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1 Introduction and summary

Much attention has been currently focused on the string theories on non-geometric back-

grounds. A simple and interesting class of such backgrounds are constructed due to the

asymmetric orbifolds, in which the orbifold twists act asymmetrically on the left and right

movers [1]. Although they look beyond our intuitive picture of space-time, they are well-

described as done for geometrical ones by the approach of world-sheet conformal field

theory (CFT) in the α′-exact fashion.

Above all, one of the natural purposes to study the type II string on asymmetric

orbifolds would be the construction of non-supersymmetric (SUSY) string vacua with van-

ishing cosmological constant motivated by phenomenological or theoretical interests. It

seems evident that the SUSY-breaking realized in any geometric or symmetric orbifolds

inevitably gives rise to a non-vanishing cosmological constant already at the one-loop. In

this sense, the bose-fermi cancellation without SUSY would only be possible in the suitable

non-geometric compactification in superstring theory. The attempts of construction of non-

SUSY vacua have been initiated by the works [2–4] based on some non-abelian orbifolds,

followed by closely related studies e.g. in [5–8]. Moreover, sharing similar motivations,

non-SUSY vacua in heterotic string theory have been investigated e.g. in [9–13].

Recently, in our previous paper [14], we have presented a simple new realization of

non-SUSY string vacua with the bose-fermi cancellation based on a cyclic orbifold, that

is, the relevant orbifold group is generated by a single element. Hence, this construction

looks rather simpler than the previous ones given in the papers quoted above. The crucial
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point in this construction is the fact that ‘chiral reflection’ (or the T-duality twist) along

the T 4-directions;1

R ≡ (−1R)⊗4 : (Xµ
L, X

µ
R) 7−→ (Xµ

L,−X
µ
R),

(ψµL, ψ
µ
R) 7−→ (ψµL,−ψ

µ
R), (µ = 6, 7, 8, 9), (1.1)

is not necessarily involutive when acting on the world-sheet fermions, even in the untwisted

sector.2 Indeed, as illustrated in [14], while it is always involutive on the (right-moving) NS-

fermions in the untwisted sector, we still have two possibilities (i) R2 = 1, (ii) R2 = −1 for

the R-sector. In other words, even though R2 obviously commutes with all the world-sheet

coordinates;

R2Xµ
RR
−2 = Xµ

R, R2ψµRR
−2 = ψµR,

it may still act on the Ramond vacua (or spin fields) as a sign flip. The case (ii) means that

R2 = (−1)FR , where FR (FL) denotes the ‘space-time fermion number’ from the right(left)-

mover. If taking the second one, which we often call the ‘Z4-chiral reflection’, one finds

that the type II string vacuum constructed as the Z4-orbifold by σ ≡ (−1)FL ⊗ (−1R)⊗4

possesses the next properties;

• All the space-time supercharges arising from the untwisted sector are eliminated by

the Z4-projection 1
4

∑
r∈Z4

σr, since any supercharges in the unorbifolded theory do

not commute with both of (−1)FL and (−1)FR .

• All the partition sums in the untwisted sector vanish under the insertion of σr for
∀r ∈ Z4. Namely, we find (q ≡ e2πiτ );

Truntwisted

[
σqL0− c

24 q̄L̃0− c
24

]
= Truntwisted

[
σ3qL0− c

24 q̄L̃0− c
24

]
= 0,

due to the cancellation in the right moving fermions caused by (−1R)⊗4, while

Truntwisted

[
qL0− c

24 q̄L̃0− c
24

]
= Truntwisted

[
σ2qL0− c

24 q̄L̃0− c
24

]
= 0,

holds because σ2 trivially acts on the left-mover, yielding the familiar vanishing factor

θ43 − θ44 − θ42.

They are surely nice features for the purpose to realize the non-SUSY string vacua with the

bose-fermi cancellation. However, as addressed in [14] and will be demonstrated in section

2 for a detail, it turns out that 8 supercharges eventually emerge in the twisted sector. We

thus adopted in [14] the (infinite order) orbifold group generated by the operator

g = T2πR ⊗ σ ≡ T2πR ⊗ (−1)FL ⊗ (−1R)⊗4, (1.2)

1Through this paper, Xµ ≡ (Xµ
L, X

µ
R) (ψµ ≡ (ψµL, ψ

µ
R)) denotes the world-sheet bosonic (fermionic)

fields in the RNS formalism of type II string theory. The directions µ = 0, . . . , 3 are always identified as the

4-dim. Minkowski space-time M4, and we mainly focus on the transverse part µ = 2, . . . , 9. In addition,

we will often use the notations λi ≡ (λiL, λ
i
R) (i = 1, . . . , 2N) to express the free fermions describing the

N -dim. torus with the SO(2N)-symmetry enhancement, which will be denoted as TN [SO(2N)] in the text.
2It is well-known that the chiral reflections often define order N ≥ 4 orbifolds rather than order 2 due

to the non-trivial phase factors appearing in the twisted sectors, even though they act as an involution on

the untwisted sector. See e.g. [15].
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in place of σ, following the spirit of Scherk-Schwarz type compactification [16, 17]. Here,

T2πR denotes the shift by 2πR along the ‘base’ direction, originally identified as a real line

Rbase. The inclusion of shift into (1.2) enables us to naturally identify the twisted sectors

with the winding sectors of the ‘Scherk-Schwarz circle’. More significantly, it plays the role

of removing potential supercharges which might arise from the twisted sectors.3 We also

note that this model would be interpreted as a modification of the simple realizations of

the ‘T-folds’ [18–24], that is, the orbifolds by the chiral reflection (or the T-duality twist)

combined with the shift in the base space. These types of non-geometric backgrounds have

been studied by the approach of world-sheet CFT e.g. in [25–32].

Now, in this paper, we would like to explore a variety of non-SUSY string vacua of

this type. We shall especially focus on the next two modifications of (1.2):

(i) We replace (−1)FL with (−1L)⊗2, which acts along the various directions of back-

gorund tori, and plays the role of breaking the left-moving SUSY.

(ii) We do not include the shift operator T2πR. Instead, we assume thatR ≡ (−1R)⊗4 acts

as the Z4-chiral reflection also for the world-sheet bosons. This is achieved by utilizing

the fermionization of bosonic coordinates Xµ, and plays the role of preventing the

twisted sectors from providing additional supercharges.

Stated more concretely, the models that we shall study in this paper are displayed in

tables 1 and 2. In section 2, we briefly review on the ‘previous’ one studied in [14], which

would be helpful to readers. We then investigate the new six models (the ‘models I to

VI’) in section 3. We exhibit the relevant orbifold actions in table 1, while the original

backgrounds that we orbifold are summarized in table 2. In all the models the orbifold

groups are generated by a single element denoted as g in table 1. In table 2, M4 expresses

the four-dimensional Minkowski space-time. The orbifold twists do not act on
[
M4 × · · ·

]
in each row. The shift T2πR always acts along Rbase. Throughout this paper, we use the

notation ‘TN [SO(2N)]’ to express the N -dimensional torus at the symmetry enhancement

point of SO(2N). In other words, they can be described in terms of 2N Majorana fermions

(denoted as ‘λi ≡ (λiL, λ
i
R)’).

Let us summarize the aspects of models I to VI on which we will elaborate in section 3.

The models I and II are defined by including (−1L)⊗2 instead of (−1)FL |ψ. Combining it

with (−1R)⊗4, some directions of tori are eventually orbifolded by the non-chiral reflection:

(Xµ
L, X

µ
R) → (−Xµ

L,−X
µ
R), and we simply denote ‘T 2’ and ‘S1’ for the corresponding

directions. It will be shown that these models are indeed the non-SUSY string vacua with

the bose-fermi cancellation as expected. We do not have any tachyonic instability in all the

untwisted and twisted sectors, while some winding massless modes emerge at particular

values of the Scherk-Schwarz radius R. These features are quite similar to the previous

one. However, the physical spectra significantly differ from it. Some Rarita-Schwinger fields

3At first glance, this fact would look obvious, since the inclusion of shift T2πR generically makes all

the Ramond states lying in the twisted sectors massive. However, we often find that additional Ramond

massless states appear when choosing the Scherk-Schwarz radius R suitably. Nevertheless, one can show

that the space-time SUSY is completely broken for an arbitrary value of R. See [14] for the detail.
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model g g2

previous T2πR ⊗ (−1)FL |ψ ⊗ (−1R)⊗4 T4πR ⊗ (−1)FR |ψ

I, II T2πR ⊗ (−1L)⊗2 ⊗ (−1R)⊗4 T4πR ⊗ (−1)FR |ψ

III (−1)FL |ψ ⊗ (−1R)⊗4 (−1)FR |λ ⊗ (−1)FR |ψ

IV, V, VI (−1L)⊗2 ⊗ (−1R)⊗4 (−1)FR |λ ⊗ (−1)FR |ψ

Table 1. The orbifold actions.

models original backgrounds

previous
[
M4 × S1

]
× Rbase × T 4[SO(8)]

I
[
M4 × S1

]
× Rbase × T 2 × T 2[SO(4)]

II
[
M4
]
× Rbase × S1 × T 4[SO(8)]

III
[
M4 × T 2

]
× T 4[SO(8)]

IV
[
M4 × T 2

]
× T 2 × T 2[SO(4)]

V
[
M4 × S1

]
× S1 × T 4[SO(8)]

VI
[
M4
]
× T 6[SO(12)]

Table 2. The original backgrounds.

survive in the 4-dim. massless spectrum in the models I and II, although not interpreted as

the gravitini due to the absence of space-time SUSY. We recall that, in the previous model,

the twist by (−1)FL eliminates all the massless spin 3/2 states in the untwisted sector.

