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Abstract

Background: Accumulation of extracellular matrix (ECM) and increased matrix metalloproteinase (MMP) activity are
hallmarks of liver fibrosis. The aim of the present study was to develop a model of liver fibrosis combining ex vivo
tissue culture of livers from CCl4 treated animals with an ELISA detecting a fragment of type III collagen generated
in vitro by MMP-9 (C3M), known to be associated with liver fibrosis and to investigate cAMP modulation of MMP
activity and liver tissue turnover in this model.

Findings: In vivo: Rats were treated for 8 weeks with CCl4/Intralipid. Liver slices were cultured for 48 hours. Levels of
C3M were determined in the supernatants of slices cultured without treatment, treated with GM6001 (positive
control) or treated with IBMX (phosphodiesterase inhibitor). Enzymatic activity of MMP-2 and MMP-9 were studied
by gelatin zymography. Ex vivo: The levels of serum C3M increased 77% in the CCl4-treated rats at week 8 (p < 0.01);
Levels of C3M increased significantly by 100% in fibrotic liver slices compared to controls after 48 hrs (p < 0.01). By
adding GM6001 or IBMX to the media, C3M was restored to control levels. Gelatin zymography demonstrated CCl4-
treated animals had highly increased MMP-9, but not MMP-2 activity, compared to slices derived from control
animals.

Conclusions: We have combined an ex vivo model of liver fibrosis with measurement of a biochemical marker of
collagen degradation in the condition medium. This technology may be used to evaluate the molecular process
leading to structural fibrotic changes, as collagen species are the predominant structural part of fibrosis. These data
suggest that modulation of cAMP may play a role in regulation of collagen degradation associated with liver fibrosis.
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Introduction
Liver fibrosis due to viral or alcohol-induced injury is
one of the leading causes of death worldwide [1]. Liver
biopsy is the most commonly used method for fibrosis
assessment, but it is invasive, associated with patient
discomfort and, in rare cases, with serious complica-
tions [2-4]. Therefore, research has focused on the
evaluation of non-invasive methods for the assessment
of liver fibrosis [5], including a highly enforced effort
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in discovering and developing biochemical markers for
liver fibrosis assessment. In alignment there is an ur-
gent need for applied translational science, in which
information from preclinical settings may be translated
to clinical settings. One such approach may be to in-
vestigate the same biochemical analyte in liver explants
as a model of liver fibrosis, in animal models of liver
fibrosis, and then finally in clinical settings.
Fibrosis may be described as extensive scar formation,

observed as increased deposition and abnormal distri-
bution of extracellular matrix (ECM) components such
as collagens and proteoglycans. ECM remodeling is a
key process of tissue homoeostasis [6-8], and specific
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proteolytic activities are a prerequisite for a range of cel-
lular functions and interactions during the process [9].
The specific proteolytic activities are precisely coordi-
nated under physiological situations, with a specified se-
quence of events resulting in controlled tissue turnover.
In pathological situations, including inflammation, fibro-
sis and cancer, the normal damage/repair balance is dis-
placed [10], leading to excessive remodeling. As a
consequence of this tissue turnover, there is a release of
several protein degradation fragments specific for the
combination of the involved proteases, the affected
organ and the disease. The fragmentation results in ex-
posure of new peptide ends (so-called neo-epitopes) to
which specific antibodies can be developed. These neo-
epitopes may be used for the design of molecular bio-
chemical markers [11].
In the healthy human liver the most abundant col-

