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We are concerned with the existence and energy decay of solution to the initial boundary value
problem for the coupled Klein-Gordon-Schrodinger equations with acoustic boundary conditions.

1. Introduction

In this paper, we are concerned with global existence and uniform decay for the energy of
solutions of Klein-Gordon-Schrodinger equations:

i + Au+ilulfu +iou = —uv  in Q = Qx (0,),
v~ Av+ o+ o’ = [uf in Q=Qx(0,0),
u=0 on X=Tx(0,00),
v=0 on Xy=TI)x(0,00), (1.1)
y0' + f(x)Z' + g(x)z=0 on X; =T x (0, 0),

ov ,
i h(x)z" on Xy =T7 x (0,00),

u(x,0) =ug, v(x,0)=1vy, ?'(x,00=v; inQ,

where Q C R" is a bounded domain, 1 < n < 3, with boundary I' = I'y UT'; of class C?, where
Tp and T'; are two disjoint pieces of T each having nonempty interior and f, g,h: T; — R are
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given functions. We will denote by v the unit outward normal vector to I'. A stands for the
Laplacian with respect to the spatial variables; " denotes the derivative with respect to time ¢.
Here z(x,t) is the normal displacement to the boundary at time ¢ with the boundary point x.

The above equations describe a generalization of the classical model of the Yukawa
interaction of conserved complex nucleon field with neutral real meson field. Here, u is
complex scalar nucleon field while v and z are real scalar meson one.

In three dimension, [1-5] studied the global existence for the Cauchy problem to

1
iv + =Au = —uv,
2 (1.2)

V" — Av + pPo = |ul’.

Klein-Gordon-Schrodinger equations have been studied as many as ever by many authors (cf.
[6-11], and a list of references therein). However, they did not have treated acoustic boundary
conditions.

Boundary conditions of the fifth and sixth equations are called acoustic boundary
conditions. Equation (1.1)s (the fifth equation of (1.1)) does not contain the second derivative
z", which physically means that the material of the surface is much more lighter than a
liquid flowing along it. As far as h = 1 in (1.1)¢ (the sixth equation of (1.1)) is concerned
to the case of a nonporous boundary, (1.1)s simulates a porous boundary when a function
h is nonnegative. When general acoustic boundary conditions, which had the presence
of z" in (1.1)s, are prescribed on the whole boundary, Beale [12-14] proved the global
existence and regularity of solutions in a Hilbert space of data with finite energy by means
of semigroup methods. The asymptotic behavior was obtained in [13], but no decay rate was
given there. Recently, the acoustic boundary conditions have been treated by many authors
(cf. [15-21] and a list of references therein). However, energy decay problem with acoustic
boundary conditions was studied by a few authors. For instance, Rivera and Qin [22] proved
the polynomial decay for the energy of the wave motion using the Lyapunov functional
technique in the case of general acoustic boundary conditions and n = 3. Frota and Larkin
[23] considered global solvability and the exponential decay of the energy for the wave
equation with acoustic boundary conditions, which eliminated the second derivative term
for 1 < n < 3. However, it is not simple to apply the semigroup theory as well as Galerkin’s
method in [23] because a system of corresponding ordinary equations is not normal and
one cannot apply directly the Carathéodory’s theorem. So they overcame this problem using
the degenerated second order equation. And Park and Ha [20] studied the existence and
uniqueness of solutions and uniform decay rates for the Klein-Gordon-type equation by using
the multiplier technique. Moreover, [20] proved the exponential and polynomial decay rates
of solutions for all n > 1.

In this paper, we prove the existence and uniqueness of solutions and uniform decay
rates for the Klein-Gordon-Schrodinger equations with acoustic boundary conditions and
allow to apply the method developed in [23]. However, [23] did not treat the Klein-Gordon-
Schrodinger equations.

This paper is organized as follows. In Section 2, we recall the notation and hypotheses
and introduce our main result. In Section 3, using Galerkin’s method, we prove the existence
and uniqueness of solutions to problem (1.1). In Section 4, we prove the exponential energy
decay rate for the solutions obtained in Section 3.



