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1 Introduction

This note is a natural continuation of the research program that has been pursued in the

papers [1–4] and has been heavily guided by earlier mathematical work of Goncharov on

both the structure of polylogarithm functions and on cluster algebras (see in particular [5]

and [6]). The physics goal of our program is, narrowly, to understand the rich mathematical

structure of two-loop amplitudes in N = 4 supersymmetric Yang-Mills (SYM) theory [7],

and more broadly, to develop a toolkit of mathematical techniques useful for unlocking the

structure of multi-loop amplitudes in general field theories. An example of the latter is

the symbol calculus, which following [1] has become a very useful workhorse for dealing

with the kinds of polylogarithm functions which are ubiquitous in multi-loop calculations,

while the intimate connection between amplitudes and cluster algebras unearthed in [3] is

a prime example of the very special structure exemplified by SYM theory in particular.

In this paper we tie together several threads which have run through the earlier work [1–

4] but have not yet been fully wrapped up. Our immediate goal will be to construct an

explicit analytic formula for the two-loop seven-point MHV amplitude R
(2)
7 in SYM theory.1

While it may be interesting in its own right, we do not view the formula itself as the primary

result of this paper. Rather our aim is to first review the various obstacles that arise in the

pursuit of writing such analytic formulas, and then to bring together the relevant ideas and

results from [1–4, 13] to argue that the problem of constructing analytic formulas for R
(2)
n

for any desired n may be considered “solved” (modulo the availability of sufficient computer

1More precisely R
(L)
n stands for the n-particle L-loop remainder function, after the infrared singularities

of the amplitude have been subtracted in a now standard way following [8, 9]. Dual conformal symmetry

requires R
(L)
n to vanish for n < 6 at any loop order [10, 11], but a numerical study [12] established that

R
(2)
6 is nonzero.
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power, of course). By this we mean that we describe an algorithm which, building on the

scaffolding provided by Caron-Huot’s computation [14] of the symbol of R
(2)
n , may be used

to construct an analytic formula for any desired n. The result for n = 6 appeared in [1],

and we present a result for n = 7 here as a specific application of our algorithm. Numerical

studies of R
(2)
n have been carried out for n = 6 in [12, 15, 16] and for higher n in [17, 18],

and explicit formulas are known for the special case when all particles have momenta lying

in a common R1,1 subspace of four-dimensional Minkowski space [19–21].

We do not address here the question of how the computational complexity of our

algorithm scales with n because we hope that this will ultimately be an irrelevant question.

As has happened often before in physics, and especially so in the study of SYM theory, we

believe that once suitably packaged and digestible results accumulate for various relatively

small values of n, the structure might become clear enough that one can extrapolate an

all-n formula, which could subsequently be proven to be correct or at least could be checked

to be consistent with all known properties of the true amplitudes.

Amplitudeology is a data-driven enterprise where insights gleaned by analyzing the

results of a seemingly difficult calculation have often revealed hidden structure which triv-

ialize the original calculation, and help to make the next set of calculations simpler (or

even just possible). We very much anticipate that the formula we obtain for R
(2)
7 will not

be the simplest or “best” one possible, but hope that the algorithm described in this paper

will prove useful for generating new data for the amplitude community.

Section 2 contains some brief background material and definitions. Section 3 comments

on the difficulties of integrating symbols in general, and on the tools we employ to overcome

these difficulties. We also discuss the relation of our work to a complementary approach

to similar problems which has been used by Dixon and collaborators to achieve several

impressive results on multi-loop six-point amplitudes [22–25]. Section 4 outlines our general

algorithm, while section 5 discusses its application to the specific case of R
(2)
7 , culminating

in the construction of a complete analytic formula for this amplitude, some properties of

which are discussed in section 6.

2 Background

This section is a brief review of some of the more advanced mathematics that will appear

throughout the rest of the paper, namely the coproduct δ and cluster algebras. For a more

thorough introduction to these topics, see [2, 4].

