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Abstract
Background: A promising direction in the analysis of gene expression focuses on the changes in
expression of specific predefined sets of genes that are known in advance to be related (e.g., genes
coding for proteins involved in cellular pathways or complexes). Such an analysis can reveal features
that are not easily visible from the variations in the individual genes and can lead to a picture of
expression that is more biologically transparent and accessible to interpretation. In this article, we
present a new method of this kind that operates by quantifying the level of 'activity' of each pathway
in different samples. The activity levels, which are derived from singular value decompositions, form
the basis for statistical comparisons and other applications.

Results: We demonstrate our approach using expression data from a study of type 2 diabetes and
another of the influence of cigarette smoke on gene expression in airway epithelia. A number of
interesting pathways are identified in comparisons between smokers and non-smokers including
ones related to nicotine metabolism, mucus production, and glutathione metabolism. A comparison
with results from the related approach, 'gene-set enrichment analysis', is also provided.

Conclusion: Our method offers a flexible basis for identifying differentially expressed pathways
from gene expression data. The results of a pathway-based analysis can be complementary to those
obtained from one more focused on individual genes. A web program PLAGE (Pathway Level
Analysis of Gene Expression) for performing the kinds of analyses described here is accessible at
http://dulci.biostat.duke.edu/pathways.

Background
Gene expression microarrays provide a snapshot of the
expression levels of thousands of genes within a cell or tis-
sue sample. A persistent challenge is to interpret this data:
to identify key genes or patterns of expression associated
with some condition and so to gain valuable clues about
the biological processes related to that condition.

While a variety of methods have been developed to iden-
tify significant changes in the expression of individual
genes [1-4], another useful perspective can be gained by
viewing expression data at the level of groups of related
genes. One approach along these lines identifies similari-
ties, such as shared pathways or GO annotations [5],
between genes previously identified in an individual gene
analysis [6,7]. A potential problem is that this approach
relies on the individual genes within a category of interest
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to stand out. Modest but consistent changes in the expres-
sion of a group of related genes could be missed if rela-
tively few of the individual genes appear significant.

A promising alternative focuses at the outset on identify-
ing significantly differently expressed groups of genes
from a collection of predefined sets of genes (e.g., path-
ways and complexes) [8,9]. The usefulness of such an
approach was strikingly demonstrated by Mootha et al. [9]
in a study of gene expression profiles of muscle in type 2
diabetics (DM2). As reported by them, no single gene
showed up as significant in a comparison between DM2s
and subjects with normal glucose tolerance (NGT). Their
'gene-set enrichment analysis' (GSEA), however, uncov-
ered a set of genes involved in oxidative phosphorylation
as being significantly downregulated in DM2 vs. NGT.

In this article we present a new pathway based approach
to the analysis of gene expression that, while similar in
spirit to GSEA, has a number of potential advantages.
Briefly, GSEA involves ranking all the genes (for example,
by significance level in a two-group comparison) and then
calculating an 'enrichment score' (ES) for each pathway
that depends on the rankings of its member genes. Our
method instead begins by translating gene expression lev-
els into pathway 'activity' levels, which are derived from
singular value decompositions (SVD). The activity levels
are used for making comparisons and in general can be
used in the same kinds of applications as gene expression
levels.

We demonstrate the approach using the same expression
data analyzed by Mootha et al. [9] in their study of type 2
diabetes, and also with expression data from airway epi-
thelia of smokers and non-smokers [10]. Our analysis
leads us to conclusions similar to those obtained using
GSEA in the diabetes set, but overall appears to perform
better in identifying differentially expressed pathways in
comparisons between smokers and non-smokers.

The results presented in this article, including statistics for
pathways and colormaps of expression profiles, were
obtained using a web program we have developed called
PLAGE (Pathway Level Analysis of Gene Expression) [11].

Results and discussion
Outline of the method
In the next two sections we analyze gene expression data
from skeletal muscle of type 2 diabetics and airway epithe-
lia of different types of smokers. Here we give a brief over-
view of our approach. A more detailed description is given
in the Methods section.

The method is outlined in Fig. 1. The analysis is based on
a predefined collection of pathways (e.g., sets of genes

coding for proteins involved in specific metabolic or sign-
aling pathways). We use a collection of about 400 path-
ways obtained from the KEGG (Kyoto Encyclopedia of
Genes and Genomes) and Biocarta websites [12,13].

