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Abstract
Near an equilibrium we study the existence of asymptotically a.p. (almost periodic),
asymptotically a.a. (almost automorphic), pseudo a.p., pseudo a.a., weighed pseudo
a.p. and weighed pseudo a.a. solutions of Liénard differential equations in the form
x′′(t) + f (x(t),p) · x′(t) + g(x(t),p) = ep(t), where the forcing term possesses a similar
nature, and where p is a parameter in a Banach space. We use a perturbation method
around an equilibrium. We also study two special cases of the previous family of
equations that are x′′(t) + f (x(t)) · x′(t) + g(x(t)) = e(t) and
x′′(t) + f (x(t),q) · x′(t) + g(x(t),q) = e(t).
MSC: 34C27; 34C99; 47J07
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1 Introduction
We consider the following family of forced Liénard equations:

x′′(t) + f
(
x(t),p

) · x′(t) + g
(
x(t),p

)
= ep(t), (E ,p)

where P is a Banach space, f : R × P → R and g : R × P → R are two functions for each
p ∈ P and ep :R→R is a function.
When ep is almost periodic in the Bohr sense (respectively almost automorphic), in [],

Theorem . (respectively Theorem .), we have proven the existence of an almost pe-
riodic (respectively almost automorphic) solution xp near an equilibrium, by using the
perturbation method in the setting of Nonlinear Functional Analysis.
In the present paper, we extend this result to the frameworks of asymptotically almost

periodic, asymptotically almost automorphic, pseudo almost periodic, pseudo almost au-
tomorphic, weighted pseudo almost periodic and weighted pseudo almost automorphic
functions.
We also consider two special cases of (E ,p), which are

x′′(t) + f
(
x(t)

) · x′(t) + g
(
x(t)

)
= e(t), (F , e)

x′′(t) + f
(
x(t),q

) · x′(t) + g
(
x(t),q

)
= e(t). (G, e,q)
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On the existence of such solutions for the two previous cases, we obtain similar results as
the one obtained on (E ,p).
Martínez-Amores and Torres in [], then Campos and Torres in [] described the dy-

namics of equation (F , e) in the periodic case, namely the forcing term e is periodic.
Then Cieutat extended these results to the almost periodic case in [], Ait Dads, Cieu-
tat and Lhachimi did to the pseudo almost periodic case in [], and Cieutat, Fatajou and
N’Guérékata did to the almost automorphic case in [].
For almost periodic solutions of second-order differential systems, results on the differ-

entiable dependence were established in [] by Blot, Cieutat and Mawhin.
Our approach of the problem is to transform it into a nonlinear equation with param-

eters in Banach function spaces, and to apply the implicit function theorem of the differ-
ential calculus in Banach spaces. To realize our aim, we use the Nemytskii operators (also
called superposition operators) and state some properties on these operators. Then we
establish, for a linear differential equation in a Banach space, a result on the existence and
uniqueness of the solutions described above. We also extend the well-know result on the
almost periodicity of the derivative of an almost periodic function to the weighted pseudo
almost periodic and weighted pseudo almost automorphic cases.
Now we give a brief description of the contents of the paper. In Section , we fix our

notation and we recall some definitions. In Section , we establish some results on the dif-
ferentiation of weighted pseudo almost periodic functions and weighted pseudo almost
automorphic functions, then on a linear differential equation and on the Nemytskii oper-
ators. In Section , we state the main theorem (Theorem .) and we give the proof of this
theorem. In Section , we establish two corollaries (Corollary . and Corollary .) of the
two special cases of (E ,p).

2 Notation
When X and Y are Banach spaces,L(X,Y ) stands for the space of all bounded linear oper-
ators from X into Y , C(X,Y ) (respectively C(X,Y ), respectively C(X,Y )) stands for the
space of continuous (respectively Fréchet continuously differentiable, respectively twice
Fréchet continuously differentiable) functions from X into Y .
BC(R,X) stands for the space of bounded continuous functions from R into X. We