The space of polylogarithm functions modulo products is a Lie coalgebra with coprod-

uct2 δ. The coproduct maps a polylogarithm function of weight 4 (the case of relevance to

two-loop amplitudes) into two component spaces, Λ2B2 and B3 ⊗ C∗. Here, Bk refers to

the Bloch group, which roughly speaking represents the space of classical weight k poly-

logarithm functions modulo functional relationships amongst Lik and modulo products of

functions of lower weight. Elements of Bk are linear combinations of objects denoted by

{x}k, which stands for the equivalence class containing the function −Lik(−x). The Λ2B2

2Throughout this paper, we use the word “coproduct” to denote δ, which satisfies δ2 = 0, rather than ∆

which operates by simply deconcatenating the symbol. We refer the reader to [2, 26] for additional details.
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component of the coproduct captures the obstruction to writing a function in terms of the

classical polylogarithm functions Lik [27, 28]. The B3 ⊗ C∗ component of the coproduct

encapsulates all of the intrinsically weight 4 terms in a function.

Cluster algebras are generated by a preferred set of variables (“cluster coordinates”)

grouped in disjoint sets called clusters related to each other by a transformation called

mutation. The cluster algebra relevant for two-loop MHV scattering amplitudes in SYM

theory is the Gr(4, n) Grassmannian cluster algebra, which is related to the kinematic

configuration space for n particles, Confn(P3). These coordinates come in two flavors, A-

and X - coordinates. An example of A-coordinates are the standard Plücker coordinates

〈ijkl〉 = det(ZiZjZkZl) (in terms of momentum-twistor variables [29]). Slightly more

complicated examples that will appear later in this paper are of the type

〈a(bc)(de)(fg)〉 ≡ 〈abde〉〈acfg〉 − 〈abfg〉〈acde〉, (2.1)

〈ab(cde) ∩ (fgh)〉 ≡ 〈acde〉〈bfgh〉 − 〈bcde〉〈afgh〉. (2.2)

Cluster X -coordinates are a special class of cross-ratios built from A-coordinates.

These two topics, polylogarithms and cluster algebras, merge beautifuly in the arena

of SYM theory. Firstly, only cluster A-coordinates for Gr(4, n) appear in the symbol for

R
(2)
n . Moreover, the coproduct of R

(2)
7 was calculated in [2] and it was noted that the

elements {x}2 and {x}3 appearing in the coproduct were cluster X -coordinates of the

Gr(4, 7) Grassmannian cluster algebra. Furthermore, it was noted that the function for

R
(2)
6 obtained in [1] can be written purely in terms of classical polylogarithms Lik with

(negative) X -coordinates as arguments. In this paper we extend these connections to a

general algorithm for constructing the function R
(2)
n .

Let us note that the Gr(4, n) cluster algebra has infinitely many A- and X -coordinates

when n > 7, but we believe that this presents no obstruction to our algorithm since it is

evident from the result of [14] that only finitely many (in fact, precisely 3
2n(n− 5)2) of the

A-coordinates actually appear in the two-loop MHV amplitude R
(2)
n , and our experience

has shown that the “most complicated part” of these amplitudes (see [4] for details) can

be expressed in terms of the X -coordinates belonging to finitely many A3 subalgebras of

Gr(4, n). For the special cases n = 6, 7, we expect that the two-loop symbol alphabet (which

contains already all available A-coordinates) will be sufficient to express all amplitudes

(whether MHV or not) to all loop order, but for n > 7 we know of no reason to exclude the

possibility that the symbol alphabet could grow larger at higher loops (indeed we expect

it to become infinite for ten-point N3MHV amplitudes starting already at only two loops).

A salient feature of cluster X -coordinates is that they are positive when evaluated

inside the positive Grasmmannian, defined as the subset of the Euclidean domain where

〈ijkl〉 > 0 whenever i < j < k < l. This is incredibly important because it allows us to

impose analyticity inside the positive domain with relative ease (since Lik(x) is smooth for

x < 0), in particular without having to worry about branch cuts. It would be interesting to

check the extension of our final formula to more general Euclidean kinematics, for which it

would be necessary to specify where to take the branch cut of each Lik(x) (as was done for

example in [1] for n = 6). It would also be interesting to explore the analytic continuation

– 3 –
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to other regions outside the Euclidean domain, for example to make contact with work on

the seven-point amplitude in the multi-Regge regime [30–32].

Before we describe our algorithm we would first like to clarify the difficulties that our

cluster algebraic approach allows us to overcome.

3 The problem of integrating symbols

The problem of finding an explicit polylogarithm function whose symbol matches a given

random (but integrable) symbol is hopeless; no algorithm exists in general. Fortunately,

amplitudes in SYM theory do not have random symbols, nor do we expect them to be

expressed in terms of completely random functions.

