-0&domain=pdf
mailto:Ping.Gong@usace.army.mil
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Background
Rapid generation and availability of massive amounts of
DNA sequence data generated using next-generation
sequencing (NGS) technologies at lower cost in com-
parison to traditional Sanger sequencing has led to a
genuine ability to decipher genomes and perform ground-
breaking biological research [1]. Some instances of the far
reaching applications of NGS data include human genome
profiling [2], microbiome research [3], de novo genome
assembly [4], meta-genomics, and uncommon genetic
variants identification [5]. In practice, NGS data has its
challenges due to its relatively shorter read length and
higher error rates in comparison to traditional Sanger
sequencing [6], consequently constituting an undesirable
property for downstream investigation.
The rates and types of sequencing error vary among

different NGS technologies (Table 1) [7]. It is critically
important to correct erroneous sequencing data before
further downstream analysis. There exist multiple lines
of evidence for negative effects of sequence errors on
population-genetic studies [5] and output of alignment
algorithms [8]. It has also been shown that correcting
these errors has positive impact on downstream analysis
such as improved genome assembly [4] and identifica-
tion of single nucleotide polymorphism (SNP) [9].
The general idea for correcting sequencing errors is that

erroneous bases (i.e., nucleotides) in a DNA sequence read
can be corrected using the majority of reads that have
these bases correctly since errors occur infrequently and
independently. Many error correction methods have been
developed, some implemented as an integral part of a
computational tool for de novo genome assembly [10, 11],
while others as standalone tools [12–14]. Based on the
type of data structure applied, these methods can be cate-
gorized into four main classes [15, 16]: k-mer spectrum-
based (or k-spectrum-based) (e.g., Quake [17], Reptile [13]

and Hammer [18]), suffix t-ree/array-based (HiTEC [19],
SHREC [14] and Hybrid-SHREC [20]), multiple sequence
alignment (MSA)-based (ECHO [12] and Coral [21]) and
hidden Markov model (HMM)-based (PREMIER [22] and
SEECER [23]).
Since Yang et al. [15] last reviewed error correction

methods available as of December 2011, many new
algorithms have been developed, especially in the fast-
growing category of k-spectrum-based methods. In the
past 2 years, at least five new k-spectrum-based methods
have emerged, including Musket [24], Bless [16], Trowel
[25], Lighter [26], and Bloocoo [27]. These new tools have
made significant improvements in either memory usage,
speed, or correction quality over previously existing tools.
Authors of these new tools carried out a varying degree of
comparison with other tools on synthetic and/or experi-
mental datasets in order to demonstrate the superiority of
their own tools. However, these authors chose different
competitors for comparison and used different datasets
and metrics for evaluation, making it hard to tell the rela-
tive strength and weakness between themselves.
The goal of this comparative study is to conduct an

independent and unbiased assessment of the newly
developed k-spectrum-based error correctors and to
provide some guidance concerning how to choose a
suitable error correction tool from the long list of existing
methods. In particular, there is a lack of available studies
that comprehensively investigate such factors as reference
genome size, read length, and genome coverage depth that
may differentially influence the performance of individual
algorithm. Here, we first introduce the basics of k-
spectrum error correction algorithms, and briefly review
six sequence error correctors chosen for this study with
an emphasis on distinctive features of each tool. Then, we
present analytical results of method evaluation using sim-
ulated NGS datasets and make suggestions on which
method is more suitable for a specific sequencing dataset.
Finally, we discuss future perspectives and further studies
required for assessing the performance of existing and
newly developed error correction programs.

Methods
General framework of k-spectrum-based error correction
methods
Error correction methods based on k-spectrum originate
from earlier implementation of de Bruijn graph assem-
blers using spectral alignment [28] and follow a general-
ized framework as shown in Fig. 1. A k-spectrum is the
distribution of a set of decomposed distinct substring of
length k (i.e., k-mer) observed in a group of reads. It
counts the occurrence of all k-length contiguous strings
represented as a vector within the spectrum feature
space. The expectation is that errors in a sequence will
result in a strong divergence at low k-mer frequencies

Table 1 Sequence error rates for different NGS platforms in
comparison with the traditional Sanger technology (updated as
of 2012 at http://www.molecularecologist.com/next-gen-table-
3c-2014/). See Glenn (2011) [41] for more details. Single-pass
reads are those raw sequences that have not been subject to
consensus adjustment incorporated in final base calling

Instrument Primary
error type

Single-pass
error rate (%)

Final error
rate (%)

Sanger—ABI 3730XL capillary
(benchmark)

Substitution 0.1–1 0.1–1

454—all models Indel 1 1

Illumina—all models Substitution ~0.1 ~0.1

Ion Torrent—all chips Indel ~1 ~1

SOLiD—5500XL A-T bias ~5 ≤0.1

Oxford Nanopore Deletion ≥4 4

PacBio RS Indel ~13 ≤1

Akogwu et al. Human Genomics 2016, 10(Suppl 2):20 Page 50 of 109

http://www.molecularecologist.com/next-gen-table-3c-2014/
http://www.molecularecologist.com/next-gen-table-3c-2014/

compared to a sequence without errors. One challenge
in error correction is that inconsistent genome sampling
and genomic repeats may occur at high frequencies and
consequently result in numerous equally susceptible cor-
rection possibilities. Owing to this, a frequently explored
property of the k-mer spectra is the distribution com-
position of the spectra representing motif groups with
varying sequence and bias frequencies [29]. This implies
that based on their frequencies of occurrences, k-mers
having small hamming distances are presumably of
the same genomic locus and have to be corrected. K-
spectrum-based correction starts by assigning a weighted
value to each k-mer after extraction from sequencing
reads. The value is assigned based on sorted count
frequencies or base quality scores. By determining and
selecting an acceptable error threshold [30, 31], weak
(insolid or untrusted) k-mers with low frequencies are
separated from solid (trusted) k-mers (with high fre-
quencies). The reads with weak k-mers are considered
for error correction by repeatedly converting them into
solid k-mers until there are no more weak k-mers in
the sequence. Hence, only solid k-mers will be kept
after correction.