also define BC(R,X) := {u ∈ C(X,Y ) : u,u′ ∈ BC(R,X)} and BC(R,X) := {u ∈ C(X,Y ) :
u,u′,u′′ ∈ BC(R,X)}. Endowed with the norm ‖u‖∞ := sup{‖u(t)‖ : t ∈ R} (respectively
‖u‖BC := ‖u‖∞ + ‖u′‖∞, respectively ‖u‖BC := ‖u‖∞ + ‖u′‖∞ + ‖u′′‖∞), BC(R,X) (re-
spectively BC(R,X), respectively BC(R,X)) is a Banach space.
A function u ∈ BC(R,X) is called an almost periodic function (in the Bohr sense) when

it satisfies the following criterion (due to Bochner): {u(·+ r) : r ∈R} is relatively compact in
BC(R,X).AP(X) denotes the space of almost periodic functions fromR intoX. Endowed
with the norm ‖ · ‖∞, AP(X) is a Banach space which is invariant by translation [], that
is to mean that [t �→ u(t + τ )] ∈ AP(X) for all τ ∈R, when u ∈ AP(X).
A function u ∈ BC(R,X) is called an almost automorphic function (in the Bochner

sense) when, for all real sequence (sn)n, there exists a subsequence (tn)n of (sn)n such that
for all t ∈R, limn→∞ u(t + tn) = v(t) exists in X, and for all t ∈R, limn→∞ v(t – tn) = u(t) ex-
ists. AA(X) denotes the space of almost automorphic functions from R into X. Endowed
with the norm ‖ · ‖∞, AA(X) is a Banach space which is invariant by translation [].
We also consider the following other function spaces which one can find in []:

http://www.boundaryvalueproblems.com/content/2013/1/66
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• C(X) := {u ∈ BC(R,X) : lim|t|→∞ ‖u(t)‖ = }.
• AAP(X) := AP(X)⊕C(X) the space of asymptotically almost periodic functions [].
• AAA(X) := AA(X)⊕C(X) the space of asymptotically almost automorphic
functions [].

• P(X) := {u ∈ BC(R,X) : limT→∞ 
T

∫ +T
–T ‖u(s)‖ds = }.

• PAP(X) := AP(X)⊕ P(X) the space of pseudo almost periodic functions [, ].
• PAA(X) := AA(X)⊕ P(X) the space of pseudo almost automorphic functions
[, ].

Endowed with the norm ‖ · ‖∞, AAP(X), AAA(X), PAP(X) and PAA(X) are Banach
spaces which are invariant by translation (cf. respectively [, , ] and []).
Let L

loc(R, (,∞)) be the set of all functions ρ : R → (,∞) which are positive and lo-
cally Lebesgue-integrable over R. For a given r ∈ (,∞) and for each ρ ∈ L

loc(R, (,∞)),
we set m(r,ρ) :=

∫ +r
–r ρ(x)dx.

We define the following spaces:
• U∞ := {ρ ∈L

loc(R, (,∞)) : limr→∞ m(r,ρ) = ∞}
• UT := {ρ ∈ U∞ : ρ satisfies (H)}, where (H) is the following condition due to []:
(H) For all τ ∈R, there exist β >  and a bounded interval I such that ρ(t + τ )≤ β · ρ(t)

a.e. t ∈R \ I ,
which is equivalent to ∀τ ∈R, lim sup|t|→∞

ρ(t+τ )
ρ(t) <∞ (cf. Remark . in [] or Remark .

in []).
For ρ ∈ U∞, we consider the following spaces:
• P(X,ρ) := {u ∈ BC(R,X) : limr→∞ 

m(r,ρ)
∫ +r
–r ‖u(s)‖ρ(s)ds = }.

• WPAP(X,ρ) := AP(X)⊕ P(X,ρ) the space of weighted pseudo almost periodic
functions [, ].

• WPAA(X,ρ) := AA(X)⊕ P(X,ρ) the space of weighted pseudo almost
automorphic functions [].

Letμ be a positivemeasure onB (B is a Lebesgue σ -field onR) satisfyingμ(R) = ∞ and
μ([a,b]) < ∞ for all a ≤ b. A function u is called μ-pseudo almost periodic (respectively
μ-pseudo almost automorphic) if u = g + φ, where g ∈ AP(X) (respectively g ∈ AA(X))
and φ is a function satisfying

lim
r→∞


μ([–r, r])

∫
[–r,r]

∥∥φ(s)
∥∥dμ(s)ds = ,

where μ([–r, r]) is the measure of the set [–r, r]. The set of such functions is denoted by
PAP(R,X,μ) (respectively PAA(R,X,μ)) cf. [] (respectively []). When the measure μ

satisfies the following condition:
(C) For all τ ∈R, there exist β >  and a bounded interval I such that