In such happier cases the problem can be tractable if the desired function may be

expressed in terms of some class of generalized polylogarithm functions whose arguments

are all drawn from some particular finite collection of well-behaved variables. Then the

problem of integrating the symbol becomes simply one of linear algebra: one writes a

general linear combination of the functions in the ansatz, and chooses the coefficients to

match the desired symbol. Ideally, the ansatz should be just big enough to contain the

answer, and not too big. If the ansatz is too overcomplete3 there can be considerable

ambiguity in choosing a functional representative for the integrated symbol.

If one were merely interested in being able to obtain numerical values for SYM am-

plitudes, then such ambiguity would be of little concern. If the goal however is to unlock

their mathematical structure, then it is desirable to have functional representations which

manifest, to the extent possible, all of their known properties. From this point of view, any

ambiguity in how to write an amplitude is seen as an inefficiency, a wasted opportunity.

In a series of papers [22–25], Dixon and collaborators have pursued one approach to

this problem by studying “hexagon functions”, defined as polylogarithm functions whose

symbol can be expressed in terms of a certain 9-letter alphabet (in our terminology, the

alphabet of A-coordinates for the Gr(4, 6) Grassmannian cluster algebra) and which have

the appropriate analytic structure for scattering amplitudes (specifically, that they must be

analytic everywhere inside the Euclidean domain, with branch points on the boundary of

the Euclidean domain when 〈i i+1 j j+1〉 = 0 for some i, j). By systematically classifying

such hexagon functions through weight eight, and by using physical input about the near-

collinear limit derived from the Wilson loop OPE approach [34–38] and from the multi-

Regge limit [23, 39–46], they have determined analytic expressions for the six-point NMHV

amplitude at two loops, and the six-point MHV amplitude at three and four loops.

It would be extremely interesting to pursue a similar approach for n > 6, by exploring

for example the space of “heptagon functions”. Our trepidation to take this route stems

from the fact that the required symbol alphabet grows rapidly with n: as mentioned above,

3Some overcompleteness is inevitable in our approach due to Lik identities involving configurations of

points in projective space (see for example [27, 28, 33]), but such identities are rare when the arguments

are restricted to be (negative) cluster X -coordinates. The only currently known non-trivial identities of

this type are the 5-term A2 identity (Abel’s identity) for Li2 and the 40-term D4 identity for Li3 [2].
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the symbol alphabet for R
(2)
n has 3

2n(n−5)2 entries [14], so the space of weight-four symbols

has dimension4 O(n12).

We have pursued instead the somewhat orthogonal approach of organizing our calcu-

lations not from left-to-right in the symbol, but rather in order of decreasing mathematical

complexity of the functional constituents. At weight four, this means that we first focus

our attention on the “non-classical” part of the amplitude: the Λ2B2 component of its

coproduct. The remaining purely classical pieces of an amplitude can be systematically

computed in order from most to least complicated by following the procedure outlined

in [1]. This approach has the disadvantage of leaving the analytic properties of amplitudes

obscure, while it has the advantage of making some remarkable mathematical properties

— the relation to the cluster structure on the kinematic domain — manifest.

The very first step in this approach is the one most fraught with peril, as we now

explain. The Λ2B2 component of the coproduct of R
(2)
n can be expressed [2, 13] as a linear

combination of various {xi}2 ∧ {xj}2 where the x’s are drawn from the X -coordinates of

the Gr(4, n) cluster algebra. Moreover, the x’s always appear together in pairs satisfy-

ing {xi, xj} = 0 with respect to the natural Poisson structure on the kinematic domain

Confn(P3); this implies that each pair of variables generates an A1 ×A1 subalgebra of the

Gr(4, n) cluster algebra.

For several years a guiding aim of this research program, strongly advocated by Gon-

charov, has been that it should be possible to write each amplitude under consideration as

a linear combination of special functions associated with smaller building blocks (“atoms”).

For example, it is well-known that the function5

L2,2(x, y) =
1

2

∫ 1

0

dt

t
Li2(−tx) Li1(−ty)− (x↔ y) (3.1)

has the simple Λ2B2 coproduct component {x}2 ∧ {y}2. Therefore one might be tempted

to construct the non-classical part of a desired R
(2)
n by writing down an appropriate linear

combination of L2,2(xi, xj) functions; the difference between this object and R
(2)
n must then

be expressible in terms of the classical functions Lik only.

