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1 Introduction

A natural object to consider when studying an asymptotically (approximately) de Sitter

spacetime, such as the universe during the inflationary era, is the wavefunction [1] as a

function of small fluctuations of the bulk fields. For a free massless scalar φ (such as the

inflaton in slow roll inflation) in the Bunch-Davies vacuum state1 |E〉 [2–10] in a fixed

four-dimensional de Sitter background:

ds2 =
`2

η2

(
−dη2 + d~x2

)
, η ∈ (−∞, 0) , (1.1)

one finds the late time Hartle-Hawking Gaussian wavefunctional at η = ηc → 0 [11]:

lim
ηc→0

|ΨHH [ϕ(~x), ηc] | ∼ exp

[
−`

2

2

∫
d3k

(2π)3
k3 ϕ~k ϕ−~k

]
, (1.2)

where ϕ~k are the Fourier components of the late time profile ϕ(~x). Such a Gaussian wave-

function gives rise to the scale-invariant fluctuations of the cosmic background radiation.

Understanding the behavior of such a wavefunction for a large range of values for its argu-

ments, which include the metric, and with the inclusion of quantum corrections is a basic

problem in quantum cosmology.

The perturbative Bunch-Davies wavefunction (1.1) was noticed to be a simple analytic

continuation [11] of the partition function of a free massless field in a fixed Euclidean

anti-de Sitter space. These observations, coupled with the correspondence between anti-

de Sitter space and conformal field theory, motivate the proposal that at late times (or

large spatial volume) ΨHH is computed by a statistical (and hence Euclidean) conformal

field theory, in what has come to be known as the dS/CFT conjecture [11–13].2 In its

weakest form dS/CFT conjectures that the Taylor coefficients of the logarithm of the late

time Hartle-Hawking wavefunctional expanded about the empty de Sitter vacuum at large

N ∼ (`/`p)
# are the correlation functions of such a non-unitary CFT. Namely, at some

late time cutoff η = ηc → 0 we have:

log ΨHH [ϕ(~x), ηc] =
∞∑
n=1

1

n!

(∫
d3x1 . . .

∫
d3xn ϕ(~x1) . . . ϕ(~xn) 〈O(~x1) . . .O(~xn)〉CFT

)
.

(1.3)

The correlators 〈O(~x1) . . .O(~xn)〉CFT , where the operator O has been rescaled by an ap-

propriate ηc dependent factor, compute late time bulk correlation functions with future

boundary conditions [64]. The bulk late time profiles ϕ(~x) are taken to be infinitesimal

such that ΨHH [ϕ(~x), ηc] is merely a generating function of late time correlators about

ϕ(~x) = 0. In its strongest form, the claim is that the CFT is a non-perturbative definition

of ΨHH for finite deviations away from the pure de Sitter vacuum and at finite N . Particu-

larly, ΨHH is computed by the partition function of the putative CFT with sources turned

1It might be more appropriate to call it the Bunch-Davies-Hartle-Hawking-Euclidean-Schomblond-

Spindel-Chernikov-Tagirov-Mottola-Allen-Sasaki-Tanaka-Yamamoto-Critchley-Dowker-Candelas-Raine-

Boerner-Duerr vacuum state.
2See [14] for a discussion of several aspects of de Sitter space. Other proposals include [15–31].
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on. The single-trace operators are dual to the bulk de Sitter fields. Abstractly speaking, if

we could write down a complete basis B (which may include information about topology,

geometry and matter) for the Hilbert space of our theory, ΨHH would be computing the

overlap of the Hartle-Hawking state |E〉 with a particular state |β〉 ∈ B. One could also

consider computing the partition function with sources for more general multi-trace opera-

tors turned on. As we shall see this computes the overlap of |E〉 with states which are not

sharp eigenstates of the field operator or its conjugate momentum. More dramatically, if

there are single-trace operators which are irrelevant they may correspond to an exit from

the de Sitter phase (see for instance [32]).

de Sitter space arises as a non-linear classical solution to four-dimensional higher spin

gravity [33–38]. This theory has a tower of light particles with increasing spin, including

a spinless bulk scalar with mass m2`2 = +2 and a spin-two graviton. The scalar potential

has a minimum about the pure de Sitter solution and the kinetic terms of the higher

spin particles carry the right signs and are canonical. Hence the de Sitter vacuum is

perturbatively stable and free of tachyons and ghosts in this theory. Beyond perturbation

theory, the late time Hartle-Hawking wavefunctional of asymptotically de Sitter space in

higher spin gravity (at least when the topology at I+ is sufficiently simple) is conjectured

to be computed by the partition function of the Sp(N) model [39] (see also [40, 41]), with

N ∼ (`/`p)
2 . This model comes in two flavors, either a free theory of N anti-commuting

scalar fields transforming as vectors under the Sp(N) symmetry or as a critical theory

obtained from the Sp(N) model by a double trace deformation [42]. The partition function

of the critical model (at least at large N) as a functional of the sources of the single-trace

operators computes the wavefunction in the ordinary field basis. On the other hand, the free

theory computes the wavefunction in a slightly modified basis. The quantum mechanical

analogue of this basis is given by eigenstates of the Hermitian operator ς̂ = (βx̂− αp̂) with

α, β ∈ R. Given the wavefunction in the coordinate basis ψ(x) we can compute in the

ς̂-basis by performing the transform:

ψ(ς) =
1√
2πα

∫
dx e

− i
α

(
βx2

2
−ςx

)
ψ(x) , ψ(x) =

1√
2πα

e
iβx2

2α

∫
dς e−

iςx
α ψ(ς). (1.4)

Normalizability in the x̂-basis implies normalizability in the ς̂-basis and vice-versa. How-

ever, a node-less ψ(x) will not necessarily give a node-less ψ(ς).

The free Sp(N) model computes the late time Hartle-Hawking wavefunction of the

bulk scalar in the eigenbasis of the late time operator [43]:

√
N η2

c σ̂ = φ̂− η3
c π̂φ , π̂φ ≡ −

i√
det gij

δ

δφ
, (1.5)

where φ̂ is the bulk scalar field operator and π̂φ is the field momentum density operator. We

have taken |ηc| � 1 as a late time cutoff and the combination gij/η
2
c represents the spatial

metric at this time in Fefferman-Graham gauge. It is somewhat remarkable that there

exists a basis for which the wavefunctional is computed by a free dual theory given that in

the ordinary field basis it is computed by a strongly coupled theory. The partition function

of the free Sp(N) theory on an R3 topology is an explicit resummation of the correlation

– 3 –
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functions and there are no non-perturbative phenomena. The remaining coordinates of

the wavefunctional, which are late time profiles of the higher spin fields including the bulk

graviton, are computed in the ordinary field basis for both the free and critical models.

The wavefunctionals for the bulk scalar in the two different bases are related by a

functional version of the transform (1.4). As shown in [43], in the large N limit performing

the transform amounts to finding the saddles of a functional equation. One of these saddles

(not necessarily the dominant one) gives the field basis wavefunction whose perturbative

expansion agrees with that computed perturbatively in the bulk about the pure de Sitter

solution. In most of what follows, we will perform computations in the σ̂-basis, which

amounts to the calculation of a functional determinant. This is a considerably hard object

to compute and we will limit ourselves to situations where we have conditioned all bulk

fields except the metric gij and the scalar φ to have vanishing late time profiles. We should

emphasize that this amounts to a very sharp conditioning and ultimately the situation

could be altered by allowing higher spin deformations.3

The main body of this paper is dedicated to the study of the partition function of

the Sp(N) model for a large class of SO(3) preserving deformations of the bulk scalar and

graviton. That is to say we study the late time wavefunction for bulk graviton and scalar

configurations with late time profile on an R3 topology:

ds2 = dr2 + f(r)2 r2 dΩ2 , φ = φ(r) . (1.6)

where dΩ2
2 is the round metric on an S2 whose SO(3) symmetry is the one preserved. We

also study the analogous problem on an S3 topology, which amounts to a simple conformal

transformation of the R3 case, where the late time profiles take the form:

ds2 = dψ2 + f(ψ)2 sin2 ψ dΩ2 , φ = φ(ψ) . (1.7)

This allows us to examine the behavior of the wavefunction of higher spin de Sitter space

for inhomogeneous and anisotropic deformations which extend the rather uniform and

homogenous deformations studied in [43]. In [43] it was found that the wavefunction in the

σ̂-basis diverges as a function of uniform mode of the bulk scalar on the round metric on

S3. One of the questions we would like to understand is whether such non-normalizabilities

persist for less ‘global’ late time configurations such as the above SO(3) deformations. The

above metric deformations are conformally equivalent to the flat/round metric on R3/S3.