The main goal is to determine, based on the gene expres-
sion data, which (if any) of the pathways are associated
with some variable of interest such as disease status. To
address this, we start by calculating activity levels for each
pathway within the samples (in this article, each sample is
the gene expression profile in a tissue sample from one
individual).

We define the activity level in terms of the first eigenvec-
tor, 'metagene', in the singular value decomposition
(SVD) of the matrix of expression levels Y (Fig. 2A). The
expression matrix is restricted, however, to include only
those genes within one predefined pathway at a time. This
restriction is one of the main differences from previous
applications of SVD (e.g., [14,15]) to gene expression
analysis.

As a gene expression value represents the level of expres-
sion of a gene in some sample, the activity level represents
the 'level' of the first metagene in a sample. The first meta-
gene is simply a vector of weights, one weight for each
gene, and a positive activity level indicates the relatively
high (low) expression of genes with positive (negative)
weight; a negative activity level indicates the reverse. The
activity level in a given sample can be thought of as spec-
ifying the position of an expression profile (one column
of the expression matrix) in a range of possible profiles as
shown in Fig. 2C.

The main motivation for using the first metagene from
SVD to define the activity level is that the weights (first
metagene) and associated activity levels together capture
the main component of the variation in the full expres-
sion matrix Y (Fig. 2B depicts the main component of the

Outline of pathway level analysis of gene expressionFigure 1
Outline of pathway level analysis of gene expression.

Select predefined sets of genes (e.g., pathways)

Calculate pathway "activity" levels (Fig. 2)

Identify differentially expressed pathways
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Pathway activity levelsFigure 2
Pathway activity levels. Schematic illustration of our approach to quantifying the activity level of a pathway. (A) A colormap 
of the expression levels for the genes in a hypothetical pathway after standardizing the expression levels to have zero mean and 
unit variance over samples. This represents the matrix Y described in the text. (B) The main component of the variation in the 
expression matrix depicted in (A). This representation is determined by the activity levels c and weights w (see Methods) asso-
ciated with the first metagene in the singular value decomposition (SVD) of Y . The activity level in a sample (one column of the 
expression matrix) can be thought of as specifying a location in the range of expression profiles shown in (C). Positive activity 
levels here indicate relatively high (low) expression for genes with positive (negative) weight. For example, the expression pro-
file (column) furthest to the left in the expression matrix is in the high positive region of the range of expression profiles. The 
colormaps in (A) and (B) show the samples divided into two hypothetical groups (e.g., case samples and control samples). We 
note, however, that the matrix Y contains expression values for all samples: the activity levels are determined by performing 
SVD using expression data from all samples without regard to how the samples are classified.
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variation for the expression matrix in Fig. 2A). Generally,
the higher metagenes may also contain meaningful struc-
ture but in this article we focus only on the first compo-
nent of the variation. It may be useful in the future to
devise a scheme for extending the analysis to higher
metagenes.

Once the activity levels are determined, they can be used
in the same kinds of applications as gene expression lev-
els. For example, we might ask which pathways have activ-
ity levels that are significantly higher in samples from a
case group (e.g., diabetic) than those from a control
group. In this article, we mainly perform simple two-
group comparisons using t statistics (see Methods) but, in
principle, any statistical model for the level of expression
of individual genes is adaptable to one for activity levels.

Type 2 diabetes
The data set analyzed by Mootha et al. [9] contains gene
expression profiles in muscle tissue for each of 17 type 2
diabetics (DM2), 17 subjects with normal glucose toler-
ance (NGT), and 9 with impaired glucose tolerance (IGT).
The gene expression data is available at the Whitehead
Institute Center for Genome Research website [16] along
with phenotype data including, for example, ages, body
size measurements, blood glucose levels after oral glucose
tolerance test (OGTT), and other information. More
details can be found in Ref. [9].

The calculations of activity levels were done using all 43
gene expression profiles. Using the t statistic to compare
mean activity levels identified no pathways showing
apparently different expression between any of the groups
DM2, IGT, and NGT. Specifically, the pathway with the
highest significance level, 'Activation of cAMP-dependent
protein kinase, PKA (protein kinase A)' (Biocarta) was
found in comparing DM2 and NGT (upregulated in
DM2); the significance level, however, was calculated to
be only p = 0.4.