The fatal flaw in this approach is that while L2,2(xi, xj) indeed has a simple coproduct,

it is poorly adapted to applications where one wants to manifest cluster structure because

its symbol has some entries of the form xi − xj , which is never expressible as a product

of cluster A-coordinates (and thus can never be an X -coordinate). Therefore one would

have to considerably enlarge the symbol alphabet under consideration in order to fit all of

the classical pieces of the amplitude left over by subtracting a linear combination of L2,2’s.

Just as bad, one would almost inevitably generate Lik functions whose arguments range

4This is rather too pessimistic; the analyticity condition cuts this down by one power of n and the

integrability condition no doubt cuts down by some more powers of n.
5We caution the reader that several variants of this function exist in the literature, beginning with [27],

all of which differ from each other by the addition of terms proportional to Li4, or products of lower-weight

Lik’s. In fact even in this short paper we will use a second variant K2,2 momentarily. All of these variants

have the same Λ2B2 coproduct component. The particular L2,2(x, y) used here may also be expressed as

L2,2(x, y) = 1
2

Li2,2(x/y,−y)− (x↔ y) in terms of the Li2,2 function.

– 5 –



J
H
E
P
0
8
(
2
0
1
4
)
1
5
4

over the entire real line, greatly complicating the problem of arranging all of the branch

cuts of the individual terms to conspire to cancel out everywhere in the positive domain.

So if we want to maintain a connection to the cluster structure (and, more practically,

to avoid enormously complicating the calculation by being forced to clean up unwanted

mess in the symbol), we should abandon the idea that each individual term {xi}2 ∧ {xj}2
may be thought of as an atom.6 The problem of identifying the smallest building block

manifesting all of the known cluster properties of R
(2)
n was solved (at least, for a few of the

simplest cluster algebras, and more generally conjectured) in [4]. The solution is a function

associated to the A3 cluster algebra which we can write in the form

fA3(x1, x2, x3) =
3∑

i=1

K2,2(xi,1, xi,2), (3.2)

where

x1,1 = x1, x1,2 = 1/x3,

x2,1 = (x1x2 + x2 + 1)x3, x2,2 =
x1x2 + x2 + 1

x1
, (3.3)

x3,1 =
x2x3 + x3 + 1

x2
, x3,2 =

x2x3 + x3 + 1

x1x2x3

and

K2,2(x, y) = L2,2(x, y)−
[
Li4(x/y)− 1

3
Li3(x/y) log(x/y)− (x↔ y)

]
− 1

2
Li2(−x) Li2(−y).

(3.4)

The expression for K2,2 given here differs from the one presented in [4] by the addition

of terms proportional to products of logarithms as well as the final Li2 Li2 term, none of

which affect the coproduct of K2,2.

As long as the three xi generate an A3 algebra x1 → x2 → x3 (which could be a

subalgebra of a larger algebra), the A3 function accomplishes a remarkable feat:

• the Λ2B2 component of its coproduct,
∑3

i=1{xi,1}2 ∧ {xi,2}2, involves only pairs of

Poisson commuting X -coordinates;

• the B3 ⊗ C∗ component of its coproduct can be written in terms of X -coordinates

(the Li4 term in K2,2 is crucial here);

• its symbol can be written entirely in terms of A-coordinates (here the Li3 log term is

crucial);

• and it is smooth and real-valued everywhere inside the positive domain (i.e., as long

as x1, x2, x3 > 0), thanks to the terms which were added compared to [4].

6Instead they are perhaps quarks: never allowed to appear alone, but always bound safely together in

A2 functions or perhaps other, not yet discovered, more exotic baryons.
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The Li2 Li2 term in (3.2) is completely innocuous and was chosen for inclusion because it

was observed to nicely package together most of the Li2 Li2 terms in the amplitude R
(2)
7 .

It would be very interesting to see if a more optimal packaging of subleading terms could

be obtained, whether for n = 7 or even for all n.

Working with A3 functions, rather than the underlying individual L2,2’s, therefore

allows us to avoid having to enlarge the symbol alphabet beyond the set of cluster A-

coordinates. Moreover, when expressing the classical contributions to an amplitude we are

able to restrict our attention to the functions Lik(−x), which are smooth and real-valued

throughout the positive domain as long as the arguments x are always taken from the set

of cluster X -coordinates.