lagens are the fibril-forming type I and type III [5].
Fibril-forming collagens are synthesized as precursor
molecules with large propeptide extensions at both the
N- and C-terminals of the molecule [12]. The mature
propeptides are cleaved from procollagen by N- or C-
terminal proteinases, and mature collagen is integrated
into the ECM [12,13]. During fibrogenesis, type I and III
collagen levels increase up to 8 times [14]. Endopepti-
dases such as matrix metalloproteinases (MMPs) play a
major part in the degradation of extracellular macromo-
lecules such as collagens and during fibrogenesis the
levels of MMPs increase. With respect to excessive pro-
teolytic activity in the fibrous tissue, the gelatinases
MMP-2 and MMP-9 have been investigated and docu-
mented to be highly regulated [15-17]. Thereby a frag-
ment of type III collagen generated in vitro by MMP-2
and MMP-9 may be a biochemical marker for liver fi-
brosis. Thus by analysis of cleavage fragments generated
by MMP-9 of type III collagen, and the development of
a specific assay quantifying a validated fragment, novel
tools with increased sensitivity and specificity for some
types of fibrosis may be developed. We have previously
identified fragments of other collagens, and developed
assays for those [18-20], and very recently identified a
unique type III collagen degradation product (C3M),
in vitro generated by MMP-2 and MMP-9. We conse-
quently developed a novel Enzyme-linked immunosorb-
ent assay (ELISA) using monoclonal antibody to detect
this specific fragment, which later on demonstrated to
be highly associated with liver fibrosis [21-24].
Several animal models for liver fibrosis have been

developed, most of them in small rodents [25], each with
individual strengths and weaknesses. These different
rodent models are complementary as they represent
different pathways to fibrosis, as also seen in human
disease. Bile duct ligation (BDL) in rats has been
used as a model of chronic liver injury due to its
resemblance to hepatocyte damage, hepatic stellate cell
(HSC) activation, and liver fibrosis observed in human
cholestatic liver diseases [1,25]. Carbon tetrachloride
(CCl4) is a hepatotoxin that causes acute liver injury
and, when given repetitively at a low dose, induces
liver fibrosis. It is a highly reproducible and robust
model which is used to resemble alcoholic and non-
alcoholic steatohepatitis with the consequent fibrosis
and cirrhosis in humans [1,25].
Ex vivo models enables the study of complicated pro-

cesses in a multicellular system in which cell-cell and
cell-matrix interactions are maintained. The ECM holds
various components, both inhibitors and promoters of
cell function, which are absent in traditional plastic cul-
ture systems [26,27]. In liver fibrosis where tissue turn-
over plays a fundamental role, the ECM has both
structural and biochemical features, which are not easily
accounted for by either hepatic stellate cell line (e.g.
HSC-T6) or isolation of primary HSC [28]. A potential
ex vivo model for studying liver fibrosis (and HSC acti-
vation) are the precision-cut liver slices (PCLS). Several
researches have investigated and used the liver explant
model, first reported by Otto Warburg in 1923 [29].
Since then, these experiments have for the major part
been performed in healthy livers. Thus in the current
study, we employed the CCl4 model, with disease
affected livers, and cultured these under optimal condi-
tion compared to healthy control liver, assessed by the
novel liver fibrosis marker C3M, to develop an ex vivo
model system for investigation of the processes involved
in liver fibrosis tissue turnover.
Induction of cyclic AMP (cAMP) by pan-specific

phosphodiesterase (PDE) inhibition has been shown to
modulate MMP activity in a cartilage ex vivo models
[30]. These studies clearly suggested that cAMP induc-
tion was essential for MMP activity and tissue turnover,
both processes that are highly regulated in fibrotic dis-
eases. We aimed at testing the hypothesis whether
cAMP induction may in addition to cartilage turnover
also be important for tissue turnover associated with
liver fibrosis, and thus a more common regulator of
MMP mediated tissue turnover.
In the present study, we aimed at using the novel mo-

lecular biochemical marker C3M to 1) develop an
ex vivo model in which the same biochemical marker
may be measured ex vivo, in animal settings and clinical
setting to enable translational research and 2) to use this
model to preliminary investigate modulation of MMP
activity and liver tissue turnover by PDE inhibition.

Materials and methods
Reagents
All reagents were standard high-quality chemicals from
companies such as Merck and Sigma-Aldrich. Krebs-
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Heinseleit buffer used to preparation of PCLS was from
Amplicon (Skovlunde, DK). The culture medium
Williams medium E was from Lonza (Verviers, BG).
IBMX was from Sigma (Poole, UK), while GM6001 was
from AM Scientific (Pleasant Hill, CA). AlamarBlue
assay was from AbD Serotec (Oxford, UK).