The models III–VI are those not including the shift operator. Instead, we shall modify

the right-moving chiral reflections so that their squares yield (−1)FR |λ, that is, the sign

flip on the Ramond sector of fermions λiR that describe TN [SO(2N)]. The left-moving

space-time SUSY is broken by (−1)FL |ψ in the model III as in the previous one, while

(−1L)⊗2 acts on the various directions of tori in the cases of models IV–VI. By the effect

of (−1)FR |λ, the twisted sectors gain extra zero point energies despite the absence of shift

operator, thereby preventing additional right-moving supercharges from arising. It then

turns out that we achieve the desired non-SUSY vacua. They are simpler than the models

I and II for the computations of the torus partition functions. Once again, we do not face

any tachyonic instabilities, and massless states appear in the twisted sectors as well as the

untwisted sector. Note that these models do not include the modulus R as opposed to the

cases of models I and II.

The partition functions for all the models in this paper are found manifestly modu-

lar invariant and q-expanded in the way compatible with unitarity. Moreover, they are

always free from tachyonic instabilities. These would be common features of the toroidal

asymmetric orbifolds of these types, as we will discuss in section 4.
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2 Notes on the non-SUSY asymmetric orbifold of [14]

In this section, we make a brief sketch of the non-SUSY model constructed in [14] to clarify

several points that we will discuss for the new models.

Let us introduce the type II string vacuum in the ten-dimensional flat background;[
M4 × S1

]
× Rbase × T 4[SO(8)], (2.1)

where M4 (X0,1,2,3 -directions) denotes the 4-dimensional Minkowski space-time, and S1

(X4 -direction) is a circle that plays no role in this model. Rbase (X5 -direction) is just a real

line, identified as the ‘base space’ of the twisted compactification like Scherk-Schwarz [16,

17], and, as already mentioned, T 4[SO(8)] ( X6,7,8,9 -directions) is the 4-dimensional torus

with the SO(8)-symmetry enhancement.

Then, as was introduced in section 1, we define the asymmetric orbifold generated by

the operator

g = T2πR ⊗ σ ≡ T2πR ⊗ (−1)FL |ψ ⊗ (−1R)⊗4|T 4 , (2.2)

acting on the background (2.1). Recall that T2πR denotes the shift operator along Rbase;

X5 → X5 + 2πR, and the operator (−1)FL |ψ ((−1)FR |ψ) acts as the sign flip of the

left (right) moving Ramond sector. (−1R)⊗4|T 4 denotes the chiral reflection along T 4

given in (1.1). To complete the definition of the operator σ (or (−1R)⊗4|T 4), we still

need to specify the construction of Ramond vacua (or spin fields) of right-moving world-

sheet fermions ψµR and how σ should act on them. Here, we define the Ramond vacua

as |s1, . . . , s4〉R ≡ ei
∑4
a=1 saH

a
R |0〉R, (sa ≡ ±1

2), where ei
∑4
a=1 saH

a
R denotes the SO(8)-spin

fields associated to the transverse fermions ψ2
R, . . . , ψ

9
R by the bosonization

ψ2
R ± iψ3

R =
√

2e±iH
1
R , ψ4

R ± iψ6
R =
√

2e±iH
2
R ,

ψ5
R ± iψ7

R =
√

2e±iH
3
R , ψ8

R ± iψ9
R =
√

2e±iH
4
R . (2.3)

We then obtain

σ |s1, s2, s3, s4〉R = eiπs4 |s1,−s2,−s3, s4〉R , (2.4)

since σ acts as the sign flip of ψ6
R, . . . ψ

9
R. Thus we readily find

σ2 = (−1)FR |ψ, (2.5)

which plays a crucial role in the following discussions. See [14] for more detail.

Let us focus on the partition function on the world-sheet torus to investigate the

one-loop cosmological constant and the space-time supersymmetry. The relevant partition

function is schematically written in the form as

Z(τ, τ̄) =
∑

w,m∈Z
Z(w,m)(τ, τ̄) ≡

∑
w,m∈Z

ZX(w,m)(τ, τ̄)ZψL(w,m)(τ)ZψR(w,m)(τ), (2.6)

where the integer w labels the twisted sectors, while m indicates the gm-insertions into the

trace. As already suggested in section 1, they are identified as the spatial and temporal
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winding numbers on the base space (or the Scherk-Schwarz circle) because of the inclusion

of shift T2πR into (2.2). ZX(w,m)(τ, τ̄) denotes the partition functions of the bosonic sectors,

while ZψL(w,m)(τ), ZψR(w,m)(τ) are the partition functions of the left- and right-moving fermionic

sectors.

Each partition sum Z(w,m)(τ, τ̄) is evaluated in the easiest way as follows. We first

calculate the trace over the untwisted sector (w = 0),4

Z(0,m)(τ, τ̄) = Trw=0

[
gmqL0− c

24 q̄L̃0− c
24

]
= ZR,(0,m)(τ, τ̄) Trw=0

[
σmqL0− c

24 q̄L̃0− c
24

]
, (2.7)

ZR,(w,m)(τ, τ̄) ≡ R√
τ2|η(τ)|2

e
−πR

2

τ2
|wτ+m|2

, (w,m ∈ Z), (2.8)

and those for the general winding sectors (w,m) are uniquely determined by requiring the

modular covariance

Z(w,m)(τ, τ̄)|S = Z(m,−w)(τ, τ̄), (2.9)

Z(w,m)(τ, τ̄)|T = Z(w,w+m)(τ, τ̄), (2.10)

where S : τ → −1/τ , T : τ → τ + 1 are the modular transformations. We then achieve the

partition function (2.6) that is manifestly modular invariant.

Note that the left and right partition sums of fermionic sectors ZψL(w,m)(τ), ZψR(w,m)(τ)

are generically asymmetric. The twist operator σ includes (−1)FL |ψ, and we thus find

ZψL(w,m)(τ) 6= 0 for ∀w ∈ 2Z + 1 or ∀m ∈ 2Z + 1. Similarly, by σ2 = (−1)FR |ψ, we obtain

ZψR(w,m)(τ) 6= 0 for ∀w ∈ 4Z + 2 or ∀m ∈ 4Z + 2. However, one easily finds

ZψR(w,m)(τ) = 0, (w or m ∈ 2Z + 1),

ZψL(w,m)(τ) = 0, (w,m ∈ 2Z).
(2.11)

Thus the total partition function vanishes.

Let us turn our attention to the spectrum in the untwisted sector (w = 0). As already

mentioned in section 1, all the space-time supercharges are eliminated by the orbifold

projection 1
4

∑
n∈Z4

σn due to the inclusions (−1)FL |ψ and (−1)FR |ψ. For all that, one can

observe that the same number of bosonic and fermionic states exist at each mass level of

the untwisted sector. Especially, the massless spectrum is summarized in table 3, which

includes 32 bosonic and fermionic states. Note that no gravitino appears in the 4-dim.

spectrum, which suggests the absence of space-time SUSY.

4Here we shall adopt the conventional normalization of the trace for the CFT describing Rbase;

Tr
[
qL0− 1

24 qL̃0− 1
24

]
=

R
√
τ2 |η|2

,

so that we simply obtain

Tr
[
(T2πR)m qL0− 1

24 qL̃0− 1
24

]
=

R
√
τ2 |η|2

e
− π
τ2
R2m2

.
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spin structure 4D fields

(NS, NS) graviton, 8 vectors,

14 (pseudo) scalars

(R , NS) 16 Weyl fermions

Table 3. Massless spectrum in the untwisted sector for the orbifold model defined by g.

However, this is not the whole story. It might be possible that new supercharges arise

from the twisted sectors. We also note that tachyonic states would potentially emerge in

the twisted sectors, as in many examples of the SUSY-breaking models of Scherk-Schwarz

type. Furthermore, the unitarity of string spectrum is not necessarily self-evident because

of the non-trivial phase factors appearing in the twisted sectors necessary for the modular

invariance. It is surely significant to examine these issues for our purpose. A direct way

to do so is to decompose the partition functions with respect to the spatial winding w and

the spin structures as

Z(τ, τ̄) =
1

4
ZM4×S1(τ, τ̄)

×
∑
w∈Z

{
Z(NS,NS)
w (τ, τ̄) + Z(NS,R)

w (τ, τ̄) + Z(R,NS)
w (τ, τ̄) + Z(R,R)

w (τ, τ̄)
}
, (2.12)

where ZM4×S1 denotes the bosonic transverse contribution for the M4×S1-sector that has

nothing to do with the orbifolding. The string spectrum in each Hilbert space with winding

w can be examined by making the Poisson resummation with respect to the temporal

winding m. In this way the following results have been shown in [14];

• The partition function for each winding w and each spin structure is compatible with

unitarity.

• The bose-fermi cancellation is observed at each mass level of the string spectrum.

• The space-time SUSY is completely broken.

• No tachyonic states appear in all the sectors.

• Massless states arise in some twisted sectors at the specific radius R (the modulus

related to the shift T2πR).

Especially, let us focus on how one can conclude that the space-time SUSY is truly

broken. It has been explicitly shown in [14] that the partition functions for the winding

sectors have the relations summarized in table 4. For the odd winding sectors, we have the

bose-fermi cancellation compatible only with right-moving SUSY, while the even sectors

behave as if we only had left-moving supercharges. It is obvious that any supercharges can

never be consistent with both of them at the same time.

– 7 –
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w ∈ 2Z + 1

Z
(NS,NS)
w 6= −Z(R,NS)

w′ Z
(NS,NS)
w = −Z(NS,R)

w

Z
(NS,R)
w 6= −Z(R,R)

w′ Z
(R,NS)
w = −Z(R,R)

w

w ∈ 2Z
Z

(NS,NS)
w = −Z(R,NS)

w Z
(NS,NS)
w 6= −Z(NS,R)

w′

Z
(NS,R)
w = −Z(R,R)

w Z
(R,NS)
w 6= −Z(R,R)

w′

Table 4. Relations among the winding sectors in the orbifold defined by (2.2). (∀w′ ∈ Z).

