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1 Introduction

Interacting quantum field theories generally become hard to define in more than four di-

mensions. A Yang-Mills theory, for example, becomes strongly coupled in the UV. In six

dimensions, a possible alternative would be to use a two-form gauge field. Its nonabelian
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formulation is still unclear, but string theory predicts that a (2, 0)-superconformal comple-

tion of such a field actually exists on the worldvolume of M5-branes. Understanding these

branes is still one of string theory’s most interesting challenges.

This prompts the question of whether other non-trivial six-dimensional theories exist.

There are in fact several other string theory constructions [1–4] that would engineer such

theories. Progress has also been made (see for example [5, 6]) in writing explicitly their

classical actions.

Another way to establish the existence of superconformal theories in six dimensions

is to look for supersymmetric AdS7 solutions in string theory. In this paper, we classify

such solutions. As we will review later, in M-theory, one only has AdS7 × S4 (which

is holographically dual to the (2, 0) theory) or an orbifold thereof. That leaves us with

AdS7 × M3 in IIA with non-zero Romans mass F0 6= 0 (which cannot be lifted to M-

theory) or in IIB.

Here we will show that, while there are no such solutions in IIB, many do exist in IIA

with non-zero Romans mass F0.

Our methods are reminiscent of the generalized complex approach for Mink4 ×M6 or

AdS4×M6 solutions [7]. We start with a similar system [8] for Mink6×M4, and we then use

the often-used trick of viewing AdS7 as a warped product of Mink6 with a line. This allows

us to obtain a system valid for AdS7×M3. A similar procedure was applied in [9] to derive

a system for AdS5 ×M5 from Mink4 ×M6. The system we derive is written in terms of

differential forms satisfying some algebraic constraints; mathematically, these constraints

mean that the forms define a generalized identity×identity structure on TM3 ⊕ T ∗M3
. This

fancy language, however, will not be needed here; we will give a parameterization of such

structures in terms of a vielbein {ea} and some angles, and boil the system down to one

written in terms of those quantities.

When one writes supersymmetry as a set of PDEs in terms of forms, they may have

some interesting geometrical interpretation (such as the one in terms of generalized complex

geometry in [7]); but, to obtain solutions, one usually needs to make some Ansatz, such

as that the space is homogeneous or that it has cohomogeneity one. One then reduces the

differential equations to algebraic equations or to ODEs, respectively.

The AdS7 ×M3 case is different. As we will see, the equations actually determine

explicitly the vielbein {ea} in terms of derivatives of our parameterization function. This

gives a local, explicit form for the metric, without any Ansatz. By a suitable redefinition

we find that the metric describes an S2 fibration over a one-dimensional space.

This is actually to be expected holographically. A (1, 0) superconformal theory has

an Sp(1)∼=SU(2) R-symmetry group, which should appear as the isometry group of the

internal space M3. With a little more work, all the fluxes can also be determined, and

they are also left invariant by the SU(2) isometry group of our S2 fiber. All the Bianchi

identities and equations of motion are automatically satisfied, and existence of a solution

is then reduced to a system of two coupled ODEs.1 From this point on, our analysis is

1This is morally a hyper-analogue to the reduction performed in [9] along the generalized Reeb vector,

although in our case the situation is so simple that we need not introduce that reduction formalism.
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pretty standard: in order for M3 to be compact, the coordinate r on which everything

depends should in fact parameterize an interval [rN, rS], and the S2 should shrink at the

two endpoints of the interval, which we from now on will call “poles”. This requirement

translates into certain boundary conditions for the system of ODEs.

We have studied the system numerically. We can obtain regular2 solutions if we insert

brane sources. We exhibit solutions with D6’s, and solutions with one or two D8 stacks,

appropriately stabilized by flux. For example, in the solution with two D8 stacks, they

have opposite D6 charge, and their mutual electric attraction is balanced against their

gravitational tendency to shrink. (For D8-branes, there is no problem with the total D-

brane charge in a compact space; usually such problems are found by integrating the

flux sourced by the brane over a sphere surrounding the brane, whereas for a D8 such a

transverse sphere is simply an S0.) We think that there should exist generalizations with

an arbitrary number of stacks.

It is natural to think that our regular solutions with D8-branes might be related to

D-brane configurations in [2, 3], which should indeed engineer six-dimensional (1, 0) super-

conformal theories. Supersymmetric solutions for configurations of that type have actually

been found [10] (see also [11]); non-trivially, they are fully localized. It is in principle pos-

sible that their results are related to ours by some limit. Such a relationship is not obvious,

however, in part because of the SU(2) symmetry, that forces our sources to be only parallel

to the S2-fiber. It would be interesting to explore this possibility further.

We will begin our analysis in section 2 by finding the pure spinor system (2.11) relevant

for supersymmetric AdS7×M3 solutions. In section 3 we will then derive the parameteriza-

tion (3.14) for the pure spinors in terms of a vielbein and some functions. In section 4 will

then use this parameterization to analyze the system (2.11). As we mentioned, we will re-

duce the problem to a system of ODEs; regularity imposes certain boundary conditions on

this system. Fluxes and metric are fully determined by a solution to the system of ODEs.

Finally, in section 5 we study the system numerically, finding some regular examples, shown

in figures 4 and 5.

2 Supersymmetry and pure spinor equations in three dimensions

In this section, we will derive a system of differential equations on forms in three dimensions

that is equivalent to preserved supersymmetry for solutions of the type AdS7 ×M3. We

will derive it by a commonly-used trick: namely, by considering AdSd+1 as a warped

product of Minkd and R. We will begin in section 2.1 by reviewing a system equivalent to

supersymmetry for Mink6 ×M4. In section 2.2 we will then translate it to a system for

AdS7 ×M3.

2On the loci where branes are present, the metric is of course not regular, but such singularities are as

usual excused by the fact that we know that D-branes have an alternative definition as boundary conditions

for open strings, and are thought to be objects in the full theory. The singularity is particularly mild for

D8’s, which manifest themselves as jumps in the derivatives of the metric and other fields — which are

themselves continuous.
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2.1 Mink6 ×M4

Preserved supersymmetry for Mink4 ×M6 was found [7] to be equivalent to the existence

on M6 of an SU(3) × SU(3) structure satisfying certain differential equations reminiscent

of generalized complex geometry [12, 13].

Similar methods can be useful in other dimensions. For Mink6×M4 solutions, [8] found

a system in terms of SU(2) × SU(2) structure on M4, described by a pair of pure spinors

φ1,2. Similarly to the Mink4 ×M6 case, they can be characterized in two ways. One is as

bilinears of the internal parts η1,2 of the supersymmetry parameters in (A.2):3

φ1
∓ = e−A4η1

+ ⊗ η
2 †
∓ , φ2

∓ = e−A4η1
+ ⊗ η

2c †
∓ , (2.1)

where the warping function A4 is defined by

ds2
10 = e2A4ds2

Mink6
+ ds2

M4
. (2.2)

The upper index in (2.1) is relevant to IIA, the lower index to IIB; so in IIA we have

that φ1,2 are both odd forms, and in IIB that they are both even. One can also give an

alternative characterization of φ1,2, as a pair of pure spinors which are compatible. This

stems directly from their definition as an SU(2)× SU(2) structure, and it means that the

corresponding generalized almost complex structures commute. This latter constraint can

also be formulated purely in terms of pure spinors as (φ1, φ2) = (φ̄1, φ2).4 This can be

shown similarly to an analogous statement in six dimensions; see [14, appendix A].

The system equivalent to supersymmetry now reads [8]5

dH
(
e2A4−φReφ1

∓
)

= 0 , (2.3a)

dH
(
e4A4−φImφ1

∓
)

= 0 , (2.3b)

dH
(
e4A4−φφ2

∓
)

= 0 , (2.3c)

eφF = ∓16 ∗4 λ(dA4 ∧ Reφ1
∓) , (2.3d)

(φ1
±, φ

1
±) = (φ2

±, φ
2
±) =

1

4
. (2.3e)

Here, φ is the dilaton; dH = d − H∧ is the twisted exterior derivative; A4 was defined

in (2.2); F is the internal RR flux, which, as usual, determines the external flux via self-

duality:

F(10) ≡ F + e6A4vol6 ∧ ∗4λF . (2.4)

Actually, (2.3) contains an assumption: that the norms of the ηi are equal. For a

noncompact M4, it might be possible to have different norms; (2.3) would then have to be

3As usual, we are identifying forms with bispinors via the Clifford map dxm1 ∧ . . . ∧ dxmk 7→ γm1...mk .

∓ denotes chirality, and ηc ≡ B4η
∗ denotes Majorana conjugation; for more details see appendix A. The

factors e−A4 are included for later convenience.
4As usual, the Chevalley pairing in this equation is defined as (α, β) = (α ∧ λ(β))top; λ is the sign

operator defined on k-forms as λωk ≡ (−)b
k
2
cωk.

5We have massaged a bit the original system in [8], by eliminating Reφ1
∓ from the first equation of their

(4.11).
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slightly changed. (See [15, section A.3] for comments on this in the Mink4 ×M6 case.) As

shown in appendix A, however, for our purposes such a generalization is not relevant.

With this caveat, the system (2.3) is equivalent to supersymmetry for Mink6 ×M4. It

can be found by direct computation, or also as a consequence of the system for Mink4×M6

in [7]: one takes M6 = R2×M4, with warping A = A4, internal metric ds2
M6

= e2A4((dx4)2+

(dx5)2) + ds2
M4

, and, in the language of [15],

Φ1 = eA4(dx4 + idx5) ∧ φ2
∓ , Φ2 = (1 + ie2A4dx4 ∧ dx5) ∧ φ1

∓ . (2.5)

Furthermore, (2.3) can also be found as a consequence of the ten-dimensional system

in [16]. [8] also give an interpretation of the system in terms of calibrations, along the

lines of [17].

2.2 AdS7 ×M3

As we anticipated, we will now use the fact that AdS can be used as a warped product of

Minkowski space with a line. We would like to classify solutions of the type AdS7 ×M3.

These in general will have a metric

ds2
10 = e2A3ds2

AdS7
+ ds2

M3
(2.6)

where A3 is a new warping function (different from the A4 in (2.2)). Since

ds2
AdS7

=
dρ2

ρ2
+ ρ2ds2

Mink6
, (2.7)

(2.6) can be put in the form (2.2) if we take

eA4 = ρeA3 , ds2
M4

=
e2A3

ρ2
dρ2 + ds2

M3
. (2.8)

A genuine AdS7 solution is one where not only the metric is of the form (2.7), but where

there are also no fields that break its SO(6,2) invariance. This can be easily achieved by

additional assumptions: for example, A3 should be a function of M3. The fluxes F and

H, which in section 2.1 were arbitrary forms on M4, should now be forms on M3. For

IIA, F = F0 + F2 + F4: in order not to break SO(6, 2), we impose F4 = 0, since it would

necessarily have a leg along AdS7; for IIB, F = F1 + F3.

Following this logic, solutions to type II equations of motion of the form AdS7 ×M3

are a subclass of solutions of the form Mink6 ×M4. In appendix A, we also show how

the AdS7 ×M3 supercharges get translated in the Mink6 ×M4 framework, and that the

internal spinors have equal norm, as we anticipated in section 2.1. Using (A.10), we also

learn how to express the φ1,2 in (2.1) in terms of bilinears of spinors χ1,2 on M3:

φ1
∓ =

1

2

(
ψ1
∓ + ieA3

dρ

ρ
∧ ψ1
±

)
, φ2

∓ = ∓1

2

(
ψ2
∓ + ieA3

dρ

ρ
∧ ψ2
±

)
, (2.9)

with

ψ1 = χ1 ⊗ χ†2 , ψ2 = χ1 ⊗ χc †2 . (2.10)
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As in section 2.1, we have implicitly mapped forms to bispinors via the Clifford map, and

in (2.9) the subscripts ± refer to taking the even or odd form part. (Recall also that φ1,2
− is

relevant to IIA, and φ1,2
+ to IIB; see (2.3).) The spinors χ1,2 have been taken to have unit

norm.