We find particularly striking numerical evidence, discussed in section 5, that upon fixing

the uniform mode of the bulk scalar on S3 (in the conformal frame where it is endowed

with the standard metric) all other directions of a general SO(3) late time deformation

are normalizable. We have also analyzed a different geometric deformation, this time

homogeneous but anisotropic, which does not keep the metric in the same conformal class.

This is a squashing deformation α of the round metric on S3 expressed as an S1 fiber over

an S2:

ds2 =
1

4

(
dθ2 + cos2 θdφ2 +

1

1 + α
(dψ + sin θdφ)2

)
, (1.8)

3It might be worth mentioning that non-linear bulk solutions exist in higher spin gravity for which only

the bulk metric and scalar are turned on [44].
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along with a uniform late time profile for the bulk scalar. When α = 0 the metric (1.8)

reduces to the standard metric on S3. Once again, so long as the scalar profile is kept fixed

we find that the wavefunction is bounded in the α direction.

We begin by briefly reviewing the Sp(N) model in section 2. In section 3, using tech-

nology developed in [45], we compute the wavefunction (in the σ̂-basis) for some Gaussian

radial deformations of the bulk scalar. This amounts to computing a functional determi-

nant of a scalar field with a radially dependent mass term. In section 4 we compute the

wavefunction for a radial deformation of the geometry, in the presence of a radial mass de-

formation, that takes it from the flat metric on R3 to a general form ds2 = dr2+r2f(r)2dΩ2
2 .

In section 5 we compute the wavefunction for several harmonics on the three-sphere and

linear combinations thereof and note that the wavefunction seems to diverge only when the

zero harmonic becomes large and negative. We then discuss the behavior of the wavefunc-

tion on a squashed sphere with a uniform profile of the late time bulk scalar in section 6.

In section 7 we make some general remarks about double trace deformations. We end by

speculating on possible extensions of higher spin holography in section 8. Most of our calcu-

lations can carry over to the O(N) model and its AdS4 dual in higher spin gravity [46–49].

2 Wavefunctionals and the free Sp(N) model

We wish to study the Hartle-Hawking wavefunctional of an asymptotically de Sitter higher

spin gravity for deformations of the bulk scalar and graviton away from the pure de Sitter

solution. We will restrict the topology of space to be R3 or S3 and allow only deformations

that decay sufficiently fast at infinity. In this section, we remind the reader of the Sp(N)

theory and discuss how to compute its functional determinant for certain SO(3) invariant

radial deformations. One motivation to do so is to understand the behavior of the wave-

function of higher spin de Sitter space for mass deformations that are more ‘localized’ than

those studied in [43] which were uniform over the entire S3. It is also worth noting that

computing analogous pieces of the Hartle-Hawking wavefunction for a simple toy model of

Einstein gravity coupled to a scalar field with a simple potential would require significant

numerical work even in the classical limit, let alone at finite N . One would have to find

a complex solution of the Euclidean equations of motion that caps off smoothly in the

interior and has the prescribed boundary values at large volume, and compute its on-shell

action.

2.1 Wavefunctional

Recall that the action of the free Sp(N) model on a curved background gij with a source,

m(xi), turned on for the J (0) = ΩABχ
AχB ≡ χ · χ operator (dual to the bulk scalar) is

given by:

S =
1

2

∫
d3x
√
g ΩAB

(
∂iχ

A∂jχ
Bgij+

R[g]

8
χAχB +m(xi)χAχB

)
, {A,B}= 1, 2, . . . , N ,

(2.1)

where N should be even. The fields χA are anti-commuting scalars that transform as

Sp(N) vectors and ΩAB is the symplectic form. Notice that due to the presence of the

– 5 –
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conformal coupling, the action is invariant under a local Weyl transformation of the metric:

gij → e2W (xi)gij , so long as we also rescale the source as m(xi)→ e−2W (xi)m(xi). From the

bulk point of view this amounts to performing a coordinate transformation η = e−W (xi)η, as

can be seen by studying the Starobinski-Fefferman-Graham expansion [50–52] near η = 0:

ds2

`2
= −dη

2

η2
+

1

η2
gij(x

i)dxidxj + . . . , φ = η ν(xi) + η2 µ(xi) + . . . . (2.2)

Notice that µ(xi) ≡
√
Nm(xi) is not the coefficient of the slowest falling power of η for

bulk scalar. At the linearized level, the ν(xi) profile is dual to the vev of the J (0) operator

in the presence of an infinitesimal m(xi) source.

Computing the late time Hartle-Hawking wavefunctional in the σ̂-basis with σ = m(xi)

amounts to computing the partition function of the Sp(N) theory with finite sources turned

on. Given that it is a Gaussian theory, we can integrate out the anti-commuting χA fields

and find:

lim
ηc→0

ΨHH

[
gij ,m(xi), ηc

]
= Zfree[gij ,m(xi)] =

(
det

[
−∇2

g +
R[g]

8
+m(xi)

])N/2
, (2.3)

where:

Zfree[gij ,m(xi)] ≡
N∏
A=1

∫
DχA e−S[χA,m(xi)] . (2.4)

In the case of a metric gij = e2W (xi)δij that is conformally equivalent to the flat metric on

R3, it is convenient to compute the functional determinant in the conformal frame where

gij is the flat metric. This amounts to rescaling the source to:

m̂(xi) = e2W (xi)m(xi) . (2.5)

We will use this fact in section 4.

2.2 Functional determinant for radial deformations

We have seen that for conformally flat metrics our problem reduces to computing a func-

tional determinant:

det
[
−∇2

R3 + m̂(xi)
]
, (2.6)

where ∇2
R3 is the Laplacian of the round metric on R3, namely ds2 = dr2 + r2dΩ2

2. The

above object is badly divergent unless we regulate it somehow. We will regulate it using a

heat kernel or zeta function approach, both of which give the same answer. In fact, this

precise problem has been studied by Dunne and Kirsten in [45] for functions m̂(xi) which

only depend on the radial coordinate, i.e. m̂(xi) = m̂(r), and which vanish sufficiently

fast at infinity. It was shown that the zeta function regulated determinant is given by the

following sum:

log

(
det
[
−∇2 + µ2 + m̂(r)

]
det [−∇2 + µ2]

)
=

∞∑
l=0

(2l + 1)

(
log T (l)(∞)−

∫∞
0 dr r m̂(r)

2l + 1

)
. (2.7)
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In the above, the factor (2l + 1) originates from the degeneracy of eigenfunctions on a

two-sphere and T (l)(r) solves the equation:

− d2

dr2
T (l)(r)− 2

[
(1 + l)

r
+ µ

I3/2+l(µr)

I1/2+l(µr)

]
d

dr
T (l)(r) + m̂(r)T (l)(r) = 0 , (2.8)

with boundary conditions T (l)(0) = 1 and dT (l)(0)/dr = 0. The parameter µ2 ∈ R is a con-

stant mass parameter that we will set to zero. The derivation of the above formula employs

the Gelfand-Yaglom theorem [53], which expresses the regulated functional determinant of

a one-dimensional Schrödinger operator in terms of a single boundary value problem. The

problem of computing the logarithm of a ratio of functional determinants for purely radial

operators reduces to an infinite number of Gelfand-Yaglom problems, one for each l, whose

solutions need to be summed (this is the first piece on the right hand side of (2.7)) and

regularized (this is the second piece on the right hand side of (2.7)). The applicability of

the formula requires m̂(r) to vanish faster than r−2 at infinity, and these are the only types

of deformations for which we will compute the wavefunction in the latter sections. When

implementing the above formula we must sum up to a certain cutoff l = lmax which we take

to be lmax = 45. A discussion of how the error decreases with lmax is given in appendix A.

3 Simple examples of radial deformations

The purpose of this section is to exploit the general formula (2.7) for a simple set of radial

functions. By studying ΨHH as a functional of m̂(r) we can identify some qualitative

features already observed in [43], such as regions where the wavefunction oscillates and

grows exponentially, as well as some new ones. Furthermore, we can study its dependence

on more detailed features of the localized deformation. The zeroes of the wavefunction

in the σ̂-basis occur only when the effective potential Veff(r) = l(l + 1)/r2 + m̂(r) of the

differential operator −∇2
R3 + m̂(r) is negative for some range of r. If the effective potential

were positive for all r it could not have vanishing eigenvalues, and hence the wavefunction

could not vanish. Thus, we expect all oscillations of the wavefunction in the σ̂-basis to

occur in directions where m̂(r) is negative for some range of r.

Assessing the magnitude of the wavefunction as a functional of m̂(r) is a more compli-

cated task. We observe that the wavefunctional acquires increasingly high local maxima

between its oscillations only in regions where the quantity Im̂ ≡
∫∞

0 dr r m̂(r) appearing

in (2.7) becomes large and negative.