Boundary Value Problems 3

2. Notations and Main Results

We begin this section introducing some notations and our main results. Throughout this
paper we define the Hilbert space # = {u € H'(Q); Au € L*(Q)} with the norm |ulle =
(”””iﬂ(g) + ||Au||2)1/2, where || - || is an L>-norm and (u,v) = J’Qu(x)mdx; without loss
of generality we denote (u,v)r, = fl“l u(x)v(x)drl’. Moreover, L”(Q)-norm and LP(I')-norm
are denoted by || - ||, and || - ||, r, respectively. Denoting by py : HY(Q) — HY?>(') and

p1 : # — HYVXT) the trace map of order zero and the Neumann trace map on <,
respectively, we have

) —
po(u) =ur,  pr(u) = <a—z>|r, vueD(Q), (2.1)
and the generalized Green formula
- ou 0v
’[Q(_Au)vdx = ; o a_xla_xldx - (pl (u)/PO(U))H—l/Z(r)XHl/Z(F) (22)

holds for all u € # and v € H'(Q). We denoted V = {u € H(Q); po(u) = 0 on Iy}. By

the Poincare’s inequality, the norm [|u|ly, = (31, jQ (ou/ axi)zdx)l/zis equivalent to the usual
norm from H'(Q). Now we give the hypotheses for the main results.

(H1) Hypotheses on

Let Q be a bounded domain in R?, 1 < n < 3 with boundary I' of class C?. Here Iy and
I'y are two disjoint pieces of I, each having nonempty interior and satisfying the following
conditions:

m-v>0>0 only, m-v<0 onTy,
m(x) = x — x° <x0 € ]R"), R = max|m(x)|, @3)
xeQ
where v represents the unit outward normal vector to I'.
(H») Hypotheses on f, g, and h
Assume that f, g, h: 1_"1 — R are continuous functions such that
f(x),g(x) >0, h(x)=\Ax)(m(x)- v(x)), Vxe Ty, (2.4)
where
AMx) e C? <1_“1> satisfies 0 < Ao < A(x), Vxelj. (2.5)

Moreover, 0 < a <1/4,1/2 < p <4,y >0, and p is a real constant.



4 Boundary Value Problems

In physical situation, a and f are parameters representing the gratitude of diffusion
and dissipation effects. Also, y is a fluid density and p describes the mass of a meson.
Boundary condition (1.1) (the sixth equation of (1.1)) simulates a porous boundary because
of the function h.

We define the energy of system (1.1) by

Et) = L+ Lo+ Lol + o + if h(x)g(x)22dT. (2.6)
2 2 2lvT 2 ),

Now, we are in a position to state our main result.

Theorem 2.1. Let {ug,vo,v1} € VN H?(Q) x V N H*(Q) x V satisfy the inequality

p1(vo)
h(x)

<Cy VxeTly, 2.7)

where Cy is a positive constant. Assume that (Hy) and (Hy) hold. Then problem (1.1) has a unique
strong solution verifying

uelL® (0, ©; VN HZ(Q)>, U eL® <o, ; LZ(Q)>,
veL” (o, oV N HZ(Q)>, v €eL*(0,00;V), v €L® (0, 0; LZ(Q)), (2.8)

W2z, h'/%Z  h/22" e 2 (O, 0; L2(F1)>.

Moreover, if p satisfies

2 1
2 < min , , 2.9
# {2R—2(n—1)+8ﬂ2(n—1)2+(n—1)2 2R2ﬂ2+2RZ+R} 29)

then one has the following energy decay:

E(t) < Cie™, Vt>0, (2.10)
where Cy and w are positive constants.

Note

By the hypothesis in §, we have 44 (n - 1) > (n-1) forall 1 < n < 3, so we can assume (2.9).