ψ1,2 are differential forms on M3, but not just any forms. (2.10) imply that they should

obey some algebraic constraints. Those constraints could be interpreted in a fancy way

as saying that they define an identity×identity structure on TM3 ⊕ T ∗M3
. However, three-

dimensional spinorial geometry is simple enough that we can avoid such language: rather,

in section 3 we will give a parameterization that will allow us to solve all the algebraic

constraints resulting from (2.10).

We can now use (2.9) in (2.3). Each of those equations can now be decomposed in a

part that contains dρ and one that does not. Thus, the number of equations would double.

However, for (2.3a), (2.3b) and (2.3c), the part that does not contain dρ actually follows

from the part that does. The “norm” equation, (2.3e), simply reduces to a similar equation

for a three-dimensional norm. Summing up:

dHIm(e3A3−φψ1
±) = −2e2A3−φReψ1

∓ , (2.11a)

dHRe(e5A3−φψ1
±) = 4e4A3−φImψ1

∓ , (2.11b)

dH(e5A3−φψ2
±) = −4ie4A3−φψ2

∓ , (2.11c)

±1

8
eφ ∗3 λF = dA3 ∧ Imψ1

± + e−A3Reψ1
∓ , (2.11d)

dA3 ∧ Reψ1
∓ = 0 , (2.11e)

(ψ1,2
+ , ψ1,2

− ) = − i
2

; (2.11f)

again with the upper sign for IIA, and the lower for IIB.

The system (2.11) is equivalent to supersymmetry for AdS7 × M3. As we show in

appendix A, a supersymmetric AdS7 ×M3 solution can be viewed as a supersymmetric

Mink6 ×M4 solution, and for this the system (2.3) is equivalent to supersymmetry. (2.11)

can also be obtained directly from the ten-dimensional system in [16], but other equations

also appear, and extra work is needed to show that those extra equations are redundant.

In (2.11) the cosmological constant of AdS7 does not appear directly, since we have

taken its radius to be one in (2.7). We did so because a non-unit radius can be reabsorbed

in the factor e2A3 in (2.6).

Before we can solve (2.11), we have to solve the algebraic constraints that follow from

the definition of ψ1,2 in (2.10); we will now turn to this problem.

3 Parameterization of the pure spinors

In section 2.2 we obtained a system of differential equations, (2.11), that is equivalent to

supersymmetry for an AdS7 ×M3 solution. The ψ1,2 appearing in that system are not

arbitrary forms; they should have the property that they can be rewritten as bispinors (via

the Clifford map dxi1 ∧ . . . ∧ dxik 7→ γi1...ik) as in (2.10). In this section, we will obtain a

– 6 –
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parameterization for the most general set of ψ1,2 that has this property. This will allow us

to analyze (2.11) more explicitly in section 4.

We will begin in section 3.1 with a quick review of the case χ1 = χ2, and then show in

section 3.2 how to attack the more general situation where χ1 6= χ2.

3.1 One spinor

We will use the Pauli matrices σi as gamma matrices, and use B3 = σ2 as a conjugation

matrix (so that B3σi = −σtiB3 = −σ∗iB3). We will define

χc ≡ B3χ
∗ , χ ≡ χtB3 ; (3.1)

notice that χc † = χtB†3 = χ.

We will now evaluate ψ1,2 in (2.10) when χ1 = χ2 ≡ χ; as we noted in section 2.2, χ is

normalized to one. Notice first a general point about the Clifford map αk = 1
k!αi1...ikdx

i1 ∧
. . . ∧ dxik 7→��αk ≡ 1

k!αi1...ikγ
i1...ik in three dimensions (and, more generally, in any odd di-

mension). Unlike what happens in even dimensions, the antisymmetrized gamma matrices

γi1...ik are a redundant basis for bispinors. For example, we see that the slash of the volume

form is a number: ���vol3 = σ1σ2σ3 = i. More generally we have

�α = −i���∗λα. (3.2)

In other words, when we identify a form with its image under the Clifford map, we lose

some information: we effectively have an equivalence α ∼= −i ∗ λα. When evaluating ψ1,2,

we can give the corresponding forms as an even form, or as an odd form, or as a mix of

the two.

Let us first consider χ⊗ χ†. We can choose to express it as an odd form. In its Fierz

expansion, both its one-form part and its three-form part are a priori non-zero; we can

parameterize them as

χ⊗ χ† =
1

2
(e3 − ivol3) . (3.3)

(We can also write this in a mixed even/odd form as χ⊗χ† = 1
2(1+e3); recall that the right

hand sides have to be understood with a Clifford map applied to them.) e3 is clearly a real

vector, whose name has been chosen for later convenience. The fact that the three-form

part is simply − i
2vol3 follows from ||χ|| = 1. Notice also that

e3χ = σiχe
i
3 = σiχχ

†σiχ =
1

2
(−e3 − 3ivol3)χ ⇒ e3χ = χ (3.4)

where we have used (3.3), and that σiαkσ
i = (−)k(3−2k)αk on a k-form. (3.4) also implies

that e3 has norm one.6

Coming now to χ⊗χ, we notice that the three-form part in its Fierz expansion is zero,

since χχ = χtB3χ = 0. The one-form part is now a priori no longer real; so we write

χ⊗ χ =
1

2
(e1 + ie2) . (3.5)

6An alternative, perhaps more amusing, way of seeing this is to consider χ⊗χ† as a two-by-two spinorial

matrix. It has rank one, which will be true if and only if its determinant is one. Using that det(A) =
1
2
(Tr(A)2 − Tr(A2)) for 2×2 matrices, one gets easily that e3 has norm one.
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Similar manipulations as in (3.4) show that (e1 + ie2)χ = 0; using this, we get that

ei · ej = δij . (3.6)

In other words, {ei} is a vielbein, as notation would suggest.

3.2 Two spinors

We will now analyze the case with two spinors χ1 6= χ2 (again both with norm one). We

will proceed in a similar fashion as in [18, section 3.1].

Our aim is to parameterize the bispinors ψ1,2 in (2.10). Let us first consider their

zero-form parts, χ†2χ1 and χc †2 χ1. The parameterization (3.4) can be applied to both χ1

and χ2, resulting in two one-forms ei3. (This notation is a bit inconvenient, but these two

one-forms will cease to be useful very soon.) Using then (3.3) twice, we see that

|χ†2χ1|2 = χ†2χ1χ
†
1χ2 = Tr(χ1χ

†
1χ2χ

†
2) =

1

4
Tr
(
(1 + e1

3)(1 + e2
3)
)

=
1

2
(1 + e1

3 · e2
3) . (3.7)

Similarly we have

|χc †2 χ1|2 = Tr(χ1χ
c †
1 χ2χ

c †
2 ) =

1

4
Tr
(
(1 + e1

3)(1− e2
3)
)

=
1

2
(1− e1

3 · e2
3) = 1− |χ†2χ1|2 . (3.8)

Both |χ†2χ1|2 and |χc †2 χ1|2 are positive and ≤ 1. Thus we can parameterize χ†2χ1 =

eia cos(ψ), χc †2 χ1 = eib sin(ψ). (The name of this angle should not be confused with the

forms ψ1,2.) By suitably multiplying χ1 and χ2 by two phases, we can assume a = −π
2 and

b = π
2 ; we will reinstate generic values of these phases at the very end. Thus we have

χ†2χ1 = −i cos(ψ) , χc †2 χ1 = i sin(ψ) . (3.9)

Just as in [18, section 3.1], we can now introduce

χ0 =
1

2
(χ1 − iχ2) , χ̃0 =

1

2
(χ1 + iχ2) . (3.10)

In three Euclidean dimensions, a spinor and its conjugate form a (pointwise) basis of the

space of spinors. For example, χ0 and χc0 are a basis. We can then expand χ̃0 on this basis.

Actually, its projection on χ0 vanishes, due to (3.9): χ†0χ̃0 = i
4(χ†1χ2 + χ†2χ1) = 0. With a

few more steps we get

χ̃0 =
χc †0 χ̃0

||χ0||2
χc0 = tan

(
ψ

2

)
χc0 . (3.11)

We can now invert (3.10) for χ1 and χ2, and use (3.11). It is actually more symmetric-

looking to define χ0 ≡ cos
(
ψ
2

)
χ, to get

χ1 = cos

(
ψ

2

)
χ+ sin

(
ψ

2

)
χc , χ2 = i

(
cos

(
ψ

2

)
χ− sin

(
ψ

2

)
χc
)
. (3.12)

We have thus obtained a parameterization of two spinors χ1 and χ2 in terms of a single

spinor χ and of an angle ψ. Let us count our parameters, to see if our result makes sense.
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A spinor χ of norm 1 accounts for 3 real parameters; ψ is one more. We should also recall

we have rotated both χ1,2 by a phase at the beginning of our computation, to make things

easier. We have a grand total of 6 real parameters, which is correct for two spinors of norm

1 in three dimensions.

We can now use the parameterization (3.12), and the bilinears (3.3), (3.5) obtained in

section 3.1:

χ1 ⊗ χ†2 = −i
[
cos2

(
ψ

2

)
χχ† − sin2

(
ψ

2

)
χcχc † + cos

(
ψ

2

)
sin

(
ψ

2

)
(χcχ† − χχc †)

]
= − i

2
[e3 − i sin(ψ)e2 − i cos(ψ)vol3] . (3.13)

A computation along these lines allows us to evaluate χ1⊗χ2 as well. We can also reinstate

at this point the phases of χ1 and χ2, absorbing the overall factor −i. The bilinear in (3.13)

is expressed as an odd form, but we will also need its even-form expression; this can be

obtained by using (3.2). Recalling the definition (2.10), we get:

ψ1
+ =

eiθ1

2
[cos(ψ) + e1 ∧ (−ie2 + sin(ψ)e3)] , ψ1

− =
eiθ1

2
[e3 − i sin(ψ)e2 − i cos(ψ)vol3] ;

(3.14a)

ψ2
+ =

eiθ2

2
[sin(ψ)− (ie2 + cos(ψ)e1) ∧ e3] , ψ2

− =
eiθ2

2
[e1 + i cos(ψ)e2 − i sin(ψ)vol3] .

(3.14b)

Notice that these satisfy automatically (2.11f).

Armed with this parameterization, we will now attack the system (2.11) for AdS7×M3

solutions.

4 General results

In section 2.2, we have obtained the system (2.11), equivalent to supersymmetry for AdS7×
M3 solutions. The ψ1,2

± appearing in that system are not just any forms; they should have

the property that they can be written as bispinors as in (2.10). In section 3.2, we have

obtained a parameterization for the most general set of ψ1,2
± that fulfills that constraint; it

is (3.14), where {ei} is a vielbein.

Thus we can now use (3.14) into the differential system (2.11), and explore its conse-

quences.

4.1 Purely geometrical equations

We will start by looking at the equations in (2.11) that do not involve any fluxes. These

are (2.11e), and the lowest-component form part of (2.11a), (2.11b) and (2.11c).

First of all, we can observe quite quickly that the IIB case cannot possibly work. (2.11a),

(2.11b) and (2.11c) all have a zero-form part coming from their right-hand side, which,

using (3.14), read respectively

cos(ψ) cos(θ1) = 0 , cos(ψ) sin(θ1) = 0 , sin(ψ)eiθ2 = 0 . (4.1)
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These cannot be satisfied for any choice of ψ, θ1 and θ2. Thus we can already exclude the

IIB case.7

Having disposed of IIB so quickly, we will devote the rest of the paper to IIA. Actually,

we already know that we can get something new only with non-zero Romans mass, F0 6= 0.