It is important to note that because we are working with the flat metric on R3, which

has no scale, our functional determinants will have an associated scaling symmetry given

by r → r/λ and m̂(r) → m̂(r/λ)/λ2. We should thus fix the scaling when studying the

functional determinant/wavefunction.

3.1 Single Gaussian

We first consider m̂(r) to be given by a general single Gaussian profile:

m̂(r) = A
e−r

2/λ2

λ2
,

∫ ∞
0

dr r m̂(r) =
A

2
. (3.1)

– 7 –
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Figure 1. Examples of the radial deformations (3.1) on the left, (3.2) in the middle and (3.3) on

the right. We have suppressed the polar coordinate θ of the S2 but kept the azimuthal direction.

-20 -15 -10 -5 0

5

10

15

20

25

30

Figure 2. Plot of |ΨHH(λ,A)|2 for N = 2 for the Gaussian profile (3.1) with λ = 1 using lmax = 45.

The solid blue line is an interpolation of the numerically determined points (shown in red). The

wavefunction grows and oscillates in the negative A direction.

See the left panel of figure 1 for an illustration of this deformation. Using equation (2.7)

we can explore |ΨHH(λ,A)|, where from now on whenever we write ΨHH it is implied as

a late time wavefunctional. Using the scaling relation r → r/λ̃ and m̂(r)→ m̂(r/λ̃)/λ̃2 we

can set λ = 1. In figure 2 we show a plot of the functional determinant. We immediately

notice the same qualitative feature that was present for the constant mass deformation on

a round S3 (displayed later on in figure 12). Namely, it oscillates and grows exponentially

in the negative A direction. This is somewhat expected since our deformation is qualita-

tively similar to the mass deformation on the flat metric on R3 one gets by the conformal

transformation of a constant mass on S3 (see appendix A). In particular, all oscillations

occur for A < 0 and the magnitude of the local maxima increases for increasing |A| for

fixed λ.

3.2 Gaussian ring

We can also study the functional determinant of a profile of the type:

m̂(r) = A e−(r−a)2/λ2 r2 , (3.2)∫ ∞
0

dr r m̂(r) =
A λ

4

[
2e−a

2/λ2λ
(
a2 + λ2

)
+ a
√
π
(
2a2 + 3λ2

) (
1 + Erf

[a
λ

])]
,

– 8 –
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Figure 3. Left: density plot of |ΨHH(λ, a,A)|2 for N = 2 for the profile (3.2) as a function of A

(vertical) and λ (horizontal) for a = 5 using lmax = 45. Again, the wavefunction grows and oscillates

in the negative A and positive λ directions. Right: plot of |ΨHH(λ, a,A)|2 for the profile (3.2) as a

function of λ for A = −0.022 and a = 5.

which describes a Gaussian-like ring peaked around r ∼ 1/2
(
a+
√
a2 + 4λ2

)
. Erf[x]

denotes the error function. See the middle panel of figure 1 for an illustration of this defor-

mation. The factor of r2 is included to ensure that the profile is continuously differentiable

near the origin. Again, using the scaling relation r → r/λ̃ and m̂(r) → m̂(r/λ̃)/λ̃2 we

either fix the value of λ, |a| or |A|. We show an example in figure 3 where we have fixed

the value of a.

3.3 Double Gaussian

As a third example we consider a double Gaussian profile:

m̂(r) = r2
(
A1 e

−(r−a1)2/λ21 +A2 e
−(r−a2)2/λ22

)
. (3.3)

See the right panel of figure 1 for an illustration of this deformation. An example of

|ΨHH(λi, ai, Ai)|2 with a1 = 0 is shown in figure 4. Once again we observe a pattern of

maxima encircled by regions where the wavefunction squared vanishes identically. Further-

more, the wavefunction grows for increasingly negative values of A1 and A2.

4 Radial deformations of flat R3 and pinching limits

In this section, we introduce and study a class of SO(3) preserving deformations of the

flat metric on R3. We show that they are conformally equivalent to the flat metric on

R3. Thus, the wavefunction can only depend on such deformations of the metric if we

also turn on a radial mass mb(r). Turning on such a mass, we can then perform the

symmetry transformation discussed at the end of section 2.1 to get a mass deformation

m̂(r) on the flat metric on R3. We will pick a functional form that is related by the

– 9 –
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Figure 4. Left: density plot of |ΨHH(λi, ai, Ai)|2 for N = 2 for the double Gaussian profile (3.3)

as a function of A1 (x-axis) and A2 (y-axis) for a1 = 0, a2 = 5, λ1 = λ2 = 1 using lmax = 45. The

wavefunction grows and oscillates for negative A1 and A2. Right: density plot of |ΨHH(λi, ai, Ai)|2
for the double Gaussian profile (3.3) as a function of λ1 (x-axis) and λ2 (y-axis) with A1 = −1,

A2 = −1/100, a1 = 0 and a2 = 5.

symmetry transformations of 2.1 to a constant mass deformation on a deformed three-

sphere geometry (see appendix A for details). Depending on the sign of a parameter, the

deformed three-sphere will look either like a peanut or an inverse peanut, i.e. like bulbous

pears inverted relative to one another and conjoined on their fatter ends. The partition

function that we compute can then also be understood as the answer for the partition

function on this deformed three-sphere with a constant mass deformation. The pinching

limit will be when the waist of the peanut-shaped geometry vanishes.

We emphasize that how we perceive these deformations of the late time metric depends

greatly on what we decide are natural constant time slices, since there always exists a

conformal frame where the late time metric is the flat one. Ideally, it would be useful to

analyze a qualitatively similar geometric deformation that would take the original geometry

outside its conformal class, but we must restrict to the former case in this section since

we will be constrained by considering SO(3) preserving deformations. Section 6 will go

beyond this restriction by considering a new conformal class.

4.1 Balloon geometry

Consider the following class of SO(3) preserving metrics defined on R3:

ds2 = dr2 + r2fζ(r)
2dΩ2

2 , dΩ2
2 ≡ dθ2 + sin2 θdφ2 , (4.1)

with r ∈ [0,∞). Consider a family of smooth functions fζ(r) with ζ ≤ ζ∗ for positive ζ∗

that tend to unity both at large r and near r = 0. We require that fζ(r) vanishes at some

r = r∗ for the critical value ζ = ζ∗. We furthermore impose that:

lim
ζ→ζ∗

d2

dr2

(
r2fζ(r)

2
)∣∣∣∣
r=r∗

= 2 . (4.2)

– 10 –
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Figure 5. The “balloon” deformation of R3, defined by (4.1) and (4.3), represented schematically

for positive ζ.

For positive ζ, the geometries described by (4.1) can be pictured as a two-sphere whose

size at some finite ζ < ζ∗ grows, then shrinks and subsequently grows again. If fζ(r) = 1

the geometry is of course nothing more than the flat metric on R3. As we approach ζ = ζ∗,

the size of the two-sphere tends to vanish at r = r∗ eventually pinching the geometry into a

warped three-sphere and a slightly deformed metric on R3. The choice (4.2) ensures there

are no conical singularities at the pinching point. It would be of interest in and of itself to

study geometries with conical singularities (see for example [54]). As a concrete example,

we will take:

fζ(r)
2 = 1− ζ

(
r2 +

1

ζ∗
(γr)4

)
e−(r−a)2/λ2 . (4.3)

The parameters a and λ are chosen and γ is tuned to obey the condition (4.2). Though

ζ∗ is not an independent parameter it is useful to isolate in the expression. A schematic

representation of this deformation, for positive ζ, is presented in figure 5.

4.2 Conformal flatness of balloon geometry

It is important to note that the geometry (4.1) is conformally flat. This can be shown in

a straightforward fashion. Consider a coordinate transformation r = g(x). It immediately

follows that if the following ordinary differential equation:

x
dg(x)

dx
= g(x)fζ(g(x)) , (4.4)

has a smooth solution for g(x) whose derivative is positive for all x > 0 then our metric

becomes:

ds2 =

(
dg(x)

dx

)2 (
dx2 + x2dΩ2

2

)
. (4.5)

Though we cannot solve the non-linear o.d.e analytically, we can easily evaluate it numer-

ically and confirm for several cases that g(x) satisfies the necessary requirements. Hence,

our metric (4.1) is indeed conformally equivalent to the flat metric on R3. In figure 6 we

give a numerical example of this.

This result is already of some interest even for the case of ordinary Einstein gravity.