Bloom filter
The majority of the methods investigated in this study
apply Bloom filters as their data structure. As a space-
efficient probabilistic data structure, a Bloom filter is
used to test whether an element is a member of a set
using binary array and multiple hash functions [32]. It
can accurately determine a non-member element of the
set. A query may return false positives but no false neg-
atives, thus a bloom filter has a 100 % recall rate. A
Bloom filter does not store the elements themselves but
allows testing whether an object is certainly absent in
the filter or has been probably added to the Bloom
filter. For sequence error correction purposes, most
methods implement the counting Bloom filter variant
where array positions are not single bits but an n-bit
counter. The efficiency of Bloom filters relies upon the
number of bits in the array, the number of hash func-
tions, and most importantly the quality of the hash
functions.

Selected k-spectrum-based error correction methods
Five recently published k-spectrum-based error correc-
tion methods, i.e., Musket [24], Bless [16], Bloocoo [27],

Fig. 1 General framework of k-spectrum-based error correctors

Akogwu et al. Human Genomics 2016, 10(Suppl 2):20 Page 51 of 109

Trowel [25], and Lighter [26], in addition to a relatively
old program called Reptile [13] (published in 2010), were
chosen for this comparative study. Reptile was chosen
because it has been extensively evaluated and consist-
ently proved to be an upper-scale performer in compari-
son with many other major error correction programs
[13, 15, 16]. As summarized in Table 2, these methods
differ greatly in error correction algorithms as well as in
how hash tables and Bloom filters are implemented. The
evaluated version is as follows: Reptile version 1.1, Musket
version 1.1, Bless v0p23 for 64× Linux, Bloocoo 1.0.4-
linux, Lighter version 1.1, and Trowel version 0.1.4.2.
Reptile [13] explores multiple alternative k-mer decom-

positions of an erroneous read and corrects errors by
simultaneously examining Hamming (the number of posi-
tions at which two strings differ) distance-based correc-
tion possibilities for potentially erroneous k-mers using
neighboring k-mers from the same read for correct con-
textual information. It also incorporates quality score in-
formation when available and has functionality to deal
with ambiguous bases labeled as N’s. Reptile achieved a
significant reduction in run time and memory usage and
improvement in correction quality when compared with
such existing methods as SHREC, Coral, Hybrid-SHREC,
Quake, HiTEC, and ECHO [13, 15].
Musket [24] uses a multi-stage workflow including

two-sided conservative correction, one-sided aggressive
correction, and voting-based refinement. It computes
the multiplicity of each k-mer in the hash table in order
to filter out the stored unique k-mers using Bloom filter.
A parallelized slave-master k-mer counting method is im-
plemented to sort out unique k-mers and then generates

k-mer coverage histograms to determine a cut-off for a k-
mer spectrum for the coverage of likely correct and erro-
neous k-mers. The error correction stage initially uses a
two-sided correction that conservatively corrects one sub-
stitution error, at most, in any k-mer of a read with the
intention of finding a unique alternative base that makes
all k-mers covering the position trusted. Significant im-
provement in speed can be achieved by evaluating only
the leftmost and rightmost k-mers that cover the position.
It then applies a one-sided correction to aggressively cor-
rect errors in the case of more than one error occurring in
a single k-mer. Furthermore, to confine the number of
false positives, error correction is conducted for each inte-
ger value from 1 to the maximal allowable number of
corrections. The drawback is its reliance on alternative
selection in the event that a k-mer is wrongly called to be
trusted even though it contains sequencing errors or
incorrect corrections. To overcome this drawback, look-
ahead validation and voting-based refinement are imple-
mented to assess the trustiness of a predefined maximal
number (default = 2) of neighboring k-mers that cover the
base position at which a sequencing error likely occurs.
If all evaluated k-mers are trusted for a certain alter-
native on that position, this alternative is reserved as
one potential correction.
Bless [16] uses a single minimum-sized Bloom filter and

disk-based k-mer counting algorithm like disk streaming
of k-mers (DSK) [33] and k-mer counter (KMC) [34] to
achieve high memory efficiency for error correction,
sequence repeat handling, and read end correction by read
extension. Briefly, it counts k-mer multiplicity to sort
out solid k-mers from weak k-mers, creates a k-mer

Table 2 Characteristic features of the six k-spectrum-based methods investigated in the present comparative study which
distinguish one method from others

Tools Algorithm highlight Data structure Pros Cons Quality
score

Target error
type

Reptile Explore multiple alternative k-mer
decompositions and contextual
information of neighboring k-mers
for error correction

Hamming
graph

Contextual information can
help resolve errors without
increasing k and lowering
local coverage

Uses a single core
(non-parallelized)

Used Substitution
Deletion
Insertion

Musket Multi-stage correction: two-sided
conservative, one-sided aggressive
and voting-based refinement

Bloom filter Multi-threading based on a
master–slave model results
in high parallel scalability