3. Existence of Solutions

In this section, we prove the existence and uniqueness of solutions to problem (1.1). Let
{wj} jen and {¢;} jeN be orthonormal bases of V N H2(Q) and L*(T), respectively, and define



Boundary Value Problems 5
Vin = span{éi, &, ..., &} and W, = span{w;, wy, ..., w,,}. Let ugym, vom, and v1,, be sequences

of W,, such that ug,, — uo, vow — vp strongly in V N H?(Q), and v1,, — vy strongly in V.
For each 77 € (0,1) and m € N, we consider

U (X, 1) = D ajm(Hwj(x), x€Q, t€[0,Tyl,
j=1

Oym(%,t) = D bim(Hwj(x), x€Q, t€[0,Tnl, (3.1)
j=1

Zym (X, t) = icjm(t)cjj(x), x el t€[0,Ty],
=1

satisfying the approximate perturbed equations
() + 1 (Vitg, V20) + (|1t tpm, 0 ) + (14, 0) = i Vg, ),
(Ve ¥) + (YO, V) + 2 (@4, y) + B0 ) = (A2 0 (y))rl = ([l ).
153, () #5500, =0 -

Uym (0) = uom, Unm (0) = vom, U%m(O) = Uim,

YOum + fZ;lm (0)

) 1
2 > Zym(0) = Z1m = 7 p1(Vom),

qu(o) = Zom = _<

where zg,, € L*(T;) and for all w,y € Wy, & € Vy,, 0 < T,, < T. The local existence of
regular functions a;n, bjm, and cj, is standard, because (3.2) is a normal system of ordinary
differential equation. A solution (u, v, z) to the problem (1.1) on some interval [0, T,,) will be
obtained as the limit of (14, Zym) as m — oo and 77 — 0. Then, this solution can be extended
to the whole interval [0,T], for all T > 0, as a consequence of the a priori estimates that will
be proved in the next step.

3.1. The First Estimate
Replacing w, y, and ¢ by uy,,, v;lm, and z’,lm in (3.2), respectively, we obtain
<u;1m,u,1m> +1(Vidym, Vitgm) + <|uqm|2uqm,uqm> + 0 (Uym, Ugm) = 1 (U Oy, Uy, (3.3)
<U’,;m,U;1m> + (Vv,lm, Vvilm> + <v,lm, vilm>
+ﬂ<v;1m,v;1m> - <hz;1m,v;1m>rl = <|u,1m z,v;lm>,

71<Z;;m, Z,’l"’)rl + (h[yv%m + f Zoyn + gz,lm],z'qm>r] =0. (3.5)

(3.4)
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Taking the real part in (3.3), we get

1d 2 2. 1
L I R B W (I
(3.6)
4 2 CrLd r )2 2
+ ||u’lm||4 + a”uﬂm” +ﬁ||v11m|| + ; J‘F hf<zrlm> ar = _[Q |u’lm| Urlmdx
On the other hand, by Young’s inequality we have
2 1 4 1 ) 2
J'Q g et < 3 anll + 3 [ (3.7)

Substituting the above inequality in (3.6), and then integrating (3.6) over (0,f) with t €
(0,Tom), we get

/

sl = e[+ ounlls = 2ltounll + 2zl + 3 [, haCen)?ar

t t t . 2 2 t ) 2
+f ||uqm(s)||ids+2af ||u,1m(s)||2ds+2ﬁJ‘ ||v,1m(s)“ ds+—f f hf<z,1m(s)> dr ds
0 0 0 YJoJry

1 2
< Nlutoml® + ovmll® + Ilvomlly + 42 lloomlI* + Yllzlmllzn Y<m%;><|h(x)g(x)|>||20m||z,r1
xely

[ ol

(3.8)

Using the fact that 0 < min_ g, f(x) := fo, 0 < min g g(x) := o, (2.7) and Gronwall’s lemma,
we obtain

2

2
litan I+ [+ Wounlly, + w2l + 1220,

f ||uqm(s)||4ds+f lttym (s) ]| ds+f ||v,1m(s)|| ds+f ”hl/z 'm ;ldsSCz,
(3.9)

where C; is a positive constant which is independent of m, 7, and t.