Animal experiment
20 male Spraque-Dawley rats aged 4 months were
housed at the animal facilities at Nordic Bioscience,
Denmark. The experiments were approved by the Ani-
mal Ethics Committee of the Danish Ministry of Justice
(2008/561-1450). The rats were housed in standard
cages, with bedding and nest material at 18-22°C and fed
with standard pellet diet and tap water ad libitum. The
rats were kept under conditions of a 12 hr light/dark
cycle. Liver fibrosis was induced by intraperitoneal injec-
tions (i.p.) of CCl4 twice a week for 8 weeks starting one
week after acclimatization. The rats were divided in two
groups, 14 rats were treated with 10% CCl4 in intralipid
(0.5 ml/kg) and 6 vehicle rats were treated with intrali-
pid (0.5 ml/kg).

Blood sampling
Blood samples at baseline and termination were taken
under inhalation anesthesia using isoflurane from the
retro-orbital sinus of rats which had fasted for at least
14 hr. The blood were left for 30 min at room
temperature to clot and centrifuged at 3000 rpm for
10 min. Liquid were transferred to new tubes and centri-
fuged again at 3000 rpm for 10 min. Serum were trans-
ferred into clean tubes and stored for −20°C until use.

Tissue handling
After the rats were euthanized, the liver was carefully
excised and weighted. A small part of one of the lobes
was fixated in 4% formaldehyde for at least 24 hr and
embedded in paraffin. Sections were cut 4–5 μm thick,
mounted on glass slides and stained with 1% Sirius Red
F3B (Sigma-Aldrich, St. Louis, MO) in saturated picric
acid (Sigma-Aldrich). The liver sections were evaluated
by histological changes in tissue architecture, presence
of inflammation and proliferation of liver fibrosis.

Immunohistochemistry
Liver sections (4–5 μm) were de-paraffinised, hydrated
and further peroxidase activity was blocked with the
addition of 0.4% hydrogen peroxide. Sections were the
incubated with a polyclonal antibody against α-SMA
(1:400, Abcam, Cambridge, UK). Sections were then
rinsed and the antibody binding was depicted using the
Super Sensitive Polymer-HRP IHC Detection System
combined with AEC substrate, according to the suppli-
er’s instructions (Biogenex, Taby, Sweden). Sections were
counterstained with Mayer’s haematoxylin. Digital
photographs were taken using an Olympus Bx60 micro-
scope with x40 magnification and an Olympus 5050-
zoom digital camera (Olympus, Tokyo, Japan).

Ex vivo experiments
For ex vivo liver tissue culture experiments, fibrosis was
induced as described. Rat livers were excised from adult
male Spraque-Dawley rats, weighted, stored in cold PBS
and liver fibrosis was evaluated by gross appearance.
PCLS were prepared from the livers in ice-cold Krebs-
Heinseleit buffer containing 25 mM glucose, 10 mM
HEPES and 25 mM NaHCO3, and sliced on the
TSE Krumdieck tissue slicer MD 4000 as previously
described [31]. The PCLS were cultured for 2 hr at 37°C
under carbogen atmosphere in sterile 48 well plates con-
taining 300 μl Williams Medium E containing 25 mM
glucose, 10 mg/ml gentamycin and 10% fetal bovine
serum (FBS). After 2 hr the serum media was removed
and the slices were washed in serum-free media. New
serum-free media was added containing the respective
treatments and the PCLS were cultured for 48 hr. Treat-
ments used in the experiments were 100 μM IBMX, a
non-specific PDE inhibitor, and 10 μM GM6001, a
MMP inhibitor. After the culturing period supernatants
were collected and stored at −20°C until use.