This is because for F0 = 0 we can lift to an eleven-dimensional supergravity solution

AdS7×N4. There, we only have a four-form flux G4 at our disposal, and the only way not

to break the SO(6,2) invariance of AdS7 is to switch it on along the internal four-manifold

N4. This is the Freund-Rubin Ansatz, which requires N4 to admit a Killing spinor. This

means that the cone C(N4) over N4 admits a covariantly constant spinor; but in five

dimensions the only manifold with restricted holonomy is R5 (or one of its orbifolds, of the

form R4/Γ × R). Thus we know already that all solutions with F0 = 0 lift to AdS7 × S4

(or AdS7 × S4/Γ) in eleven dimensions. (In fact we will see later how AdS7 × S4 reduces

to ten dimensions.) We will thus focus on F0 6= 0, and use the case F0 = 0 as a control.

In IIA, the lowest-degree equations of (2.11a), (2.11b) and (2.11c) are one-forms; they

are less dramatic than (4.1), but still rather interesting. Using (3.14), after some manipu-

lations we get

e1 = −1

4
eA sin(ψ)dθ2 , e2 =

1

4
eA(dψ + tan(ψ)d(5A− φ)) ,

e3 =
1

4
eA
(
− cos(ψ)dθ1 +

cot(θ1)

cos(ψ)
d(5A− φ)

)
,

(4.2)

and

xdx = (1 + x2)dφ− (5 + x2)dA , (4.3)

where

x ≡ cos(ψ) sin(θ1) , (4.4)

and we have dropped the subscript 3 on the warping function: A ≡ A3 from now on. Notice

that (4.2) determine the vielbein. Usually (i.e. in other dimensions), the geometrical part

of the differential system coming from supersymmetry gives the derivative of the forms

defining the metric. In this case, the forms themselves are determined in terms of derivatives

of the angles appearing in our parameterizations. This will allow us to give a more complete

and concrete classification than is usually possible.

We still have (2.11e). Notice that (2.11a) allows to write it as dA ∧ d(e3A−φx) = 0.

Using also (4.3), we get

dA ∧ dφ = 0 . (4.5)

This means that φ is functionally dependent on A:8

φ = φ(A) . (4.6)

(4.3) then means that x too is functionally dependent on A: x = x(A).

7This quick death is reminiscent of the fate of AdS4×M6 with SU(3) structure in IIB. The system in [7]

has a zero-form equation and two-form equation coming from the right-hand side of its fluxless equation,

which look like cos(θ) = 0 = sin(θ)J , where θ is an angle similar to ψ in (3.14). This is consistent with a

no-go found with lengthier computations in [19].
8(4.6) excludes the case where A is constant in a region. However, it is easy to see that this case cannot

work. Indeed, in this case (4.3) can be integrated as eφ ∝
√

1− x2, which is incompatible with (4.7) below.
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4.2 Fluxes

So far, we have analyzed (2.11e), and the one-form part of (2.11a), (2.11b) and (2.11c).

Before we look at their three-form part too, it is convenient to look at (2.11d), which gives

us the RR flux, for reasons that will become apparent.

First we compute F0 from (2.11d):

F0 = 4xe−A−φ
3− ∂Aφ

5− 2x2 − ∂Aφ
. (4.7)

The Bianchi identity for F0 says that it should be (piecewise) constant. It will thus be

convenient to use (4.7) to eliminate ∂Aφ from our equations.

Before we go on to analyze our equations, let us also introduce the new angle β by

sin2(β) =
sin2(ψ)

1− x2
. (4.8)

We can now use x as defined in (4.4) to eliminate θ1, and β to eliminate ψ. This turns out

to be very convenient in the following, especially in our analysis of the metric in section 4.4

below (which was our original motivation to introduce β).

After these preliminaries, let us give the expression for F2 as one obtains it from (2.11d):

F2 =
1

16

√
1− x2eA−φ(xeA+φF0 − 4)volS2 , (4.9)

where

volS2 = sin(β)dβ ∧ dθ2 (4.10)

is formally identical to the volume form for a round S2 with coordinates {β, θ2}. We will

see later that this is no coincidence.

Finally, let us look at the three-form part of (2.11a), (2.11b) and (2.11c). One of them

can be used to determine H:

H =
1

8
e2A
√

1− x2
6 + xF0e

A+φ

4 + xF0eA+φ
dx ∧ volS2 , (4.11)

while the other two turn out to be identically satisfied.

Our analysis is not over: we should of course now impose the equation of motion, and

the Bianchi identities for our fluxes. The equation of motion for F2, d ∗ F2 + H ∗ F0 = 0,

follows automatically from (2.11d), much as it happens in the pure spinor system for

AdS4 ×M6 solutions [7]. We should then impose the Bianchi identity for F2, which reads

dF2 − HF0 = 0 (away from sources). This does not follow manifestly from (2.11d), but

in fact it is a consequence of the explicit expressions (4.7), (4.9) and (4.11) above. When

F0 6= 0, it also implies that the B field such that H = dB can be locally written as

B2 =
F2

F0
+ b (4.12)

for a closed two-form b. Using a gauge transformation, it can be assumed to be proportional

(by a constant) to volS2 ; we then have that it is a constant, ∂Ab = 0.
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The equation of motion for H, which reads for us d(e7A−2φ ∗3H) = e7AF0 ∗3 F2 (again

away from sources), is also automatically satisfied, as shown in general in [20]. Finally,

since we have checked all the conditions for preserved supersymmetry, the Bianchi identities

and the equations of motion for the fluxes, the equations of motion for the dilaton and for

the metric will now follow [21].

4.3 The system of ODEs

Let us now sum up the results of our analysis of (2.11). Most of our equations determine

some fields: (4.2) give the vielbein, and (4.7), (4.9), (4.11) give the fluxes. The only genuine

differential equations we have are (4.3), and the condition that F0 should be constant.

Recalling that φ is functionally dependent on A, (4.6), these two equations can be written as

∂Aφ = 5− 2x2 +
8x(x2 − 1)

4x− F0eA+φ
, (4.13a)

∂Ax = 2(x2 − 1)
xeA+φF0 + 4

4x− F0eA+φ
. (4.13b)

We thus have reduced the existence of a supersymmetric solution of the form AdS7×M3

in IIA to solving the system of ODEs (4.13). It might look slightly unsettling that we are

essentially using at this point A as a coordinate, which might not always be a wise choice

(since A might not be monotonic). For that matter, our analysis has so far been completely

local; we will start looking at global issues in section 4.4, and especially 4.6.

Unfortunately we have not been able to find analytic solutions to (4.13), other than in

the F0 = 0 case (which we will see in section 5.1). For the more interesting F0 6= 0 case, we

can gain some intuition by noticing that the system becomes autonomous (i.e. it no longer

has explicit dependence on the “time” variable A) if one defines φ̃ ≡ φ + A. The system

for {∂Aφ̃, ∂Ax} can now be thought of as a vector field in two dimensions; we plot it in

figure 1.

We will study the system (4.13) numerically in section 5. Before we do that, we should

understand what boundary conditions we should impose. We will achieve this by analyzing

global issues about our setup, that we have so far ignored.

4.4 Metric

The metric

ds2
M3

= eaea (4.14)

following from (4.2) looks quite complicated. However, it simplifies enormously if we rewrite

it in terms of β in (4.8):9

ds2
M3

= e2A(1− x2)

[
16

(4x− eA+φF0)2
dA2 +

1

16
ds2
S2

]
, ds2

S2 = dβ2 + sin2(β)dθ2
2 .

(4.15)

9In fact, the definition of β was originally found by trying to understand the global properties of the

metric (4.14). Looking at a slice x =const, one finds that the metric in {θ1, θ2} has constant positive

curvature; the definition of β becomes then natural. Nontrivially, this definition also gets rid of non-

diagonal terms of the type dAdθ1 that would arise from (4.2).
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Figure 1. A plot of the vector field induced by (4.13) on {φ̃ ≡ φ + A, x}, for F0 = 40/2π (in

agreement with flux quantization, (4.37) below). The green circle represents the point {φ + A =

log(4/F0), x = 1}, whose role will become apparent in section 4.7. The dashed line represents the

locus along which the denominators in (4.13) vanish.

Without any Ansatz, the metric has taken the form of a fibration of a round S2, with

coordinates {β, θ2}, over an interval with coordinate A. Notice that none of the scalars

appearing in (4.15) (and indeed in the fluxes (4.7), (4.9), (4.11)) were originally intended

as coordinates, but rather as functions in the parameterization of the pure spinors ψ1,2.

Usually, one would then need to introduce coordinates independently, and to make an

Ansatz about how all functions should depend on those coordinates, sometimes imposing

the presence of some particular isometry group in the process.

Here, on the other hand, the functions we have introduced are suggesting themselves

as coordinates to us rather automatically. Since so far our expressions for the metric

and fluxes were local, we are free to take their suggestion. We will take β to be in the

range [0, π], and θ2 to be periodic with period 2π, so that together they describe an S2 as

suggested by (4.15), and also by the two-form (4.10) that appeared in (4.9), (4.11).10

It is not hard to understand why this S2 has emerged. The holographic dual of any

solutions we might find is a (1, 0) CFT in six dimensions. Such a theory would have SU(2)

R-symmetry; an SU(2) isometry group should then appear naturally on the gravity side as

well. This is what we are seeing in (4.15).

The fact that the S2 in (4.15) is rotated by R-symmetry also helps to explain a possible

puzzle about IIB. Often, given a IIA solution, one can produce a IIB one via T-duality

10A slight variation is to take RP2 = S2/Z2 instead of S2; this will not play much of a role in what

follows, except for some solutions with O6-planes that we will mention in sections 5.1 and 5.2.
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along an isometry. All the Killing vectors of the S2 in (4.15) vanish in two points; T-

dualizing along any such direction would produce a non-compact solution in IIB, but still

a valid one. But the IIB case died very quickly in section 4.1; there are no solutions, not

even non-compact or singular ones. Here is how this puzzle is resolved. Since the SU(2)

isometry group of the S2 is an R-symmetry, supercharges transform as a doublet under

it (we will see this more explicitly in section 4.5). Thus even the strange IIB geometry

produced by T-duality along a U(1) isometry of S2 would not be supersymmetric.

Even though we have promoted β and θ2 to coordinates, it is hard to do the same

for A, which actually enters in the seven-dimensional metric (see (2.6)). We would like to

be able to cover cases where A is non-monotonic. One possibility would be to use A as a

coordinate piecewise. We find it clearer, however, to introduce a coordinate r defined by

dr = 4eA
√

1−x2
4x−eA+φF0

dA, so that the metric now reads

ds2
M3

= dr2 +
1

16
e2A(1− x2)ds2

S2 . (4.16)

In other words, r measures the distance along the base of the S2 fibration. Now A, x and

φ have become functions of r. From (4.13) and the definition of r we have

∂rφ =
1

4

e−A√
1− x2

(12x+ (2x2 − 5)F0e
A+φ) ,

∂rx = −1

2
e−A

√
1− x2(4 + xF0e

A+φ) ,

∂rA =
1

4

e−A√
1− x2

(4x− F0e
A+φ) .

(4.17)

We have introduced a square root in the system, but notice that −1 ≤ x ≤ 1 already

follows from requiring that ds2
M3

in (4.15) has positive signature. (We choose the positive

branch of the square root.)