A single static coverage cut-
off to differentiate trusted
k-mers from weak ones

Not
used

Substitution

Bless Count k-mer multiplicity; correct
errors using Bloom filter; restore
false positives

Bloom filter High memory efficiency;
handle genome repeats
better; correct read ends

Cannot automatically determine
the optimal k value

Not
used

Substitution
Deletion
Insertion

Bloocoo Parallelized multi-stage correction
algorithm (similar to Musket)

Blocked Bloom
filter

Faster and lower memory
usage than Musket

Not extensively evaluated Not
used

Substitution

Trowel Rely on quality values to identify
solid k-mers; use two algorithms
(DBG and SBE) for error correction

Hash table Correct erroneous bases
and boost base qualities

Only accept FASTQ files as input Used Substitution

Lighter Random sub-fraction sampling;
parallelized error correction

Pattern-blocked
Bloom filter

No k-mer counting; near
constant accuracy and
memory usage

A user must specify k-mer length,
genome length, and sub-sampling
fraction α

Used Substitution
Deletion
Insertion

Akogwu et al. Human Genomics 2016, 10(Suppl 2):20 Page 52 of 109

multiplicity histogram to determine the multiplicity
threshold M, and programs those solid k-mers into a
Bloom filter. Weak k-mers are converted to their ca-
nonical forms using consecutive solid k-mers (known
as k-mer islands) in their neighborhood or read end
through Bloom filter querying. Bases in a weak k-mer
that do not overlap with solid k-mers are modified.
For instance, weak k-mers that exist between two
consecutive solid k-mer islands S1 and S2 are corrected by
using the rightmost k-mer of S1 and the leftmost k-mer of
S2. Bless has three distinctive features: high memory effi-
ciency, better handling of genome repeats, and more
accurate error correction at read ends.
As part of the Genome Assembly & Analysis Took

Box (GATB) [27], Bloocoo was developed to correct
large datasets with low memory footprints by using DSK
[33], a counting algorithm that requires a user to define
a fixed amount of memory and disk space. Its error
correction process is similar to CUSHAW [35], a pro-
cedure also used by Musket. In Bloocoo, the multi-set of
all k-mers present in the reads is partitioned, and parti-
tions are saved to disk. Then, each partition is separately
loaded into memory in a temporary hash table. The k-
mer counts are returned by traversing each hash table.
Low-abundance k-mers are optionally filtered and solid
k-mers are inserted in the Bloom filter based on a given
threshold. With a multi-stage correction approach simi-
lar to Musket [24], correction is performed by scanning
k-mers of a read, trying the other three different possible
nucleotides at the error site, and checking if correspond-
ing k-mers are in the set of solid k-mers. When several
close errors occur, the pattern is more complex, and
errors are corrected via a voting algorithm. Bloocoo
distinguishes itself from other error correctors in the k-
mer counting stage and the way that solid k-mers are
stored in memory. By using only 11 bits of memory per
solid k-mers, Bloocoo requires only 4-GB memory for
the entire human genome re-sequencing read correction
at 70× coverage.
Different from other tools, Lighter [26] samples k-mers

randomly, i.e., sub-sampling fraction α rather than count-
ing k-mers. It uses a pattern-blocked Bloom filter [36] to
decrease the overall number of cache misses and improve
memory efficiency. Lighter populates Bloom filter A with
a k-mer subsample, followed by a simple test applied to
each position of each read to compile a set of solid k-mers,
and then stores the solid k-mers in Bloom filter B. A
sequenced k-mer survives sub-sampling with probability
of α, a user determined sub-sampling fraction that is set
to be 0.10(70/C) with C being average coverage. For error
correction, Lighter applies a greedy approach like that
used in Bless [16] and extends a read when an error
is located near the end of the read. Error correction
is parallelized by using concurrent threads to handle

subsets of the reads. Lighter maintains near constant
accuracy and Bloom filter size as long as the sampling
fraction is adjusted in inverse proportion to the coverage
depth. However, a user has to specify k-mer length,
genome length, and sub-sampling fraction α.
Trowel [25] is a highly parallelized and efficient error

correction module for Illumina sequencing reads. The
key difference to other tools is that Trowel relies on con-
tiguity of high quality values instead of a k-mer coverage
distribution to differentiate between solid and weak k-
mers. The algorithm not only improves low quality bases
but also iteratively expands the trusted k-mer set by
including corrected k-mers. Trowel applies two different
algorithms, Double Bricks & Gap (DBG) and Single Brick
& Edges (SBE), to increase the likelihood that a correction
can be made and to boost quality values. The DBG algo-
rithm exploits an asymmetric k1-gap-k2 structure, where a
gap is a single base, k = k1 + k2. The quality of the gap is
boosted to the maximum quality value when the index
relevant to gap-enclosing bricks contains the gap with high
quality. The SBE algorithm is used because bases at read
ends cannot be accessed by the brick index. Hence, a new
edge-k-edge index is used to correct edges, where an edge
is a single base, or increase their quality values as in the
DBG algorithm.