3.2. The Second Estimate

First of all, we are going to estimate z;;m(O). By taking ¢ = 0 in (3.2)3 (the third equation of
(3.2)), we get

< n(0), >r + (hypo(©1m) + fzim + §2Zom], &)y, = 0. (3.10)
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By considering ¢ = zj,,(0) and hypotheses on the initial data, for all m € Nand 77 € (0,1), we
obtain

”Z;;'"(O)“z,rl = 0. (3.11)

Now, by replacing w and y by —Auy, and —Av,,, in (3.2), respectively, also differ-

entiating (3.2)3 with respect to t, and then substituting ¢ = z;,,, we have

d . .

i ””Wn”%/ + l”A“rzm”2 + “””nm”é + <|”nm|2”rzm/_A”nm> = i(UymOym, ~Btym),  (3.12)
2 2

e e e R e G .

2 " ! n _ —_— —_— !
—-u <z;,1m, hz,lm>rl - ﬁ(v,lm, hznm> - <Vu,lmu,1m + Uy V U, Vv,lm>,

i [’1 et + Ll h()8() (Z’nm)zdf] + (W0l Zh), + Ll h(x) £ (x) () T =0.
(3.14)

We now estimate the last term on the left-hand side of (3.12) and the term on the right-
hand side of (3.12). Applying Green’s formula, we deduce

([1tpm sy, = A1t ) =2 Lz |1t || Vg |*x + fg (1t Vi) dx. (3.15)
Considering the equality
2[Re(z212)]” = |21 |z + Re|(z1%2)"] (3.16)
for all z1, z, € C, we have
Re [ (ttyn Vit )?| = 2[Re (s Vitgn)]” = [1tym]*| Vit | (3.17)
Hence,
Re [ ([t | topm, ~ D1ty = fQ |1ty |* | V1t | + 2 JQ [Re (g Vitgm)|*dx.  (3.18)
Also,

i (U Oy = Atk :iJ vqm|Vu,7m|2dx+iJ‘ VOt Vil dx. (3.19)
Q Q
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Hence,

. _ 1 1
Re[; s, ~B16y)] < [ 90l Vgl < Sllommlly 5 [ Jtonl? Tt
Q Q

(3.20)

Replacing the above calculations in (3.12) and then taking the real part, we obtain

1d 1 - 1
3 il allnlFy+ 5 [ a1Vt +2 [ [Reitgn V7 Pt < 5 ol
Q Q
(3.21)

On the other hand, we can easily check that
V g + Vg = Vgt + U Vil = 2 Re (thy Vil ) - (3.22)
Therefore,
(V7 ttyTl + g Vo, V0, ) <2 fg |Re (1t Vit )| |V
<2 J‘Q|uqm| | Vitym| |Vv;lm|dx

< 7 | lunl 190yl 4o
(3.23)

1
<] 1T
[ty |<1

1 2 2 ! 2
* 4 Ilu ml>1 |uqm| |qum| dx +4||U'1m||v

< el 3 [ Bl 4]

Replacing (3.23) in (3.13) and using the imbedding V < L?(T'), we have

1

%%M%ﬂiﬂwwm%wwwwﬂ+dkwm ().
411””'1"’”V+4” O f |t ||V k| dx (3.24)

Lo ol ot + el

2e c() ” Hzr1

where ¢ is an imbedding constant.
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Adding (3.14), (3.21), and (3.24), we get

1 d 2 ) 2 > 2 11
5@[||unm||v+ ”U’T’””v+ | Avym||” + 12| ogm]|y + ” J‘ h(x)g(x)< ) ]
1 2 2 12 1 p 2
+—J‘ [ttym || Vtym| dx+2f [Re (tym Vitym)] “dx + - h(x)f(x)(znm> dr
4Ja Q Y
1 2 ! 2 [1452 2
< (3-0) lomnlly + @)l + B lomly

e 2
1/2
[, <l

1/2 "
z
e

C(Fl)” ’lm”z,rl'
(3.25)