Let us also record here that the NS three-form also simplifies in the coordinates intro-

duced in this section:

H = −(6e−A + xF0e
φ)vol3 , (4.18)

where vol3 is the volume form of the metric ds2
M3

in (4.16) or (4.15).

We have obtained so far that the metric is the fibration of an S2 (with coordinates

(β, θ2)) over a one-dimensional space. The SU(2) isometry group of the S2 is to be identified

holographically with the R-symmetry group of the (1, 0)-superconformal dual theory. For

holographic applications, we would actually like to know whether the total space of the

S2-fibration can be made compact. We will look at this issue in section 4.6. Right now,

however, we would like to take a small detour and see a little more clearly how the R-

symmetry SU(2) emerges in the pure spinors ψ1,2.

4.5 SU(2)-covariance

We have just seen that the metric takes the particularly simple form (4.16) in coordinates

(r, β, θ2); the appearance of the S2 is related to the SU(2) R-symmetry group of the (1, 0)

holographic dual.
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Since these coordinates are so successful with the metric, let us see whether they also

simplify the pure spinors ψ1,2. We can start by the zero-form parts of (3.14), which read

ψ1
0 = ix+

√
1− x2 cos(β) , ψ2

0 =
√

1− x2 sin(β)eiθ2 . (4.19)

Recalling that (β, θ2) are the polar coordinates on the S2 (see the expression of ds2
S2

in (4.15)), we recognize in (4.19) the appearance of the ` = 1 spherical harmonics

yα = {sin(β) cos(θ2), sin(β) sin(θ2), cos(β)} . (4.20)

Notice that y3 appears in ψ1 = χ1 ⊗ χ†2, while y1 + iy2 appears in ψ2 = χ1 ⊗ χc †2 . This

suggests that we introduce a 2×2 matrix of bispinors. From (A.4) we see that for IIA
(
χ1

χc1

)
and

(
χ2

−χc2

)
are both SU(2) doublets, so that it is natural to define

Ψ =

(
χ1

χc1

)
⊗ (χ†2 ,−χ

c †
2 ) =

(
ψ1 ψ2

(−)deg(ψ2)∗ −(−)deg(ψ1)∗

)
, (4.21)

where (−)deg acts as ± on a even (odd) form. The even-form part can then be written as

Ψab
+ = iImψ1

+ Id2 +
(
Reψ2

+σ1 − Imψ2
+σ2 + Reψ1

+σ3

)
, (4.22a)

where σα are the Pauli matrices while the odd-form part is

Ψab
− = Reψ1

− Id2 + i
(
Imψ2

−σ1 + Reψ2
−σ2 + Imψ1

−σ3

)
. (4.22b)

(4.22) shows more explicitly how the R-symmetry SU(2) acts on the bispinors Ψab, which

split between a singlet and a triplet. If we go back to our original system (2.11), we see

that (2.11a), (2.11d), (2.11e) each behave as a singlet, while (2.11b), (2.11c) behave as a

triplet — thanks also to the fact that the factor e5A−φ appears in both those equations.

More concretely, (4.19) can now be written as

Ψab
0 = ix Id2 +

√
1− x2 yασα ; (4.23a)

the one-form part reads

Ψab
1 =

√
1− x2dr Id2 + i

[
xyαdr +

1

4
eA
√

1− x2 dyα
]
σα . (4.23b)

The rest of Ψab can be determined by (3.2): Ψab
3 = −i∗3 Ψab

0 = −iΨab
0 vol3, Ψab

2 = −i∗3 Ψab
1 .

(The three-dimensional Hodge star can be easily computed from (4.16).)

We will now turn to the global analysis of the metric (4.16).

4.6 Topology

We now wonder whether the S2 fibration in (4.15) can be made compact.

One possible strategy would be for r to be periodically identified, so that the topology

of M3 would become S1 × S2. This is actually impossible: from (4.17) we have

∂r(xe
3A−φ) = −2

√
1− x2e2A−φ ≤ 0 . (4.24)
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This can also be derived quickly from (2.11a) using the singlet part of (4.23). Now, xe3A−φ

is continuous;11 for r to be periodically identified, xe3A−φ should be a periodic function.

However, thanks to (4.24), it is nowhere-increasing. It also cannot be constant, since

x would be ±1 for all r, which makes the metric in (4.15) vanish. Thus r cannot be

periodically identified.

We then have to look for another way to make M3 compact. The only other possibility

is in fact to shrink the S2 at two values of r, which we will call rN and rS; the topology

of M3 would then be S3. The subscripts stand for “north” and “south”; we can visualize

these two points as the two poles of the S3, and the other, non-shrunk copies of S2 over

any r ∈ (rN, rS) to be the “parallels” of the S3. Of course, since (4.17) does not depend on

r, we can assume without any loss of generality that rN = 0.

We will now analyze this latter possibility in detail.

4.7 Local analysis around poles

We have just suggested to make M3 compact by having the S2 fiber over an interval [rN, rS],

and by shrinking it at the two extrema. In this case M3 would be homeomorphic to S3.

To realize this idea, from (4.16) we see that x should go to 1 or −1 at the two poles rN

and rS. To make up for the vanishing of the
√

1− x2’s in the denominators in (4.17), we

should also make the numerators vanish. This is accomplished by having eA+φ = ±4/F0

at those two poles (which is obviously only possible when F0 6= 0). We can now also see

that ∂rx ∼ −4e−A
√

1− x2 ≤ 0 around the poles. Since, as we noticed earlier, −1 ≤ x ≤ 1,

x should actually be 1 at rN, and −1 at rS. Summing up:{
x = 1, eA+φ =

4

F0

}
at r = rN ,

{
x = −1, eA+φ = − 4

F0

}
at r = rS . (4.25)

Since we made both numerators and denominators in (4.17) vanish at the poles, we

should be careful about what happens in the vicinity of those points. We want to study

the system around the boundary conditions (4.25) in a power-series approach. (The same

could also be done directly with (4.13).) Let us first expand around rN. As mentioned

earlier, thanks to translational invariance in r we can assume rN = 0 without any loss of

generality. We get

φ = −A+
0 + log

(
4

F0

)
− 5e−2A+

0 r2 +
172

9
e−4A+

0 r4 +O(r)6 ,

x = 1− 8e−2A+
0 r2 +

400

9
e−4A+

0 r4 +O(r)6 ,

A = A+
0 −

1

3
e−2A+

0 r2 − 4

27
e−4A+

0 r4 +O(r)6 .

(4.26)

A+
0 here is a free parameter. The way it appears in (4.26) is explained by noticing that (4.17)

is symmetric under

A→ A+ ∆A , φ→ φ−∆A , x→ x , r → e∆Ar . (4.27)

11This might not be fully obvious in presence of D8-branes, but we will see later that it is true even in

that case, basically because φ is a physical field, and A and x appear as coefficients in the metric.
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Applying (4.26) to (4.16), and setting for a moment rN = 0, we find that the metric

has the leading behavior

ds2
M3

= dr2 + r2ds2
S2 +O(r)4 = ds2

R3 +O(r)4 . (4.28)

This means that the metric is regular around r = rN. The expansion of the fluxes (4.9),

(4.11) is

F2 = −10

3
F0e
−A+

0 r3volS2 +O(r)5 , H = −10e−A
+
0 r2dr ∧ volS2 +O(r)3 . (4.29)

As for the B field, recall that it can be written as in (4.12). (4.29) shows that around

r = rN = 0, the term F2/F0 is regular as it is, without the addition of b; this suggests that

one should set b = 0. To make this more precise, consider the limit

lim
r→0

∫
∆r

H = lim
r→0

∫
S2
r

B2 (4.30)

where ∆r is a three-dimensional ball such that ∂∆r = S2
r . In (4.12), the first term goes to

zero because x→ 1; so the limit is equal to
∫
S2 b, which is constant. This constant signals

a delta in H. So we are forced to conclude that

b = 0 (4.31)

near the pole. (However, we will see in section 4.8 that b can become non-zero if one crosses

a D8 while going away from the pole.)

To be more precise, (4.31) should be understood up to gauge transformations. B is

not a two-form, but a ‘connection on a gerbe’, in the sense that it transforms non-trivially

on chart intersections: on U ∩ U ′, BU −BU ′ can be a ‘small’ gauge transformation dλ, for

λ a 1-form, or more generally a ‘large’ gauge transformation, namely a two-form whose

periods are integer multiples of 4π2. In our case, if we cover S3 with two patches UN and

US, around the equator we can have BN−BS = NπvolS2 . In this case
∫
S3 H = BN−BS =

NπvolS2 = (4π2)N , in agreement with flux quantization for H. Thus b = 0 is also gauge

equivalent to any integer multiple of πvolS2 . In practice, however, we will prefer to work

with b = 0 around the poles, and perform a gauge transformation whenever

b̂(r) ≡ 1

4π

∫
S2
r

B2 (4.32)

gets outside the “fundamental region” [0, π]. In other words, we will consider b̂ to be a

variable with values in [0, π], and let it begin and end at 0 at the two poles. b̂ will then wind

an integer number N of times around [0, π], and this will make sure that
∫
S3 H = (4π2)N ,

thus taking care of flux quantization for H.

So far we have discussed the expansion around the north pole; a similar discussion holds

for the expansion around the south pole rS. The expressions that replace (4.26), (4.28),

(4.29) can be obtained by using the symmetry of (4.17) under

x→ −x , F0 → −F0 , r → −r . (4.33)

The free parameter A+
0 can now be changed to a possibly different free parameter A−0 .

We have hence checked that the boundary conditions (4.25) are compatible with our

system (4.17), and that they give rise to a regular metric at the poles.
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4.8 D8

There is one more ingredient that we will need in section 5 to exhibit compact solutions:

brane sources. In presence of branes the metric cannot be called regular: their gravitational

backreaction will give rise to a singularity. A random singularity would call into question

the validity of a solution, since the curvature and possibly the dilaton12 would diverge

there, making the supergravity approximation untrustworthy. We are however sure of the

existence of D-branes, in spite of the singularities in their geometry, because we have an

open string realization for them.

D8-branes in particular are even more benign, in a way, because the singularity mani-

fests itself simply as a discontinuity in the derivatives of the coefficients in the metric. In

general relativity, such a discontinuity would be subject to the so-called Israel junction con-

ditions [23], which are a consequence of the Einstein equations. As we mentioned earlier, in

our case, however, supersymmetry guarantees that the equations of motion for the dilaton

and metric are automatically satisfied [21]. Hence, the conditions on the first derivatives

will follow from imposing continuity of the fields and supersymmetry.

Let us be more concrete. We will suppose we have a stack of nD8 D8-branes, possibly

with a worldvolume gauge field-strength f2 (not to be confused with the RR field-strength

F2), which induces a D6-brane charge distribution on it. The Bianchi identity for such an

object reads

dHF =
1

2π
nD8e

Fδ ⇒ dF̃ =
1

2π
nD8e

2πf2δ (δ ≡ drδ(r)) . (4.34)

As usual F = B2 + 2πf2; recall from section 2.2 that F = F0 + F2; and likewise we have

defined

F̃ ≡ e−B2F = F0 + (F2 −B2F0) . (4.35)

In other words, F̃ = F0 + F̃2, with F̃2 = F2 −B2F0. Since F̃2 is closed away from sources,

it makes sense to define

n2 ≡
1

2π

∫
S2

F̃2 . (4.36)

Flux quantization then requires n2 to be an integer, and that

F0 =
n0

2π
, (4.37)

with n0 an integer. (We are working in string units where ls = 1.) Integrating now (4.34)

across the magnetized stack of D8’s gives

∆n0 = nD8 , ∆F̃2 = f2∆n0 . (4.38)

All physical fields should be continuous across the D8 stack. For example, ∆φ = 0.