4 The algorithm for R(2)
n

The algorithm is naturally broken into four steps. (1) As discussed in the previous section,

we start by writing down a linear combination of A3 cluster functions with the same Λ2B2

content as the desired R
(2)
n . After subtracting this linear combination from the amplitude

we are left with a function which (2) we express in terms of the classical polylogarithms Lik
following the algorithm described in [1]. One minor difference with respect to [1] is that we

prioritize the Li4 terms over those which can be written as products of lower-weight Lik’s,

since only the former contribute to the B3⊗C∗ component of the coproduct. So, to be ex-

plicit, we proceed in the following order: fA3 , Li4, Li2 Li2, Li2 log log, Li3 log, log log log log.

At this stage we have a function with the same symbol as the amplitude, so the

difference is expected to be equal to π2 times polylogarithm functions of weight two. We

ought not find any terms proportional to iπ times a function of weight three since at each

step we work with functions that are manifestly free of branch cuts in the positive domain.

(3) The O(π2) terms can be found by comparison to the known [3, 14] all-n formula for

the differential dR
(2)
n of the amplitude. (4) Finally, the overall additive constant in the

amplitude can be determined by enforcing smoothness of the collinear limit R
(2)
n → R

(2)
n−1,

a property which is built into the definition of the remainder function [9].

5 The construction of R
(2)
7

We present here some details about the expression for R
(2)
7 generated by our algorithm.

Some of the contributions, in particular the terms of the form Li2 log log or log log log log,

are too numerous to reasonably display in the text, so we refer the reader to the Mathe-

matica file associated to this note for the full symbolic result.7

We begin by recalling the representation of the non-classical pieces of R
(2)
7 in terms of

A3 functions, presented in [4] as

1

2
fA3

(
〈1245〉〈1567〉
〈1257〉〈1456〉 ,

〈1235〉〈1456〉
〈1256〉〈1345〉 ,

〈1234〉〈1257〉
〈1237〉〈1245〉

)
+

1

2
fA3

(
〈1345〉〈1567〉
〈1357〉〈1456〉 ,

〈1235〉〈3456〉
〈1356〉〈2345〉 ,

〈1234〉〈1357〉
〈1237〉〈1345〉

)
+ dihedral + parity conjugate. (5.1)

7In case of any discrepancy between formulas in the text and the Mathematica file, the latter is author-

itative.
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As we emphasized in [4], the difference between R
(2)
7 and (5.1) is a weight-four polynomial

in the functions Lik(−x) for k = 1, 2, 3 (and π2), with arguments x drawn from the 385

X -coordinates of the Gr(4, 7) cluster algebra.

The B3 ⊗ C∗ component of the coproduct of R
(2)
7 was computed in [2]. We find that

the Li4 terms

− Li4

(
− 〈1234〉〈1256〉〈1236〉〈1245〉

)
− Li4

(
− 〈1234〉〈1257〉〈1237〉〈1245〉

)
− 1

2
Li4

(
− 〈1234〉〈1357〉〈1237〉〈1345〉

)
− 1

2
Li4

(
− 〈1234〉〈1456〉〈1246〉〈1345〉

)
+ dihedral + parity conjugate, (5.2)

must be added to eq. (5.1) in order to correctly reproduce the full coproduct of the ampli-

tude.

At this stage we know that the difference between R
(2)
7 and eqs. (5.1) plus (5.2) is a

product of Lik functions of weight strictly less than four. Following the procedure outlined

in [1] we find that the missing Li2 Li2 terms (beyond the ones that we have already snuck

in via eq. (3.2)) are

Li2

(
〈3(17)(24)(56)〉
〈1237〉〈3456〉

)
Li2

(
〈1456〉〈3(17)(24)(56)〉
〈1234〉〈1567〉〈3456〉

)
+ Li2

(
− 〈1234〉〈1257〉〈1237〉〈1245〉

)
Li2

(
− 〈1234〉〈1457〉〈1247〉〈1345〉

)
− 1

2
Li2

(
− 〈1234〉〈1257〉〈1237〉〈1245〉

)
Li2

(
− 〈1245〉〈1567〉〈1257〉〈1456〉

)
− Li2

(
− 〈1234〉〈1357〉〈1237〉〈1345〉

)
Li2

(
− 〈1345〉〈1567〉〈1357〉〈1456〉

)
− Li2

(
− 〈1237〉〈1467〉〈1267〉〈1347〉

)
Li2

(
− 〈1236〉〈2567〉〈1267〉〈2356〉

)
+ Li2

(
− 〈1236〉〈2567〉〈1267〉〈2356〉

)
Li2

(
− 〈2345〉〈3467〉〈2347〉〈3456〉

)
+ dihedral + parity conjugate. (5.3)