μ({a + τ : a ∈ B})≤ β · μ(B) for all B ∈ B satisfying B∩ I = ∅,
then the set PAP(R,X,μ) (respectively PAA(R,X,μ)) is a Banach space which is invariant
by translation, cf. Corollary . and Theorem . in [] (respectively Theorem . and
Theorem . in []).
The space WPAP(X,ρ) (respectively WPAA(X,ρ)) is a special case of the space

PAP(R,X,μ) (respectively PAA(R,X,μ)) in the following sense:WPAP(X,ρ) = PAP(R,X,
μ) (respectivelyWPAA(X,ρ) = PAA(R,X,μ)), where the measure μ is absolutely contin-
uous with respect to the Lebesgue measure and its Radon-Nikodym derivative is ρ = dμ

dt .
The function ρ satisfies hypothesis (H) if and only if the measure μ satisfies condition (C),

http://www.boundaryvalueproblems.com/content/2013/1/66
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cf. Remark . in [] (respectively Remark . in []). Consequently, when ρ ∈ UT , the
spacesWPAP(X,ρ) andWPAA(X,ρ) are Banach spaces which are invariant by transla-
tion.
E(X) denotes one the following spaces: AAP(X), AAA(X), PAP(X), PAA(X),

WPAP(X,ρ), or WPAA(X,ρ) endowed with the norm ‖ · ‖∞. We have E(X) ⊂
BC(R,X), and when ρ ∈ UT , E(X) is a Banach space which is invariant by translation.
E(X) denotes the space of functions u ∈ BC(R,X) such that u,u′ ∈ E(X). Endowed
with the norm ‖ · ‖BC , E(X) is a Banach space. E(X) denotes the space of the func-
tions u ∈ BC(R,X) such that u,u′,u′′ ∈ E(X). Endowed with the norm ‖ · ‖BC , E(X) is
a Banach space.

3 Preliminary results
For the proof of the main result, we need the following lemmas.

Lemma . Let ρ ∈ UT and u ∈ C(R,X)∩ E(X). If the derivative u′ is uniformly contin-
uous, then u′ ∈ E(X), thus u ∈ E(X).

Remark . Lemma . is well know for AP(X), AA(X). In the scalar case, for PAP(X),
this result is proved in [], Corollary ., p..

Proof Consider the function gn : R → X defined by gn(t) := n(f (t + 
n ) – f (t)) for n ∈ N \

{}. Since E(X) is a translation invariant vectorial space, then gn ∈ E(X). The equality
gn(t) – f ′(t) = n

∫ 
n
 (f ′(t + s) – f ′(t))ds shows that the uniform continuity of f ′ implies that

the sequence (gn)n with values in the Banach space E(X) converges uniformly to f ′ on R.
Then f ′ ∈ E(X), and from the definition of E(X), we obtain f ∈ E(X). �

Lemma . Let ρ ∈ UT and A ∈ L(X,X). If the spectrum σ (A) of A does not intersect the
imaginary axis, then for all h ∈ E(X), there exists a unique solution in E(X) of the differ-
ential equation

u′(t) = Au(t) + h(t). (.)

Moreover, the solution u is in E(X).

Proof Applying Theorem ., p. in [] (or Theorem  in []), Equation (.) admits a
unique bounded solution on R which is given by the formula

u(t) =
∫ ∞

–∞
G(t – s)h(s)ds, (.)

where G is the principal Green function for Equation (.). The Green function G : R →
L(X,X) is continuous on R – {}, and there exist M ≥  and ω >  such that ‖G(t)‖ ≤
M exp(–ω|t|) for all t ∈ R.
Now we prove that the bounded solution u defined by (.) belongs to E(X).
When E(X) = AP(X) (respectively E(X) = AA(X)), this result is a straightforward

consequence of Theorem . in [] (respectively Theorem . in []) and when E(X) =
C(X), this result is proved in [], Proposition . Then we deduce the result for E(X) =
AAP(X) (respectively E(X) = AAA(X)).