Dataset simulation
Reference genome sequences were downloaded from
ftp://ftp.ncbi.nih/gov/genomes/refseq, including two bac-
teria genomes (Escherichia coli (EC) strain K-12 and
Bacillus cereus (BC) strain ATCC 14579); and one inver-
tebrate genome (Drosophila melanogaster (DM)). Syn-
thetic, paired-end sequence read datasets were generated
using ART with default Illumina profiles of empirical
quality score distributions and error rates [37]. We chose
to simulate Illumina-specific sequencing data because of
the predominant status of Illumina sequencers among all
NGS platforms. ART was used because it imitates the
sequencing process with built-in, NGS platform-specific
read error models and base quality value profiles parame-
terized empirically using large sequencing datasets [37].
All three types of errors (substitution, insertion, and
deletion) for all major sequencing platforms are incorpo-
rated in simulated reads. The following default error rates
were selected: 0.009 % and 0.015 % of insertion and
0.011 % and 0.023 % of deletion for the first and the sec-
ond read, respectively. Base substitution is the dominant
error type accounting for up to 98 % of all errors in Illu-
mina sequencing data. The substitute rate in the simulated
datasets varied, resulting in the overall error rate varying
between 0.1 and 0.95 %, which is typical for Illumina
sequencers (see Table 1). Details of the six simulated
datasets are shown in Table 3 and these datasets can be
downloaded at http://pinfish.cs.usm.edu/ngs_correction/.

Akogwu et al. Human Genomics 2016, 10(Suppl 2):20 Page 53 of 109

ftp://ftp.ncbi.nih/gov/genomes/refseq
http://pinfish.cs.usm.edu/ngs_correction/

Evaluation tools
Error Correction Evaluation Toolkit (ECET) version 1.1
[15] was used for performance analysis in order to take
advantage of its neutral format known as target error
format (TEF), which ensures that all methods are evalu-
ated equally (Fig. 2). Furthermore, ECET produces error
correction statistics and measures that can be directly
used for performance evaluation. Burrows-Wheeler Aligner
(BWA) version 0.6.1-r104 [38] was used for short read
mapping with default settings except for the edit distance

parameter set to 2 and 4 for short (36/56 bp) and long
(100 bp) read length, respectively. Read alignment was
performed so as to identify the difference between the
reference genome and the erroneous sequence. SamTo-
Fastq, one of the Picard command line tools (Release
1.119, http://broadinstitute.github.io/picard), was used
to validate the conversion of SAM (sequence alignment/
mapping)-formatted files to FASTQ files [39] imple-
mented by the sam-analysis.py script in ECET. KmerGenie
version 1.6476 [40] was used to determine the optimal k

Table 3 Synthetic paired-end Illumina sequencing datasets simulated using ART

Organism (dataset ID) Accession number of reference
genome assembly

ART simulation parameter Genome
size (MB)Read length (bp) Genome coverage Fragment/insert size Error rate (%)

Escherichia coli (EC-1) GCF_000005845.2 (ASM584v2) 36 70× 200 0.866 4.6

Escherichia coli (EC-2) GCF_000005845.2 (ASM584v2) 36 20× 200 0.866 4.6

Escherichia coli (EC-3) GCF_000005845.2 (ASM584v2) 100 20× 200 0.952 4.6

Bacillus cereus (BC-1) GCF_000007825.1 (ASM782v1) 56 50× 200 0.175 5.4

Bacillus cereus (BC-2) GCF_000007825.1 (ASM782v1) 100 120× 300 0.109 5.4

Drosophila melanogaster (DM) GCF_000001215.4 (Release 6) 100 10× 300 0.854 143

Fig. 2 Workflow of error correction performance analysis using ECET (Error Correction Evaluation Toolkit [15]). See http://aluru-sun.ece.iastate.edu/
doku.php?id=ecr for more information

Akogwu et al. Human Genomics 2016, 10(Suppl 2):20 Page 54 of 109

http://broadinstitute.github.io/picard
http://aluru-sun.ece.iastate.edu/doku.php?id=ecr
http://aluru-sun.ece.iastate.edu/doku.php?id=ecr

to be selected for correction. DSK version 2.0.2-Linux [33]
was used for counting k-mers for proper estimation of
valid k-mers given an optimal k-mer length before error
correction.

Evaluation workflow and metrics
As shown in Fig. 2, the workflow consists of the follow-
ing steps: sequencing dataset simulation, pre- and post-
correction alignment to reference genome, parameter
optimization for error correctors, and derivation of
evaluation statistics and metrics (see http://aluru-sun.
ece.iastate.edu/doku.php?id=ecr for more details). Briefly,
both error-free and error-containing paired-end sequences
were generated in FASTQ format by ART simulation. The
error-free data served for the QA/QC purpose throughout
the workflow. After converting FASTQ to FASTA (pre-
process due to ECET’s header requirements before align-
ment), simulated sequences were aligned to a reference
genome using BWA. The SAM alignment files produced
by BWA were then converted to TEF format using ECET
[15]. Error-containing datasets were corrected using error
correction tools. The error correction outputs from these
tools were converted to TEF files in ECET. The TEF files
that generated pre- and post-correction were compared
using the Comp2PCAlign script provided in ECET to pro-
duce statistics and metrics for performance assessment.
Since the quality and accuracy of error correction tools
are highly dependent on parameter (particularly k-mer)
settings, we introduced an iterative optimization loop to
select an optimal k value by implementing KmerGenie. In
this loop, we also tweaked other parameters while main-
taining the same optimal k-mer selected for a specific
dataset. For instance, α is a user-defined parameter in
Lighter and its default value is set by the formula
0.1(70/C), where C is the coverage depth.
We chose the following widely used metrics to evalu-

ate correction quality [13, 15, 16, 24–27]: true positives
(TP)—an erroneous base correctly changed to its true
base; false positives (FP)—a true base incorrectly
changed; false negative (FN)—incorrect base left un-
changed; true negative (TN)—true base left unchanged;
recall or sensitivity = TP/(TP + FN), precision = TP/(TP +
FP), gain = (TP − FP)/(TP + FN), and F-score = 2 × ((preci-
sion × recall)/(precision + recall)).