Cell viability measured by AlamarBlue
AlamarBlue is a sterile non-toxic, aqueous oxidation-
reduction indicator that yields colorimetric changes and
a fluorescent signal in response to metabolic activity. For
the quantification of cell viability, we used the Alamar-
Blue assay. The active compound, resazurin, is an
oxidation-reduction indicator that changes from the oxi-
dized non-fluorescent form (indigo) to the reduced
fluorescent form (purple) according to the viability and
proliferating activity of cells [32]. In short, 300 μl 10%
AlamarBlue was added to each well of the microtiter
plate containing PCLS and incubated for 2 hr at 37°C
while shaking. The results were measured by ELISA
reader at 540–590 nm.

Gelatinase zymography
Activity and expression of MMP-2 and MMP-9 were
investigated using gelatinase zymography. Supernatants
from the ex vivo experiment were diluted 3:4 in 4x sam-
ple buffer, heated at 37°C for 15 min and applied for gel-
electrophoresis on 10% SDS-polyacrylamide gel using
the substrate 3 mg/ml gelatin. After electrophoresis, gels
were washed three times before four days incubation at
37°C with gentle agitation in 1% Triton-X, 100 mM Tris
Base, 13 mM CaCl2, 0.2 mM ZnCl2, 6 mM NaN3, and
pH 7.5. Gels were stained for 15 min with a solution
containing 0.25% Coomassie R-250 with 45% methanol



Figure 1 Serum levels of C3M in CCl4 and Vehicle rats at
baseline compared to termination after 8 weeks of treatment.
Number of rats used (N): Vehicle N = 5, CCl4 N = 11. Asterisks
**p < 0.01.
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and 3% acetic acid. The gels were destained in a solution
of 20% methanol, 17% ethanol, 7% acetic acid, and 0.6%
diethyl-ether for 45 min until clear bands were obtained.
Gels were finally soaked in 2% glycerol, dried in plastic
bags and scanned for documentation. The intensity of
the bands was quantified by densitometry analysis shown
as average pixel number.

C3M ELISA
The ELISA was performed as previously described
[21-24].

Statistical analyses
Results are shown as mean ± standard error of mean
(SEM). Five vehicle rat livers and 9 CCl4 treated rat
livers were used in the ex vivo experiment with 10 repli-
cas for each treatment. Differences between mean values
were compared by nonparametric Mann-Whitney’s t-test
for two-tailed observations. All statistical analyses were
performed in GraphPad Prism software v.5 (GraphPad
Software, San Diego, CA). P values less than 0.05 were
considered significant.

Results
Evaluation of in vivo experiment
Three CCl4 animals died during the experiment. Serum
C3M levels were increased with 77% from baseline to
termination in CCl4 treated rats (p = 0.0025) (Figure 1).
Histological examination of the livers from control rats
showed no sign of fibrosis as the tissue architecture
appeared normal (Figure 2A), while the livers from CCl4
treated rats showed increased collagen deposition
around the portal tracts and fibrotic septae (Figure 2B).
By immunohistochemistry, α-SMA deposition was
found exclusively in the venous wall of control rats
(Figure 2C). In contrast, in CCl4 treated rats α-SMA
was located along the fibrotic bands (Figure 2D).

Ex vivo tissue culture
Normal and fibrotic livers were dissected and precision-
cut for ex vivo cultures, following ex vivo slices were cul-
tured for 48 hr. Samples from each liver were divided in
three groups, i.e. w/o (without any intervention), IBMX
(100 μM IBMX was added to the culture medium), and
GM6001 (10 μM GM6001 was added to the culture
medium); n = 10 for all conditions. The supernatants
were collected and measured in the C3M ELISA, meas-
uring in vitro generated MMP-9 fragments of type III
collagen. There was a 100% increase (p = 0.0018) in
supernatants of fibrotic liver slices without any interven-
tion compared to vehicle samples (Figure 3A). Treat-
ment with IBMX or GM6001 had no effect on the
vehicle samples. When exposing the fibrotic liver slices
to IBMX, the level of C3M were reversed back to the
level of vehicle samples (p = 0.0348). Adding GM6001 to
the fibrotic liver slices served as a positive control as it
inhibits MMP activity (p = 0.0077).
AlamarBlue was investigated as a measure for meta-

bolic activity (Figure 3B). A 60% increase was observed
in fibrotic liver slices compared to vehicle without inter-
vention (p = 0.035). Adding IBMX or GM6001 to the fi-
brotic liver slices had no effect on metabolic activity.
Gelatin zymography revealed that MMP-2 and MMP-