http://www.boundaryvalueproblems.com/content/2013/1/66
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Note that the case of the pseudo almost periodic (respectively pseudo almost auto-
morphic) functions is a special case of the weighted pseudo almost periodic (respectively
weighted pseudo almost automorphic) functions by taking ρ(t) :=  for all t ∈ R; remark
that the associated measure is exactly the Lebesgue measure.
And so it suffices to prove the cases of weighted pseudo almost periodic functions and

of weighted pseudo almost automorphic functions.
When E(X) = WPAP(X,ρ) (respectively E(X) = WPAA(X,ρ)), this result is a

straightforward consequence of Theorem . in [] (respectively Theorem . in []).
Consequently, u ∈ E(X), and from the definition of E(X), we deduce that [t �→ Au(t)] ∈
E(X). Since u satisfies Equation (.), then u′ ∈ E(X), and from the definition of E(X),
we obtain u ∈ E(X). �

Lemma . Let X and Y be two finite-dimensional Banach spaces, and let φ : X → Y
be a continuous mapping. Then the Nemytskii operator Nφ : E(X) → E(Y ), defined by
Nφ(u) := [t �→ φ(u(t))], is continuous.

Remark . Contrary to the asymptotically almost periodic case and, in particular, for
the almost periodic case, when the dimension of the Banach spaces X and Y is infinite,
Lemma . does not hold for the pseudo almost periodic case, and thus for the weighted
pseudo almost periodic case, without additional assumptions. This is due to the fact that
the range of a pseudo almost periodic function is only bounded, but not relatively compact,
contrary to the asymptotically almost periodic case. This last observation still holds when
the word almost periodic is replaced by almost automorphic.

Proof When E(X) = AAP(X) and E(Y ) = AAP(Y ), replacing R+ by R, this result is a
variation of Theorem . in [].
When E(X) = AAA(X) and E(Y ) = AAA(Y ), replacing R+ by R, the inclusion

Nφ(AAA(X))⊂ AAA(Y ) is a variation of Theorem . in []. Moreover, using Lemma 
in [], we know that Nφ : BC(R,X) → BC(R,Y ) is continuous, and so its restriction to
AAA(X) is also continuous.
When E(X) = PAP(X) and E(Y ) = PAP(Y ) (respectively E(X) = PAA(X) and

E(Y ) = PAA(Y )), this result is a straightforward consequence of Theorem . (respec-
tively Theorem .) in [].
WhenE(X) =WPAP(X,ρ) andE(Y ) =WPAP(Y ,ρ) (respectivelyE(X) =WPAA(X,

ρ) and E(Y ) =WPAA(Y ,ρ)), using Corollary . in [] (respectively Corollary . in
[]), we know that Nφ(WPAP(X,ρ)) ⊂ WPAP(Y ,ρ) (respectively Nφ(WPAA(X,ρ)) ⊂
WPAP(Y ,ρ)). Moreover, using Lemma  in [], we know that Nφ : BC(R,X) →
BC(R,Y ) is continuous, and so its restriction toWPAP(X,ρ) (respectivelyWPAA(X,ρ))
is also continuous. �

Lemma . Let X and Y be two finite-dimensional Banach spaces, and let φ : X →
Y be a continuously Fréchet-differentiable mapping. Then the Nemytskii operator Nφ :
E(X) → E(Y ) is continuously Fréchet-differentiable on E(X), and we have DNφ(u)v =
[t �→Dφ(u(t))v(t)] for all u, v ∈ E(X).

Proof When E(X) = AAP(X) and E(Y ) = AAP(Y ), replacing R+ by R, this result is a
variation of Theorem . in [].

http://www.boundaryvalueproblems.com/content/2013/1/66
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When E(X) = AAA(X) and E(Y ) = AAA(Y ), using Lemma  in [], we know
that Nφ : BC(R,X) → BC(R,Y ) is of class C and that we have DNφ(u)h = [t �→
Dφ(u(t)) · h(t)] when u,h ∈ BC(R,X). Now, using Theorem . in [], we know that
Nφ(AAA(X)) ⊂ AAA(Y ) and that Dφ ◦ u ∈ AAA(L(X,Y )) when u ∈ AAA(X). And
so Nφ ∈ C(AAA(X),AAA(Y )) and the announced formula for its Fréchet-differential
is proven.
As in the proof of Lemma ., the case of PAP(X) (respectively PAA(X)) is a corollary

of the caseWPAP(X,ρ) (respectivelyWPAA(X,ρ)). And so it suffices to prove the cases
of the weighted pseudo almost periodic functions and of the weighted pseudo almost au-
tomorphic functions.
To prove the result in the case where E(X) =WPAP(X,ρ) and E(Y ) =WPAP(Y ,ρ)