We then looked for correlation between activity levels and
potentially more informative variables including blood

glucose levels after oral glucose tolerance test (OGTT) and
VO2max (a measure of maximum oxygen utilization).
The most significant pathway identified here was Oxida-
tive Phosphorylation (KEGG); the Oxidative Phosphor-
ylation activity level was found to be significantly
negatively correlated with blood glucose concentration 1
hour after OGTT (Pearson correlation r = -0.52 and p =
0.03). Other pathways found to be correlated with glucose
levels 1 hour after OGTT include, in order of significance,
Biocarta 'Activation of cAMP-dependent protein kinase,
PKA (protein kinase A)' (r = +0.47, p = 0.06), and KEGG
'ATP synthesis' (r = -0.43, p = 0.17). The genes in the ATP
synthesis pathway, however, are entirely contained within
the genes of the KEGG oxidative phosphorylation path-
way. The results from these comparisons are summarized
in Table 1. A more detailed statistical analysis of the rela-
tionship between glucose levels, oxidative phosphoryla-
tion, and diabetic status is presented in Fig. 3 and refines
the result obtained from the initial analysis.

The connection between blood glucose levels and oxida-
tive phosphorylation (and ATP synthesis) seems biologi-
cally reasonable. Oxidative phosphorylation makes up
the last few steps in the series of reactions leading to the
synthesis of ATP from the oxidation of glucose. Unusually
high blood glucose levels imply a relatively low activity of
this pathway. Protein kinase A (PKA) facilitates the break-
down of glycogen into glucose in skeletal muscle cells
[17]; an elevated PKA pathway in skeletal muscle of sub-
jects exhibiting a type 2 diabetic phenotype may then pos-
sibly be interpreted as a cellular reaction to glucose
starvation.

We note that our results differ slightly from those of
Mootha et al. [9] who, using GSEA, found a significant (p
= 0.029) downregulation of oxidative phosphorylation
genes in diabetics compared to non. In contrast, we find
reasonable significance only in the level of correlation
with blood glucose levels after OGTT. This and other dif-
ferences with GSEA are discussed in a comparison below.

Table 1: Pathways correlated with a type 2 diabetic phenotype. The table shows p-values for the three pathways most correlated with 
blood glucose concentration as measured two hours after an oral glucose tolerance test (OGTT). r is the Pearson correlation. Also 
shown are p-values, generally indicating low significance levels, for these pathways determined from t-statistic comparisons between 
DM2 (type 2 diabetic) and NGT (normal glucose tolerance).

Comparison

(genes in data set/total genes in pathway) Pathway glucose after OGTT DM2 vs. NGT

(96/123) Oxidative phosphorylation 0.031 (r = -0.517) 0.565 (down in DM2)
(6/6) Activation of cAMP-dependent protein kinase 0.062 (r = +0.474) 0.395 (up in DM2)
(35/40) ATP synthesis 0.166 (r = -0.432) 0.855 (down in DM2)
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Effects of smoking on airway epithelia
A recent study examined the effects of smoking on gene
expression in airway epithelia [10]. Expression data were
obtained from a large number of subjects including
former and current smokers, and those who have never
smoked. The study identified genes differentially
expressed between the different groups and some of the
general functional categories represented by these genes. A
pathway based analysis can be complementary to the kind
already given by drawing attention to groups of genes
involved in more specific cellular processes.

We obtained the gene expression data for the smoking
study from the Airway Gene Expression Database (AGED)
[18]. The data consist of gene expression profiles from 75
subjects including 34 current smokers, 18 former smok-

ers, and 23 subjects who have never been smokers. The
data set has undergone some preprocessing steps includ-
ing normalization and filtering for genes detected on the
microarrays. More details can be found at the AGED web-
site [18] and in Ref. [10].

We identified pathways most differentially expressed in
two-group comparisons using t statistics (see Methods).
Table 2 shows the top ranking pathways from these com-
parisons and p-values. The top of Fig. 4 shows a colormap
of the activity levels for these pathways in the different
samples. The bottom of Fig. 4 shows a colormap for the
expression levels of the genes in the KEGG glutathione
metabolism pathway; colormaps for the other pathways
can be viewed at the PLAGE website [11].