Remarks on the supersymmetric cases. It would be worthwhile to figure out what

happens in the closely related model with the SUSY unbroken, that is, the asymmetric

orbifold defined by σ ≡ (−1)FL |ψ⊗(−1R)⊗4 without including the shift. We also adopt (2.4)

for the action of σ on Ramond vacua, and thus the orbifold twist is still a Z4-action. The

partition function is then written in the form as

Z(τ, τ̄) =
1

4

∑
a,b∈Z4

Z(a,b)(τ, τ̄) ≡ 1

4

∑
a,b∈Z4

ZX(a,b)(τ, τ̄)ZψL(a,b)(τ)ZψR(a,b)(τ). (2.13)

In this case, the orbifold projection still removes all the supercharges in the untwisted

sector, but the right-moving supercharges revive from the a = 2 twisted sector.

To show this fact explicitly, let us again decompose the partition functions as

Z(τ, τ̄) =
1

16
ZM4×T 2(τ, τ̄)

×
∑
a∈Z4

{
Z(NS,NS)
a (τ, τ̄) + Z(NS,R)

a (τ, τ̄) + Z(R,NS)
a (τ, τ̄) + Z(R,R)

a (τ, τ̄)
}
, (2.14)

where the overall factor 1
16 ≡

1
4 ×

1
4 is due to the Z4-orbifolding as well as the chiral GSO

projection. Then we obtain

Z
(NS,NS)
0 (τ, τ̄) = − Z(R,NS)

0 (τ, τ̄) = Z
(R,R)
2 (τ, τ̄) = −Z(NS,R)

2 (τ, τ̄)

= Z
(R,R)
1,3 (τ, τ̄) = −Z(R,NS)

1,3 (τ, τ̄) =

{∣∣∣∣θ3η
∣∣∣∣8 +

∣∣∣∣θ4η
∣∣∣∣8 +

∣∣∣∣θ2η
∣∣∣∣8
}∣∣∣∣θ2η

∣∣∣∣8 , (2.15)

Z
(NS,NS)
1,3 (τ, τ̄) = − Z(NS,R)

1,3 (τ, τ̄)

=

(
θ2
η

)4
{∣∣∣∣θ3η

∣∣∣∣8 − ∣∣∣∣θ4η
∣∣∣∣8
}{(

θ3
η

)4

+

(
θ4
η

)4
}

+

∣∣∣∣θ2η
∣∣∣∣8
{(

θ3
η

)4

+

(
θ4
η

)4
}{(

θ3
η

)4

+

(
θ4
η

)4
}
, (2.16)

Obviously, we cannot construct any left-moving supercharges since we find

Z
(NS,NS)
1,3 (τ, τ̄) 6= −Z(R,NS)

a (τ, τ̄), (∀a ∈ Z4).

– 8 –
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spin structure 4D fields

(NS, R) 2 gravitini,

14 Weyl fermions

(R , R) 8 vectors,

16 (pseudo)scalars

Table 5. Massless spectrum in the a = 2 sector for the orbifold model defined by σ.

On the other hand, there would exist some right supercharges in the a = 2 sector which

realizes the equalities

Z(∗,NS)
a (τ, τ̄) = −Z(∗,R)

a+2 mod 4(τ, τ̄), (2.17)

as found in (2.15), (2.16). In fact, one can explicitly confirm that the a = 2 sector includes

the right-moving massless Ramond states, even though all of them are projected out by

(−1)FR |ψ in the untwisted sector. To be more precise, if starting with the type IIA (IIB)

string theory, one can construct 8 supercharges that possess the opposite chirality as those

in the type IIB (IIA) theory from the a = 2 sector, as discussed e.g. in [33, 34].

The massless spectrum in the untwisted sector is the same as that displayed in table 3,

while that lying in the a = 2 sector is summarized in table 5. These states are combined

into the super-multiplets in an N = 2 supersymmetric theory in 4-dimension.

3 Variety of non-supersymmetric asymmetric orbifolds

In this section, we present the main analyses in this paper. As already mentioned in section

1, we especially focus on the modifications of the previous model introduced in section 2 by

(i) replacing (−1)FL |ψ with (−1L)⊗2 in (1.2), or/and (ii) requiring that R ≡ (−1R)⊗4 acts

as the Z4-chiral reflection also on the bosonic sector instead of including the shift T2πR.

We shall start our analyses with constructing the relevant building blocks in subsec-

tion 3.1, with emphasizing the modular covariance of them. After that, we present the new

six vacua composed of asymmetric orbifolds, and concretely discuss their physical aspects

in subsection 3.2. The readers not interested in the technical part of this work may skip

many parts of subsection 3.1, and can refer only to the definitions of building blocks.

3.1 Building blocks

3.1.1 Bosonic TN [SO(2N)] sector

Firstly, we discuss the simple example T 2[SO(4)], identified as the X6, X7-directions. The

torus partition function of this system is

ZT
2[SO(4)](τ, τ̄) =

1

2

{∣∣∣∣θ3η
∣∣∣∣4 +

∣∣∣∣θ4η
∣∣∣∣4 +

∣∣∣∣θ2η
∣∣∣∣4
}
. (3.1)

A convenient description is given by introducing the Majorana-Weyl fermions λiL, λ
i
R (i =

1, 2, 3, 4).
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In the previous section, for simplicity, it has been assumed that the twist operator σ

including chiral reflection acts as an involution on the untwisted sector of the bosonic part.

However, once adopting the fermionic description of T 2[SO(4)], we are aware of another

possibility in the manner similar to the world-sheet fermions ψµL, ψµR. Namely, considering

the left-mover for instance, the chiral reflection (−1L)⊗2|T 2 : (X6
L, X

7
L) → (−X6

L,−X7
L) is

just interpretable as the sign flip of two of λ1L, . . . , λ
4
L, say,

(−1L)⊗2 : (λ1L, λ
2
L, λ

3
L, λ

4
L)→ (λ1L, λ

2
L,−λ3L,−λ4L). (3.2)

As illustrated in [14] and already mentioned in section 2 for the world-sheet fermions ψµ,

we still need to define the Ramond vacua of this free fermion system to specify completely

the action of (−1L)⊗2. Here, there are essentially two different cases;

(a) {(−1L)⊗2}2 = (−1)FL|λ:
One can introduce the spin fields as

S̃ε1,ε2, L ≡ ei
∑2
i=1 εiH̃

i
L ,

(
εi = ±1

2

)
, (3.3)

with the bosonization;

λ1L ± λ2L ≡
√

2e±iH̃
1
L , λ3L ± λ4L ≡

√
2e±iH̃

2
L . (3.4)

Then, (3.2) yields

(−1L)⊗2 : (H̃1
L, H̃

2
L)→ (H̃1

L, H̃
2
L + π), (3.5)

and the Ramond vacua |ε1, ε2〉L ≡ S̃ε1,ε2, L(0) |0〉L are transformed as

(−1L)⊗2 |ε1, ε2〉L = eiπε2 |ε1, ε2〉L . (3.6)

Thus, we find that {(−1L)⊗2}2 = −1 holds for the R sector, while {(−1L)⊗2}2 = 1

for the NS sector of λiL. Namely, we obtain {(−1L)⊗2}2 = (−1)FL |λ.

(b) {(−1L)⊗2}2 = 1:

One may also bosonize λ1L, . . . , λ
4
R in a different way;

λ1L ± λ3L ≡
√

2e±iH̃
′1
L , λ2L ± λ4L ≡

√
2e±iH̃

′2
L , (3.7)

and define the spin fields as follows;

S̃′ε1,ε2, L ≡ e
i
∑2
i=1 εiH̃

′i
L ,

(
εi = ±1

2

)
. (3.8)

This time, (3.2) yields

(−1L)⊗2 : (H̃
′1
L , H̃

′2
L )→ (−H̃ ′1L ,−H̃

′2
L ), (3.9)

and the Ramond vacua |ε1, ε2〉′L ≡ S′ε1,ε2(0) |0〉 are transformed as

(−1L)⊗2 |ε1, ε2〉′L = |−ε1,−ε2〉′L . (3.10)

We thus simply obtain {(−1L)⊗2}2 = 1.
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The above arguments are straightforwardly generalized to the cases of TN [SO(2N)]

(N ∈ 2Z>0) described by 2N Majorana-Weyl fermions λiL, λ
i
R (i = 1, . . . , 2N), and we

always have two possibilities; (i) {(−1L)⊗N}2 = 1, or (ii) {(−1L)⊗N}2 = (−1)FL |λ.

Let us describe the relevant blocks which we will utilize later. In the following, the

twist parameters a, b ∈ Z in the subscript always labels the spatial and temporal boundary

conditions.5 In other words, the parameter a labels the twisted sectors, while the parameter

b corresponds to the insertion of σb into the trace.

(i) (−1)FL|λ-twisting in the TN [SO(2N)]-sector: first we consider the build-

ing blocks Z
TN [SO(2N)]
(a,b) (τ, τ̄), (a, b ∈ Z), defined by the twisting (−1)FL |λ acting on

TN [SO(2N)]. The (0, b)-sector is just the insertion of
{

(−1)FL |λ
}b

into the trace, and

easily evaluated as

Z
TN [SO(2N)]
(0,b) (τ, τ̄) =


ZT

N [SO(2N)](τ, τ̄), (b ∈ 2Z),

1

2

{∣∣∣∣θ3η
∣∣∣∣2N +

∣∣∣∣θ4η
∣∣∣∣2N − ∣∣∣∣θ2η

∣∣∣∣2N
}
, (b ∈ 2Z + 1).

(3.11)

Then, requiring the modular covariance

Z
TN [SO(2N)]
(a,b) (τ, τ̄)|S = Z

TN [SO(2N)]
(b,−a) (τ, τ̄),

Z
TN [SO(2N)]
(a,b) (τ, τ̄)|T = Z

TN [SO(2N)]
(a,a+b) (τ, τ̄), (3.12)

we obtain

Z
TN [SO(2N)]
(a,b) (τ, τ̄) ≡



1

2

{∣∣∣∣θ3η
∣∣∣∣2N +

∣∣∣∣θ4η
∣∣∣∣2N +

∣∣∣∣θ2η
∣∣∣∣2N
}
, (a ∈ 2Z, b ∈ 2Z)

1

2

{∣∣∣∣θ3η
∣∣∣∣2N +

∣∣∣∣θ4η
∣∣∣∣2N − ∣∣∣∣θ2η

∣∣∣∣2N
}
, (a ∈ 2Z, b ∈ 2Z + 1)

1

2

{∣∣∣∣θ3η
∣∣∣∣2N − ∣∣∣∣θ4η

∣∣∣∣2N +

∣∣∣∣θ2η
∣∣∣∣2N
}
, (a ∈ 2Z + 1, b ∈ 2Z)

1

2

{
−
∣∣∣∣θ3η
∣∣∣∣2N +

∣∣∣∣θ4η
∣∣∣∣2N +

∣∣∣∣θ2η
∣∣∣∣2N
}
, (a ∈ 2Z + 1, b ∈ 2Z + 1).