We also find the Li3 log terms(
1

2
Li3

(
− 〈1267〉〈1456〉〈1246〉〈1567〉

)
− 1

2
Li3

(
− 〈1246〉〈1345〉〈1234〉〈1456〉

))
log
(
〈1237〉〈1246〉
〈1234〉〈1267〉

)
+

(
− 1

2
Li3

(
− 〈1237〉〈1345〉〈1234〉〈1357〉

)
− 1

2
Li3

(
− 〈1247〉〈1345〉〈1234〉〈1457〉

)
+Li3

(
− 〈1257〉〈1347〉〈1237〉〈1457〉

)
+Li3

(
− 〈1257〉〈1456〉〈1245〉〈1567〉

)
+

1

2
Li3

(
− 〈1267〉〈1456〉〈1246〉〈1567〉

)
+

1

2
Li3

(
− 〈1357〉〈1456〉〈1345〉〈1567〉

)
−Li3

(
− 〈1235〉〈1267〉〈1457〉〈1237〉〈1245〉〈1567〉

))
log
(
〈1247〉〈1345〉
〈1234〉〈1457〉

)
+

(
−Li3

(
− 〈1236〉〈1245〉〈1234〉〈1256〉

)
− 1

2
Li3

(
− 〈1237〉〈1245〉〈1234〉〈1257〉

)
+Li3

(
− 〈1247〉〈1256〉〈1245〉〈1267〉

)
+

1

2
Li3

(
− 〈1237〉〈1345〉〈1234〉〈1357〉

)
+

1

2
Li3

(
− 〈1246〉〈1345〉〈1234〉〈1456〉

)
+ Li3

(
− 〈1247〉〈1345〉〈1234〉〈1457〉

)
− 1

2
Li3

(
− 〈1257〉〈1456〉〈1245〉〈1567〉

)
− 1

2
Li3

(
− 〈1267〉〈1456〉〈1246〉〈1567〉

)
− 1

2
Li3

(
− 〈1456〉〈2345〉〈1245〉〈3456〉

)
− Li3

(
− 〈1457〉〈2345〉〈1245〉〈3457〉

)
+ Li3

(
− 〈1457〉〈2456〉〈1245〉〈4567〉

))
log
(
〈1237〉〈1245〉
〈1234〉〈1257〉

)
+ dihedral + parity conjugate. (5.4)

The remaining Li2 log log and log log log log terms which must be added to

eqs. (5.1), (5.2), (5.3) and (5.4) in order to fully match the known symbol of R
(2)
7 are

too numerous to display here and are recorded in the attached Mathematica file.
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Next we turn to the problem of fixing “beyond-the-symbol” terms, given by numerical

constants (in this application, rational numbers times πk) times functions of weight 4− k.

The terms proportional to π2 may be deduced by computing the full differential of all of

the terms we have accumulated so far, and subtracting the result from the known analytic

formula for dR
(2)
7 [3, 14]. The result is a linear combination (with rational coefficients)

of terms like π2 log(a1)d log a2 for various A-coordinates a1, a2. This can be integrated

analytically to a linear combination of terms like π2 Li2(−xi) and π2 log(xj) log(xk) with

all arguments being X -coordinates. In this manner we find that the π2 Li2 terms in our

representation of R
(2)
7 are given by

7π2

48
Li2

(
− 〈1247〉〈1345〉〈1234〉〈1457〉

)
− π2

8
Li2

(
− 〈1(23)(45)(67)〉〈1234〉〈1567〉

)
+ dihedral + parity conjugate, (5.5)

while the π2 log log terms are again somewhat too numerous to efficiently display here.