Negative correlation between oxidative phosphorylation and blood glucose levels after OGTTFigure 3
Negative correlation between oxidative phosphorylation and blood glucose levels after OGTT. Scatter plot of 
blood glucose levels 2 hours after OGTT vs. oxidative phosphorylation activity levels. The three subject groups – type 2 dia-
betic (DM2), normal glucose tolerance (NGT), and impaired glucose tolerance (IGT) – are distinguished by color; solid lines 
show the first principal component for each group independent of the others. Group means are shown in black squares. The 
inset shows the 95% confidence intervals for the linear correlation coefficients for each group. Negative correlation between 
glucose levels and oxidative phosphorylation reaches statistical significance only within DM2 subjects.
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We also performed one-way ANOVA using pathway activ-
ity levels and found the top pathways from this analysis
(those with the smallest p-values) to be virtually the same
as those identified using t statistics.

The pathway most significantly differentially expressed in
both current and former smokers as compared to never
smokers is 'gamma-Hexachlorocyclohexane degradation'
(KEGG). Genes in this pathway and corresponding
weights from SVD are given in Table 3. Gamma-Hexachlo-
rocyclohexane, also known as lindane, is a toxic
insecticide and the connection with smoking is not at first
clear. Several genes in the gamma-Hexachlorocyclohexane
degradation pathway, however, have known associations
with smoking. The gene with the highest absolute weight,
CYP2A6, plays a key role in the metabolism of nicotine
and a number of studies have indicated an important rela-
tionship between CYP2A6 and smoking [19,20]. For
example, individuals with inactive CYP2A6 alleles have
been reported to be at lower risk for becoming dependent

on cigarettes [21]. Our analysis highlights the potential
importance of a cellular process in connection with smok-
ing and further, by the high absolute weight assigned to
CYP2A6, points to the key role played by CYP2A6 in this
process.

Other pathways upregulated in current vs. never smokers
include metabolism of prostaglandins and leukotrienes
(associated with pain response and inflammation), O-
Glycans biosynthesis, and glutathione metabolism.

Genes from the O-Glycans pathway are listed in Table 3.
Several of these are also within the list of genes identified
by Spira et al. [10] The present analysis, however, reveals
more directly the functional relationship shared by the
genes and draws special attention to the role of this
pathway in the physiological response to smoking. O-
linked glycosylation plays an important role in the pro-
duction of proteoglycans, some of which are constituents
of mucus [17]. In particular, one of the O-Glycans genes

Table 2: Top pathways identified in comparisons between current (C), former (F), and never (N) smokers. Pathways identified as 
differentially expressed with p < 0.05 using pathway activity levels in comparisons between smokers and non-smokers. The p-values 
were determined using 10,000 random permutations as described in the Methods section. p < 0.0001 means no pathway in any of the 
10,000 permutations showed higher significance. We note that the change (up or down) is determined, somewhat arbitrarily, by the 
average expression level captured by the first metagene. Specifically, the pathway is called 'up' if the average of ∑icjwi is greater in the 
first group (e.g., C in 'C vs. N') than in the second. A given pathway, however, will typically have some genes with higher and some with 
lower mean expression in one group as compared to another.

Comparison (genes in data set/total genes in pathway) Pathway p change

C vs. N (14/45) gamma-Hexachlorocyclohexane degradation <0.0001 down
(15/39) Prostaglandin and leukotriene metabolism <0.0001 up
(11/24) O-Glycans biosynthesis <0.0001 up
(6/21) Pentose and glucuronate interconversions <0.0001 up
(24/34) Glutathione metabolism <0.0001 up
(3/12) Lectin Induced Complement Pathway 0.0004 down
(11/19) Chaperones modulate interferon Signaling Pathway 0.0006 up
(6/15) TACI and BCMA stimulation of B cell immune responses. 0.0044 down
(3/6) Tetrachloroethene degradation 0.0054 up
(3/6) FXR and LXR Regulation of Cholesterol Metabolism 0.0062 down
(4/7) TSP-1 Induced Apoptosis in Microvascular Endothelial Cell 0.0065 down
(16/28) Galactose metabolism 0.0067 down
(13/20) Biosynthesis of steroids 0.0164 up
(7/11) Map Kinase Inactivation of SMRT Corepressor 0.0274 down
(25/68) Nicotinate and nicotinamide metabolism 0.0279 up
(4/14) Classical Complement Pathway 0.0314 down
(6/19) Complement Pathway 0.0364 down
(9/13) Nucleotide sugars metabolism 0.0369 up
(3/3) Degradation of the RAR and RXR by the proteasome 0.0396 down