(3.13)

(ii) (−1R)⊗N -twisting in the TN [SO(2N)]-sector: next, we consider the building

blocks corresponding to the twist operator (−1R)⊗4 which acts on T 4[SO(8)]. Yet, the

twist operator is not specified. As noticed at the beginning of this section, we have two

possibilities {(−1R)⊗4}2 = 1, or {(−1R)⊗4}2 = (−1)FR |λ.

5Here, we shall allow the parameters of twisting a, b to be arbitrary integers just for convenience, although

it is enough to restrict their range at most as a, b ∈ Z4.
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The building blocks for the first case are given as follows;

F
T 4[SO(8)]
(a,b) (τ, τ̄)

≡



1

2

{∣∣∣∣θ3η
∣∣∣∣8 +

∣∣∣∣θ4η
∣∣∣∣8 +

∣∣∣∣θ2η
∣∣∣∣8
}
, (a ∈ 2Z, b ∈ 2Z)

(−1)
a
2

(
θ3θ4
η2

)2 1

2

{(
θ3
η

)4

+

(
θ4
η

)4
}
, (a ∈ 2Z, b ∈ 2Z + 1)

(−1)
b
2

(
θ2θ3
η2

)2 1

2

{(
θ3
η

)4

+

(
θ2
η

)4
}
, (a ∈ 2Z + 1, b ∈ 2Z)

e−
iπ
2
ab

(
θ2θ4
η2

)2 1

2

{(
θ4
η

)4

−
(
θ2
η

)4
}
, (a ∈ 2Z + 1, b ∈ 2Z + 1).

(3.14)

On the other hand, The building blocks corresponding to {(−1R)⊗4}2 = (−1)FR |λ are

obtained by combining (3.14) with (3.13);

F
T 4[SO(8)]
(a,b) (τ, τ̄) ≡


Z
T 4[SO(8)]

(a
2
, b
2
)

(τ, τ̄), (a ∈ 2Z, b ∈ 2Z),

F
T 4[SO(8)]
(a,b) (τ, τ̄), (a ∈ 2Z + 1 or b ∈ 2Z + 1).

(3.15)

Similarly, the building blocks for the (−1R)⊗2 -twisting on T 2[SO(4)] are written as

F
T 2[SO(4)]
(a,b) (τ, τ̄)

≡



1

2

{∣∣∣∣θ3η
∣∣∣∣4 +

∣∣∣∣θ4η
∣∣∣∣4 +

∣∣∣∣θ2η
∣∣∣∣4
}
, (a ∈ 2Z, b ∈ 2Z)

e
iπ
4
ab

(
θ3θ4
η2

)
1

2

{(
θ3
η

)2

+ (−1)
a
2

(
θ4
η

)2
}
, (a ∈ 2Z, b ∈ 2Z + 1)

e−
iπ
4
ab

(
θ2θ3
η2

)
1

2

{(
θ3
η

)2

+ (−1)
b
2

(
θ2
η

)2
}
, (a ∈ 2Z + 1, b ∈ 2Z)

e−
iπ
4
ab

(
θ2θ4
η2

)
1

2

{(
θ4
η

)2

− i(−1)
a+b
2

(
θ2
η

)2
}
, (a ∈ 2Z + 1, b ∈ 2Z + 1),

(3.16)

and, for the case of {(−1R)⊗2}2 = (−1)FR |λ,

F
T 2[SO(4)]
(a,b) (τ, τ̄) ≡


Z
T 2[SO(4)]

(a
2
, b
2
)

(τ, τ̄), (a ∈ 2Z, b ∈ 2Z),

F
T 2[SO(4)]
(a,b) (τ, τ̄), (a ∈ 2Z + 1 or b ∈ 2Z + 1).

(3.17)
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(iii) twisting by (−1L) ⊗ (−1R)⊗3: for the later convenience, we also consider the

building blocks corresponding to twisting

σ ≡ (−1L)|X6 ⊗ (−1R)⊗3|X7,8,9 , (3.18)

acting on T 4[SO(8)]. They are obtained in the same way as above. Namely, we first evaluate

the trace with the twist operator inserted, and then all the building blocks are uniquely

determined by requiring the modular covariance such as (3.12). The explicit computation

is straightforward, but a little more cumbersome about the phase factors than those for

the blocks F
TN [SO(2N)]
(a,b) given above. They are summarized as

G
T 4[SO(8)]
(a,b) (τ, τ̄)

≡



1

2

{∣∣∣∣θ3η
∣∣∣∣8 +

∣∣∣∣θ4η
∣∣∣∣8 +

∣∣∣∣θ2η
∣∣∣∣8
}
, (a ∈ 2Z, b ∈ 2Z),

e
iπ
4
ab

(
θ3θ4
η2

) ∣∣∣∣θ3θ4η2

∣∣∣∣ 1

2

{(
θ3
η

)2 ∣∣∣∣θ3η
∣∣∣∣2 + (−1)

a
2

(
θ4
η

)2 ∣∣∣∣θ4η
∣∣∣∣2
}
,

(a ∈ 2Z, b ∈ 2Z + 1),

e−
iπ
4
ab

(
θ2θ3
η2

) ∣∣∣∣θ2θ3η2

∣∣∣∣ 1

2

{(
θ3
η

)2 ∣∣∣∣θ3η
∣∣∣∣2 + (−1)

b
2

(
θ2
η

)2 ∣∣∣∣θ2η
∣∣∣∣2
}
,

(a ∈ 2Z + 1, b ∈ 2Z),

e−
iπ
4
ab

(
θ2θ4
η2

) ∣∣∣∣θ2θ4η2

∣∣∣∣ 1

2

{(
θ4
η

)2 ∣∣∣∣θ4η
∣∣∣∣2 − i(−1)

a+b
2

(
θ2
η

)2 ∣∣∣∣θ2η
∣∣∣∣2
}
,

(a ∈ 2Z + 1, b ∈ 2Z + 1),

(3.19)

or

G
T 4[SO(8)]
(a,b) (τ, τ̄) ≡


Z
T 4[SO(8)]

(a
2
, b
2
)

(τ, τ̄), (a ∈ 2Z, b ∈ 2Z),

G
T 4[SO(8)]
(a,b) (τ, τ̄), (a ∈ 2Z + 1 or b ∈ 2Z + 1),

(3.20)

in the case that the twist operator is not involutive in the untwisted sector.6

3.1.2 Fermionic sector

We next consider the fermionic sector. We first recall that the fermionic part of the partition

function of the type II string on 10-dim. flat background is just written as

Zψ,ψ̃typeII(τ, τ̄) =
1

4
|J (τ)|2, (3.21)

6Stated more precisely, we have the four possibilities; (i) σ2 = 1, (ii) σ2 = (−1)FL |λ, (iii) σ2 = (−1)FR |λ,

(iv) σ2 = (−1)FL+FR |λ. However, since the spin structure of λi is diagonal, the cases (ii) and (iii) lead us

to the same building blocks (3.20), while the case (iv) yields (3.19) as well as the case (i).
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where

J (τ) ≡
(
θ3
η

)4

−
(
θ4
η

)4

−
(
θ2
η

)4

(≡ 0) . (3.22)

Its modular property is easily seen as7

J (τ)|T = −e
πi
3 J (τ), (3.23)

J (τ)|S = J (τ), (3.24)

and thus, (3.21) is modular invariant. The desired free fermion chiral blocks are given

by making the suitable modifications of J (τ) caused by the orbifold twists so as to be

compatible with the modular invariance.

We present the relevant chiral blocks from now on. We only focus on the left-mover,

and the right-mover is completely parallel. Although the cases (i) and (ii) are already given

e.g. in [14], we dare to present them for the convenience to readers.

(i) twisting by (−1)FL|ψ: we first describe the twisting by (−1)FL |ψ and denote the

corresponding chiral blocks as h(a,b)(τ). Again it is easiest to first compute h(0,b)(τ), which

just means the insertion of
{

(−1)FL |ψ
}b

into the trace;

h(0,b)(τ) =


J (τ), (b ∈ 2Z),(
θ3
η

)4

−
(
θ4
η

)4

+

(
θ2
η

)4

(b ∈ 2Z + 1).

(3.25)

Requiring the modular covariance[
h(a,b)(τ)J (τ)

]
|S =

[
h(b,−a)(τ)J (τ)

]
,[

h(a,b)(τ)J (τ)
]
|T =

[
h(a,a+b)(τ)J (τ)

]
, (3.26)

we obtain

h(a,b)(τ) =



J (τ), (a ∈ 2Z, b ∈ 2Z),(
θ3
η

)4

−
(
θ4
η

)4

+

(
θ2
η

)4

, (a ∈ 2Z, b ∈ 2Z + 1),(
θ3
η

)4

+

(
θ4
η

)4

−
(
θ2
η

)4

, (a ∈ 2Z + 1, b ∈ 2Z),

−

{(
θ3
η

)4

+

(
θ4
η

)4

+

(
θ2
η

)4
}
, (a ∈ 2Z + 1, b ∈ 2Z + 1).

(3.27)

We note that the left-chiral blocks have to give rise to the phase −e−
πi
3 under the T-

transformation to satisfy the modular covariance relation (3.26). h(a,b) (a ∈ 2Z + 1, or

b ∈ 2Z+ 1) are non-vanishing, which implies the SUSY breaking in the left-moving sector.