9 activity were clearly increased in supernatants from
fibrotic liver slices compared to control. The MMP-9
activity was to a lesser extent increased when treated
with GM6001 compared to liver slices without any
intervention in the supernatants from fibrotic liver
slices. A lower decrease in MMP-9 activity in superna-
tants treated with IBMX was also observed (Figure 4A).
Densitometry analysis of the bands on the zymography
revealed a significant increase in pro- and active MMP-
2 (p = 0.0022 and p = 0.0022, respectively) as well as in
pro- and active MMP-9 (p = 0.0022 and p = 0.0022, re-
spectively) in fibrotic liver slices compared to controls
(Figure 4B-C). Furthermore, there was a significant in-
crease in active MMP-9 compared to pro-MMP-9 in
supernatants from both healthy and fibrotic liver slices
(p = 0.0022) (Figure 4C).

Discussion
Liver injury is a multifactor process, involving many cell
types, mediators and cell-cell and cell-matrix interac-
tions. The main advantages of the PCLS model are that



Figure 2 Sirius Red staining of hepatic structure in vehicle rats (A) compared to CCl4 treated rats (B) after 8 weeks of treatment. The
hepatic tissue architecture around the portal tracts is disrupted in fibrotic livers compared to vehicle and the amount of collagen is increased.
Immunohistochemical analysis of α-SMA in vehicle rats (C) and CCl4 treated rats (D). α-SMA is localized around the fibrotic bands. Original
magnification ×40.
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the cells are the maintained in the 3-dimensional
organ structure, with the same relative cell number
and orientation towards other cells [33], which makes
the model a valuable tool for studying tissue turnover,
due to the high in vivo likeness [34]. The PCLS
model has been applied recently to the study of HSC
Figure 3 A: C3M release from ex vivo cultures after 48 hr incubation.
medium and released C3M levels in the supernatants were measured in th
Williams E medium + 100 μM IBMX; GM6001: Williams E medium + 10 μM G
of liver slices used pr liver (n): n = 10 in each condition. Asterisks *p < 0.05,
metabolic activity in fibrotic and vehicle liver slices with addition of I
period. W/o: Williams E medium without any intervention; IBMX: Williams E m
Number of livers used (N): Vehicle N = 5, Fibrotic N = 9. Number of liver slices
activation [31], and in addition it has also been
shown that endothelial cells [35] and Kupffer cells
[36] remain viable in these cultures. Especially for
studying ECM remodeling in the liver during fibrosis,
the PCLS model provide several advantages that seem
essential [37].
Liver slices from fibrotic or vehicle rats were cultured in Williams E
e C3M ELISA. W/o: Williams E medium without any intervention; IBMX:
M6001. Number of livers used (N): Vehicle N = 5 fibrotic N = 9. Number
**p < 0.01. B: AlamarBlue was investigated as a measure of
BMX or GM6001 in Williams E medium after 48 hour culturing
edium+ 100 μM IBMX; GM6001: Williams E medium+ 10 μM GM6001.
used pr liver (n): n = 10 in each condition. Asterisks **p < 0.01.