Also, the coefficients of the metric should not jump; in particular, from (2.6), we see that

∆A = 0. Also, since x appears in front of ds2
S2 in (4.16), we should have ∆x = 0.

12In presence of Romans mass, the string coupling is bounded by the inverse radius of curvature in string

units: eφ ∼<
ls

Rcurv
, and is actually generically of the order of the bound [22].
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Imposing that the B field does not jump is trickier. A first caveat is that B would

actually be allowed to jump by a gauge transformation, as discussed in section 4.7. However,

we find it less confusing to put the intersection between the charts UN and US away from

the D8’s, and to treat
∫
S2 B2 as a periodic variable as described in section 4.7.

Thus we will simply impose that B does not jump. First, recall that it can be written

as in (4.12), when F0 6= 0. The b term was shown in (4.31) to be vanishing near the pole,

but we will soon see that this conclusion is not valid between D8’s. In fact, it is connected

to the flux integer n2 defined in (4.36): from (4.12) we have

F̃2 = −F0b ; (4.39)

integrating this on S2, we get 2πn2 = −F0

∫
S2 b, or in other words

b = − n2

2F0
volS2 . (4.40)

We can use our result (4.9) for F2; for this section, it will be convenient to define

p ≡ 1

16
x
√

1− x2e2A , q ≡ 1

4

√
1− x2eA−φ , (4.41)

so that

F2 = (pF0 − q)volS2 . (4.42)

From this and (4.40) we now have

B2 =

(
p− q

F0
− n2

2F0

)
volS2 . (4.43)

Let us call n0, n2 the flux integers on one side of the D8 stack, and n′0, n′2 the fluxes on

the other side. Let us at first assume that both n0 and n′0 are non-zero. Then, equating B

on the two sides, we see that p cancels out, and we get

1

n0

(
q +

1

2
n2

)
=

1

n′0

(
q +

1

2
n′2

)
, (4.44)

or in other words

q|r=rD8 =
n′2n0 − n2n

′
0

2(n′0 − n0)
, (4.45)

with q as defined in (4.41). Notice that, in (4.12), the term F2/F0 and b can both separately

jump, while the whole B2 is staying continuous. For this reason, as we anticipated in

section 4.7, the conclusion b = 0 (which implies n2 = 0 by (4.40)) will hold near the poles,

but can cease to hold after one crosses a D8. (4.45) is also satisfying in that it is symmetric

under exchange {n0, n2} ↔ {n′0, n′2}. Notice also that, under a gauge transformation for

the B field, n2 → n2 + n0∆B, n′2 → n′2 + n′0∆B, and (4.45) remains unchanged.

A constraint on the discontinuity should also come from the F2 Bianchi identity (4.34).

Using (4.42), we see that the only discontinuities are coming from the jump in F0, so that

we get

dHF = ∆F0(1 + pvolS2)δ = ∆F0 e
pvolS2 δ . (4.46)
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Comparing this with (4.34) we see that F = pvolS2 . It also follows that

dF̃2 = ∆F0(−B2 + pvolS2)δ =
∆F0

F0

(
q +

1

2
n2

)
volS2 . (4.47)

The expression on the right-hand side is not ambiguous thanks to (4.42). Comparing (4.47)

with (4.34) again, we see that f2 = 1
F0

(
q + n2

2

)
. Going back to (4.38), we learn that

∆n2

∆n0
=

1

n0

(
q +

1

2
n2

)
. (4.48)

This is actually nothing but (4.45) again.

(4.47) shows that our D8 is actually also charged under F2, and thus that it is actually

a D8/D6 bound state.

In fact, we should mention that it also acts as a source for H. This should not come as

a surprise: it comes from the fact that B appears in the DBI brane action. The simplest

way to see this phenomenon for us is to notice that H in (4.18) contains F0. Since F0

jumps across the D8, so does H, and its equation of motion now gets corrected to

d(e7A−2φ ∗H)− e7AF0 ∗ F2 = −xe7A−φ∆F0δ . (4.49)

The localized term on the right hand side is exactly what one obtains by varying the

DBI action −
∫
S2 e

7A−φ√det(g + F): the variation for a single D8 is −e7A−φ F
det(g+F)δ =

−xe7A−φδ. This was guaranteed to work: the equation of motion for H was shown in [20]

to follow in general from supersymmetry even in presence of sources. (The CS term
∫
CeF

does not contribute, as remarked below [20, (B.7)].)

Yet another check one could perform is whether the D8 source is now BPS — namely,

whether the supersymmetry variation induced on its worldvolume theory can be canceled

by an appropriate κ-symmetry transformation. This check is made simpler by the fact

that brane calibrations are actually the same forms that appear in the bulk supersymmetry

conditions (as first noticed in [17] for compactifications to four dimensions). In our case, we

see from [8, table 1] that the appropriate calibration for a space-filling brane is e6A4−φReφ1
−;

for our AdS7 case, we should pick in (2.9) its part along dρ. So our brane calibration is

e7A−φImψ1
+ . (4.50)

The condition that a single brane should be BPS boils down to demanding that the pull-

back of the form eF Imψ1
+ equal the generalized volume form

√
det(g + F) on the brane.

Alternatively, this is equivalent to demanding that the pullback on the brane of

eFReψ1
+ , eFψ2

+ (4.51)

vanish. We checked explicitly that this condition holds precisely if (4.45) does.

We should be a bit more careful, however, about what happens for multiple branes.

In that case, (4.51) become non-abelian, because they both contain the worldsheet field

f2. Satisfying this condition now requires F to be proportional to the identity, and this in
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turn requires that the D6-brane charge ∆n2 should be an integer multiple of nD8 = ∆n0.

In other words, a bunch of D8-branes should be made of magnetized branes which all have

the same induced D6-brane charge.

Finally, in our analysis so far we have left out the case where F0 is zero on one of the

sides of the D8 stack, say the right side, so that n′0 = 0. This time we cannot apply (4.43)

on the right side of the D8. An expression for B in this case will be given in (5.8) below.

Imposing continuity of B this time does not lead to (4.45), but to a different condition in

terms of the integration constants appearing in (5.8). However, the Bianchi identity for F2

can still be applied on the left side of the D8, where F0 6= 0; this still leads to (4.45). In

other words, in this case we have (4.45) plus an extra condition imposing continuity of B.

This will be important in our example with two D8’s in section 5.3.

Let us summarize the results of this section. We have obtained that one can insert D8’s

in our setup, provided their position rD8 is such that the condition (4.45) is satisfied. When

F0 is non-zero on both sides of the D8, this ensures that the Bianchi for F2 is satisfied, and

that B is continuous. In the special case where F0 = 0 on one side, continuity of B has to

be imposed independently.

4.9 Summary of this section

Supersymmetric solutions of the form AdS7 × M3 cannot exist in IIB. In IIA we have

reduced the problem to solving the system of ODEs (4.13) (or (4.17)). Given a solution to

this system, the flux is given by (4.7), (4.9) and (4.11), and the metric is given by (4.15)

(or (4.16)). This describes an S2 fibration over a segment; the space is compact if the S2

fiber shrinks at the endpoints of the segment, giving a topology M3 = S3. This imposes

the boundary conditions (4.25) on the system (4.17). D8-branes can be inserted along the

S2, at values r = rD8 that satisfy (4.45).

We now turn to a numerical study of the system, which will show that nontrivial

solutions do indeed exist.

5 Explicit solutions

We will now show some explicit AdS7×M3 solutions, by solving the system (4.17). We will

start in section 5.1 by looking briefly at the massless solution, which is in a sense unique; it

has a D6-brane and an anti-D6 at the two poles. In section 5.2 we will switch on Romans

mass, and we will obtain a solution with a D6 at one pole only. In section 5.3 we will then

obtain regular solutions with D8-branes.

5.1 Warm-up: review of the F0 = 0 solution

We will warm up by reviewing the solution one can get for F0 = 0.

As we remarked in section 4.1, in the massless case one can always lift to eleven-

dimensional supergravity, and there we can only have AdS7 × S4 (or an orbifold thereof).

The metric simply reads

ds2
11 = R2

(
ds2

AdS7
+

1

4
ds2
S4

)
, (5.1)
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being R an overall radius. Let us now have a look at how this reduces to IIA. It is not

obvious whether the reduction will preserve any supersymmetry; but, as we will now see,

this can be arranged.

To reduce, we have to choose an isometry. Since S4 has Euler characteristic χ = 2, like

any even-dimensional sphere, any vector field has at least two zeros, and so our reduction

will have at least two points where the dilaton goes to zero; we expect some other strange

feature at those two points, and as we will see this expectation is borne out.

How should we choose the isometry? We can think about U(1) isometries on Sd as

rotations in Rd+1. The infinitesimal generator v is an element of the Lie algebra so(d+ 1),

namely an antisymmetric (d+1)×(d+1) matrix v. Moreover, two such elements vi that can

be related by conjugation, v1 = Ov2O
t, for O ∈ SO(d+1), can be thought of as equivalent.

Any antisymmetric matrix can be put in a canonical block-diagonal form where every block

is of the form
(

0 a
−a 0

)
, with a an angle. For even d, this implies that there is at least one

zero eigenvalue, which corresponds to the fact that there is no vector field without zeros on

the sphere. For d = 4, we have two angles a1 and a2. Our solution can be reduced along

any of these vector fields, but we also want the reduction to preserve some supersymmetry.

The infinitesimal spinorial action of the vector field we just described is proportional to

a1γ12 + a2γ34. If we demand that this matrix annihilates at least one spinor χ (so that, at

the finite level, χ is kept invariant), we get either a1 = a2 or a1 = −a2.

To make things more concrete, let us introduce a coordinate system on S4 adapted to

the isometry we just found:

ds2
S4 = dα2 + sin2(α)ds2

S3 = dα2 + sin2(α)

(
1

4
ds2
S2 + (dy + C1)2

)
, dC1 =

1

2
volS2 (5.2)

with α ∈ [0, π]. We have written the S3 metric as a Hopf fibration over S2; the 1/4 is

introduced so that all spheres have unitary radius. The reduction will now proceed along

the vector

∂y . (5.3)

We can actually generalize this a bit by considering the orbifold S4/Zk, where Zk is taken to

be a subgroup of the U(1) generated by ∂y. This is equivalent to multiplying the (dy+C1)2

term in (5.2) by 1
k2

.

We can now reduce the eleven-dimensional metric (5.1), quotiented by the Zk we just

mentioned, using the string-frame reduction ds2
11 = e−

2
3
φds2

10 + e
4
3
φ(dy + C1)2. We obtain

a metric of the form (2.6), with

e2A = R2e
2
3
φ =

R3

2k
sin(α) , ds2

M3
=
R3

8k
sin(α)

(
dα2 +

1

4
sin2(α)ds2

S2

)
. (5.4)

We could now also reduce the Killing spinors on S4, which are given in appendix B in our

coordinates. There are indeed two of them which can be reduced, confirming our earlier

arguments. This would allow us to compute directly the ψ1,2. We will instead proceed by

using the equations we derived in section 4. It is actually more convenient, in this case, to

work directly with the system (4.13), that can be more easily solved explicitly:

x =
√

1− e4(A−A0) , φ = 3A− φ0 (5.5)
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where A0 and φ0 are two integration constants. This can be seen to be the same as (5.4)

by taking

x = cos(α) , A0 =
1

2
log

(
R3

2k

)
, φ0 = 3 logR . (5.6)

The fluxes can now be computed from (4.9) and (4.11):

F2 = −1

2
kvolS2 , H = − 3

32

R3

k
sin3(α)dα ∧ volS2 ; (5.7)

the B field then can be written as

B2 =
3

32

R3

k

(
x− x3

3

)
volS2 + b (5.8)

where again b is a closed two-form. The simple result for F2 in (5.7) could be expected

from the fact that the metric (5.2) is an S1 fibration over S2 with Chern class c1 = −k.