Operating systems
Computational experiments were conducted using mul-
tiple machines due to specific requirements of individual
tools and varied sizes of synthetic testing datasets; hence,
consideration was not given to the performance in terms
of run time and memory usage but rather effectiveness
and accuracy of read error correction. Due to require-
ment of Message Passing Interface (MPI), Bless was run
on a Red Hat Enterprise Linux MPI cluster with 12

nodes, and each node had 12-GB memory and 8 cores
running at a core speed of 2.93 GHz. For all other tools,
datasets with a genome size >5 MB were run on a 64-
bit Ubuntu 12.04 LTS Intel Core i7-3770 CPU@
3.40 GHz machine with 8 cores and 8-GB memory. The
E. coli datasets (genome size <5 MB) were run on a
CentOS—64-bit Intel(R) Xeon(R) CPU E5630@ 2.53 GHz
machine with 16 processors and a total memory of
296 GB.

Results
The derived performance metrics are presented in Table 4.
Bless and Bloocoo each failed to process one dataset, i.e.,
BC-2 and DM, respectively. A negative gain value means
that more errors are introduced into the data than cor-
rected. Five methods (Reptile, Bless, Bloocoo, Trowel, and
Lighter) produced negative gains, mostly in processing
EC-3. F-score is the most comprehensive measure of error
correction performance. If setting F-score = 0.8 as
the threshold for good performance, all methods ex-
cept Musket underperformed with at least one data-
set. Therefore, Musket was the best overall performer
whereas Trowel was the worst one with five instances of
underperformance.

Influence of read length on performance
Three datasets with a short read length of either 36 or
56 bp were processed by four to five methods to a satis-
factory degree (F-score > 0.8, Fig. 3a). Only two, three,
and four methods generated satisfactory results with the
other three 100-bp datasets EC-3, DM, and BC-2, re-
spectively. In general, read length has an adverse impact
on tool performance, i.e., the longer the read length, the
less superior a tool performs. This impact was the most
pronounced on Bloocoo, which underperformed in all
three long-read datasets. Musket was the most resistant
tool because it performed well across all six datasets. For
the other four tools, there appeared to exist interactive
effects among read length, coverage depth and genome
size because no clear-cut relationship between read length
and performance was observable.

Influence of genome coverage depth on performance
A medium coverage depth (50- and 70-fold) appeared to
be preferred by all tested tools except Trowel (Fig. 3b).
At a low depth (10- and 20-fold), Reptile and Bless per-
formed well except for the long-read dataset EC-3.
Lighter seemed to require a medium-to-high coverage
depth (50-fold or higher). In case of low depth (20-fold),
a longer read length might compensate for the loss of
coverage depth, resulting in a satisfactory performance.
At the highest coverage depth (120-fold), two tools
failed (Bless) or underperformed (Bloocoo). Again, Musket

Akogwu et al. Human Genomics 2016, 10(Suppl 2):20 Page 55 of 109

http://aluru-sun.ece.iastate.edu/doku.php?id=ecr
http://aluru-sun.ece.iastate.edu/doku.php?id=ecr

showed the strongest resistance to variation in coverage
depth.

Influence of genome size on performance
Genome size is most likely a covariant that interacts
with the other two factors (read length and coverage

depth) because instances of underperformance occurred
across the full spectrum of genome size (Fig. 3c). For
small genomes (EC and BC), Musket was the best method,
followed by Lighter and Reptile (both performed well in
four of five datasets), then Bless and Bloocoo (three
of five datasets), and Trowel ranked the last. For the

Table 4 Performance analysis of six k-spectrum-based error correctors as evaluated using six synthetic Illumina datasets