It informs us that upon conditioning that all other fields vanish at late times, the abso-

lute value of the late time Hartle-Hawking wavefunction, |ΨHH [gij ]|, is independent of any

– 11 –
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Figure 6. Plot of g(x) (left) and dg(x)/dx (right) as obtained by numerically solving equation (4.4)

(ζ∗ = 1741.51, ζ = 9ζ∗/10, γ = 1.36612, a = −95, λ = 30).

radial SO(3) preserving deformation of the late time metric. Indeed, from the bulk per-

spective a smooth conformal transformation of the late time three-metric can be induced

by a time diffeomorphism that preserves the Starobinski-Fefferman-Graham form. From

a holographic perspective, the late time wavefunction is computed by the partition func-

tion of a three-dimensional conformal field theory and thus only depends on the conformal

metric (recall there are no conformal anomalies in three dimensions).

4.3 Wavefunctions and balloon geometries

We now examine what happens to the functional determinant as we vary the waist param-

eter ζ for an example. We will also turn on a mass that would correspond to a uniform

mass m on the deformed three-sphere (as discussed further in appendix A.3), which upon

the conformal transformation discussed there becomes:

mb(r) =

(
2

1 + r2

)2

m . (4.6)

This is the mass deformation on the balloon geometry. The final deformation m̂(x), to be

used in the Dunne-Kirsten formula, is obtained by performing a conformal rescaling of the

balloon geometry to the flat metric on R3: ds2 = dx2 + x2 dΩ2
2. This requires a conformal

rescaling of mb(r) to:

m̂(x) =

(
dg(x)

dx

)2( 2

1 + r(x)2

)2

m . (4.7)

Thus, we will study the functional determinant as a function of m and ζ. In figures 7 and 8

we display our numerical results. As expected, at m = 0, nothing changes as we vary ζ

since the balloon geometries are conformally flat. However, when we turn on m 6= 0 the

wavefunction becomes sensitive to changes in ζ. Interestingly, decreasing the girth of the

throat while keeping everything else fixed is favored, at least near m = 0. Thus, though

supressed exponentially with respect to the local maximum of the wavefunction at m = 0,

the wavefunction does not vanish in the pinching limit. It is tempting to speculate that

such pieces of the wavefunction might be connected to the fragmentation picture of [55].

– 12 –
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Figure 7. Density plot of the |ΨHH(ζ,m)|2 for N = 2 as a function of the pinching parameter ζ

(vertical axis) and an overall mass deformation m (horizontal axis) using lmax = 45, ζ∗ = 1741.51,

γ = 1.36612, a = −95 and λ = 30.
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Figure 8. Left: |ΨHH(ζ,m)|2 for N = 2 as a function of m for ζ = −ζ∗/2 (red dots), ζ = 0

(blue squares), ζ = ζ∗/2 (green diamonds) and ζ = 9ζ∗/10 (black triangles) using lmax = 45,

ζ∗ = 1741.51, γ = 1.36612, a = −95 and λ = 30. Right: same as left but for different plot range.

5 Spherical harmonics and a conjecture

In this section, we present numerical evidence that when mapping the problem back to

the three-sphere (using the discussion in appendix A), all profiles give a normalizable

wavefunction upon fixing their average value over the whole three-sphere. Thus, it is

conceivable that the only divergence of the wavefunction occurs precisely for large and

negative values of a uniform profile over the whole three-sphere [43]; a single direction

in an infinite dimensional configuration space! For instance, as we shall show below, by

mapping the Gaussian profile (3.1) to the three-sphere and removing the zero mode from its

expansion in terms of three-sphere harmonics, the resultant profile produces a normalizable

wavefunction as a function of its amplitude.
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Figure 9. Left: plot of |ΨHH(c1)|2 for N = 2 for the first harmonic mapped to R3 given in (5.2)

using lmax = 45. Right: plot of log |ΨHH(c1)|2 for N = 2 using lmax = 45.

5.1 Three-sphere harmonics

We now study some examples of SO(3) invariant deformations which correspond to harmon-

ics of the three-sphere conformally mapped back to R3. These harmonics are the eigenfunc-

tions of the Klein-Gordon operator on the three-sphere with metric ds2 = dψ2 +sin2 ψ dΩ2
2.

The kth harmonic (independent of the S2 coordinates) is given by:

Fk(ψ) = ck csc(ψ) sin[ (1 + k)ψ ] , k = 0, 1, 2, . . . . (5.1)

As explained in appendix A, to evaluate the partition function for this deformation using

the method of Dunne and Kirsten we must first perform the coordinate transformation

ψ(r) = 2 cot−1 r−1, and then scale the deformation by the inverse of the conformal factor

that maps the three-sphere metric to the metric on R3. The final radial deformation which

is to be used in the Dunne-Kirsten formula is:

m̂k(r) = ck
2 sin[ 2(1 + k)tan−1r ]

(r + r3)
. (5.2)

Taking k = 0 corresponds to the zero mode which has been previously studied in [43] and

was found to be oscillatory and divergent as the coefficient ck goes to large negative values.

In figures 9 and 10 we plot the partition functions for higher harmonics as a function of

the coefficient ck. We notice that they are all well-behaved and normalizable, at least in

the range we have explored. This motivates us to consider deformations which are linear

combinations of spherical harmonics. Having looked at a deformation that is the linear

combination of the zero mode with the first harmonic, as well as a deformation that is

the linear combination of the first harmonic with the second harmonic, we notice that the

partition function is not divergent so long as the coefficient of the zero mode is kept fixed.

Postponing a more systematic study for the future, here we simply consider a modified

version of the single Gaussian deformation given in (3.1). Previously, we had found that

as the overall coefficient of the profile becomes large and negative, the partition function

diverges. The new profile we will study is obtained by mapping the Gaussian profile to

the three-sphere, subtracting off its zero mode, and mapping it back to R3. Notice that

the Gaussian profile mapped to the three-sphere is constructed from an infinite number of

harmonics, and here we are subtracting the piece that seems problematic from our analysis
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Figure 10. Plot of log |ΨHH(ck)| for N = 2 for the first nine spherical harmonics mapped to R3

given in (5.2) using lmax = 45. Notice that only the zeroth harmonic is non-normalizable in the

negative c0 direction.

of harmonics and finite linear combinations thereof. Since F0(ψ) = c0 is simply a constant,

the condition to be met is:∫ π

0
dψ

(
r(ψ)2 + 1

2

)2

m̂(r(ψ)) sin2 ψ = 0 , (5.3)

where r(ψ) = tan(ψ2 ) and m̂(r) = Ae−r
2−4a1/(r

2+1)2. In this case the integral can be done

explicitly and we can solve for the coefficient a1 analytically. The final form of the single

Gaussian radial deformation orthogonal to the zero mode of the three-sphere becomes:

m̂(r) = A e−r
2 − 8A (1− e

√
π Erfc[1])

√
π (1 + r2)2 . (5.4)

We plot the functional determinant as a function of A in figure 11. Interestingly, the

partition function is once again well-behaved for large values of A. An analogous anal-

ysis for the balloon geometries, where we fix the zero-mode on the conformally related

three-sphere, also results in the boundedness of the partition function in the ζ direction

(ζ defined in (4.3)).

The above results motivate the conjecture:

The partition function of any SO(3) symmetric “radial” deformation for

which the three-sphere zero mode harmonic is fixed is bounded.

Notice that the three-sphere is chosen as the geometry in the conformal class on which

to fix the uniform profile. For example, in the case of the peanut geometries one can
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Figure 11. |ΨHH(A)|2 (left) and log|ΨHH(A)| (right) for N = 2 as a function of A, the overall

size of the radial deformation in (5.4) which is constructed to be orthogonal to the zero mode of

the three-sphere (lmax = 45).

show that fixing the uniform profile on the peanut is not sufficient to ensure that the

partition function is bounded (though fixing some non-uniform profile would suffice). This

is simply because keeping the uniform mass profile fixed to some negative value while

taking ζ large and negative, which corresponds to the conformally related sphere getting

fatter at the waist, implies that the uniform profile on the sphere is getting large and

negative. Consistent with the rest of our observations, we see that the partition function

is unbounded in this direction. Furthermore, the next section will provide evidence for a

more general conjecture that would extend beyond the conformal class of the sphere.

6 Three-sphere squashed and massed

In this section, we would like to briefly revisit and extend some of the observations of [43]

for a constant mass deformation on an S3. There, it was observed that in the σ̂-basis the

wavefunction on an S3 with a uniform mass deformation oscillated and diverged at large

negative mS3 . We explore in this section a new direction which is the squashing parameter

of the round metric on the three-sphere (in the presence of a non-zero uniform scalar profile)

and its effect on the zeroes and maxima. Unlike the previous SO(3) preserving deformations

which were inhomogeneous, this SO(3)×U(1) preserving deformation is homogeneous yet

anisotropic. Furthermore, the squashed three-sphere is not conformal to the ordinary round

three-sphere. In fact, squashed spheres with different values of the squashing parameter

belong to distinct conformal classes.