Figure 4 A: MMP expression and activity assessment by gelatin zymography. Liver explants were cultured without intervention (w/o) or
with either 100 μM IBMX or 10 μM GM6001. The MMP activity in the supernatants after 48 hr is identified on the zymography gel by the
standards for MMP-2 and MMP-9. Pro-MMP-9 and active MMP-9 are seen as bands migrating 92 kDa and 86 kDa, respectively, while pro-MMP-2
and active MMP-2 are seen as bands migrating 72 kDa and 66 kDa, respectively. B-C: Quantification of MMP-2 and MMP-9 activity in
supernatants from healthy and fibrotic liver slices assessed by densitometry. Asterisks **p < 0.01.
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This study provides the first measurement of a liver fi-
brosis marker in ex vivo cultures that in other settings
have been shown to correlate to the extent of liver fibro-
sis in vivo. Furthermore, we used a PDE inhibitor, that in
other settings have been shown to modulate MMP activ-
ity [30], to demonstrate that this ex vivo liver fibrosis
model in combination with the biochemical marker may
provide further insights into ECM remodeling in the
liver during pathology. Hopefully this will enable other
researchers to investigate and validate key processes in
liver fibrosis and enable more developments of treat-
ments for liver diseases.
The levels of the C3M fragment was 100% elevated in

the ex vivo cultures of fibrotic liver slices. In the present
study we used the general MMP inhibitor GM6001 as a
positive control [27]. Following exposure of the liver
explants to GM6001 the level of the C3M was restored
to normal levels, suggesting that this marker is both spe-
cific for MMP activity and pathology relevant. Further-
more, in the in vivo experiment a 77% increase of serum
C3M fragment in CCl4 rats at termination compared to
baseline was observed. The two experiments combined
illustrate the accuracy for this marker both in vivo and
ex vivo. Additionally, our data are in alignment with pre-
vious investigation of C3M as a marker for liver fibrosis,
which demonstrated C3M was elevated in serum from a
BDL rat model [23,38] and a CCl4 inhalation model [39]
respectively.
cAMP modulation has in other settings been shown

to modulate MMP activity [30,40,41]. In particular in
ex vivo models, cAMP induction by either the PDE in-
hibitor IBMX or induction of adenylate cyclase by for-
skolin, resulted in inhibition of MMP expression and
activity [30]. A similar pattern was seen in the current
studies, suggesting that 1) cAMP is a general regulator
of MMP activity and 2) that this model and biomarker
may be used for important hypothesis testing and aid
in the understanding of the processes of ECM remod-
eling in the liver during pathology. One drawback of
the study is lack of intracellular cAMP measurement,
thus we can only hypothesize that inhibition of PDE
modulate cAMP levels as previously reported [30].
Further research is needed to understand the effect of
the PDE inhibition in hepatocellular models. The
current findings suggest a possibly path of investiga-
tion in terms of using the described tools allowing for
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a deeper molecular understanding of fibrogenesis and
fibrolysis.
Interesting, inhibition of MMP activity seemed to in-

crease the MMP-2 and MMP-9 expressions, suggesting
a regulatory feedback loop which augments MMP pro-
duction in the absence of MMP activity. Such a feedback
loop have previously been reported for protease inhi-
bition, and suggest further caution when targeting pro-
tease inhibition on various diseases [27,42]. Whether
MMP-2 and MMP-9 play different roles in regulating fi-
brosis has not yet been elucidated; however it is gener-
ally accepted that both are involved in fibrogenesis and
fibrosis resolution [43-45]. Gelatin zymography per-
formed with acute liver injury studies showed an over-
expression of both MMP-2 and MMP-9 in BDL rats
compared to sham [46], while others have shown that
only MMP-2 was up-regulated in CCl4 rats [47]. In the
current experiment, MMP-9 was highly expressed com-
pared to MMP-2, in fibrotic livers. When interpreting
the levels of MMP-2 and MMP-9, it is important to take
into account the levels of Tissue Inhibitor of Matrix
Metalloproteinase (TIMP) for a more complete picture
of the proteolytic capacity [15]. Further studies are
needed to investigate this balance in different models of
liver fibrosis, to understand the molecular action of each
of the individual players that might be highly stage
dependent [48,49]. There was no clear inhibition of
MMP activity in the presence of IBMX, albeit a signifi-
cant lower release of the C3M fragment was demon-
strated. The measurement of MMP-2 and MMP-9 is
done by zymography in the conditioned medium. There
may be a range of differences in the matrix of the fi-
brotic liver, and in that local activation milieu, compared
to that of the “simple” conditioned medium. Thus, the
cascade of activation proteases and generating the C3M
fragment is dependent on MMP activity, and when only
one single protease is present on MMP-9 activity. How-
ever, while in a more complex environment multiple
protease are present, and both activation cascades and
local positioning is complex and may be involved, while
general MMP activity still is essential for generating the
C3M fragment. This suggests that other MMPs are re-
sponsible for generation of this fragment than MMP-2
and MMP-9, and that other MMPs may have been atte-
nuated. Thorough characterization of C3M is ongoing in
our group. Investigation of in vitro cleaved type III colla-
gen with ADAM-TS’s, MMP-1, MMP-3, MMP-7, MMP-
12, and MMP-13 showed no reactivity using the C3M
antibody (data not shown). However, further biological
characterization is needed in order to understand the
generation of the C3M fragment in vivo and ex vivo.
In the present study AlamarBlue was used for quanti-