Dataset Method TP FP FN Recall Gain Precision F-score

EC-1 Reptile 2335361 144751 451889 0.8378 0.7859 0.9416 0.8867

36 bp Lighter 2695425 72843 91825 0.9671 0.9409 0.9737 0.9704

70× Bless 2624659 48342 56279 0.9790 0.9610 0.9819 0.9805

k = 19 Bloocoo 2411701 22259 375549 0.8653 0.8573 0.9908 0.9238

Musket 2701885 61096 85365 0.9694 0.9474 0.9779 0.9736

Trowel 1246340 705438 1539825 0.4473 0.1941 0.6386 0.5261

EC-2 Reptile 681551 140039 114910 0.8557 0.6799 0.8296 0.8424

36 bp Lighter 108241 58579 688220 0.1359 0.0624 0.6488 0.2247

20× Bless 779824 18095 16637 0.9791 0.9564 0.9773 0.9782

k = 17 Bloocoo 689322 6454 107139 0.8655 0.8574 0.9907 0.9239

Musket 767087 18182 29374 0.9631 0.9403 0.9768 0.9699

Trowel 434885 19167 361576 0.5460 0.5220 0.9578 0.6955

EC-3 Reptile 105 461 876053 0.0001 -0.0004 0.1855 0.0002

100 bp Lighter 858125 2446 18033 0.9794 0.9766 0.9972 0.9882

20× Bless 746 872860 875412 0.0008 -0.9954 0.0009 0.0009

k = 24 Bloocoo 79790 3644539 796368 0.0911 -4.0686 0.0214 0.0347

Musket 873592 1645 2566 0.9971 0.9952 0.9981 0.9976

Trowel 155 178354 876003 0.0002 -0.2034 0.0009 0.0003

BC-1 Reptile 382043 22303 16602 0.9584 0.9024 0.9448 0.9515

56 bp Lighter 331759 15470 141618 0.7008 0.6682 0.9554 0.8086

50× Bless 429017 34018 11943 0.9729 0.8958 0.9265 0.9492

k = 27 Bloocoo 410156 24127 63221 0.8664 0.8155 0.9444 0.9038

Musket 355015 47460 118362 0.7500 0.6497 0.8821 0.8107

Trowel 55277 4976 26744 0.6739 0.6133 0.9174 0.7770

BC-2 Reptile 497425 116 208081 0.7051 0.7049 0.9998 0.8269

100 bp Lighter 698089 159 7417 0.9895 0.9893 0.9998 0.9946

120× Bless – – – – – – –

k = 31 Bloocoo 27409 1278837 678097 0.0389 -1.7738 0.0210 0.0272

Musket 703882 68 1624 0.9977 0.9976 0.9999 0.9988

Trowel 652845 108 52661 0.9254 0.9252 0.9998 0.9612

DM Reptile 11702183 187733 517322 0.9577 0.9423 0.9842 0.9708

100 bp Lighter 42 23055867 12224293 0.0000 -1.8861 0.0000 0.0000

10× Bless 11122683 126388 1101652 0.9099 0.8995 0.9888 0.9477

k = 21 Bloocoo – – – – – – –

Musket 11550483 163838 673852 0.9449 0.9315 0.9860 0.9650

Trowel 1197127 384403 11027208 0.0979 0.0665 0.7569 0.1734

In the first column, dataset ID, read length, genome coverage, and the optimal k estimated using KmerGenie are shown. The values in TP, FP, and FN columns are
numbers of bases. Italicized values denote the best performer with regard to a specific evaluation measure for a dataset. The symbol “–” indicates that a method
failed to process a specific dataset

Akogwu et al. Human Genomics 2016, 10(Suppl 2):20 Page 56 of 109

Fig. 3 Impact of read length (a), coverage depth (b), and genome size (c) on the performance of six k-spectrum-based error correction methods.
The six datasets are reordered according to the factor examined in order to show visually the effect of each factor on F-score for each method
(see Table 3 for dataset, method, and F-score information)

Akogwu et al. Human Genomics 2016, 10(Suppl 2):20 Page 57 of 109

large genome (DM), only three methods (Reptile, Bless
and Musket) performed well.

Discussion
Different Bloom filter variants were implemented in four
of the six investigated methods to allow compression of
the filter, storage of count data, and representation of
maps in addition to sets [26] (also see Table 2). The
other two methods (Reptile and Trowel) used hash
tables, which do not yield false positive. Although Bloom
filter’s space efficiency comes at the cost of false posi-
tives, all major error correction programs have reduced
or minimized false positive rate by implementing various
algorithms. Authors who developed these six tools had
put lots of efforts in increasing speed and reducing mem-
ory footprint while maintaining or improving their correc-
tion quality. In the present study, we chose to focus solely
on correction quality because speed and memory are no
longer bottlenecking factors that limit the application of
these tools.
Simulated datasets were used because correction accur-

acy could be directly measured. When real experimental
datasets are used, only indirect evaluation metrics (e.g.,
N50 contig size and genome coverage of de novo assem-
blies and percentage of mapped reads in genome align-
ment) can be derived for performance assessment. We
believe that the usage of real datasets in tool evaluation
can provide insights that cannot be obtained from simula-
tion studies. Nevertheless, extensive evaluations should be
conducted using simulated datasets before moving on to
real datasets. Authors of the six tools investigated in our
study have performed evaluations using both synthetic
and real datasets. In general, tools that perform well with
synthetic datasets also work well with real datasets (see
publications featuring Bless [16], Trowel [25], and Lighter
[26]). There is a good correlation between performance
metrics for simulated and real datasets.
Previous evaluations showed that Musket was consist-

ently one of the top performing correctors for both sim-
ulated and real datasets when it was compared with
several well-regarded programs: HiTEC, SHREC, Coral,
Quake, Reptile, DecGPU, and SGA [24]. Here, we also
demonstrated that Musket yielded better performance
metrics than Reptile. When authors of Bless [16], Trowel
[25], and Lighter [26] performed their comparative eval-
uations, they claimed that their own tools slightly out-
performed Musket. However, if looking more specifically
into simulated datasets, Musket performed equally well
as the other three tools did (e.g., the synthetic 40×
human chromosome 1 dataset used in [16]). Bloocoo
shares a great deal of similarity with Musket, especially in
the multi-stage error correction algorithm [24, 27]. They
reportedly achieved similar correction accuracy as mea-
sured by recall and precision on a simulated dataset with