(respectively E(X) =WPAA(X,ρ) and E(Y ) =WPAA(Y ,ρ)), note that, using Lemma 
in [], we know that Nφ : BC(R,X) → BC(R,Y ) is of class C and that we have
DNφ(u)h = [t �→ Dφ(u(t)) · h(t)] when u,h ∈ BC(R,X). Now, using Corollary . in
[] (respectively Corollary . in []), we know that Nφ(WPAP(X,ρ))⊂WPAP(Y ,ρ)
(respectively Nφ(WPAA(X,ρ)) ⊂ WPAA(Y ,ρ)) and that Dφ ◦ u ∈ WPAP(L(X,Y ),ρ)
(respectively Dφ ◦ u ∈ WPAA(L(X,Y ),ρ)) when u ∈ WPAP(X,ρ) (respectively
WPAA(X,ρ)).
Consequently, we obtain Nφ ∈ C(WPAP(X,ρ),WPAP(Y ,ρ)) (respectively Nφ ∈

C(WPAA(X,ρ),WPAA(Y ,ρ))) and the announced formula for its Fréchet-differential
is proven. �

Lemma . Let ρ ∈ UT , p ∈ P and ep ∈ E(R). If x is a solution of (E ,p) in E(R), that is,
x ∈ C(R,R)∩ E(R) and x satisfies (E ,p), then x ∈ E(R).

Proof Lemma . in [] asserts that if x is a solution of (E ,p) in BC(R,R), then x ∈
BC(R,R), therefore the derivative x′ is uniformly continuous, and by help of Lemma .,
we obtain x ∈ E(R). By using Lemma ., the functions [t �→ f (x(t),p)] and [t �→ g(x(t),p)]
are in E(R). Applying again Lemma . to [t �→ (f (x(t),p),x′(t))] ∈ E(R) and using the
continuous function φ : R → R defined by φ(r, s) := r · s, we obtain that [t �→ f (x(t),p) ·
x′(t)] ∈ E(R). Since x′′(t) = ep(t) – f (x(t),p) · x′(t) – g(x(t),p), then x′′ ∈ E(R), and from
the definition of E(R), we obtain that x ∈ E(R). �

4 Themain result
First we announce the main result of the paper.

Theorem . Let ρ ∈ UT . Under the following assumptions:
(A) f , g ∈ C(R× P,R),
(A) g(, ) = ,
(A) p �→ ep ∈ C(P,E(R)) and e = ,
(A) f (, ) �=  when f (, ) <  ∂g(,)

∂x , and ∂g(,)
∂x �=  when f (, ) ≥  ∂g(,)

∂x ,
there exist a neighborhood U of  in E(R), a neighborhood V of  in P and a C-mapping
p �→ x[p] from V into U which satisfies the following conditions:

(i) x[] = ,
(ii) for all p ∈ V , x[p] is a solution of (E ,p) in E(R),
(iii) if x ∈ U is a solution of (E ,p) in E(R) with p ∈ V , then x = x[p].

http://www.boundaryvalueproblems.com/content/2013/1/66


Blot et al. Boundary Value Problems 2013, 2013:66 Page 7 of 11
http://www.boundaryvalueproblems.com/content/2013/1/66

To prove Theorem ., we define the operator 	 : E(R)× P → E(R) by setting

	(x,p) :=
[
t �→ x′′(t) + f

(
x(t),p

) · x′(t) + g
(
x(t),p

)
– ep(t)

]
(.)

when x ∈ E(R) and p ∈ P.
Let p ∈ P. By using Lemma ., we deduce that x ∈ E(R) satisfies 	(x,p) =  if and only

if x is a solution of (E ,p) in E(R).
Under (A) and (A), note that  is a solution of (E , ) in E(R), and so the following

equality holds:

	(, ) = . (.)

Lemma . Under (A)-(A), the operator 	 is well defined and it is of class C on
E(R)× P. Moreover, the partial differential of 	 with respect to the first variable, at the
point (x,p) = (, ), is given by

Dx	(, )y =
[
t �→ y′′(t) + f (, ) · y′(t) +

∂g(, )
∂x

· y(t)
]

when y ∈ E(R).