7The equations (3.23), (3.24) or the modular covariance relations (3.26) would look slightly subtle since

we know J (τ) ≡ 0. See e.g. [14] for more rigid statements.
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(ii) twisting by (−1L)⊗4: next, we look at the chiral blocks defined by the chiral

reflection

(−1L)⊗4 : (ψ6
L, ψ

7
L, ψ

8
L, ψ

9
L)→ (−ψ6

L,−ψ7
L,−ψ8

L,−ψ9
L). (3.28)

As illustrated in [14], we have again two possibilities; {(−1L)⊗4}2 = 1, or {(−1L)⊗4}2 =

(−1)FL |ψ. We denote the chiral blocks for the first case as f(a,b)(τ). One can similarly

determine them by computing f(0,b)(τ) first, and requiring the modular covariance such

as (3.26). They are summarized as

f(a,b)(τ) =



J (τ), (a ∈ 2Z, b ∈ 2Z),

e
iπ
2
ab

{(
θ3
η

)2(θ4
η

)2

−
(
θ4
η

)2(θ3
η

)2

+ 0

}
,

(a ∈ 2Z, b ∈ 2Z + 1),

e
iπ
2
ab

{(
θ3
η

)2(θ2
η

)2

+ 0−
(
θ2
η

)2(θ3
η

)2
}
,

(a ∈ 2Z + 1, b ∈ 2Z),

−e
iπ
2
ab

{
0 +

(
θ2
η

)2(θ4
η

)2

−
(
θ4
η

)2(θ2
η

)2
}
,

(a ∈ 2Z + 1, b ∈ 2Z + 1).

(3.29)

Note that all of them trivially vanish as is consistent with the preservation of half space-

time SUSY in the left-mover. Each term from the left to the right corresponds to the spin

structures; NS, ÑS, and R sector, respectively, where the ‘ÑS’ denotes the NS-sector with

(−1)f inserted (f is the world-sheet fermion number).

On the other hand, in the second case {(−1L)⊗4}2 = (−1)FL |ψ, the relevant chiral

blocks are just modified as follows;

f(a,b)(τ) ≡


h(a

2
, b
2
)(τ), (a ∈ 2Z, b ∈ 2Z),

f(a,b)(τ), (a ∈ 2Z + 1 or b ∈ 2Z + 1).

(3.30)

Recall that h(∗,∗)(τ) is given in (3.27), corresponding to (−1)FL |ψ-twisting.

(iii) twisting by (−1L)⊗2: we also need the chiral blocks defined by (−1L)⊗2-twisting.

They are determined in the parallel way as above, although the different phase factors have

to be included to ensure the modular covariance.
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For the case {(−1L)⊗2}2 = 1, we obtain

g(a,b)(τ) ≡



J (τ), (a ∈ 2Z, b ∈ 2Z),

e−
iπ
4
ab

{(
θ3
η

)3(θ4
η

)
− (−1)

a
2

(
θ4
η

)3(θ3
η

)
+ 0

}
,

(a ∈ 2Z, b ∈ 2Z + 1),

e
iπ
4
ab

{(
θ3
η

)3(θ2
η

)
+ 0− (−1)

b
2

(
θ2
η

)3(θ3
η

)}
,

(a ∈ 2Z + 1, b ∈ 2Z),

−e
iπ
4
ab

{
0 +

(
θ4
η

)3(θ2
η

)
+ i(−1)

a+b
2

(
θ2
η

)3(θ4
η

)}
,

(a ∈ 2Z + 1, b ∈ 2Z + 1),

(3.31)

and

g(a,b)(τ) ≡

 h(a
2
, b
2
)(τ), (a ∈ 2Z, b ∈ 2Z),

g(a,b)(τ), (a ∈ 2Z + 1 or b ∈ 2Z + 1),
(3.32)

for {(−1L)⊗2}2 = (−1)FL |ψ.

3.2 Non-supersymmetric asymmetric orbifolds

We are now ready to study the six new models of non-SUSY vacua exhibited in tables 1

and 2, including the modifications introduced at the beginning of this section.

Model I: firstly, we consider the asymmetric orbifold defined by the orbifold twist

g = T2πR|base ⊗ σI ≡ T2πR|base ⊗ (−1)⊗2|X6,7 ⊗ (−1R)⊗2|X8,9

≡ T2πR|base ⊗ (−1L)⊗2|X6,7 ⊗ (−1R)⊗4|X6,7,8,9 , (3.33)

acting on [
M4 × S1

]
× Rbase × T 2

6,7 × T 2
8,9[SO(4)]. (3.34)

In the above expressions we explicitly indicated the directions along which the orbifold

twist (3.33) acts in terms of the subscripts. Namely, the X8,9-directions are compactified

on T 2[SO(4)], while the X6,7-directions correspond to a 2-dim. torus with unspecified

moduli. Note that the non-chiral reflection (−1)⊗2 : (X6, X7) 7−→ (−X6,−X7) is well-

defined for any point of moduli space of T 2. T2πR denotes the shift by 2πR along the Rbase.

As addressed in section 2, we further need to specify the Ramond vacua of world-

sheet fermions and the action of σI on them. Adopting the Ramond vacua defined by the

bosonization given in (2.3) both for the right and left movers, we can naturally define

σI |s1, s2, s3, s4〉R = eiπs4 |s1,−s2,−s3, s4〉R ,
σI |s1, s2, s3, s4〉L = |s1,−s2,−s3, s4〉L . (3.35)
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spin structure left right 4D fields (d.o.f)

ψµL,−1/2 |0〉 ⊗ ψµR,−1/2 |0〉 graviton (2), 6 vectors (12),

(NS, NS) (µ = 2, . . . , 7) (µ = 2, . . . , 5) 10 (pseudo) scalars (10)

ψµL,−1/2 |0〉 ⊗ ψµR,−1/2 |0〉 8 scalars (8)

(µ = 8, 9) (µ = 6, . . . , 9)[
1 + (−1L)⊗2

]
|s〉L ⊗ ψµR,−1/2 |0〉 2 Rarita-Schwinger (4),

(R , NS) (µ = 2, . . . , 5) 6 Weyl fermions (12)[
1− (−1L)⊗2

]
|s〉L ⊗ ψµR,−1/2 |0〉 8 Weyl fermions (16)

(µ = 6, . . . , 9)

Table 6. Massless spectrum in untwisted sector for asymmetric orbifold I.

which implies

σ2I = (−1)FR |ψ. (3.36)

We can write down the torus partition function in terms of the building blocks intro-

duced in subsection 3.1 as

Z(τ, τ̄) =
1

4
ZM4×S1(τ, τ̄)

×
∑

w,m∈Z
ZR,(w,m)(τ, τ̄)Z

T 2/Z2

(w,m) (τ, τ̄)F
T 2[SO(4)]
(w,m) (τ, τ̄)g(w,m)(τ)f(w,m)(τ). (3.37)

As in section 2, we simply denote the contributions with no relations to the orbifolding

as ‘Z∗’. In the current case, ZM4×S1 is identified as that for the bosonic transverse part

of M4 × S1-sector (X0,...,4-directions). ZR,(w,m)(τ, τ̄) is given in (2.8), while Z
T 2/Z2

(w,m) (τ, τ̄)

expresses the building blocks of the symmetric Z2-orbifold along the X6,7-directions. (We

have an obvious Z2-periodicity with respect to the winding w, m.) The bosonic building

blocks F
T 2[SO(4)]
(w,m) (τ, τ̄) are given in (3.16), while the chiral blocks for world-sheet fermions,

denoted as g(w,m)(τ), f(w,m)(τ), are presented in (3.31), (3.30), respectively. Looking at

their expressions, it is easy to confirm that the partition function (3.37) indeed vanishes in

the manner similar to the arguments in section 2.

As noticed in section 1, the non-SUSY chiral reflection (−1L)⊗2 plays the similar role

of (−1)FL |ψ in the ‘previous model’ introduced in section 2, and thus we anticipate to

achieve a non-SUSY vacuum with the bose-fermi cancellation. We will later show that this

is indeed the case.

Before doing so, let us study the massless spectrum lying in the untwisted sector, which

we summarize in table 6. We express the left-moving Ramond vacua in terms of the spin

fields for SO(8); |s〉L ≡ ei
∑4
a=1 saH

a
L |0〉L ,

(
sa ≡ ±1

2

)
.

What is a remarkable difference from the previous model is the existence of massless

Rarita-Schwinger fields. They of course originate from the gravitini in the original back-

ground (3.34), which are not removed by the relevant orbifold projection. In the same sense,

some supercharges in the original background remain preserved under the orbifold group.
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Nonetheless, the space-time SUSY is completely broken within the untwisted sector,

at least. It is obvious not to have the right-moving supercharges due to the absence of

right-moving Ramond vacua. Furthermore, even though having the left-moving Ramond

vacua, we cannot still compose any left-moving supercharges acting as isomorphisms on

the orbifolded Hilbert space. In fact, the presence of left supercharges should imply the

existence of one to one correspondence between the (NS,NS) and (R,NS) massless states,

while fixing the right-movers. It is, however, impossible as shown from table 6. For instance,

pick up the states ψµR,−1/2 |0〉 , (µ = 6, . . . , 9) from the right-mover. Then, one finds that

the degrees of freedom of massless bosons amount to 8, whereas the fermionic one is 16.