Part of our motivation is to provide further evidence that the zeroes of the wavefunction

are extended and that the local maxima of the wavefunction (other than the pure de

Sitter one) will no longer necessarily peak about homogeneous and isotropic geometries.

Additionally, and in the same spirit as the observations made in section 5, we find that

upon fixing the value of the uniform profile over the whole squashed three-sphere the

wavefunction is normalizable in the squashing direction.

6.1 Squashed and massed

Consider turning on a constant mass mS3 for the free Sp(N) model on the round metric

on an S3 whose radius a is fixed to one unless otherwise specified. The partition function
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Figure 12. Plot of |ΨHH [mS3 ]|2 given by expression (6.1) for N = 2.

is given by [43]:

N−1 logZfree[mS3 ] =
1

16

(
log 4− 3ζ(3)

π2

)
−π

8

∫ mS3

0
dσ
√

1− 4σ cot

(
π

2

√
1− 4σ

)
. (6.1)

The analyticity of Zfree[mS3 ] in the complex mS3-plane is ensured by the uniform con-

vergence of the (regularized) infinite product of analytic eigenvalues which defines it. For

physical applications we restrict to real mS3 and note that this implies that the Taylor

series expanded about any mS3 = m0
S3 converges to the partition function above. Further-

more, the partition function has a zero if and only if one of the product eigenvalues in the

functional determinant vanishes, which can only happen for mS3 < 0. As shown in fig-

ure 12, this wavefunction grows exponentially and oscillates in the negative mS3 direction.4

It is worth noting that the mS3 dependent part of the phase of the wavefunction vanishes.

The real part of logZfree/N goes as |mS3 | for large negative mS3 and −(mS3)3/2 for large

positive mS3 .

It is worth studying what happens to the zeroes and local maxima of Zfree in the

presence of an additional deformation. A computationally convenient deformation is to

squash the round metric on S3 into that of a squashed sphere, which is a homogeneous yet

anisotropic geometry. In this sense, this deformation is complementary to the inhomoge-

neous deformations we have been studying so far. We review the metric and eigenvalues of

the squashed sphere with squashing parameter ρ in appendix B. Our method of regular-

ization is a straightforward extension of heat kernel techniques used in section 3.2 of [43],

and details can be found therein. In figure 13 we present a plot of the wavefunction as a

function of the mass mS3 and the squashing parameter ρ (the round metric on S3 occurs

at ρ = 0).

4Divergences of the Hartle-Hawking wavefunctional have been discussed in other circumstances such

as Einstein gravity coupled to a scalar field with a quadratic scalar potential and vanishing cosmological

constant [56] or the wavefunction of dS3 on a toroidal boundary [57]. Their physical interpretation remains

to be understood. For example, it might be a result of very sharp conditioning or an indication of an

instability.

– 17 –



J
H
E
P
0
2
(
2
0
1
4
)
0
0
7

-2 -1 1 2 3

5

10

15

20

Figure 13. Left: density plot of |ΨHH [ρ,mS3 ]|2 for N = 2. The fainter peak centered at the

origin reproduces perturbation theory in the empty de Sitter vacuum. Horizontal lines are lines of

constant mS3 and vertical lines are lines of constant ρ. Right: plot of |ΨHH [ρ,−2.25]|2 for N = 2.

Notice that it peaks away from ρ = 0.

We find that the local maxima are in general pushed away from ρ = 0 and the zeroes

of the wavefunction are extended to enclose the local maxima. The fact that the zeroes are

extended (codimension one in the (ρ,mS3) plane) is perhaps not surprising given that the

zeroes in figure 12 arise from ΨHH [mS3 ] (which is purely real) changing sign. This feature

should not disappear, at least for small perturbations to the equation which determines

ΨHH [mS3 ]. Furthermore, the maxima of figure 12 are pushed even higher when squashing

is allowed. This can be seen in the right hand side of figure 13, where one notices that the

second local maximum of ΨHH [mS3 ] at ρ = 0 is pushed further up to some ρ > 0. This

observation strongly suggests that away from the origin, and under such extreme condi-

tioning of the late time profiles of the bulk fields, the wavefunction peaks in regions where

the metric and perhaps even the higher spin fields are highly excited. On the other hand,

the perturbative de Sitter saddle centered at the origin remains a true local maximum.

7 Basis change, critical Sp(N) model, double trace deformations

In this section we further discuss the transformation to the field basis and clarify the role

of double trace deformations. We would like to comment on the transform to the bulk

field basis, which gives us the wavefunctional as a functional of ν ≡
√
Nσ̃ (with ν defined

in (2.2) and σ̃ being related the source of the single-trace operator dual to the bulk scalar),

in the large N limit.

As discussed in [43], one has to consider the free theory deformed by a relevant double

trace operator f(χ·χ)2/(8N). We also keep a source−if σ̃ turned on for the single-trace χ·χ
operator. The parameter f ∈ C has units of energy. Performing a Hubbard-Stratonovich

transformation by introducing an auxiliary scalar field σ we find:

S(f) =
1

2

∫
d3x
√
g

(
ΩAB

(
∂iχ

A∂jχ
Bgij − if σ̃χAχB

)
−
(
Nσ2

f
− σ ΩABχ

AχB
))

. (7.1)
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Figure 14. Left: density plot of |ΨHH [ρ,mS3 ]|2 for N = 2 for a slightly larger range. Notice the

local de Sitter maximum visible in figure 13 is already too faint to be seen. Horizontal lines are

lines of constant mS3 and vertical lines are lines of constant ρ. Right: plot of 2 log |ΨHH [ρ,−4.5]|
for N = 2.

Integrating out the χA fields, the partition function becomes:

Z
(f)
crit[σ̃] = e−

Nf
2

∫
d3x
√
g σ̃2

∫
Dσ exp

[
N

∫
d3x
√
g

(
σ2

2f
+ iσ̃σ

)]
Zfree[σ] , (7.2)

where we have transformed variables σ → (σ−if σ̃). Having interpreted Zfree[σ] = 〈σ|E〉 =

ΨHH [σ], we see that the above expression is a Fourier type transform of the σ̂-basis wave-

function. In order for this to become the actual basis changing transform (1.4) to the

eigenbasis of the field operator, the constant f must be taken to infinity. The f → ∞
limit (where we are keeping the size of the three-sphere fixed) corresponds to sending the

ultraviolet cutoff (of the infrared fixed point theory) to infinity, in the same sense as [58],

or roughly speaking it corresponds to the late time limit in the bulk.5

We begin by performing a perturbative analysis for infinitesimal deformations of the

free Sp(N) theory at large N on an R3.

7.1 Perturbative analysis on R3

For the sake of simplicity, we will put the theory on the flat metric on R3, akin to studying

perturbations in a small piece of I+.6 For reasons that will be clear momentarily we choose

f = i|f | to be pure imaginary.

5Another way to think about this is keeping f fixed and taking the large size limit of the three-sphere

that the CFT lives on. This is because the dimensionless quantity is |f |a where a is the size of the sphere.

Indeed at late times the three-sphere grows large.
6The parallel story in anti-de Sitter space has been studied extensively [59–62]. From the bulk perspective

in planar AdS4: ds2 = `2A(dz2 + d~x2)/z2, at least perturbatively about the empty AdS4 vacuum, the finite

fA ∈ R double trace deformed theory computes correlation functions of the bulk scalar quantized with mixed

boundary conditions. Near the boundary z → 0 of AdS4, the bulk scalar with mass m2`2A = −2 behaves as

φ(z, ~x) ∼ α(~x)z2 + β(~x)z with α(~x) = fAβ(~x). This boundary condition is different from the conformally
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We are interested in setting up a perturbative expansion about the σ ∼ 0 Gaussian

peak of Zfree[σ]. From (7.2) we can compute the two point function of O ≡ χ ·χ at large N

in the double trace deformed Sp(N) theory on an R3. We do this by taking two variational

derivatives of the logarithm of (7.2) with respect to σ̃(xi) and evaluating at σ̃(xi) = 0:

〈O~kO−~k〉f = N

(
|f |2G(k)

N + 2i|f |G(k)

)
, G(k) ≡ 〈O~kO−~k〉f=0 = −N

k
, (7.3)

where k is the magnitude of the momentum. For k � |f | this becomes the two-point

function of the free Sp(N) model, whereas for k � |f | this becomes the two-point function

of the critical Sp(N) model. Expanding for large |f | we find:

〈O~kO−~k〉f = −iN |f |
2
− N

4
k + . . . (7.4)

Notice that the real part of the two-point function (7.4) is negative. Recalling (1.3), this is

the Gaussian suppression of the Hartle-Hawking wavefunction near the de Sitter vacuum.

Also, the local momentum independent term has become a phase for pure imaginary f .