F vs. C (3/12) Lectin Induced Complement Pathway 0.0068 up
(13/20) Biosynthesis of steroids 0.0083 down
(24/34) Glutathione metabolism 0.0403 down

F vs. N (14/45) gamma-Hexachlorocyclohexane degradation 0.0321 down
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GALNT3 initiates mucin-type O-glycosylation [22]. It
therefore seems plausible that the elevated activity of the
O-Glycans pathway is linked to the increased sputum pro-
duction observed in smokers [23].

Glutathione is an important antioxidant known to be
increased in the lungs of smokers [24]. A colormap of the
expression levels of the genes in the glutathione metabo-
lism pathway is shown in Fig. 4; the higher expression of
many of these genes in the current smokers is clear. The
increased expression of glutathione metabolism genes in
smokers was also noted by Spira et al. [10]. Interestingly,
the two genes with the highest weights are GCLM and
GCLC; these genes encode the subunits of glutamate
cysteine ligase (GCL), which is the rate-limiting enzyme in
the synthesis of glutathione [24].

Comparison with gene-set enrichment analysis
We used GSEA to identify significant pathways in compar-
isons between the different groups of smokers. The rank-

ing of genes required to evaluate enrichment scores was
done, following Ref. [9], using the signal to noise ratio
(the absolute value of the difference of the means of the
two groups divided by the sum of the within-group
standard deviations). For this analysis we used our collec-
tion of pathways and complexes. In comparing current
and never smokers, the gene-set with the highest enrich-
ment score (ES) was determined to be the KEGG ribos-
ome genes with an ES of 162. However, using 1000
random permutations as described in Ref. [9] to evaluate
the significance of this ES yielded a p-value of only 0.17.
Comparing former and never smokers, GSEA also finds
the ribosome gene-set to have the highest ES (304) and
with a reasonably high significance level of p = 0.047
(1000 permutations). Finally, the comparison between
current and former smokers identifies 'Lectin Induced
Complement Pathway' (Biocarta) as the pathway with the
highest ES (128) but the significance level is very low (p =
0.52).

Expression profiles in airway epithelia of current (C), former (F), and never (N) smokersFigure 4
Expression profiles in airway epithelia of current (C), former (F), and never (N) smokers. Top: colormap of path-
way activity levels for the highest ranking pathways in the comparison between current smokers and never smokers. Bottom: 
colormap for genes in the KEGG glutathione metabolism pathway. Glutathione is an important anti-oxidant known to be 
increased in the lungs of smokers. The genes with the highest weights in this pathway, GCLM and GCLC, encode the subunits of 
glutamate cysteine ligase (GCL), the rate-limiting enzyme in the synthesis of glutathione [24].
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low (arbitrary units)                                                                                                                        high
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We also used GSEA with our collection of gene-sets to
compare DM2 and NGT in the diabetes data discussed
above. Here the ribosome gene-set is found to have the
highest ES (278) and p = 0.073 (1000 permutations). Oxi-
dative phosphorylation has the next highest ES (261) with
p = 0.092.

It is interesting that in three of our four comparisons, the
ribosome gene-set is found to have the highest ES. We
noticed that the expression levels for the ribosome genes
are very strongly correlated. This can be seen very clearly
in colormaps of the expression levels in both the diabetes
and smoking data sets (not shown) and is also implied by
an unusually large first eigenvalue. For example, in the
smoking data set the first metagene for ribosome accounts

for over fifty percent of the total variation,  =

0.53. In comparison, this fraction is only 0.23 for Oxida-
tive Phosphorylation (which has 87 genes vs. the ribos-
ome's 80 genes present in the data set) and 0.05 for
uncorrelated gaussian noise obtained from averaging over
1000 simulated data sets of the same size as the ribosome.
These observations lead us to speculate that GSEA may
not effectively distinguish between gene sets that show a
consistent difference between groups of samples and sets
with genes that are merely strongly coordinately
expressed. In the method we have proposed, correlated
expression patterns influence the form of the first meta-
gene and the pathway activity levels, but this is treated
separately from the question of whether there is a consist-
ent difference between groups.