However, (5.4) might appear problematic for two reasons. First of all, the warping

function goes to zero at the two poles α = 0, α = π.13 Second, ds2
M3

would be singular at

the poles even if it were not multiplied by an overall factor e2A = R3

2k sin(α), because of the

1/4 in front of ds2
S2 . Indeed, when we expand it around, say, α = 0, we find dα2 + α2

4 ds
2
S2 ;

this would be regular without the 1/4, but as it stands it has a conical singularity.

However, these singularities at the poles have the behavior one expects near a D6.

Near the north pole α = 0, ds2
M3

in (5.4) looks like ds2
M3
∼ α

(
dα2 + 1

4α
2ds2

S2

)
. In terms

of the r variable we used in (4.16), this looks like

ds2
M3
∼ dr2 +

(
3

4
r

)2

ds2
S2 . (5.9)

Near the ordinary flat-space D6-brane metric, ds2
M3
∼ ρ−1/2(dρ2+ρ2ds2

S2), which also looks

like (5.9) with r = 4
3ρ

3/4.

The presence of D6’s could actually be inferred more directly. First of all, we know

that D6-branes result from loci where the size of the eleventh dimension goes to zero; this

indeed happens at the two poles. Moreover, from the expression of F2 in (5.7), the integral

of F2 over the S2 is constant and equal to −2πk. We can take the S2 close to the north

or the south pole, where it signals the presence of D6-brane charge. More precisely, there

are k anti-D6-branes at the north pole and k D6-branes at the south pole.

One crucial difference with the usual D6 behavior, however, is the presence of the NS

three-form H. From (5.7) we see that it does not vanish near the D6. Rather, it diverges:

near the anti-D6 at r = rN = 0,14

H ∼ r−1/3vol3 . (5.10)

13The warping function also goes to zero at the equator of the AdS6×S4 solution [24], recently shown [25]

to be the only AdS6 solution in massive IIA. This solution can also be T-dualized, without breaking

supersymmetry, both using its non-abelian and the more usual abelian isometries [26], differently from

what we saw for AdS7 in section 4.4.
14It is interesting to ask what happens in the Minkowski limit. From (4.18) we see that H = −6e−Avol3;

taking R → ∞, e−A tends to zero except than in a region α � R−1/3, which gets smaller and smaller in

the limit.
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This can also be inferred directly from eleven-dimensional supergravity, using the reduction

formula G4 = eφ/3H∧e11. Since φ ∼ r, the three-form energy density diverges as e−2φH2 ∼
(rN− r)−8/3. We should remember, in any case, that this solution is non-singular in eleven

dimensions; the diverging behavior in (5.10) is cured by M-theory, just like the divergence

of the curvature of (5.9) is.

The simultaneous presence of D6’s and anti-D6’s in a BPS solution might look unset-

tling at first, since in flat space they cannot be BPS together. It is true that the conditions

imposed on the supersymmetry parameters εi by a D6 and by an anti-D6 brane are in-

compatible. But in flat space the εi are constant, while in our present case they are not.

The condition changes from the north pole to the south pole; so much so that an anti-D6

is BPS at the north pole, and a D6 is BPS at the south pole. Although we have not been

working explicitly with spinors in this paper, but rather with forms, we can see this by

performing a brane probe analysis in the language of calibrations, as we did for D8-branes

at the end of section 4.8. The relevant polyform is again (4.50); for a D6 we should use its

zero-form part, which from (3.14) is simply cos(θ1) sin(ψ) = x. For a D6 or anti-D6, this

should be equal to plus or minus the internal volume form of the D6, which is ±1; this

happens precisely at the north and south pole.

In figure 2 we show some parameters for the solution as a function of the r defined

in (4.16), for uniformity with latter cases. We also show the radius of the transverse sphere,

which near the poles has the angular coefficient 3/4 of (5.9).

We have obtained this massless IIA solution by reducing the M-theory solution AdS7×
S4/Zk, but other orbifolds would be possible as well. One could for example have quotiented

by the D̂k−2 groups, which would have resulted in IIA in an orientifold by the action of

the antipodal map on the S2. The transverse S2 would have been replaced by an RP2; at

the poles we would have had O6’s together with the k D6’s/anti-D6’s of the Ak case.

We will see in section 5.3 solutions with F0 6= 0 and without any D6-branes. But we

will at first try in the next subsection to introduce F0 without any D8-branes.

5.2 Massive solution without D8-branes

In section 5.1 we reviewed the only solution for F0 = 0, related to AdS7×S4 by dimensional

reduction; it has a D6 and an anti-D6 at the poles of M3
∼= S3.

We now start looking at what happens in presence of a non-zero Romans mass, F0 6= 0.

We saw in section 4.7 that in this case it is possible for the poles to be regular points. It

remains to be seen whether those boundary conditions can be joined by a solution of the

system (4.17).

We can for example impose the boundary condition (4.25) at r = rN, and evolve

numerically towards positive r using (4.17). The procedure is standard: we use the ap-

proximate power-series solution (4.26) from r = rN = 0 to a very small r, and then use the

values of A, φ, x thus found as boundary conditions for a numerical evolution of (4.17).

One example of solution is shown in figure 3(a). It stops at a finite value of r, where it

resembles there the south pole behavior of the massless case in figure 2; for example, eA

goes to zero at the right extremum.
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1

2

Figure 2. Massless solution in IIA. We show here the radius of the S2 (orange), the warping factor

e2A (black; multiplied by a factor 1/20), and the string coupling eφ (green; multiplied by a factor

5). We see that the warping goes to zero at the two poles. The angular coefficient of the orange

line can be seen to be 3/4 as in (5.9). The two singularities are due to k D6 and k anti-D6 (in this

picture, k = 20).

This is actually easy to understand already from the system, both in (4.13) and

in (4.17). As A and φ get negative, they suppress the terms containing F0, and the system

tends to the one for the massless case.

An alternative, and perhaps more intuitive, understanding can be found using the

form (4.13) of the system, which we drew in figure 1 as a vector field flow on the space

{A+φ, x}. The green circle in that figure represents the point {A+φ = log(4/F0), x = 1},
which is the appropriate boundary condition for the north pole in (4.25). In that figure

the ‘time’ variable is A. From (4.26), we see that A has a local maximum at r = rN. So

the stream in figure 1 has to be followed backwards, starting from the green circle at the

top. We can see that the integral curve asymptotically approaches x = −1, but does not

get there in finite ‘time’; in other words, A→ −∞. The flow corresponding to the solution

in figure 3(a) is shown in figure 3(b).

In the massless case, we saw in section 5.1 that the singularities at the poles are

actually D6-branes. In this case too we have D6’s at the south pole. This is confirmed by

considering the integral of F2 along a sphere S2 in the limit where it reaches the south pole:

it gives a non-zero number. By tuning A+
0 , this can be arranged to be 2π times an integer

k, where k is the number of D6-branes at the south pole. The presence of these D6-branes

without any anti-D6 is not incompatible with the Bianchi identity dF2 − HF0 = kδD6,

because integrating it gives −F0

∫
H = k. In other words, the flux lines of the D6’s are

absorbed by H-flux, as is often the case for flux compactifications. Notice also that these

D6’s are calibrated; the computation runs along similar lines as the one we presented for

the massless solution in section 5.1.

To be more precise, the singularity is not the usual D6 singularity, in that there is also

a NS three-form H diverging as in (5.10). This is consistent with the prediction in [27,

eq. (4.15)] (given there in Einstein frame), and in general with the analysis of [28, 29], which
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Φ
�
=A+Φ

(b)

Figure 3. Solution for F0 = 40/2π. We imposed regularity at the north pole, and evolved towards

positive r. In (a) we again plot the radius of the S2 (orange), the warping factor e2A (black;

multiplied by a factor 1/20), and the string coupling eφ (green; multiplied by a factor 5). With

increasing r, the plot gets more and more similar to the one for the massless case in figure 2. There

is a stack of D6’s at the south pole (in this picture, k = 112 of them), as in the massless case,

although this time it also has a diverging NS three-form H. Notice that the size of the S2 goes

linearly near both poles, but with angular coefficients 1 near the north pole (appropriate for a

regular point) and 3/4 for the south pole (appropriate for a D6, as seen in (5.9)). In (b), we see

the path described by the solution in the {A + φ, x} plane, overlaid to the vector field shown in

figure 1.

found that it is problematic to have ordinary D6-brane behavior in a massive AdS7 × S3

setup precisely like the one we are considering here. (In the language of [28], the parameter

α of our solution goes to a negative constant; this enables the solution to exist and to evade

the global no-go they found, but at the cost of the diverging H in (5.10), [27, eq. (4.15)].)

More precisely, the asymptotic behavior we find is the one discovered in [29, eq. (3.4)].

Thus the singularity at the south pole in figure 3 is the same we found in the massless

case we saw in section 5.1. In that case, the singularity is cured by M-theory. In the present

case, the non-vanishing Romans mass prevents us from doing that. However, we still think

it should be interpreted as the appropriate response to a D6; for this reason we think it is

a physical solution.

So far we have examined what happens when we impose that the north pole is regular.

It is also possible to have a D6 and anti-D6 singularity at both poles, as in the previous

section, or an O6 at one of the poles (keeping D6’s at the other pole). Roughly speaking,

this corresponds to a trajectory similar to the one in figure 3(b), in which one “misses”

the green circle to the left or to the right, respectively. As we have seen, the D6 solution

is very similar to the massless one. The O6 solutions also turn out to be very similar to

their massless counterpart:15 near the pole, their asymptotics is eA ∼ r−1/5, eφ ∼ r−3/5,

15In the different setup of [30], an O6 in presence of F0 gets modified in such a way that its singularity
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x ∼ 1 − r4/5. This leads to the same asymptotics for the metric as in the massless O6

solution near the critical radius ρ0 = gsls. Once again, however, in the massive case we

have a diverging NS three-form; this time H ∼ r−3/5vol3. Finally, in such a case the S2 is

replaced by an RP2 because of the orientifold action.

5.3 Regular massive solution with D8-branes

We will now examine what happens in presence of D8-branes.

The first possibility that comes to mind is to put all of them together in a single

stack. The idea is the following. We once again use the power-series expansion (4.26) from

r = rN = 0 to a small r, and use the resulting values of A, φ and x as boundary conditions

for a numerical evolution of (4.17). This time, however, we should stop the evolution at

a value of r where (4.45) is satisfied. At this point F0 will change, and (4.17) will change

as well. Generically, the evolution on the other side of the D8 will lead to a D6 or an O6

singularity, as discussed in section 5.2. However, if F0 is negative, according to (4.25), the

point {x = −1, eA+φ = − 4
F0
} leads to a regular South Pole. Fortunately, our solution still

has a free parameter, namely A+
0 = A(rN). By fine-tuning this parameter, we can try to

reach {x = −1, eA+φ = − 4
F0
} and obtain a regular solution.

Alternatively, after stopping the evolution from the North Pole to the D8, one can look

for a similar solution starting from the South Pole, and then match the two — in the sense

that one should make sure that A, φ, and x are continuous. One combination of them,

namely q, will already match by construction. It is then enough to match two variables,

say A and x; this can be done by adjusting A+
0 and A−0 .

Naively, however, we face a problem when we try to choose the flux parameters on the

two sides of the D8’s. We concluded in (4.31) that near the poles we should have b = 0;

this seems to imply, via (4.40), that n2 = 0 on both sides of the D8. (4.45) would then lead

to q = 0 on the D8, which can only be true at the poles x = ±1.