We can compare this to the bulk Hartle-Hawking wavefunction for a free m2`2 = +2 scalar

in planar coordinates computed in (C.13) of the appendix. This allows us to (roughly)

identify |f |−1 with the late time cutoff |ηc| at large |f |. In a similar way we can compute

the rest of the perturbative correlators of the critical Sp(N) theory [42].

Beyond such perturbative analyses, we must resort to a saddle point approximation

which we now proceed to.

7.2 Large N saddles for uniform S3 profiles

We now put the theory on the round metric on S3. At large N , we can evaluate (7.2) by

solving the saddle point equation (for σ = σ(σ̃) and σ̃ uniform over the whole three-sphere):

16πσ

f
+ 16πiσ̃ =

√
1− 4σ cot

(π
2

√
1− 4σ

)
. (7.5)

For a given solution Σi of (7.5), we can evaluate Zcrit[σ̃,Σi]. For example, there is a solution

Σ0 where σ ∼ 0 when σ̃ ∼ 0 (with f →∞). It is the piece of the wavefunctional evaluated

from this saddle near σ̃ = 0 that reproduces the dS invariant perturbation theory in the

Bunch-Davies state (about the pure de Sitter vacuum).

In figure 15 we plot Zcrit for the first few Σi at large f = i|f |. These have σ̃ = 0 near

the subsequent zeroes of cot
(
π
2

√
1− 4σ

)
in (7.5). Notice that for all large N saddles Zcrit[σ̃]

is peaked at σ̃ = 0 but the saddles coming from the more negative σ peaks contribute more

near σ̃ = 0.

invariant one which sets either α(~x) or β(~x) to zero, corresponding to the free or critical O(N) models

respectively. In de Sitter space we would consider a wavefunction of a scalar of mass m2`2 = +2 computed

by imposing future boundary conditions [11, 63, 64] φ(η, ~x) ∼ α(~x)η2 + β(~x)η (with α(~x) = fDβ(~x)) and

Bunch-Davies conditions φ ∼ eikη for k|η| � 1. At the level of perturbation theory this is computed by

continuing the Euclidean AdS4 partition function by z → −iη, `A → i` and fA → ifD (where fD ∈ R for

the ‘normalizable’ profile of the scalar field to be real).
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Figure 15. Plots of the Nth root of |ΨHH [σ̃,Σ0]|, |ΨHH [σ̃,Σ1]|, |ΨHH [σ̃,Σ2]| at large f from left

to right. Notice that the higher saddles dominate near σ̃ = 0 but fall off faster for large σ̃.

Away from the large N limit we must compute the integral in (7.2) without resorting

to a saddle point approximation. If we restrict to uniform σ and σ̃, we note that as we

increase f = i|f | more and more of the growing negative σ peaks in Zfree[σ] contribute to

the integral before it is cutoff by the rapid oscillations due to the iNσ2/|f | piece. One can

check that the integral grows for large and negative σ̃ upon fixing |f |.

Some of the saddles in the large N limit should correspond to classical (complex) bulk

solutions with a uniform late time profile of the scalar on the round metric of the three-

sphere. Some of these solutions labelled by a continuous parameter, which only involve the

bulk metric and scalar, were found by Sezgin and Sundell in [44]. It is worth noting that

though it may sound confusing that there are bulk solutions that have only the metric and

scalar turned on (since all higher spin fields interact on an equal footing), this is natural

from the CFT since turning on an SO(4) symmetric source for J (0) = χ ·χ need not source

the traceless higher spin currents due to symmetry reasons. The metric is non-vanishing

since in effect we have also turned on a source for it by having the round metric on S3 at

the boundary. At finite N , all these saddles mix quantum mechanically. Each ΨHH [σ̃,Σi]

comes with a phase, so one should be careful when summing contributions from different

saddles. Finally, it would be extremely interesting to understand the Lorentzian cosmolo-

gies associated to the wavefunction using the ideas developed in [65, 66] (see also [67]). In

order to have a classical cosmology (or an ensemble of such cosmologies) we must ensure

that the wavefunction takes a WKB form with a phase oscillating much more rapidly than

its absolute value. At least in the large N limit, and for large |f |, this is ensured by the

first term in (7.2).

7.3 Double trace deformations as convolutions

We can also consider keeping f finite and real. This defines a double-trace deformed field

theory, in and of its own right, whose partition function Z(f)[σ′] can be computed in the

large N limit. We also keep a uniform (on S3) source σ′ turned on for the single-trace

χ ·χ operator. This partition function is no longer computing overlaps between the Bunch-

Davies vacuum and some late time field configuration which is an eigenstate of the field

operator φ̂. Given that Zfree[σ] = 〈σ|E〉 = ΨHH [σ], we see that Z(f)[σ′] is computing
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instead a convolution of the wavefunction in the σ̂-basis:7

Z(f)[σ′] =

∫
Dσ exp

[
N

∫
dΩ3

(σ′ − σ)2

2f

]
ΨHH [σ] . (7.6)

We can also view Z(f)[σ′] as computing the overlap of the Hartle-Hawking state with

the state:

|f〉 ≡
∫
Dσ exp

[
N

∫
dΩ3

(σ′ − σ)2

2f

]
|σ〉 . (7.7)

Notice that though the integral itself is convergent for finite f , the resulting function

Z(f)[σ′] will grow exponentially at large negative σ′. One could also consider more generally

a complex valued f ∈ C which would correspond to a kind of windowed Fourier transform.

7.4 Euclidean AdS4 with an S3 boundary

The situation can be contrasted with the case of Euclidean AdS4 (with an S3 bound-

ary) [62]. The partition function Z
O(N)
crit [σA] of the critical O(N) model on an S3, dual to

Euclidean AdS4 in higher spin gravity, is obtained again from the free O(N) model by a

double trace deformation in the limit fA → +∞:

Z
O(N)
crit [σA] = lim

fA→∞
e
NfA

2

∫
dΩ3σ2

A

∫
Dσ exp

[
N

∫
dΩ3

(
σ2

2fA
− σAσ

)]
Z
O(N)
free [σ] , fA ∈ R .

(7.8)

The first term in front of the integral is local in the limit fA → +∞ and we can remove

it by adding a counterterm. To ensure convergence of the integral we must choose an

appropriate contour, which in this case is given by σ running along the imaginary axis

(see for example [43]). Z
O(N)
free [σ] is the partition function of the free O(N) model and

is related to the free Sp(N) partition function by N → −N . Note that Z
O(N)
free has poles

precisely at the values where the wavefunction in the σ̂-basis (6.1) vanishes. At large N the

integral (7.8) can be evaluated by a saddle point approximation. In figure 16 we display

Z
O(N)
crit [σA] for the case of a uniform source fAσA over the whole S3. In principle, this

plot should be reproducible by computing the regularized on-shell Vasiliev action on the

asymptotically Euclidean AdS4 Sezgin-Sundell solution [44].

8 Extensions of higher spin de Sitter holography?

So far, our discussion was restricted to the minimal bosonic higher spin theory. A natural

question that arises, particularly given possible interpretational issues of the wavefunction

such as its (non)-normalizability, is whether this theory is part of a larger framework.

We briefly discuss possible extensions of higher spin de Sitter holography, inspired by the

analogous situation in anti-de Sitter space.

7Though we will not do so here, we can study higher multitrace deformations of the Sp(N) theory and ar-

rive at similar expressions. Thus, the fact that multi-trace operators are irrelevant seems far less threatening

than having low-spin, single-trace operators which are irrelevant and correspond to bulk tachyons.
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Figure 16. Plot of the N th root of the finite part of Z
O(N)
crit [σA] for a uniform source σA over the

whole three-sphere. We have normalized such that Z
O(N)
crit [σA] = 1 at σA = 0.

8.1 AdS4

There exist parity violating deformations of the bulk equations of motion which deform the

original Vasiliev equations (in anti-de Sitter space) to a one-parameter family [34, 37, 38].

It was proposed that the dual description is given by coupling the theory to a Chern-Simons

theory with level k, at least for simple enough topologies. The new parameter is given by

the ’t Hooft coupling λ = N/k which is small when the dual is higher spin gravity. Such

a theory was shown in the infinite N limit with fixed small λ [68–70] to have a spectrum

of single-trace operators which is precisely that of the free U(N) model, namely a tower

of higher spin currents which are conserved (up to O(1/
√
N) corrections), in accordance

with a bulk higher spin theory.