To summarize, our approach suggests a number of poten-
tially interesting pathways and hypotheses from compari-
sons between smokers and non-smokers. The results of
our analysis seem biologically reasonable and are more
consistent with the findings of Spira et al. [10] than those
obtained by GSEA. As a specific example, we identified
glutathione metabolism genes as having significantly (p <
0.0001) higher expression levels in current vs. never
smokers. This feature was also noted by Spira et al. [10] in
their original analysis and seems evident in the colormap
shown in Fig. 4. GSEA, however, does not find this or any
other pathway to be differentially expressed below p =
0.05 between current and never smokers.

Conclusion
We have introduced a method for analyzing gene expres-
sion data in terms of a collection of predefined pathways
and complexes. In summary, the approach quantifies the
level of activity of each pathway within each sample and
uses the activity levels as the basis for making compari-
sons. Mootha et al. [9] previously demonstrated that look-
ing at expression data in terms of predefined pathways can
provide valuable insights not easily attainable by methods
more focused on individual genes and we feel that the
results in this article reinforce their view.

The main applications we have presented are simple two-
group comparisons. We suggest that pathway activity lev-
els may also be useful in other areas, for example, as vari-
ables in models for gene regulation (e.g., Bayesian
networks [25]), for clustering and classification [15,26],
and in computational efforts to discover novel gene-path-
way associations. One possibility is to use SVD on the
activity levels themselves to determine 'metapathway' sig-
natures for the status of some disease following the
approach described in Ref. [15]. There are a number of
potential advantages to be gained in these and other cases.

Table 3: Weights for genes in two pathways that show an 
association with smoking status. SVD weights for genes in 
pathways identified as significantly differentially expressed 
between current and never smokers. The gene with highest 
absolute weight in the gamma-Hexachlorocyclohexane 
degradation pathway, CYP2A6, plays a key role in nicotine 
metabolism and has been linked to nicotine dependence [21]. 
GALNT3, a gene with relatively high weight in the O-Glycans 
biosynthesis pathway, initiates mucin-type O-glycosylation [22], 
suggesting a connection with the increased sputum production 
observed in smokers. The overall sign of the weights has here 
been chosen so that a positive weight implies relatively higher 
expression in current as compared to never smokers.

Pathway gene weight

gamma-Hexachlorocyclohexane degradation CYP2A6 -0.42
CYP2F1 -0.38
CYP1B1 0.38
CYP2A7 -0.38
ALPL 0.28
CYP2B6 -0.27
CYP4B1 -0.27
CYP2J2 -0.23
PON2 0.19
ACP5 0.15
ACP2 0.15
ACP1 0.15
CYP2C9 0.09
CYP1A2 -0.02

O-Glycans biosynthesis GALNT7 0.50
GALNT1 0.42
GALNT3 0.42
B4GALT4 0.38
GALNT6 0.28
B4GALT1 0.23
GALNT2 0.21
C1GALT1 0.20
OGT -0.15
B4GALT3 0.11
B4GALT2 0.05

λ2

1n ng s( )−
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For one, features defined by groups of genes will tend to
be more robust in the face of variation at the level of indi-
vidual genes. In addition, the features here (pathways) are
based on a large amount of prior biological knowledge
and so are potentially more directly biologically
meaningful.

Methods
Gene sets
As in GSEA, the basis for our analysis is a classification of
genes into known pathways and complexes. Here, we use
about 400 pathways and complexes characterized on the
Biocarta and KEGG (Kyoto Encyclopedia of Genes and
Genomes) websites [12,13]. The KEGG pathways mainly
include processes related to metabolism and biosynthesis
(e.g., Fatty acid metabolism and Ubiquinone biosynthe-
sis). Those on Biocarta cover a wider variety of cellular
processes including a large number of immune signaling
pathways (Toll-like receptor pathway, B-cell receptor sign-
aling pathway, complement pathway), as well as meta-
bolic and biosynthetic pathways. Both collections also
include complexes such as the T-cell receptor and ribos-
ome and broad gene categories such as cytokines. The
KEGG and Biocarta pathways continue to expand and
evolve. The versions used for this article are available at
the PLAGE website [11].

Pathway activity levels
Our analysis starts by quantifying, in each sample, the
level of 'activity' of each pathway. As described in the
Results and discussion section, we define the activity level
of a pathway in a given sample as the 'level' of expression
of a certain metagene in that sample, i.e., the level of the
first metagene from the SVD (e.g., Ref [27]) of the matrix
of expression levels. In this section we provide the details
and motivation behind this choice.