Proof First we introduce linear operators: d
dt : E(R) → E(R) defined by d

dt x := x′′, d
dt :

E(R) → E(R) defined by d
dt x := x′, in : E(R) → E(R) defined by in(x) := x and in :

E(R) → E(R) defined by in(x) := x. Since ‖ d
dt x‖∞ ≤ ‖x‖BC , ‖in(x)‖BC ≤ ‖x‖BC and

‖in(x)‖∞ ≤ ‖x‖BC for all x ∈ E(R), and ‖ d
dt x‖∞ ≤ ‖x‖BC for all x ∈ E(R), these linear

operators are continuous; and consequently, the following assertion holds:

d

dt
,
d
dt

, in, in are of class C.

Now we define the Nemytskii operators build on the functions f and g : Nf : E(R) ×
E(P) → E(R) defined by Nf (x,p) := [t �→ f (x(t),p(t))] and Ng : E(R) × E(P) → E(R)
defined by Ng(x,p) := [t �→ g(x(t),p(t))]. By using Lemma ., Nf and Ng are of class C on
E(R)× E(P) assimilated to E(R× P), and Lemma . provides formulas for the differ-
entials of these Nemytskii operators:

DxNf (x,p)y =
[
t �→ ∂f (x(t),p(t))

∂x
· y(t)

]
, (.)

DxNg(x,p)y =
[
t �→ ∂g(x(t),p(t))

∂x
· y(t)

]
(.)

for all x, y ∈ E(R).
We can assimilate a point p ∈ P to the constant function t �→ p that belongs to E(P),

which permits us to look at P as a closed vector subspace of E(P). Then we can consider
the following restrictions of the operators Nf and Ng : Sf : E(R) × P → E(R) defined by
Sf (x,p) := [t �→ f (x(t),p)] and Sg : E(R)× P → E(R) defined by Sg(x,p) := [t �→ g(x(t),p)]
when x ∈ E(R) and p ∈ P.

http://www.boundaryvalueproblems.com/content/2013/1/66
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Since the restriction of a C-mapping to a Banach subspace is also a C-mapping, a
straightforward consequence of the continuous differentiability of Nf and of Ng is that Sf
and Sg are of class C, and the consequences of (.) and (.) are the following formulas:

DxSf (x,p)y =
[
t �→ ∂f (x(t),p)

∂x
· y(t)

]
, DxSg(x,p)y =

[
t �→ ∂g(x(t),p)

∂x
· y(t)

]

for all x, y ∈ E(R) for all p ∈ P.
Now we consider the following operators: π : E(R)× P → E(R) defined by π(x,p) :=

x, π : E(R)× P → P defined by π(x,p) := p and B :R×R → R defined by B(r, s) := r · s.
We consider the Nemystkii operator build on B, NB : E(R) × E(R) → E(R) defined by
NB(u, v) := [t �→ u(t) · v(t) = B(u(t), v(t))] and C : E(R) × P → E(R) defined by C(x,p) :=
–ep.
Since π and π are linear continuous, they are of classC. Since B is bilinear continuous,

it is of class C; and consequently, using Lemma ., NB is of class C on E(R) × E(R).
Denoting by ε : P → E(R) the mapping p �→ ep, ε is of class C after (A), and C = –ε ◦π

is of class C as a composition of C-mappings. And so we can assert that π, π, NB and
C are of class C.
Now we note that the following equality holds:

	 =
d

dt
◦ π +NB ◦

(
Sf ◦ (in ◦ π,π),

d
dt

◦ (in ◦ π)
)

+ Sg ◦ (in ◦ π,π) +C. (.)

Since all the mappings which are present in the previous formula are of class C, using the
usual rules of the differential calculus in Banach spaces, we obtain that 	 is of class C.
For all y ∈ E(R), by using the classical formulas of the differential calculus in Banach

spaces and (.), we obtain

Dx	(, )y =
d

dt
y +NB

(
∂f
∂x

(, )y, 
)
+NB

(
Sf (, ),

d
dt

(
in(y)

))
+DxSg(, )y,

which implies, for all t ∈ R,

(
Dx	(, )y

)
(t) = y′′(t) + f (, ) · y′(t) +

∂g(, )
∂x

· y(t),

which is the announced formula. �

Lemma . Under (A)-(A), Dx	(, ) is a bijection from E(R) onto E(R).