As discussed in [69, 71] in the context of anti-de Sitter higher spin gravity, one can also

endow the bulk higher spin fields with U(M) Chan-Paton factors, such that the fields all lie

in the adjoint representation of the U(M). In the dual theory, this corresponds to adding a

U(M) flavor symmetry to the U(N) model. If the flavor symmetry is weakly gauged, which

can be achieved through the procedure described in [72], then one can form single-trace

operators of the form Tr (ABAB . . . AB). The fields A and B transform in the (�,�) and

(�,�) of the U(N)×U(M) gauge group respectively. As M/N increases the ‘glue’ between

each TrAB (which are dual to higher spin fields in the bulk) becomes stronger. From the

bulk point of view, it was suggested that the higher spin fields, now endowed with additional

U(M) interactions, form bound states with binding energy that increases as we crank up

M/N . These bound states would correspond to the Tr (ABAB . . . AB) operators. An

appropriately supersymmetrized version of this story [69, 71] was conjectured to connect

the higher spin (supersymmetric) theory to the ABJ model [73] where such long string

operators are dual to bulk strings.

8.2 dS4

It is convenient in our discussion for the bulk to contain a spin-one gauge field in its

spectrum. We thus consider the non-minimal higher spin model with even and odd spins
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whose dual (at least at the level of correlation functions on R3) is a free/critical U(N)

theory with N anti-commuting scalars transforming as U(N) vectors. We refer to this as

the Ũ(N) model.

Given that the parity violating deformations of the Vasiliev equations in AdS retain

the original field content and reality conditions, it seems natural that they are present for

the de Sitter theory as well. Thus, one might consider that such theories are dual to parity

violating extensions of the Ũ(N) theory obtained by adding a level k Chern-Simons term

to the free anti-commuting complex scalars. The Lagrangian of this theory is:

SCSM = − ik
4π

∫
d3x

(
εijk a

a
i ∂iA

a
k +

1

3
εijkf

abcAaiA
b
jA

c
k

)
+

∫
d3x ∇iχA∇iχ̄Ā . (8.1)

The fieldsAai are (possibly complexified) U(N) gauge fields, the χA fields are anti-commuting

complex scalars transforming in the fundamental of the U(N) gauge symmetry, and the ∇i
derivative is covariant with respect to U(N) gauge transformations.

Though classically this theory is conformally invariant, this need not be the case when

we include loops, as the β-function might be non-vanishing. The ordinary U(N) Chern-

Simons theory coupled to a vector of charged scalars has two exactly marginal deformations

at infinite N as in [68, 74, 75]. These are the ’t Hooft coupling λ ≡ N/k and the coupling

constant λ6 of the triple trace interaction (χAχ̄Ā)3. Though the Chern-Simons-Ũ(N) the-

ory (8.1) is non-unitary, it is conceivable that it is also has a vanishing β-function at large

N [76]. This theory would also have an unchanged spectrum of single-trace operators at

large N and small λ by the same arguments as those in [68, 77].8

One can also consider adding U(M) Chan-Paton factors to the bulk higher spin de

Sitter theory. This merely requires tensoring the ∗ algebra with that of M ×M matrices.

Once again, this will not affect the reality conditions on the higher spin fields and they

will all transform in the adjoint of the U(M). This corresponds to adding a U(M) flavor

symmetry to the Ũ(N) vector model, which can be weakly gauged (see appendix D for a

discussion). The single-trace operators Tr (ABAB . . . AB) have increasingly real conformal

weight. From the point of view of dS/CFT this would imply that the bulk theory has a

tower of tachyonic bulk fields since the conformal weight of a bulk field goes as ∆± ∼
3/2±

√
9/4−m2`2. One might suspect that these will be the continuations of the higher

spin bound states previously discussed for the anti-de Sitter case. Thus we see that even

though the fundamental constituents (i.e. the higher spin particles) of such an extension

8At finite k, the partition function on a non-trivial topology such asM = S1×Riemmg will grow as [78]

(see also [79]): ZCFT ∼ exp
(
(g − 1)N2 log k +O(N)

)
where g is the genus of the M. This drastically

favors higher topologies if interpreted as a probability, but it is unclear whether and how one should

compare topologies and what the correct normalization for ΨHH is. It is interesting that at finite k one

might also encounter monopole operators. In ABJM, such operators are dual to D0-branes in the bulk. It

is unclear how they should be understood in the context of de Sitter space and higher spin gravity. For

instance, they have a conformal weight that goes like k, which might suggest taking k to be complex or

imaginary [80] in the de Sitter case. It is also worth noting that the potentially infinite wealth of topological

data at I+ might be at odds with the finiteness of de Sitter entropy [81]. In Einstein gravity adding too

much topology at I+ often results in bulk singularities [82]. The issue of topology in the context of dS/CFT

is further discussed in [83].

– 24 –



J
H
E
P
0
2
(
2
0
1
4
)
0
0
7

of higher spin de Sitter gravity are not pathological (at least at the level of perturbation

theory), they may form configurations which resemble tachyonic fields in de Sitter space.

It is of interest to understand whether the late time behavior of such a theory can ever

be asymptotically de Sitter [76]. From the CFT point of view these are highly irrelevant

operators which are not conserved currents. For there to be a late time de Sitter phase,

one would require that turning on such irrelevant deformations can flow the theory to a

UV fixed point.
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A Conformal transformation from round S3 to flat R3

In this appendix, we remind the reader of the conformal relation between the three-sphere

and the three-plane.

A.1 Coordinate transformation and Weyl rescaling

Consider the metric of the three-sphere:

ds2 = dψ2 + sin2 ψ dΩ2
2 . (A.1)

Upon a coordinate transformation, ψ(r) = 2 cot−1 r−1, the above metric maps to:

ds2 =

(
2

r2 + 1

)2 (
dr2 + r2dΩ2

2

)
, (A.2)

which is conformally equivalent to the flat metric on R3. According to our discussion

in section 2.1, a constant mass source mS3 in the free Sp(N) theory on a three-sphere

corresponds to the free Sp(N) theory on the flat metric on R3 with the following source

for the χ · χ operators:

mR3(r) =

(
2

r2 + 1

)2

mS3 . (A.3)

A.2 Numerical error

As a check on our numerics, we display in figure 17 a plot of the functional determinant

using the Dunne-Kirsten method for the radial mass given in (A.3) laid over the analytic

result for the three sphere written in (6.1). In the right hand side of the figure we display
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Figure 17. Left: comparison of |ΨHH(mS3)|2 for N = 2 as obtained by calculating ZCFT [mS3 ]

analytically (blue line) and given in equation (6.1), and by numerically evaluating the functional

determinant using the Dunne-Kirsten regularization method with lmax = 45 (red dots). We have

normalized such that |ΨHH(mS3)|2 = 1 at mS3 = 0. Right: plot of the percentage error as a

function of the numerical cutoff (at mS3 = −2.2).

the error between the two as a function of the cutoff value of l for the sum in (2.7). For a

maximum cutoff lmax = 200 the partition function is within 3 percent of the exact answer

at mS3 = −2.2.

A.3 Balloon Geometries

We can use the same conformal transformation between the round metric on S3 and the

flat metric on R3 to show the conformal equivalence of the balloon geometry on an R3

topology discussed in section 4 and a different geometry on an S3 topology:

ds2 = dr2 + r2fζ(r)
2dΩ2

2 =
(
2 cos2(ψ/2)

)−2
(dψ2 + sin2 ψ fζ(ψ)2dΩ2

2) . (A.4)

Upon a conformal rescaling, we can see that this is just a deformed three-sphere:

ds̃ 2 ≡
(
2 cos2(ψ/2)

)2
ds2 = dψ2 + sin2 ψ fζ(ψ)2dΩ2

2 . (A.5)

The function fζ(ψ) serves to add a waist to the three-spheres along the ψ direction, with the

parameter ζ controlling whether the sphere tapers or bulges. Thus, the mass deformation

chosen in section 4 for the balloon geometry corresponds to a constant mass deformation

on its conformally related deformed sphere. When mapping the balloon geometry to flat

space to apply the Dunne-Kirsten method for computing the partition function, we should

understand that the answer we recover is also the answer for the partition function on this

deformed sphere with a constant mass. The pinching limit of the balloon geometry maps

into a pinch that tears the peanut-like geometry into two warped spheres.

B Review of the squashed sphere

The metric of the squashed sphere, which is a homogeneous yet anisotropic space on an S3

topology, is given by:

ds2 =
1

4

(
dθ2 + cos2 θdφ2 +

1

1 + α
(dψ + sin θdφ)2

)
, (B.1)
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with ψ ∼ ψ+4π. The geometry is an S1 fiber over S2 and consequently has an SO(3)×U(1)

isometry group. The constant Ricci scalar and volume are given by:

R =
2(3 + 4α)

(1 + α)
, V =

2π2

√
1 + α

. (B.2)

At α = 0 we recover the S3 with enhanced SO(4) isometry group. It is convenient to

parametrize the squashing parameter by ρ such that α = e2ρ − 1, and we will display our

results using this parameter. The eigenvalues of the conformal Laplacian in the presence

of a uniform mass term σ are given by:

λn,q =

[
n2 − 1

4(1 + α)
+ α (n− 1− 2q)2 + σ

]
, q = 0, 1, . . . , n− 1 , n = 1, 2, . . . , (B.3)

with degeneracy n. Knowing the eigenvalues analytically allows for easier computation of

the functional determinant.