tative measurements of cell viability and proliferation.
This dye has previously been undertaken in other
settings by other researchers [50]. Interestingly we found
a 60% higher metabolic activity in fibrotic liver slices
compared to vehicle, suggesting that the liver toxicity by
CCl4 induced high activity within the liver tissue. This
clearly demonstrated the grave pathological induction in
the tissue by CCl4 that may be part of the processes
leading to liver fibrosis. Furthermore, the cell viability
remained the same as for fibrotic rat liver slices after
addition of IBMX and GM6001 suggesting that the
decreased levels of the C3M fragment released into the
supernatants is not caused by compound toxicity but ra-
ther altered MMP activity. This phenomenon can be
explained by the increased proliferation and ECM de-
position by activated HSCs in liver fibrosis. Furthermore,
during fibrogenesis hepatocytes undergo apoptosis thus
releasing intracellular substances. Mitochondrial, cyto-
solic, and microsomal enzymes have been shown to re-
duce Alamar Blue [51], which might explain the increase
in Alamar Blue activity in fibrotic liver slices compared
to vehicle liver slices. Further studies are needed to
understand this high metabolic activity in details.
The C3M assay was designed with that purpose, as the

epitope is a conserved sequence through many species,
and has been identified in: human, monkey, rat, mouse,
and sheep. We used the C3M assay in order to investi-
gate the type III collagen degradation in both ex vivo
and in vivo model of liver fibrosis. We found a highly
significant, and more than 100% fold up regulation of
the neo-epitope in fibrotic liver tissue compared to the
vehicle tissue in the ex vivo liver tissue cultures.
In the current experiments we used fibrotic livers, sug-

gesting that the model may reflect parts of the processes
of ECM remodeling in liver pathology. In alignment, as
fibrotic livers represent a highly altered metabolic profile
with activated cellular phenotypes [31,36,52], such sys-
tems may allow for improved translational research,
compared to that of healthy livers, allowing a more pre-
dictive outcome. Further research is needed to under-
stand whether this model may both be used for
investigation of the processes involved in liver fibrogen-
esis as well as those processes involved in liver fibrosis
resolution.
In conclusion, we have developed a novel ex vivo

model system with pathological affected livers in a com-
bination with a biochemical marker that is the result of
extensive matrix remodeling associated with fibrosis. We
found a highly significant, and more than 100% fold up
regulation of the neo-epitope in fibrotic liver tissue com-
pared to the vehicle tissue in the ex vivo liver tissue cul-
tures. Following exposure of the liver explants to
GM6001 or IBMX, C3M levels was restored to control
levels. Gelatin zymography demonstrated CCl4-treated
animals had highly increased MMP-9, but not MMP-2
activity, compared to slices derived from control
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animals. These data suggest that modulation of cAMP
through PDE inhibition may play a role in the regula-
tion of collagen turnover during liver fibrosis. Further
studies are needed to proof this hypothesis, such as in-
duction of adenylate cyclase by forskolin. As the bio-
chemical marker C3M can be assessed in both ex vivo
and preclinical, this may allow for better translational
research assisting drug discovery and development in
the liver fibrosis field.
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