Proof Let b ∈ E(R). We want to prove that there exists a unique y ∈ E(R) such that
Dx	(, )y = b. Using the formula provided by Lemma ., this equation is equivalent to
saying that y is a solution in E(R) of the following second-order linear differential equa-
tion (which is a Duffing equation):

y′′(t) + f (, ) · y′(t) +
∂g(, )

∂x
· y(t) = b(t). (.)
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Rewriting this second-order equation in the form of a first-order system, we obtain the
following equivalent differential system:

X ′(t) =MX(t) + B(t), (.)

where X(t) :=
[ y(t)
y′(t)

]
, B(t) :=

[ 
b(t)

]
, andM :=

[  
– ∂g(,)

∂x –f (,)
]
.

For ρ ∈ UT and with condition (A), the assumptions of Lemma . are fulfilled, and
we can assert that there exists a unique X ∈ E(R), which is a solution of (.). Therefore
the first coordinate of X, denoted by y, is the unique solution of (.) in E(R) since y and
y′ ∈ E(R), and then y is the unique element of E(R) which satisfies Dx	(, )y = b. �

Proof of Theorem . By using (.), Lemma . and Lemma ., we can use the implicit
function theorem ([], p.) that permits us to say that there exist a neighborhood U of
 in E(R), a neighborhood V of  in P and a C-mapping p �→ x[p] from V into U , which
satisfies the following conditions:
(a) x[] = , that is, the condition (i) of Theorem ..
(b) 	(x[p],p) =  for all p ∈ V , that ensures that x[p] is a solution of (E ,p) in E(R) for

all p ∈ V , that is, the conclusion (ii) of Theorem ..
(c) {(x,p) ∈ U × V : 	(x,p) = } = {(x[p],p) : p ∈ V} that implies the conclusion (iii) of

Theorem ..
And so Theorem . is proven. �

5 Special cases
We consider the equation

x′′(t) + f
(
x(t)

) · x′(t) + g
(
x(t)

)
= e(t), (F , e)

which is a special case of (E ,p) by taking f (x,p) = f(x), g(x,p) = g(x) and p �→ ep defined
as the identity operator on P = E(R).
On the existence solution of (F , e) in E

(R), we establish the following result.

Corollary . Let ρ ∈ UT . Under the following assumptions:
(A) f, g ∈ C(R,R),
(A) g() = ,
(A) f() �=  when f() < g ′

(), and g ′
() �=  when f() ≥ g ′

(),
there exist a neighborhood W of  in E(R), a neighborhood U of  in E(R) and a
C-mapping e �→ x[e] fromW into U , which satisfies the following conditions:

(i) x[] = ,
(ii) for all e ∈W , x[e] is a solution of (F , e) in E

(R),
(iii) if x ∈ U is a solution of (F , e) with e ∈W in E(R), then we have x = x[e].

The second special case of the equation (E ,p) is

x′′(t) + f
(
x(t),q

) · x′(t) + g
(
x(t),q

)
= e(t) (G, e,q)

when q belongs to a Banach space Q, and by taking p = (e,q) ∈ P = E(R) × Q, f (x, e,q) =
f(x,q), g(x, e,q) = g(x,q) and e(e,q) = e. On the existence solution of (G, e,q) in E

(R), we
establish the following result.
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Corollary . Let ρ ∈ UT . Under the following assumptions:
(A) f, g ∈ C(R×Q,R),
(A) g(, ) = ,
(A) f(, ) �=  when f(, ) <  ∂g(,)

∂x , and ∂g(,)
∂x �=  when f(, ) ≥  ∂g(,)

∂x ,
there exist a neighborhoodW of  in E(R), a neighborhood U of  in E(R), a neighbor-
hood V of  in Q and a C-mapping e �→ x[e,q] from W × V into U which satisfies the
following conditions:

(i) x[, ] = ,
(ii) for all e ∈W in E(R) and for all q ∈ V, x[e,q] is a solution of (G, e,q) in E(R),
(iii) if x ∈ U is a solution of (G, e,q) with e ∈W in E(R) and q ∈ V, then we have

x = x[e,q].
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