One can examine the more detailed spectrum of physical states by making the Poisson

resummation of the partition function (3.37). To this aim it is convenient to decompose it

with respect to the spatial winding w and the spin structures as in (2.12);

Z(τ, τ̄) =
1

4
ZM4×S1(τ, τ̄)

×
∑
w∈Z

{
Z(NS,NS)
w (τ, τ̄) + Z(NS,R)

w (τ, τ̄) + Z(R,NS)
w (τ, τ̄) + Z(R,R)

w (τ, τ̄)
}
. (3.38)

After dualizing the temporal winding m into the KK momentum n, we obtain the follow-

ing results;

• For w ∈ 4Z:

Z(NS,NS)
w (τ, τ̄) =− Z(R,NS)

w (τ, τ̄) (3.39)

=
1

2

∑
n∈Z

1

|η|2
q

1
4(Rw+ n

2R)
2

q̄
1
4(Rw− n

2R)
2

ZT
2
ZT

2[SO(4)]

∣∣∣∣∣
(
θ3
η

)4

−
(
θ4
η

)4
∣∣∣∣∣
2

,

Z(R,R)
w (τ, τ̄) =− Z(NS,R)

w (τ, τ̄)

=
1

2

∑
n∈Z

1

|η|2
q

1
4

(
Rw+

n+1
2

2R

)2

q̄
1
4

(
Rw−n+

1
2

2R

)2

ZT
2
ZT

2[SO(4)]

∣∣∣∣θ2η
∣∣∣∣8 . (3.40)

• w ∈ 4Z + 2:

Z(NS,NS)
w (τ, τ̄) = − Z(R,NS)

w (τ, τ̄) =
1

2

∑
n∈Z

1

|η|2
q

1
4

(
Rw+

n+1
2

2R

)2

q̄
1
4

(
Rw−n+

1
2

2R

)2

× ZT 2
ZT

2[SO(4)]

{(
θ3
η

)4

−
(
θ4
η

)4
}{(

θ3
η

)4

+

(
θ4
η

)4}
, (3.41)

Z(R,R)
w (τ, τ̄) = − Z(NS,R)

w (τ, τ̄)

=
1

2

∑
n∈Z

1

|η|2
q

1
4(Rw+ n

2R)
2

q̄
1
4(Rw− n

2R)
2

ZT
2
ZT

2[SO(4)]

∣∣∣∣θ2η
∣∣∣∣8 . (3.42)
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spin structure massless point sector relevant equation

(NS, NS) / (NS, R) R = 1
2 w = ±1 (3.43)

(NS, NS) / (R, NS) R = 1
2
√
2

w = ±2 (3.41)

Table 7. The massless points for asymmetric orbifold I.

• For w ∈ 4Z + 1:

Z(NS,NS)
w (τ, τ̄) = − Z(NS,R)

w (τ, τ̄)

=
1

4

∑
a∈Z2

∑
n∈Z

 1

|η|2
q

1
4

(
Rw+

n+1
2

2R

)2

q̄
1
4

(
Rw−n+

1
2

2R

)2

× (−1)an
∣∣∣∣θ2θ3(a2 )

η2

∣∣∣∣4(θ3(a2 )

η

)4(θ3(a2 )θ2

η2

)2

+
1

|η|2
q

1
4(Rw+ n

2R)
2

q̄
1
4(Rw− n

2R)
2

(−1)an
∣∣∣∣θ2θ3(a2 )

η2

∣∣∣∣8
]
,

(3.43)

Z(R,R)
w (τ, τ̄) = − Z(R,NS)

w (τ, τ̄)

=
1

4

∑
a∈Z2

∑
n∈Z

 1

|η|2
q

1
4

(
Rw+

n+1
2

2R

)2

q̄
1
4

(
Rw−n+

1
2

2R

)2

× (−1)a(n+1)

∣∣∣∣θ2θ3(a2 )

η2

∣∣∣∣4(θ2η
)4(θ2θ3(a2 )

η2

)2

+
1

|η|2
q

1
4(Rw+ n

2R)
2

q̄
1
4(Rw− n

2R)
2

(−1)an
∣∣∣∣θ2θ3(a2 )

η2

∣∣∣∣8
]
.

(3.44)

• For w ∈ 4Z + 3:

in this case, the result is obtained by replacing (−1)an in the first term of (3.43) with

(−1)a(n+1), and by replacing (−1)a(n+1) in the first term of (3.44) with (−1)an.

All of these partition functions are q-expanded so as to be compatible with unitarity,

and we have no tachyonic states as confirmed by looking at the conformal weights read from

them. Extra massless excitations appear when the X5-direction has some specific radii, as

summarized in table 7. Moreover, it is easy to confirm that the above partition functions

satisfy the same relation as given in table 4 with respect to the winding number w. This

fact makes it clear that the model I is indeed a non-SUSY vacuum with the bose-fermi

cancellation at each mass level.

In table 7 the ‘relevant equation’ indicates which partition function includes the terms

corresponding to the massless states in question.
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Model II: the model II is defined by the orbifold twist

g = T2πR|base ⊗ σII ≡ T2πR|base ⊗ (−1)|X5 ⊗ (−1L)|X6 ⊗ (−1R)⊗3|X7,8,9 ,

≡ T2πR|base ⊗ (−1L)⊗2|X5,6 ⊗ (−1R)⊗4|X5,7,8,9 , (3.45)

acting on the background

[M4]× Rbase × S1
5 × T 4

6,7,8,9[SO(8)]. (3.46)

For the Ramond vacua, we set

σII |s1, s2, s3, s4〉R = eiπs4 |s1,−s2,−s3, s4〉R ,
σII |s1, s2, s3, s4〉L = eiπs3 |s1,−s2,−s3, s4〉L . (3.47)

which again implies

σ2II = (−1)FR |ψ. (3.48)

The corresponding partition function is given as

Z(τ, τ̄) =
1

4
ZM4(τ, τ̄)

∑
w,m∈Z

ZR(w,m)(τ, τ̄)Z
S1/Z2

(w,m) (τ, τ̄)G
T 4[SO(8)]
(w,m) (τ, τ̄)g(w,m)(τ)f(w,m)(τ),

(3.49)

where Z
S1/Z2

(w,m) (τ, τ̄) denotes the building blocks corresponding to the ordinary reflection

−1 : (X5
L, X

5
R) → (−X5

L,−X5
R) acting on S1

5 with an arbitrary radius. The bosonic

blocks G
T 4[SO(8)]
(w,m) (τ, τ̄) are defined in (3.19).

This model is quite similar to the model I, although the partition function is slightly

different. The massless spectrum and the massless points for the winding states are the

same as that of the model I. This result is independent of the radius of the S1
5 .

Model III: from now on, we shall discuss the constructions of non-SUSY vacua without

the shift operator T2πR included. The simplest case, which we call model III, is defined on

the background

[M4 × T 2]× T 4
6,7,8,9[SO(8)], (3.50)

and the orbifold twist is obtained simply as

g = σ′ ≡ (−1)FL |ψ ⊗ (−1R)⊗4|X6,...,X9 . (3.51)

Although it looks almost the same as the supersymmetric vacua illustrated in section 2,

we shall here adopt the Z4-action as the definition of (−1R)⊗4|X6,...,X9 also for the bosonic

sector by utilizing the fermionization as given in subsection 3.1.1. Namely, introducing the

free fermions λiL (R), (i = 1, . . . , 8) describing T 4[SO(8)], we identify (−1R)⊗4|X6,...,X9 with

the sign flip of λ5R, . . . , λ
8
R. We then determine its action on the Ramond vacua of λiR as

(−1R)⊗4|X6,...,X9 : |ε1, ε2, ε3, ε4〉λ,R 7−→ eiπε4 |ε1,−ε2,−ε3, ε4〉λ,R , (3.52)
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with the definitions

|ε1, ε2, ε3, ε4〉λ,L (R) ≡ e
i
∑4
a=1 εaH̃

a
L (R) |0〉λ,L (R) ,

(
εa = ±1

2

)
,

λ1L (R) ± iλ
2
L (R) =

√
2e
±iH̃1

L (R) , λ3L (R) ± iλ
5
L (R) =

√
2e
±iH̃2

L (R) ,

λ4L (R) ± iλ
6
L (R) =

√
2e
±iH̃3

L (R) , λ7L (R) ± iλ
8
L (R) =

√
2e
±iH̃4

L (R) . (3.53)

We also assume that (−1R)⊗4|X6,...,X9 acts on the Ramond vacua of the world-sheet

fermions ψµR in the same way as (2.4). In total, we obtain

(
σ′
)2

= (−1)FR |λ ⊗ (−1)FR |ψ, (3.54)

rather than σ2 = (−1)FR |ψ.
As we emphasized before, the shift operator T2πR plays an important role of SUSY

breaking, that is, it prevents the twisted sectors from providing new supercharges. However,

we here show that other types of non-SUSY vacua are realized as long as (3.54) is satisfied.

The partition function is just written as

Z(τ, τ̄) =
1

16
ZM4×T 2(τ, τ̄)

∑
a,b∈Z4

F
T 4[SO(8)]
(a,b) (τ, τ̄)h(a,b)(τ)f(a,b)(τ), (3.55)

where F
T 4[SO(8)]
(a,b) (τ, τ̄), h(a,b)(τ) and f(a,b)(τ) are presented respectively in (3.17), (3.27), and

(3.30). This partition function (3.55) also vanishes as is readily checked.

Let us decompose (3.55) with respect to the twisted sectors as well as the spin struc-

tures as

Z(τ, τ̄) =
1

16
ZM4×T 2(τ, τ̄)

×
∑
a∈Z4

{
Z(NS,NS)
a (τ, τ̄) + Z(NS,R)

a (τ, τ̄) + Z(R,NS)
a (τ, τ̄) + Z(R,R)

a (τ, τ̄)
}
. (3.56)

Then, we obtain

Z
(NS,NS)
0 (τ, τ̄) = − Z(R,NS)

0 (τ, τ̄) =

{∣∣∣∣θ3η
∣∣∣∣8 +

∣∣∣∣θ4η
∣∣∣∣8
}∣∣∣∣θ2η

∣∣∣∣8 ,
Z

(NS,NS)
2 (τ, τ̄) = − Z(R,NS)

2 (τ, τ̄)

=

{∣∣∣∣θ3η
∣∣∣∣8 − ∣∣∣∣θ4η

∣∣∣∣8
}(

θ2
η

)4
{(

θ3
η

)4

+

(
θ4
η

)4
}
,

Z
(R,R)
0,2 (τ, τ̄) = − Z(NS,R)

0,2 (τ, τ̄) =

∣∣∣∣θ2η
∣∣∣∣16 , (3.57)
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for the even sectors, and

Z
(NS,NS)
1,3 (τ, τ̄) = −Z(NS,R)

1,3 (τ, τ̄) =

(
θ2
η

)4
{∣∣∣∣θ3η

∣∣∣∣8 − ∣∣∣∣θ4η
∣∣∣∣8
}{(

θ3
η

)4

+

(
θ4
η

)4
}
,

+

∣∣∣∣θ2η
∣∣∣∣8
{(

θ3
η

)4

+

(
θ4
η

)4
}{(

θ3
η

)4

+

(
θ4
η

)4
}
,

Z
(R,R)
1,3 (τ, τ̄) = −Z(R,NS)

1,3 (τ, τ̄) =

{∣∣∣∣θ3η
∣∣∣∣8 +

∣∣∣∣θ4η
∣∣∣∣8 +

∣∣∣∣θ2η
∣∣∣∣8
}∣∣∣∣θ2η

∣∣∣∣8 , (3.58)

for the odd sectors.