1 % error rate from human chromosome 1 at 70× cover-
age (see “Supplementary Material” in [27]). In the current
study, these two programs did perform equally well on
three datasets (EC-1, EC-2, and BC-1 with read length of
36 or 56 bp). However, Bloocoo underperformed or failed
on the remaining three datasets with longer reads
(100 bp), suggesting the existence of potential bottleneck
factors in the scripts of Bloocoo that limit its application
to longer reads.
An inherent difficulty in using any corrector is the

challenge of choosing optimal parameters [13]. Very few
tools have implemented automated choice of parameters
sensitive to datasets being processed. Although Bless
[16] can automatically choose an appropriate value for
M, k-mer multiplicity threshold, it cannot select an
optimal k and nor can other tools evaluated in this study
(except for Reptile [13], which chooses k = log4|G|, where
G is the genome length). We used KmerGenie [40] to de-
termine an optimal k for each dataset. While it is possible
that the k picked by KmerGenie may not be the optimal
value for all six evaluated tools, we performed limited tests
in tweaking k and other user-defined, tool-specific param-
eters but did not observe significant deviations in terms of
performance metrics (data not shown). For similar rea-
sons, we set edit distance to 2 (36/56-bp reads) or 4
(100-bp reads) for read alignment based on the recommen-
dation of 4 % read length (see http://bio-bwa.sourceforge.
net/bwa.shtml). Therefore, we only reported in Table 4 the
results obtained under default settings for tool-specific pa-
rameters, the chosen k values (determined by KmerGenie),
and the fixed edit distances.

Conclusions
Identifying and correcting errors in NGS data is an
important step before carrying out any further down-
stream in-depth analysis. This comparative study aimed
to provide an independent and unbiased evaluation of
the effects of three NGS dataset features on the per-
formance of six recently published k-spectrum-based
error correction methods with an emphasis on correction
accuracy. We observed that performance of six selected
methods was dependent on such factors as read length,
genome size and coverage depth. Our experimental results
suggest that good performance of a method for a specific
dataset does not guarantee its ability to perform as well
for another type of dataset, hence careful consideration
should be given to selecting appropriate tools. Among the
six tested methods, Musket appeared to be the front run-
ner, whereas Trowel showed the worst performance. We
recommend Musket as the top choice because of its
consistently superior performance across all six testing
datasets. In future studies, we will expand to other classes
of error correction methods and more diversified datasets
such as those generated by different NGS platforms (e.g.,

Akogwu et al. Human Genomics 2016, 10(Suppl 2):20 Page 58 of 109

http://bio-bwa.sourceforge.net/bwa.shtml
http://bio-bwa.sourceforge.net/bwa.shtml

454, SOLiD, and Ion Torrent), a wider spectrum of
genome size and complexity (e.g., human and mouse
genomes), and longer reads (e.g., 300 to 500 bp). More
in-depth evaluation is also warranted to investigate
other factors like real datasets generated from a wide
range of applications (e.g., transcriptome mapping, SNP
genotyping, and de novo genome assembly) as well as
data structure (e.g., Cucoo filter vs. Bloom filter) on
error correction outcomes.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PG and CZ conceived the project. IA conducted the computational
experiments. CZ and NW supervised the experiments. IA and PG drafted the
manuscript. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by a National Science Foundation award
(EPS 0903787) to CZ and NW and an intramural grant from the US Army
Environmental Quality/Installation (EQI) Basic Research Program to PG.
Permission was granted by the Chief of Engineer to publish this paper.

Declarations
Funding for publication of the article came from the US Army EQI
Basic Research Program.
This article has been published as part of Human Genomics Volume 10
Supplement 2, 2016: From genes to systems genomics: human genomics.
The full contents of the supplement are available online at http://
humgenomics.biomedcentral.com/articles/supplements/volume-10-
supplement-2.

Author details
1School of Computing, University of Southern Mississippi, Hattiesburg, MS
39406, USA. 2Environmental Laboratory, U.S. Army Engineer Research and
Development Center, Vicksburg, MS 39180, USA.

Published: 25 July 2016

References
1. Metzker ML. Sequencing technologies—the next generation. Nat Rev

Genet. 2010;11:31–46.
2. Lupski JR, Reid JG, Gonzaga-Jauregui C, Rio DD, Chen DC, Nazareth L, et al.

Whole-genome sequencing in a patient with Charcot-Marie-Tooth
neuropathy. N Engl J Med. 2010;362:1181–91.

3. Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, et al. The
NIH Human Microbiome Project. Genome Res. 2009;19:2317–23.

4. Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, et al. GAGE:
a critical evaluation of genome assemblies and assembly algorithms.
Genome Res. 2012;22:557–67.

5. Nielsen R, Paul JS, Albrechtsen A, Song YS. Genotype and SNP calling from
next-generation sequencing data. Nat Rev Genet. 2011;12:443–51.

6. Lam HY, Clark MJ, Chen R, Chen R, Natsoulis G, O’Huallachain M, et al.
Performance comparison of whole-genome sequencing platforms. Nat
Biotechnol. 2012;30:78–82.

7. Suzuki S, Ono N, Furusawa C, Ying BW, Yomo T. Comparison of sequence
reads obtained from three next-generation sequencing platforms. PLoS
One. 2011;6, e19534.

8. Pearson WR. Searching protein sequence libraries: comparison of the
sensitivity and selectivity of the Smith-Waterman and FASTA algorithms.
Genomics. 1991;11:635–50.

9. Brockman W, Alvarez P, Young S, Garber M, Giannoukos G, Lee WL, et al.
Quality scores and SNP detection in sequencing-by-synthesis systems.
Genome Res. 2008;18:763–70.

10. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, et al. De novo assembly of
human genomes with massively parallel short read sequencing. Genome
Res. 2010;20:265–72.

11. Maccallum I, Przybylski D, Gnerre S, Burton J, Shlyakhter I, Gnirke A, et al.
ALLPATHS 2: small genomes assembled accurately and with high continuity
from short paired reads. Genome Biol. 2009;10:R103.