C Perturbative Bunch-Davies modes for m2`2 = +2

We briefly review the Bunch-Davies zero modes of a free conformally coupled scalar with

m2`2 = +2 in a fixed global dS4 background:

ds2 = −dτ2 + `2 cosh2 τ

`
dΩ2

3 . (C.1)

The action of the scalar is given by:

Sφ = −1

2

∫
d4x
√
−g
(
gµν∂µφ∂νφ+

2

`2
φ2

)
. (C.2)

Assuming φ = φ(τ) does not depend on the three-sphere coordinates, it is governed by the

equation of motion:
2

`
φ(τ) + 3 tanh

τ

`
φ′(τ) + ` φ′′(τ) = 0 . (C.3)

The general solution to the above equation is given by:

φ(τ) = sech2 τ

`

(
c2 + c1 sinh

τ

`

)
. (C.4)

The positive frequency modes of the Bunch-Davies vacuum are those which are regular on

the lower Euclidean hemisphere θ ∈ [−π/2, 0] obtained by continuing the global metric by
τ
` → −iθ.

9 This fixes c1 = ic2 resulting in:

φBD(τ) = c2 sech2 τ

`

(
1 + i sinh

τ

`

)
. (C.5)

We can expand the Bunch-Davies solution at late times to find:

φBD(τ) ∼ 2 c2

(
2 e−2τ/` + i e−τ/`

)
. (C.6)

9Notice that the continuation τ/` → iθ with the same regularity condition would lead to a wavefunc-

tional C.11 that diverges with the late-time profile of the scalar. It is thus an inappropriate choice for a

perturbatively stable vacuum state.
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C.1 Continuation from Euclidean AdS4

Another way to see this is by continuing the perturbative solutions of a conformally coupled

free scalar with mass m2`2A = −2 in a fixed Euclidean AdS4 background:

ds2 = dρ2 + `2A sinh2 ρ

`A
dΩ2

3 . (C.7)

which are smooth in the interior. These scalars obey the equation:

2

`A
φ(ρ) + 3 coth

ρ

`A
φ′(ρ) + `A φ

′′(ρ) = 0 . (C.8)

The smooth solution in the interior is given by:

φsmooth(ρ) = c̃2 csch2 ρ

`A

(
−1 + cosh

ρ

`A

)
. (C.9)

Near the boundary of Euclidean AdS the smooth solution behaves as:

φsmooth(ρ) ∼ −2 c̃2

(
2 e−2ρ/`A − e−ρ/`A

)
. (C.10)

Notice that the Euclidean AdS and global dS metrics map onto each other under the

transformation `A → i` and ρ → iτ + `π/2. Under this analytic continuation the smooth

solution maps to the Bunch-Davies solution.

C.2 Wavefunctional

We can compute the Hartle-Hawking wavefunctional using the complex solutions in (C.5).

We choose c2 such that the solution at some late time cutoff τ = τc � ` has the real profile

φ0. Evaluating the on-shell action of a free scalar field with mass m2`2 = 2 at late times

and computing eiSφ gives:

ΨHH [φ0, τc] ∼ exp

[
−`

2π2

4
φ2

0

(
e2τc/` + . . .

)]
exp

[
−i`

2π2

8
φ2

0

(
e3τc/` + . . .

)]
, (C.11)

where we have separated the phase from the magnitude and expanded in powers of eτ/`.

Notice that the wavefunction is Gaussian suppressed and the phase diverges at late times.

Picking a convenient overall normalization for σ̂, we define σ̂ = e2τc/`
(
φ̂0 − α π̂φ

)
and fix

α = (e−3τc/`)/8 so that the late-time behavior of σ is purely fast-falling (this is the choice

for which the late-time correlators in the bulk are computed by a CFT). We use the same

convention for π̂φ as in (1.5). For τc � ` we find:

ΨHH [σ, τc] ∼ exp

[
−`

2π2

16
σ2 + . . .

]
. (C.12)

Notice that at the level of Gaussian wavefunctionals, the phase vanishes in the σ̂-basis.

For the sake of completeness we also include below the wavefunctional of them2`2 = +2

free scalar in planar coordinates ds2 = `2(−dη2 + d~x2)/η2. If its late time profile at some

cuttoff η = ηc is given by φ~k then we have:

log ΨHH [φ~k, ηc] ∼ −
`2

2

∫
d3k

(2π)3

(
k

η2
c

− i

η3
c

)
φ−~k φ~k . (C.13)
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Transforming to the σ̂ = η−2
c

(
φ̂− η3

c π̂φ

)
basis as before, we find:

log ΨHH [σ~k, ηc] ∼ −
`2

2

∫
d3k

(2π)3

1

k
σ−~k σ~k . (C.14)

This leads to a correlation function in position space given by:

〈O(x)O(y)〉 ∼ 1

|x− y|2
, (C.15)

which is obtained by differentiating twice the logarithm of the wavefunction. This is the

appropriate answer for an operator of conformal weight ∆ = 1, which for the Sp(N) theory

corresponds to χ · χ.

D Wavefunctionals for bulk gauge fields

We consider here the perturbative Hartle-Hawking wavefunctional for a bulk U(1) gauge

field with action:

S = − 1

4g2

∫
d4x
√
−g FµνFµν , Fµν = ∂µAν − ∂νAµ , (D.1)

in a fixed de Sitter background ds2 = `2/η2
(
−dη2 + d~x2

)
. The putative dual CFT would

have a U(1) global symmetry.10 Working in the gauge Aη = 0, the on-shell action is simply

given by a boundary piece at η = ηc:

Son−shell =
1

2g2

∫
d3xAi∂ηAi|η=ηc , (D.2)

which is related by an analytic continuation η = iz to the on-shell action in Euclidean

AdS4 (see for example section 5.3 of [69]). As a simple example, consider a solution in the

Aη = 0 gauge with ky = kz = 0. Then we can consistently set Ax = Ay = 0 and remain

with the following solution satisfying the Bunch-Davies condition:

Az =

∫
dkx
(2π)

Ã(kx)
z e−i|kx|(η−ηc)+ikxx , |ηc| � 1 . (D.3)

Reality of the profile at η = ηc requires
(
Ã

(kx)
z

)∗
= Ã

(−kx)
z . The on-shell action at η = ηc

on the above complex solution is then:

i Son−shell = − 1

2g2

∫
dkx
2π

Ã(kx)
z (Ã(kx)

z )∗|kx| . (D.4)

The wavefunction is Gaussian suppressed as expected and the single power of k is in

accordance with the conformal weight ∆ = 2 of the current operator dual to the bulk U(1)

gauge field.

10As an example, the non-minimal bosonic Vasiliev theory, which includes all non-negative integer spins,

contains a massless bulk U(1) gauge field in its spectrum. The bulk gauged U(1) symmetry is dual to the

global U(1) flavor symmetry of the anti-commuting complex scalars in the CFT.
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One can also consider adding a θ-term to the bulk action:

i Sθ = i
θ

16π

∫
M
d4x
√
−g εµνρσFµνFρσ , θ ∈ R . (D.5)

This term is independent of the metric. It is a total derivative and is equivalent to a

Chern-Simons term at η = ηc:

i Sθ = i
θ

4π

∫
∂M

d3x εijkAi∂jAk|η=ηc . (D.6)

Since the profile of the gauge field is real at η = ηc, the above is pure imaginary.

Using the on-shell action we can construct the Bunch-Davies wavefunctional:

Ψ
(θ)
HH [Ai, ηc] ∼ eiSon−shell+iSθ . (D.7)

Notice that the absolute value squared |Ψ(θ)
HH [Ai, ηc]|2 is independent of θ. Although this

would seem to suggest that the θ-term plays no role in the cosmological correlators obtained

from |Ψ(θ)
HH [Ai, ηc]|2, it can still appear in computing observables involving the conjugate

momentum of the gauge field, i.e. the electric field ~E = ∂η ~A . Indeed, in the Aη = 0 gauge,

the wavefunction at zero ~E-field is given by:

Ψ̃
(θ)
HH [ ~E = 0, ηc] =

∫
DAi Ψ

(θ)
HH [Ai, ηc] . (D.8)

Notice that we are now performing a path integral over a functional of Ai which includes

the Chern-Simons term. Thus, the gauge field becomes dynamical [72].

Much of our above discussion follows mostly unchanged when the U(1) gauge field is

replaced with a non-Abelian gauge field. It would be interesting to understand how the

topological dependence of the Chern-Simons term manifests itself in terms of cosmological

expectation values.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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