These relations should be compared with those for the supersymmetric case (2.15)

and (2.16). Here we never obtain the equalities such as (2.17), rather find the cancellations

as depicted in table 4. Namely, we see that the left-moving NS-R cancellations for the

even sectors, whereas the right-moving ones for the odd sectors. This fact clearly shows

that the space-time SUSY is completely broken. Recall that, in the supersymmetric case

with g = σ, the right-moving SUSY is unbroken, and the supercharges arise from the

a = 2 twisted sector. In the current case, however, the same does not happen because

the partition functions Z
(∗,R)
2 (τ, τ̄) do not contain any massless states. This is the crucial

difference caused by the relation (3.54). In this way, we have successfully achieved a desired

non-SUSY vacuum without the shift.

The massless spectrum in the untwisted sector is the same as the model introduced

in the previous section. In the twisted sectors, on the other hand, there are additional

massless states, while no tachyonic states appear.

Model IV: we next consider the background[
M4 × T 2

]
× T 2

6,7 × T 2
8,9[SO(4)], (3.59)

and adopt the modification of (3.33);

g = σ′I ≡ (−1)⊗2|X6,7 ⊗ (−1R)⊗2|X8,9 ≡ (−1L)⊗2|X6,7 ⊗ (−1R)⊗2|X6,7,8,9 , (3.60)

as the relevant orbifold twisting. σ′I again acts by (3.35) for the Ramond vacua of world-

sheet fermions ψµR, ψµL. On the other hand, introducing the free fermions λiL (R), (i =

1, . . . , 4) describing T 2
8,9[SO(4)], we define its action on the Ramond vacua of λiR as that

given in (a) of subsection 3.1.1, that is,

σ′I |ε1, ε2〉λ,R = eiπε2 |ε1, ε2〉λ,R , (3.61)

with

|ε1, ε2〉λ,R ≡ e
i
∑2
a=1 εaH̃

a
R |0〉λ,R ,

(
εa = ±1

2

)
,

λ1L (R) ± iλ
2
L (R) =

√
2e
±iH̃1

L (R) , λ3L (R) ± iλ
4
L (R) =

√
2e
±iH̃2

L (R) . (3.62)

We thus obtain the crucial relation (σ′I)
2 = (−1)FR |λ ⊗ (−1)FR |ψ.

– 22 –



J
H
E
P
0
8
(
2
0
1
6
)
0
2
8

The partition function is then written as

Z(τ, τ̄) =
1

16
ZM4×T 2(τ, τ̄)

∑
a,b∈Z4

Z
T 2/Z2

(a,b) (τ, τ̄)F
T 2[SO(4)]
(a,b) (τ, τ̄)g(a,b)(τ)f(a,b)(τ), (3.63)

where F
T 2[SO(4)]
(a,b) (τ, τ̄), g(a,b)(τ), and f(a,b)(τ) are given respectively by (3.17), (3.31)

and (3.30). Z
T 2/Z2

(a,b) (τ, τ̄) denotes the building blocks corresponding to an ordinary Z2-

orbifold for the reflection acting T 2
6,7 in (3.59). This partition function also vanishes, and

the supersymmetry is completely broken at least in the untwisted sector, as confirmed in

the same way as the case of model I.

The spectrum of physical states in each twisted sector is read off from the decomposi-

tion of partition function in the manner similar to (3.56). After a short computation, one

finds the relations of the partition functions between all of the sectors as follows;

Z
(NS,NS)
0 (τ, τ̄) = − Z(R,NS)

0 (τ, τ̄) = ZT
2

{∣∣∣∣θ3η
∣∣∣∣4 +

∣∣∣∣θ4η
∣∣∣∣4
}∣∣∣∣θ2η

∣∣∣∣8 ,
Z

(R,R)
0,2 (τ, τ̄) = − Z(NS,R)

0,2 (τ, τ̄) = ZT
2

∣∣∣∣θ2η
∣∣∣∣12 ,

Z
(NS,NS)
2 (τ, τ̄) = − Z(R,NS)

2 (τ, τ̄) = ZT
2

{∣∣∣∣θ3η
∣∣∣∣4 − ∣∣∣∣θ4η

∣∣∣∣4
}(

θ2
η

)4
{(

θ3
η

)4

+

(
θ4
η

)4
}
,

(3.64)

Z
(NS,NS)
1,3 (τ, τ̄) = − Z(NS,R)

1,3 (τ, τ̄) = −Z(R,NS)
1,3 (τ, τ̄) = Z

(R,R)
1,3 (τ, τ̄)

=

∣∣∣∣θ2θ3η2

∣∣∣∣6 ZT 2/Z2

(1,0) +

∣∣∣∣θ2θ4η2

∣∣∣∣6 ZT 2/Z2

(1,1) ≡
∣∣∣∣θ2η
∣∣∣∣8
{∣∣∣∣θ3η

∣∣∣∣8 +

∣∣∣∣θ4η
∣∣∣∣8
}
. (3.65)

These relations manifestly show that we do not have any right-moving supercharges. It is

however curious that we have the ‘accidental’ equalities

Z(NS,NS)
a = −Z(R,NS)

a , Z(R,R)
a = −Z(NS,R)

a , (for ∀a ∈ Z4)

in spite of the absence of left-moving supercharges that originate from the unorbifolded the-

ory. It would be actually possible to make up some operators that realize these equalities by

combining the spin fields of ψµ and λi. However, it turns out that such ‘fake’ supercharges

do not respect the super-Poincare symmetry in M4 of the original background (3.59).

Furthermore, any left-moving supercharges cannot be constructed also from the twisted

sectors, because we have

Z(NS,NS)
a 6= −Z(R,NS)

a′ , Z(R,R)
a 6= −Z(NS,R)

a′ , (for ∀a′ ∈ Z4 s.t. a′ 6= a).

In this way, we conclude that the model IV is still a non-SUSY vacuum with the bose-

fermi cancellation. Again we find additional massless states in the twisted sectors, while

no tachyons appear.
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Model V: the model V is defined similarly to the model IV on the background;[
M4 × S1

]
× S1

5 × T 4
6,7,8,9[SO(8)], (3.66)

with the twist operator g = σ′II which is the modification of σII given in (3.45) as (σ′II)
2 =

(−1)FR |λ⊗(−1)FR |ψ. Namely, σ′II acts on the world-sheet fermions ψµR, ψµL in the same way

as (3.45), (3.47), and acts as the sign flip of λ5L, λiR (i = 6, 7, 8), where λiL (R) (i = 1, . . . , 8)

are the free fermions describing T 4
6,7,8,9[SO(8)]. Moreover, its action on the Ramond vacua

of λiR, λiL is given as

σ′II |ε1, ε2, ε3, ε4〉λ,R = eiπε4 |ε1, ε2,−ε3, ε4〉λ,R ,

σ′II |ε1, ε2, ε3, ε4〉λ,L = |ε1,−ε2, ε3, ε4〉λ,L , (3.67)

under the definitions (3.53).

The partition function is just given as

Z(τ, τ̄) =
1

16
ZM4×S1(τ, τ̄)

∑
a,b∈Z4

Z
S1/Z2

(a,b) (τ, τ̄)G
T 4[SO(8)]
(a,b) (τ, τ̄)g(a,b)(τ)f(a,b)(τ), (3.68)

where g(a,b)(τ), f(a,b)(τ) are as above, while G
T 4[SO(8)]
(a,b) (τ, τ̄) are presented in (3.20).

Since the fermionic building blocks are common with the model IV, we can likewise

make the decomposition such as (3.56);

Z
(NS,NS)
0 (τ, τ̄) = − Z(R,NS)

0 (τ, τ̄) = ZS
1

{∣∣∣∣θ3η
∣∣∣∣8 +

∣∣∣∣θ4η
∣∣∣∣8
}∣∣∣∣θ2η

∣∣∣∣8 ,
Z

(R,R)
0,2 (τ, τ̄) = − Z(NS,R)

0,2 (τ, τ̄) = ZS
1

∣∣∣∣θ2η
∣∣∣∣16 ,

Z
(NS,NS)
2 (τ, τ̄) = − Z(R,NS)

2 (τ, τ̄),

= ZS
1

{∣∣∣∣θ3η
∣∣∣∣8 − ∣∣∣∣θ4η

∣∣∣∣8
}(

θ2
η

)4
{(

θ3
η

)4

+

(
θ4
η

)4
}
, (3.69)

for the even sectors, and

Z
(NS,NS)
1,3 (τ, τ̄) = − Z(NS,R)

1,3 (τ, τ̄) =

∣∣∣∣θ2η
∣∣∣∣10
{∣∣∣∣θ3η

∣∣∣∣8 +

∣∣∣∣θ4η
∣∣∣∣8
}
,

Z
(R,R)
1,3 (τ, τ̄) = − Z(R,NS)

1,3 (τ, τ̄) =

∣∣∣∣θ2η
∣∣∣∣8
{∣∣∣∣θ3η

∣∣∣∣10 +

∣∣∣∣θ4η
∣∣∣∣10
}
, (3.70)

for the odd sectors.

The partition functions for even sectors (3.69) coincide with those for the model

III (3.57) up to the common factor ZS
1
, implying that the right SUSY is completely

broken. They are also quite similar to the model IV (3.64), as anticipated.