12. Kao WC, Chan AH, Song YS. ECHO: a reference-free short-read error
correction algorithm. Genome Res. 2011;21:1181–92.

13. Yang X, Dorman KS, Aluru S. Reptile: representative tiling for short read
error correction. Bioinformatics. 2010;26:2526–33.

14. Schroder J, Schroder H, Puglisi SJ, Sinha R, Schmidt B. SHREC: a short-read
error correction method. Bioinformatics. 2009;25:2157–63.

15. Yang X, Chockalingam SP, Aluru S. A survey of error-correction methods for
next-generation sequencing. Brief Bioinform. 2013;14:56–66.

16. Heo Y, Wu XL, Chen D, Ma J, Hwu WM. BLESS: bloom filter-based error
correction solution for high-throughput sequencing reads. Bioinformatics.
2014;30:1354–62.

17. Kelley DR, Schatz MC, Salzberg SL. Quake: quality-aware detection and
correction of sequencing errors. Genome Biol. 2010;11:R116.

18. Medvedev P, Scott E, Kakaradov B, Pevzner P. Error correction of high-
throughput sequencing datasets with non-uniform coverage. Bioinformatics.
2011;27:i137–41.

19. Ilie L, Fazayeli F, Ilie S. HiTEC: accurate error correction in high-throughput
sequencing data. Bioinformatics. 2011;27:295–302.

20. Salmela L. Correction of sequencing errors in a mixed set of reads.
Bioinformatics. 2010;26:1284–90.

21. Salmela L, Schroder J. Correcting errors in short reads by multiple
alignments. Bioinformatics. 2011;27:1455–61.

22. Yin X, Song Z, Dorman K, Ramamoorthy A. PREMIER—PRobabilistic
Error-correction using Markov Inference in Errored Reads. arXiv.
2013; 1302.0212.

23. Le HS, Schulz MH, McCauley BM, Hinman VF, Bar-Joseph Z. Probabilistic
error correction for RNA sequencing. Nucleic Acids Res. 2013;41, e109.

24. Liu Y, Schroder J, Schmidt B. Musket: a multistage k-mer spectrum-based
error corrector for Illumina sequence data. Bioinformatics. 2013;29:308–15.

25. Lim EC, Muller J, Hagmann J, Henz SR, Kim ST, Weigel D. Trowel: a fast and
accurate error correction module for Illumina sequencing reads.
Bioinformatics. 2014;30:3264–5.

26. Song L, Florea L, Langmead B. Lighter: fast and memory-efficient
sequencing error correction without counting. Genome Biol. 2014;15:509.

27. Drezen E, Rizk G, Chikhi R, Deltel C, Lemaitre C, Peterlongo P, et al. GATB:
Genome Assembly & Analysis Tool Box. Bioinformatics. 2014;30:2959–61.

28. Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA
fragment assembly. Proc Natl Acad Sci U S A. 2001;98:9748–53.

29. Clavijo BJ, Mapleson D. Kmer Analysis Toolkit: a short walkthrough. 1-21.
10-3-2013. Ref Type: Report

30. Chaisson MJ, Brinza D, Pevzner PA. De novo fragment assembly with
short mate-paired reads: does the read length matter? Genome Res.
2009;19:336–46.

31. Zhao X, Palmer LE, Bolanos R, Mircean C, Fasulo D, Wittenberg GM. EDAR:
an efficient error detection and removal algorithm for next generation
sequencing data. J Comput Biol. 2010;17:1549–60.

32. Bloom BH. Space/time trade-offs in hash coding with allowable errors.
Commun ACM. 1970;13:422–6.

33. Rizk G, Lavenier D, Chikhi R. DSK: k-mer counting with very low memory
usage. Bioinformatics. 2013;29:652–3.

34. Deorowicz S, Kokot M, Grabowski S, Budaj-Grabysz A. KMC 2: fast and
resource-frugal k-mer counting. Bioinformatics. 2015;31:1569–76.

35. Liu Y, Schmidt B, Maskell DL. CUSHAW: a CUDA compatible short read
aligner to large genomes based on the Burrows-Wheeler transform.
Bioinformatics. 2012;28:1830–7.

36. Putze F, Sanders P, Singler J. Cache-, hash-, and space-efficient bloom filters.
J Exp Algorithmics. 2010;14:4–18.

37. Huang W, Li L, Myers JR, Marth GT. ART: a next-generation sequencing read
simulator. Bioinformatics. 2012;28:593–4.

38. Li H, Durbin R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics. 2009;25:1754–60.

39. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al.
The sequence alignment/map format and SAMtools. Bioinformatics.
2009;25:2078–9.

40. Chikhi R, Medvedev P. Informed and automated k-mer size selection for
genome assembly. Bioinformatics. 2014;30:31–7.

41. Glenn TC. Field guide to next-generation DNA sequencers. Mol Ecol Resour.
2011;11:759–69.

Akogwu et al. Human Genomics 2016, 10(Suppl 2):20 Page 59 of 109

http://humgenomics.biomedcentral.com/articles/supplements/volume-10-supplement-2
http://humgenomics.biomedcentral.com/articles/supplements/volume-10-supplement-2
http://humgenomics.biomedcentral.com/articles/supplements/volume-10-supplement-2

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	General framework of k-spectrum-based error correction methods
	Bloom filter
	Selected k-spectrum-based error correction methods
	Dataset simulation
	Evaluation tools
	Evaluation workflow and metrics
	Operating systems

	Results
	Influence of read length on performance
	Influence of genome coverage depth on performance
	Influence of genome size on performance

	Discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Author details
	References