This confusion is easily cleared once we remember that B can undergo a large gauge

transformation that shifts it by kπvolS2 , as we explained towards the end of section 4.7.

We saw there that we can keep track of this by introducing the variable b̂ in (4.32). We now

simply have to make sure that b̂ winds an integer amount of times N around the fundamen-

tal domain [0, π]; this can be interpreted as the presence of N large gauge transformations,

or as the presence of a non-zero quantized flux N = 1
4π2

∫
H.

We still face one last apparent problem. It might seem that making sure that b̂ winds

an integer amount of times requires a further fine-tuning on the solution; this we cannot

afford, since we have already used both our free parameters A±0 to make sure all the

variables are continuous, and that the poles are regular.

Fortunately, such an extra fine-tuning is in fact not necessary. Let us call (n0, n2) the

flux parameters before the D8, and (n′0, n
′
2) after it. For simplicity let us also assume n′2 = 0,

so that no large gauge transformations are needed on that side. As we remarked at the end

of section 4.8, ∆n2 = n′2−n2 = −n2 should be an integer multiple of ∆n0 = n′0−n0 = nD8:

∆n2 = µ∆n0, µ ∈ Z. To take care of flux quantization, it is enough to also demand that

disappears. This does not happen here.
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n2 = Nn0 for N integer. Indeed, from (4.37), (4.40), (4.32), we see that in that case at

the North Pole we get b̂ = −πN ; since this is an integer multiple of π, it can be brought

to zero by using large gauge transformations. Together, the conditions we have imposed

determine n′0 = n0

(
1− N

µ

)
.

All this gives a strategy to obtain solutions with one D8 stack. We show one concrete

example in figure 4. One might find it intuitively strange that the D8-branes are not

“slipping” towards the South Pole. The branes back-react on the geometry, bending the

S3, much as a rubber band on a balloon. This by itself, however, would not be enough to

prevent them from slipping. Rather, we also have to take into account the Wess-Zumino

term in the brane action. This term, which takes into account the interaction of the branes

with the flux, balances with the gravitational DBI term to stabilize the D8’s. The formal

check of this is that the branes are calibrated, something we have already seen in section 4.8

(see discussion around (4.50), (4.51)). The D8 stack is made of nD8 = 50 D8-branes; each

of these D8’s has worldsheet flux f2 such that
∫
S2 f2 = −2π, which means that it has an

effective D6-brane charge equal to −1. A single D8/D6 bound state probe with this charge

is calibrated exactly at r = rD8, and thus will not slip to the South Pole. The solution

can perhaps be thought of as arising from the one in figure 3 via some version of Myers’

effect.16

We can also look for a configuration with two stacks of D8-branes, again with regular

poles. The easiest thing to attempt is a symmetric configuration where the two stacks

have the same number of D8’s, with opposite D6 charge. As for the solution with one

D8, (4.25) implies F0 at the north pole and negative F0 at the south pole. For our symmetric

configuration, these two values will be opposite, and there will be a central region between

the two D8 stacks where F0 = 0.

We show one such solution in figure 5. As for the previous solution with one D8,

we have started from the North Pole and South Pole; now, however, we did not try to

match these two solutions directly, but we inserted a massless region in between. From the

northern solutions, again we found at which value of r = rD8 it satisfies (4.45). We then

stopped the evolution of the system there, evaluated A, φ, x at rD8, and used them as a

boundary condition for the evolution of (4.17), now with F0 = 0. Now we matched this

solution to the southern one; namely, we found at which values of r = rD8′ their A, φ and

x matched. This requires translating the southern solution in r by an appropriate amount,

and picking A−0 = A+
0 . Given the symmetry of our configuration, this is not surprising:

the southern solution is related to the northern one under (4.33). Moreover, matching a

region with F0 6= 0 to the massless one means imposing an extra condition, namely the

continuity of B in rD8, as we mentioned at the end of 4.8.

The parameter A+
0 = A−0 = A0 would at this point be still free. However, one still has

to impose flux quantization for H. As we recalled above, this is equivalent to requiring

that the periodic variable b̂ starts and ends at zero. Unlike the case with one D8 above,

this time we do need a fine-tuning to achieve this, since the expression for B is not simply

16We thank I. Bena, S. Kuperstein, T. Van Riet and M. Zagermann for very useful conversations about

this point and about the existence of solutions with a single D8. These solutions are consistent with the

analysis in [31].
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Figure 4. Regular solution with one D8 stack. Its position can be seen in the graph as the value

of r where the derivatives of the functions jump; it is fixed by (4.45). In (a) we again plot the

radius of the S2 (orange), the warping factor e2A (black; rescaled by a factor 1/20), and the string

coupling eφ. We also plot 1
π b̂(r) = 1

4π2

∫
S2
r
B2 (dashed, light green); to guide the eye, we have

periodically identified it as described in section 4.7. (The apparent discontinuities are an artifact of

the identification.) The fact that it starts and ends at b̂ = 0 is in compliance with flux quantization

for H; we have 1
4π2

∫
H = −5. The flux parameters are {n0, n2} = {10,−50} on the left (namely,

near the north pole), {−40, 0} on the right (near the south pole). In (b), we see the path described

by the solution in the {A+ φ, x} plane, overlaid to the relevant vector field, that this time changes

with n0.

controlled by the massive expression (4.43). Fortunately we can use the parameter A0 for

this purpose. The solution in the end has no moduli.

As for the solution with one D8 stack we saw earlier, in this case too the D8-branes

are not “slipping” towards the North and South Pole because of their interaction with the

RR flux: each of the two stacks is calibrated. In this case, intuitively this interaction can

be understood as the mutual electric attraction between the two D8 stacks, which indeed

have opposite charge under F2; the balance between this attraction and the “elastic” DBI

term is what stabilizes the branes.

Let us also remark that for both solutions (the one with one D8 stack, and the one

with two) it is easy to make sure, by taking the flux integers to be large enough, that

the curvature and the string coupling eφ are as small as one wishes, so that we remain in

the supergravity regime of string theory. In figures 4 and 5 they are already rather small

(moreover, in the figure we use some rescalings for visualization purposes).

Thus we have found regular solutions, with one or two stacks of D8-branes. It is now

in principle possible to go on, and to add more D8’s. We have found examples with four D8

stacks, which we are not showing here. We expect that generalizations with an arbitrary

number of stacks should exist, especially if there is a link with the brane configurations

in [2, 3]. Another possibility that might also be realized is having an O8-plane at the

equator of the S3.
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Figure 5. Regular solution with two D8 stacks. As in figure 4, their positions are the two values of

r where the derivatives of the functions jump. In (a) we again plot the radius of the S2 (orange), the

warping factor e2A (black; rescaled by a factor 1/20), and the string coupling eφ (green; rescaled by a

factor 5), and b̂ (as in figure 4; this time 1
4π2

∫
H = −3). The flux parameters are: {n0, n2} = {40, 0}

on the left (namely, near the north pole); {0,−40} in the middle; {−40, 0} on the right (near the

south pole). The region in the middle thus has F0 = 0; it is indeed very similar to the massless

case of figure 2. In (b), we see the path described by the solution in the {A+ φ, x} plane, overlaid

to the relevant vector field, that again changes with n0.
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Française de Belgique” through the ARC program. M.F. is a Research Fellow of the Bel-

gian FNRS-FRS. D.R. and A.T. are supported in part by INFN, by the MIUR-FIRB grant

RBFR10QS5J “String Theory and Fundamental Interactions”, and by the MIUR-PRIN

contract 2009-KHZKRX. The research of A.T. is also supported by the European Research

Council under the European Union’s Seventh Framework Program (FP/2007-2013) — ERC

Grant Agreement n. 307286 (XD-STRING).

A Supercharges

At the beginning of section 2.2 we reviewed an old argument that shows how a solution

of the form AdS7 ×M3 can also be viewed as a solution of the type Mink6 ×M4. In this

appendix we show how the AdS7 × M3 supercharges get translated in the Mink6 × M4

framework.
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A decomposition of gamma matrices appropriate to six-dimensional compactifications

reads

γ(6+4)
µ = eA4γ(6)

µ ⊗ 1 , γ
(6+4)
m+5 = γ(6) ⊗ γ(4)

m . (A.1)

Here γ
(6)
µ , µ = 0, . . . , 5, are a basis of six-dimensional gamma matrices, while γ

(4)
m , m =

1, . . . , 4 are a basis of four-dimensional gamma matrices. For a supersymmetric Mink6×M4

solution, the supersymmetry parameters can be taken to be

ε
(6+4)
1 = ζ0

+ ⊗ η1
+ + ζ0 c

+ ⊗ η1 c
+ ,

ε
(6+4)
2 = ζ0

+ ⊗ η2
∓ + ζ0 c

+ ⊗ η2 c
∓ ,

(A.2)

where ζ+ is a constant spinor; ∓ denotes the chirality, and c Majorana conjugation both

in six and four dimensions. Supersymmetry implies that the norms of the internal spinors

satisfy ||η1||2 ± ||η2||2 = c±e
±A4 , where c± are constant.

On the other hand, for seven-dimensional compactifications a possible gamma matrix

decomposition reads

γ(7+3)
µ = eA3γ(7)

µ ⊗ 1⊗ σ2 ,

γ
(7+3)
i+6 = 1⊗ σi ⊗ σ1 .

(A.3)

This time γ
(7)
µ , µ = 0, . . . , 6, are a basis of seven-dimensional gamma matrices, and σi,

i = 1, 2, 3, are a basis of gamma matrices in three dimensions (which in flat indices can be

taken to be the Pauli matrices). For a supersymmetric solution of the form AdS7 ×M3,

the supersymmetry parameters are now of the form

ε
(7+3)
1 = (ζ ⊗ χ1 + ζc ⊗ χc1)⊗ v+ ,

ε
(7+3)
2 = (ζ ⊗ χ2 ∓ ζc ⊗ χc2)⊗ v∓ .

(A.4)

Here, χ1,2 are spinors on M3, with χc1,2 ≡ B3χ
∗
1,2 their Majorana conjugates; a possible

choice of B3 is B3 = σ2. ζ is a spinor on AdS7, and ζc ≡ B7ζ
∗ is its Majorana conjugate;

there exists a choice of B7 which is real and satisfies B7γµ = γ∗µB7. (It also obeys B7B
∗
7 =

−1, which is the famous statement that one cannot impose the Majorana condition in

seven Lorentzian dimensions.) The ten-dimensional conjugation matrix can then be taken

to be B10 = B7 ⊗ B3 ⊗ σ3; the last factor in (A.4), v±, are then spinors chosen in such a

way as to give the ε
(7+3)
i the correct chirality, and to make them Majorana; with the above

choice of B10, v+ = 1√
2

(
1
−1

)
, v− = 1√

2

(
1
1

)
. The minus sign (for the IIA case) in front of the

term ζc⊗χc2 in (A.4) is due to the fact that, both in seven Lorentzian and three Euclidean

dimensions, conjugation does not square to one: (ζc)c = −ζ, (χc)c = −χ.

The presence of the cosmological constant in seven dimensions means that ζ is not

constant, but rather that it satisfies the so-called Killing spinor equation, which for RAdS =

1 reads

∇µζ =
1

2
γ(7)
µ ζ . (A.5)

One class of solutions to this equation [32, 33] is simply of the form

ζ+ = ρ1/2ζ0
+ . (A.6)
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The coordinate ρ appears in (2.7), which expresses AdS7 as a warped product of Mink6

and R. ζ0
+ is a spinor constant along Mink6 and such that γρ̂ζ

0
+ = ζ0

+ (the hat denoting a

flat index).