Even though the odd sectors are also similar to (3.65), we here have a crucial differ-

ence. Namely, we find Z
(NS,NS)
1,3 6= −Z(R,NS)

1,3 , just leading to the fact that the left SUSY is

obviously broken.
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The massless spectra in the twisted sectors are different from the previous two models.

For example, massless (NS,NS) and (NS, R) states do not appear in the odd sectors as

opposed to the case of model IV. No tachyons appear as in the models so far.

Model VI: finally, we briefly mention on the model defined by the orbifold twist

(−1L)⊗2|X4,5 ⊗ (−1R)⊗4|X6,7,8,9 , which is again organized to be a Z4-action both on the

fermionic and bosonic sectors, acting on the background
[
M4
]
× T 6

4,5,...,9[SO(12)]. This is

similar to the model V. The partition functions are almost the same as the previous two

models;

Z
(NS,NS)
0 (τ, τ̄) = − Z(R,NS)

0 (τ, τ̄) =

{∣∣∣∣θ3η
∣∣∣∣12 +

∣∣∣∣θ4η
∣∣∣∣12
}∣∣∣∣θ2η

∣∣∣∣8 ,
Z

(R,R)
0 (τ, τ̄) = − Z(NS,R)

0 (τ, τ̄) =

∣∣∣∣θ2η
∣∣∣∣20 ,

Z
(NS,NS)
2 (τ, τ̄) = − Z(R,NS)

2 (τ, τ̄) =

{∣∣∣∣θ3η
∣∣∣∣12 − ∣∣∣∣θ4η

∣∣∣∣12
}(

θ2
η

)4
{(

θ3
η

)4

+

(
θ4
η

)4
}
,

Z
(R,R)
2 (τ, τ̄) = − Z(NS,R)

2 (τ, τ̄) =

∣∣∣∣θ2η
∣∣∣∣20 ,

Z
(NS,NS)
1,3 (τ, τ̄) = − Z(NS,R)

1,3 (τ, τ̄) =

∣∣∣∣θ2η
∣∣∣∣12
{∣∣∣∣θ3η

∣∣∣∣8 +

∣∣∣∣θ4η
∣∣∣∣8
}
,

Z
(R,R)
1,3 (τ, τ̄) = − Z(R,NS)

1,3 (τ, τ̄) =

∣∣∣∣θ2η
∣∣∣∣8
{∣∣∣∣θ3η

∣∣∣∣12 +

∣∣∣∣θ4η
∣∣∣∣12
}
. (3.71)

This model shares basic features with the model V as expected, although the mass

spectrum in each sector is slightly different. Once again, we find Z
(NS,NS)
1,3 6= −Z(R,NS)

1,3 ,

and no massless (NS,NS) and (NS, R) states appear in the odd sectors as opposed to the

model IV.

4 Discussions about the unitarity and stability

We have studied various non-SUSY string vacua realized as asymmetric orbifolds in section

3. The right-moving part of the twist operators always include the reflection (−1R)⊗4, with

the non-trivial property
{

(−1R)⊗4
}2

= (−1)FR |ψ, or
{

(−1R)⊗4
}2

= (−1)FR |ψ ⊗ (−1)FR |λ.

The torus partition functions for all of these vacua have been computed in a way showing

manifestly the modular invariance, and they are properly q-expanded as to be consistent

with unitarity. Moreover, by examining the spectra of physical states read off from the

partition functions, we have found all of them to be stable, namely, any tachyonic states

do not appear in all the untwisted and twisted sectors. These are likely to be common nice

features of the non-SUSY string vacua of these types. In this section, we shall try to clarify

why this is the case. There are still various extensions or modifications of the non-SUSY

vacua studied in this paper, and the arguments given here would be applicable to them

rather generally.
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We first recall some non-trivial points that are specific in our models of asymmet-

ric orbifolds. First of all, as we emphasized several times, the building blocks given in

subsection 3.1 includes various phase factors. They are necessary to assure the modular

covariance, and make the orbifold projections in the twisted sectors to differ non-trivially

from that for the untwisted sector. As we already mentioned in section 2, this is a main

reason why it would not be self-evident whether our models are unitary.

Secondly, needless to say, the absence of tachyonic instability is not obvious for generic

non-SUSY vacua. It is a common feature that non-SUSY orbifolds involving our models

would include the ‘wrong GSO’ NS states in the twisted sectors, which are expressed

typically as ∼
(
θ3
η

)4
+
(
θ4
η

)4
and would be potentially tachyonic.

Now, let us start our discussions. For the time being, we focus on the models without

the shift operator T2πR|base, which are Z4-asymmetric orbifolds. The partition functions

are decomposed with respect to the twisted sectors labeled by a ∈ Z4 in the form as, say,

(3.56). Let us schematically denote the relevant partition functions as

Z(sL,sR)
a (τ, τ̄) =

1

4

∑
b∈Z4

Z
(sL,sR)
(a,b) (τ, τ̄), (4.1)

where sL, (sR) expresses the left-moving (right-moving) spin structure. We are only inter-

ested in the twisted sectors a 6= 0, since the unitarity and stability for the untwisted sector

are obvious by construction.

As addressed above, the building blocks we utilized involve various phase factors.

Consequently, it would be useful to reinterpret the b-summation in (4.1) as that for the

modular T-transformation τ 7→ τ + 1;

Z(sL,sR)
a (τ, τ̄) =


1

4

[
Z

(sL,sR)
(a,0) (τ, τ̄) + Z

(sL,sR)
(a,0) (τ + 1, τ̄ + 1)

]
, (a = 2),

1

4

∑
`∈Z4

Z
(sL,sR)
(a,0) (τ + `, τ̄ + `), (a = 1, 3).

(4.2)

Here, we made use of the modular covariance of the building blocks and the fact that the

fermion chiral blocks f(2,b)(τ) given in (3.30) vanishes for b = 1, 3 for each spin structure. In

the end, one finds that the existence of non-trivial phase factors mentioned above eliminates

the terms including the fractional level mismatch hL − hR 6∈ Z. This observation makes

it simpler to check the unitarity of the q-expansions of partition functions. All we have

to do is just to examine whether the level matching terms hL − hR ∈ Z in the function
1
4Z

(sL,sR)
(a,0) (τ, τ̄) possess suitable q-expansions with positive integer coefficients.8 This is

indeed the case for all the models given in subsection 3.2, as can be readily confirmed from

the explicit forms of the building blocks. We note that, actually, all the terms appearing

in Z
(sL,sR)
(a,0) (τ, τ̄) are q-expanded in this way.

How about the stability of the vacua? Namely, we would like to understand why no

tachyon appears in all the twisted sectors in spite of the complete SUSY violations. We note

8The factor 1
4

is necessary due to the chiral GSO projection.
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• The leading term of each Z
(sL,sR)
(a,0) (τ, τ̄) always has a non-negative conformal weight,

as is obvious from the building blocks presented in subsection 3.1.

• Each Z
(sL,sR)
(a,0) (τ, τ̄) includes the terms that originate from the ‘supersymmetric’ chiral

blocks J (τ) or f(a,0)(τ)
(
≡ f(a,0)(τ)

)
with a = 1, 3, and the leading term of J (τ)

possesses the conformal weight 1
2 . On the other hand, f(a,0)(τ) itself has the weight

1
4 , while the bosonic part of (−1R)⊗4 always adds the zero-point energy 1

4 .

Therefore, the minimum conformal weight of the T-invariant terms appearing in

Z
(sL,sR)
(a,0) (τ, τ̄) has to be equal h = 1

2 + n, (n ∈ Z≥0). This fact is sufficient to conclude that

no tachyonic states emerge due to the observation given above.

We next consider the models including the shift operator T2πR|base. For our purpose

it would be useful to partially make the Poisson resummation of ZR,(w,m)(τ, τ̄) (2.8) with

respect to the temporal winding m ∈ 4Z and to sum up over ∀w ∈ a + 4Z. Then, we can

obtain a schematic decomposition

Z(sL,sR)
a (τ, τ̄) =

1

4

∑
b∈Z4

Z̃
(sL,sR)
(a,b) (τ, τ̄), (4.3)

in place of (4.1). Here, Z̃
(sL,sR)
(a,b) (τ, τ̄) includes the contributions with the zero-mode part as

∼ q
1
4( n

4R
+Rw)

2

q̄
1
4( n

4R
−Rw)

2

, (n ∈ Z, w ∈ a+ 4Z), (4.4)

which give rise to the phase e2πi
nw
4 ≡ e

iπ
2
na under the T-transformation. It is now very

easy to repeat the above considerations about the unitarity and stability by just replacing

Z
(sL,sR)
(a,0) (τ, τ̄) with Z̃

(sL,sR)
(a,0) (τ, τ̄), leading to the same conclusion.
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A Theta functions

In this appendix we summarize the conventions of theta functions we use in this paper

(q ≡ e2πiτ , y ≡ e2πiz ∀τ ∈ H+,∀ z ∈ C);

θ1(τ, z) ≡ i
∞∑

n=−∞
(−1)nq

1
2
(n− 1

2
)2yn−

1
2 ≡ 2 sin(πz)q

1
8

∞∏
m=1

(1− qm)(1− yqm)(1− y−1qm),

θ2(τ, z) ≡
∞∑

n=−∞
q

1
2
(n− 1

2
)2yn−

1
2 ≡ 2 cos(πz)q

1
8

∞∏
m=1

(1− qm)(1 + yqm)(1 + y−1qm),

θ3(τ, z) ≡
∞∑

n=−∞
q

1
2
n2
yn ≡

∞∏
m=1

(1− qm)(1 + yqm−
1
2 )(1 + y−1qm−

1
2 ),
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θ4(τ, z) ≡
∞∑

n=−∞
(−1)nq

1
2
n2
yn ≡

∞∏
m=1

(1− qm)(1− yqm−
1
2 )(1− y−1qm−

1
2 ), (A.1)

η(τ) ≡ q
1
24

∞∏
m=1

(1− qm). (A.2)

We often use the abbreviations; θi ≡ θi(τ, 0), θi(z) ≡ θi(τ, z), and η ≡ η(τ).
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