We begin by standardizing the gene expression levels to
have zero mean and unit variance over samples. For each
pathway, we form a matrix Y (rows = genes, columns =
samples) containing the standardized expression levels
from all samples but for the genes in that pathway only.
We write the singular value decomposition of Y as

Y = WDC.  (1)

Here the columns of the matrix W are the orthonormal
(WW = I, the identity matrix) eigenvectors or metagenes
of Y, D is a diagonal matrix containing the associated
eigenvalues, and each column of C is a vector of coeffi-
cients for one of the samples indicating the level of each
metagene in the sample. The rows of C are also orthonor-
mal (CC = I). Assume the eigenvalues are ordered from
highest to lowest going down the diagonal of D. The first
metagene w – that associated with the largest eigenvalue –

is then the first column of W. We write its eigenvalue as λ
and the associated coefficients (first row of C) as cj.

The activity level of a pathway in a given sample j is taken
as the coefficient cj for the first metagene. It follows also
from the orthonormality of the columns of W and rows of
C that

That is, the activity level cj can also be regarded (up to a
non-essential scale factor) as a weighted sum of the stand-
ardized expression levels of the individual genes, the
weights being given by the first metagene w.

One motivation for using the first metagene in SVD is that
the resulting combination of activity levels and weights
specifies an optimal approximation to the matrix Y (i.e.,
accounts for the main component of the variation in the
data). Specifically, assume the following statistical model
for the expression levels

yij = αiχj + εij  (3)

where the vector χ is constrained to have unit norm and
the εij are independent Gaussian random variables. The
estimates for α and χ that minimize the sum of the
squared errors are just the first metagene scaled by its
eigenvalue, λw, and the associated vector of activity levels
c, respectively. The approximation of a set of expression
profiles using the first metagene is illustrated in Fig. 2.

A useful fact about the first eigenvalue is that its square is
a measure of the amount of variation accounted for by the
first metagene. Specifically, with ng = number of genes and
ns = number of samples, the total amount of variation in

the data is  (recall, the expression lev-

els are standardized so that ) and the var-

iation remaining after subtracting off the profile described
by the first metagene is ∑ij(yij - λwicj)2 = ng(ns - 1) - λ2.

Evaluating significance
In this article, we mainly perform pairwise comparisons to
identify pathways for which the mean activity level in one
group (e.g., diabetic) is significantly different from that in
the other (non-diabetic). To accomplish this we calculate
a t statistic for each pathway:

c w yj i ij
i

= − ∑λ 1 2. ( )

y n nij g sij
2 1= −∑ ( )

1
1

12

n
y

s
ijj−

=∑

t
V n V n

A B

A A B B
=

−
+

µ µ
/ /

( )4
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where A and B are labels for the groups, nA is the number
of samples in group A, and µA and VA are the mean and
variance of the activity level in A (similarly for group B).
To determine a fair measure of significance in an analysis
of this kind, it is important to account for the fact that we
are testing a large number of hypotheses [28]. For this pur-
pose, we perform a large number (10,000 for this article)
of comparisons by randomly permuting the sample labels
and for each permutation recording the t statistic for the
most significant pathway (the maximum t-statistic) iden-
tified using the permuted labels. Our p-values are com-
puted with reference to the maximum t-statistic, i.e., we
calculate a p-value by taking the fraction of the maximum
t-statistics that exceed the t-statistic.

This basic approach was also used by Mootha et al. [9] to
determine the significance of the ES (enrichment score)
for a pathway except that the comparison there is with
maximum enrichment scores. Generally, other statistics
can be used in similar fashion. For example, to evaluate
the significance of the level of correlation of activity levels
with blood glucose concentration in the diabetes data, we
determined the minimum and maximum (Pearson) cor-
relations between activity levels and randomly permuted
glucose concentration values in each of 10,000
permutations. p-values were obtained as the fraction of
these extremal correlation values that were stronger
(higher if r > 0 and lower if r < 0) than the value obtained
using the correct ordering of glucose levels.

Availability and requirements
The SVD-based pathways analysis method has been
implemented in a web program [11] called PLAGE
(pathway level analysis of gene expression). PLAGE will
run through standard web browsers.
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