Just like for Mink6×M4, supersymmetry again implies that the norms of the internal

spinors χ1,2 should be related to the warping function: ||χ1||2±||χ2||2 = c±e
±A3 , where c±

are constant. We will now see, however, that for AdS7 ×M3 actually c− = 0. We use the

ten-dimensional system in [16, eq. (3.1)]. As we mentioned in section 2, it can be used to

derive quickly the system 2.1, while applying it directly to AdS7 ×M3 to derive (2.11) is

more lengthy. For our purposes, however, it will be enough to apply one equation of that

system to the AdS7 ×M3 setup, namely

dK̃ = ιKH (A.7)

This is equation (3.1b) in [16], but it appeared previously in [34–36]. K and K̃ are the

ten-dimensional vector and one-form defined by K = 1
64(ε̄1γ

(10)
M ε1 + ε̄2γ

(10)
M ε2)dxM and K̃ =

1
64(ε̄1γ

(10)
M ε1 − ε̄2γ(10)

M ε2)dxM . Plugging the decomposed spinors (A.4) in these definitions

and calling β1 = eA3(1
8 ζ̄γ

(7)
µ ζ)dxµ, the part of (A.7) along AdS7 leads to eA3d7β1(||χ1||2 −

||χ2||2) = (d7β1)c− = 0, where d7 is the exterior derivative along AdS7. (The right hand side

does not contribute, because H has only internal components.) On the other hand, using

the Killing spinor equation (A.5) in AdS7, we have that d7β1 = e2A3(ζ̄γ
(7)
µν ζ)dxµν ≡ β2. A

spinor in seven dimensions can be in different orbits (defining an SU(3) or an SU(2)nR5

structure [37, 38]), but for none of them the bilinear β2 is identically zero. Consequently,

the norms of the two Killing spinors have to be equal, namely c− = 0.

Let us now see how to translate the spinors εi for an AdS7×M3 solution into a language

relevant for Mink6 ×M4. First, we split the seven-dimensional gamma matrices γ
(7)
µ ; the

first six give a basis of gamma matrices in six dimensions, γ̃
(6)
µ = ργ

(7)
µ , µ = 0, . . . , 5, while

the radial direction, γ
(7)
ρ̂ = γ(6) becomes the chiral gamma in six dimensions. (The hat

denotes a flat index.) This split is by itself not enough to turn (A.3) into (A.1), because the

three-dimensional gamma’s in (A.3) have no γ(6) in front. This can be cured by applying

a change of basis:

γ
(6+4)
M = Oγ

(7+3)
M O−1 , O =

1√
2

(1− iγ(7+3)
ρ̂ ) , (A.8)

with, however, a change of basis in six dimensions: γ
(6)
µ → −iγ(6)γ

(6)
µ . Likewise, the

spinors (A.4) are related to (A.2) by

ε
(6+4)
i = Oε

(7+3)
i , (A.9)

if we take

η1 = ρ1/2 χ1 ⊗ v+ =
1√
2
ρ1/2 χ1 ⊗

(
1

−1

)
, η2 = ρ1/2 χ2 ⊗ v∓ =

1√
2
ρ1/2 χ2 ⊗

(
1

±1

)
.

(A.10)

Notice that the two ηi have equal norm, because the χi have equal norm, as shown earlier.

Moreover, since the norm of the χi is eA3/2, and because of the factor ρ1/2 in (A.10), the

ηi have norm equal to ρ1/2eA3/2; recalling (2.8), this is equal to eA4/2, as it should.
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Besides (A.6), there is also a second class of solution to the Killing spinor equation

∇µζ = 1
2γ

(7)
µ ζ on AdS7: it reads ζ = (ρ−1/2 + ρ1/2xµγ

(7)
µ )ζ0

−, where now γρ̂ζ
0
− = −ζ0

−. If we

plug this into (A.4) and use the above procedure (A.9) to translate it in the Mink6 ×M4

language, we find a generalization of (A.2) where both a positive and negative chirality

six-dimensional spinor appear (namely, xµγµζ
0
− and ζ0

−) instead of just a positive chirality

spinor ζ0
+. Because of the xµγµ factor, this spinor Ansatz would break Poincaré invariance

if used by itself; if four supercharges of the form (A.2) are preserved, Poincaré invariance

is present, and these additional supercharges simply signal that an AdS7 ×M3 solution is

N = 2 in terms of Mink6 ×M4.

B Killing spinors on S4

The AdS7 × S4 is a familiar Freund-Rubin solution; the flux is taken to be propor-

tional to the internal volume form, G4 = gvolS4 . The eleven-dimensional supersymme-

try transformation reads
(
∇M + 1

144GNPQR(γNPQRM − 8γNPQδRM )
)
ε11 = 0; decomposing

ε11 =
∑4

a=1 ζa⊗ ηa + c.c., and using (A.5), one reduces the requirement of supersymmetry

(for RAdS = 1) to taking g = 3/4, and to the equation

(∇m −
1

2
γγm)η = 0 (B.1)

on S4. This is an alternative form of the Killing spinor equation; it was solved in [39] in

any dimension. However, we are using different coordinates, adapted to the S1 reduction

used in section 5.1; we will here solve (B.1) again, using more or less the same method.

The idea is to start from the easiest components of the equation, and to work one’s

way to the more complicated ones. Our coordinates in section 5.1 are α, β, γ, y, the

latter being the reduction coordinate. Our vielbein reads e1 = dα, e2 = 1
2 sin(α)dβ,

e3 = 1
2 sin(α) sin(β)dγ, e4 = 1

2 sin(α)(dy + cos(β)dγ). We begin with the α component

of (B.1):

∂αη =
1

2
γγ1η ⇒ η = e

1
2
αγγ1η1 . (B.2)

The next component we use is(
∂β −

1

4
cos(α)

)
η =

1

4
sin(α)γγ2η . (B.3)

This can be manipulated as follows:

0 =

(
∂β −

1

4
eαγγ1γ12

)
η = e

1
2
αγγ1

(
∂β −

1

4
γ12

)
η1 ⇒ η1 = e

1
4
βγ12η2 . (B.4)

We proceed in a similar way for the two remaining coordinates; the details are complicated,

and we omit them here. The final result is

η = exp
[α

2
γγ1

]
exp

[
β

4
γ12 +

β − π
4

γ34

]
exp

[
y + γ

4
γ13 +

y − γ
4

γ24

]
η0 (B.5)

where η0 is a constant spinor. When we reduce, we demand that ∂yη = 0, which becomes

(γ13 +γ24)η0 = 0; this condition indeed keeps two out of four spinors, as anticipated in our

discussion in section 5.1.
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C Sufficiency of the system (2.11)

In section 2.2 we obtained the system of equations (2.11) starting from (2.3) and using the

fact that AdS7 can be considered as a warped product of Mink6 and R. In this section we

will explain how one can show that (2.11) is completely equivalent to supersymmetry for

AdS7 ×M3 with a direct computation. Our strategy will be very similar to the one in [15,

section A.4], with some relevant differences that we will promptly point out.

To begin with, we write the system of equations resulting from setting to zero the type

II supersymmetry variations (of gravitinos and dilatinos) using the spinorial decomposi-

tion (A.4):17 (
Dm −

1

4
Hm

)
χ1 −

eφ

8
Fσmχ2 = 0 , (C.1a)(

Dm +
1

4
Hm

)
χ2 −

eφ

8
λ(F )σmχ1 = 0 , (C.1b)

1

2
e−Aχ1 −

i

2
∂Aχ1 + i

eφ

8
Fχ2 = 0 , (C.1c)

1

2
e−Aχ2 +

i

2
∂Aχ2 − i

eφ

8
λ(F )χ1 = 0 , (C.1d)(

D − 1

4
H

)
χ1 + i

7

2
e−Aχ1 +

(
7

2
∂A− ∂φ

)
χ1 = 0 , (C.1e)(

D +
1

4
H

)
χ2 − i

7

2
e−Aχ2 +

(
7

2
∂A− ∂φ

)
χ2 = 0 . (C.1f)

As in [15, section A.4], we introduce a set of intrinsic torsions pam, qam, and T a, T̂ a, with

a = 1, 2:(
Dm −

1

4
Hm

)
χ1 ≡ p1

mχ1 + q1
mχ

c
1 ,

(
Dm +

1

4
Hm

)
χ2 ≡ p2

mχ2 + q2
mχ

c
2 , (C.2a)(

D − 1

4
H

)
χ1 ≡ T 1χ1 + T̂ 1χc1 ,

(
D +

1

4
H

)
χ2 ≡ T 2χ2 + T̂ 2χc2 , (C.2b)

where D = γm(7)Dm, Hm ≡ 1
2Hmnpγ

np
(7), H ≡

1
6Hmnpγ

mnp
(7) as usual. We used the fact that χ1

and χc1 (or χ2 and χc2) constitute a basis for the three-dimensional spinors. Taking tensor

products of these two bases, we also obtain a basis for bispinors, on which we can now

expand F :

F ≡ R00 χ1 ⊗ χ†2 +R10 χ
c
1 ⊗ χ

†
2 +R01 χ1 ⊗ χc†2 +R11 χ

c
1 ⊗ χ

c†
2 . (C.3)

Using (C.2) and (C.3) in (C.1), we can rewrite the conditions for unbroken supersymmetry

as a set of equations relating the intrinsic torsions to the coefficients Rij . Let us call this

system of equations the “spinorial system”. Using instead (C.2) and (C.3) in (2.11), we

obtain a second set of equations, again in terms of the intrinsic torsions and Rij ; let us call

17We choose to show the equivalence in the IIA case, hence we pick ε
(7+3)
1 and ε

(7+3)
2 with opposite

chirality.
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this system the “form system”. Our aim is to show the equivalence between the spinorial

and the form systems.

Although we are using the same technique appearing in [15, section A.4] (there ap-

plied to four-dimensional vacua), proving this equivalence in the case at hand is more

involved. Relying on a superficial counting, it would seem that the form system contains

fewer equations than the spinorial one. To see why this happens, we first notice that the

definitions (C.2) are redundant. Indeed the torsions T a and T̂ a can be rewritten in terms

of the torsions pa, qa and H; however, in three dimensions, γ
(7)
mnp, hence H, is proportional

to the identity (use (3.2) with α = H). Thus in (C.2b) four complex numbers (T ’s and

T̂ ’s) are used to describe a single real number H. This suggests that some of the equations

in the spinorial system are redundant and could be dropped. However, this redundancy is

not manifest.

To make it manifest, we could use the following strategy. On the one hand (C.1a)

and (C.1b) give a natural expansion of the torsions pa and qa in terms of the vielbein eb,

with a 6= b, defined by the spinor χb (see (3.3) and (3.5)); that is, they transform into

equations for the components q1 · e2
3, q1 · e2

1 and so forth. On the other hand the intrinsic

torsions T a and T̂ a give expressions like q1 · e1
3, q1 · e1

1. Therefore, we would need a formula

relating the vielbein e1 defined by χ1 to the vielbein e2 defined by χ2.

Actually, there exists a simpler method. Indeed we can use the following equations,

dH(e2A3−φReψ1
−) = 0 ,

dH(e4A3−φImψ1
−) = 0 ,

dH(e4A3−φψ2
−) = 0 ,

(C.4)

obtained by simply applying dH to the equations (2.11a), (2.11b) and (2.11c) respectively

(in other words, they are redundant with respect to the original system (2.11)). If we now

express (C.4) in terms of (C.2), and add the resulting equations to the form system we

obtained earlier, we obtain a new, equivalent expression for the form system. With some

linear manipulations, it can now be shown that it is equivalent to the spinorial system. This

concludes our alternative proof that (2.11) is completely equivalent to the requirement of

unbroken supersymmetry.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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