At this point we have constructed a function which agrees with R
(2)
7 up to a single

overall additive constant.8 This constant, expected to be a rational number times π4, can

be determined by the requirement that R
(2)
7 → R

(2)
6 smoothly in the collinear limit. We

choose to parameterize the 6 ‖ 7 collinear limit following [14] by replacing

Z7 → Z7(t) = Z6 − t(αZ1 + βZ5) + t2Z2, (5.6)

with α and β being arbitrary parameters, and then taking the limit t → 0. As long as

the starting point (Z1, . . . , Z7) is inside the positive domain and α and β are chosen to be

positive, then there exists a finite t0 > 0 such that (Z1, . . . , Z6, Z7(t)) lies in the positive

domain for all 0 < t < t0. Then the collinear limit9

lim
t→0+

R
(2)
7 (Z1, . . . , Z6, Z7(t)) = R

(2)
6 (Z1, . . . , Z6), (5.7)

together with the known formula [1] for R
(2)
6 , determines the overall additive constant in

R
(2)
7 .

Each cross-ratio appearing our formula for R
(2)
7 approaches either 0, ∞, or a finite

value in the limit t→ 0+, so it is a simple matter to compute the limit of the formula using

the asymptotic behavior of the polylogarithm functions

Li2(−1/t) ∼ −1

2
log2 t− π2

2
, (5.8)

Li3(−1/t) ∼ +
1

6
log3 t+

π2

6
log t, (5.9)

Li4(−1/t) ∼ − 1

24
log4 t− π2

12
log2 t− 7π4

360
, (5.10)

together with the asymptotic expansions (when x, t and a are positive)

L2,2(x, t) ∼ 0, (5.11)

8There are no ζ(3) log terms since dR
(2)
n is known [14] to not contain any terms proportional to ζ(3).

9We caution the reader that our normalization convention for R
(2)
7 agrees with that of [14], which differs

by a factor of four from that of [1], so the R
(2)
6 appearing on the right-hand side of eq. (5.7) should be four

times the function R
(2)
6 given in the latter reference.

– 9 –
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L2,2(x, 1/t) ∼
1

4
Li2(−x) log2 t+ Li3(−x) log t+ Li4(−x) +

π2

12
Li2(−x), (5.12)

L2,2(1/t, a/t
2) ∼ − 5

24
log4 t+

1

3
log a log3 t− 1

8
log2 a log2 t+

π4

24
log2 t− π2

24
log2 a− π4

30
,

(5.13)

where ∼ signifies the omission of terms which vanish as powers of t (or powers of t times

powers of log t). We have taken the limit of R
(2)
7 by choosing various random initial

kinematic points in the positive domain with all momentum twistors having integer entries.

Then, after taking the limit t→ 0+, the two sides of eq. (5.7) can be evaluated numerically

with arbitrary precision. In this manner we find that that we have to add −13
36π

4 to our

formula for R
(2)
7 in order for eq. (5.7) to be satisfied.

6 The function R
(2)
7

Several very different ingredients have gone into the construction of our formula for R
(2)
7 ,

from Caron-Huot’s calculation of symbols via an extension of superspace to the mathemat-

ical structure of cluster algebras. As an independent test that all of these ingredients have

been put together correctly it is reassuring to compare our result to numerical values for

R
(2)
7 obtained in [17] via the Wilson loop approach to scattering amplitudes in SYM theory.

To get an intuition for a function it is often useful to see a plot of it, such as figure 11

of [17] which shows R
(2)
7 evaluated on the “symmetric line”, the locus where

(u14, u25, u36, u47, u15, u26, u37) = (u, u, u, u, u, u, u) (6.1)

in terms of

uij =
〈i i+1 j+1 j+2〉〈i+1 i+2 j j+1〉
〈i i+1 j j+1〉〈i+1 i+2 j+1 j+2〉

. (6.2)

When the seven momentum vectors of the scattering particles are required to lie in four

spacetime dimensions, the uij are not free (indeed they cannot be, since the dimension of

Conf7(P3) is only six) but are constrained to satisfy a particular seventh-order polynomial

equation called the Gram determinant constraint. The symmetric line intersects the Gram

locus only at isolated points (specifically, at the roots of (1 + u)(1 − 4u + 3u2 + u3)2).

The authors of [17] evaded this constraint by allowing the momenta to lie in arbitrary

dimension. By making use of momentum twistor machinery our result for R
(2)
7 is solidly

tied to four-dimensional kinematics, although we anticipate that it should not be very

difficult to relax this constraint.

Until that is done we are therefore unable to provide a plot of our R
(2)
7 formula along the

symmetric line. Instead we display in figure 1 a plot of this function along the line segment

(u14, u25, u36, u47, u15, u26, u37) =

(
u, u, u, u, u, u,

(1− u− u2)2

1− 2u2

)
(6.3)

which satisfies the Gram constraint for all u and which lies in the positive domain

for 0 < u < u0 = 0.35689586789 . . ., this number being the smallest positive root of

1− 4u+ 3u2 + u3 = 0.
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Figure 1. The two-loop seven-point MHV remainder function R
(2)
7 evaluated along the line segment

parameterized by eq. (6.3) between u = 0 and the boundary of the positive domain at u ≈ 0.3569.

The endpoint of this line segment at u = u0 is rather special:10 it touches the symmetric

line at the tip of the positive domain. At this special point we find

R
(2)
7 (u0, u0, u0, u0, u0, u0, u0) = 10.4368451968 . . . . (6.4)

At a conveniently chosen non-symmetric point point satisfying the Gram constraint we find

for example

R
(2)
7

(
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,
121

224

)
= 23.8717248322 . . . . (6.5)

Both of these values are consistent with numerical results obtained using the Wilson loop

computation of [17].11 At all points in the positive domain where we have evaluated R
(2)
7 ,

we have always found it take positive values, supporting the conjecture of [47].

7 Conclusion

We have described an algorithm for bootstrapping explicit analytic formulas for the two-

loop n-point MHV remainder functions R
(2)
n in SYM theory from known results in the

literature for the symbol [14] and the differential [3] of R
(2)
n . The algorithm expresses these

amplitudes as linear combination of A3 cluster polylogarithm functions [4] and (products

of) classical polylogarithm functions Lik(−x) with arguments x drawn from the set of

X -coordinates [6] for the Gr(4, n) cluster algebra. Each building block utilized in the con-

struction is manifestly real-valued and singularity-free inside the positive domain, ensuring

that the generated formula for R
(2)
n manifests this property as well.

10This point is a close analog to the special point (u14, u25, u36) = ( 1
4
, 1
4
, 1
4
) in six-particle kinematics.

11We thank A. Brandhuber, P. Heslop and G. Travaglini for correspondence and for providing us with

their results at these kinematic points, which match eqs. (6.4) and (6.5) to 0.003%, within the estimated

margin of error of their numerical calculation.
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As a sample application of this algorithm we have constructed an explicit analytic

representation for R
(2)
7 . We would like to emphasize that we have put almost no effort into

optimizing our result, instead opting to see what we get by treating this as nothing more

than a “shift-enter” computation. Although we were somewhat surprised that the answer

came out as compact as it did, we anticipate that our result for R
(2)
7 will not be the “best”

representation possible but hope that it may provide a useful starting point for further ex-

ploration of the structure of this amplitude. In that sense we suspect our representation for

R
(2)
7 may be more similar to the DDS formula [48, 49] than to the GSVV formula [1] for R

(2)
6 .

Let us end by speculating about some possible ways in which our representation for

R
(2)
7 (and R

(2)
n more generally) ought to be improved. As a general statement, it is our hope

that amplitudes should admit natural functional representations which are as canonical as

possible12 and that any unexplained ambiguity in how to write an amplitude should be a

cause for disappointment. This is because our ultimate dream is that it should be possible

to formulate a list of physical and mathematical constraints which determine SYM theory

amplitudes uniquely, and any free parameter appearing in the representation of some ampli-

tude represents a lost opportunity to manifest some otherwise hidden property it satisfies.

For example, we find it suboptimal that (as mentioned in [4]) the non-classical part

of R
(2)
7 may be expressed in many different ways in terms of A3 functions. It would be

fantastic if one could identify some particular A3 subalgebras inside the Gr(4, 7) cluster

algebra (or Gr(4, n) more generally) which are for some reason preferred for expressing

two-loop MHV amplitudes. Moreover it would be nice if all of the classical terms tabulated

in section 4 could be absorbed into an appropriate redefinition of the A3 function given

in eq. (3.2) so that the complete formula for R
(2)
7 , or even all R

(2)
n , could be written as a

simple linear combination of suitably defined A3 functions and nothing else. If this magic

A3 function were positive-valued inside the positive domain, it would furthermore manifest

the conjectured [47] positivity of R
(2)
n itself. It would be ideal if this could be done for all n

in a way which manifests collinear limits, with the various A3 functions appearing in R
(2)
n

tending either to zero or to n−1-point A3 functions in the collinear limit. Finally, perhaps

it is not the A3 function but something else which is the right building block for realizing

all of these dreams.
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