By Ch()osing € =min, € fl /Y”hl/ZHC(ﬁ) and integrating (3.25) from 0 to t, we have

!

il + o, ool < ol + Lz, + | G800 () “ar
g 1

2 2 2, 2 2, M|n 2
< ltonlfy + el + | A0m O + i loomlly + 2|25 O,
2 1 ' 2 ! , 2
+ f h(x)g(x) (z1m)2dT + 2(- - a> f [t () || s +2(4 - B) J ”vﬂm(s) || ds
I 4 0 0 \4

+Cs3 I;<||vqm(s) ||€, + ”vilm(S) ||f/)ds,

(3.26)

where Cj is a positive constant. Using the hypotheses on a and f, (2.7), (3.11), and Gronwall’s
lemma, we obtain

2 2
sl + ol + e[, + 1800l |2, + 220, <€ 32)
where Cy is a positive constant which is independent of m, 7, and t.

3.3. The Third Estimate
First of all, we are going to estimate u . (0) and v »(0). By taking t = 0in (3.2), we get

(u',lm(O),w> —i(Augm, w) + <|u0m|2u0m,w> + a(Uom, w) = i(UomTom, W),
(3.28)

(va (0), y) ~ (Avom, y) + 2 (Vom, ¥) + B(01m, ) = <|”0m|21 y)-
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By considering w = u},,(0) and y = v},,(0) and hypotheses on the initial data, for all m € N
and 77 € (0,1), we obtam

3
14 @) < 801 + Wttoml13 + xlstomll + latomlsloomlls < Cs, (3.29)

20 @) < NA20m I + 2000 + Blloamll + ltoml < Cs, (3.30)

where Cs and Cg are positive constants.
Now by differentiating (3.2) with respect to t and substituting w = u,,,, y = v,,, and
¢ = zy,,, we have

2 2 2 2 27 ’ ’ 2
Zdt nm +1i rlm Lyt |24m | Uy + [t4m] Wy Uy ) + X[y,
(3.31)
= i(unqum + ”qqumr”qm>

g 1ol Bl # 2ol + il = (rzhc i),

"
<uqmu,1m + uqmuqm, qm>

L Y YT T (W MY QTSN TER

! (3.32)

(3.33)

Taking the real part in (3.31), we infer

%% ”u;lm“2 +2 J‘Q |u,1m|2|u',lm'2dx +Re J‘Q [unmu;i_m]zdx + zx||u;1m||2
(3.34)
= Re [i J‘Q v;lmuﬂm@dx] .
Considering the equality
2[Re(z1 %))’ = 21 |z2f" + Re[ (2172 (3.35)
for all z1,z, € C, we have

Re (spnitn) | = 2[Regntin)|” = i | (336)

Also,

Re [i J; v%munmu%_mdx] < Ig|v;1m||uqm|‘u’qm|dx < %”U;WHZ + % L: |uqm|2|u;1m|2dx. (3.37)
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From (3.34)—(3.37), we conclude

e T j g [l +2 j [Re (it )| e + || < 5 ]|
(3.38)
On the other hand, we can easily check that
Wy s+ Uity = Wy + Tt = 2 Re (1l ). (3.39)
Therefore,
J; <u',1mu,1_m + u,lmu;l_m> Vymdx <2 J‘Q |Re <u,1mu;l_m> | 'vzm 'dx
<2 [ (gl [
< 111 f |uqm|2|u',lm|2dx + 4||v;;m||2
1 “ o . (40
=1 J‘u,l,,,|§1 |u11m|2|u’,1m| dx+1 I|u,,m|>1|uqm|2'u;lm| dx
2
+4|on|
< gl 3 [ b it
Replacing (3.40) in (3.32), we have
i (il ol =2l ol = (12t
(3.41)

< —1 ”u' ”2 + —1 ’[ |u m|2|u’ |2dx+4||‘0" ||2
= m 1 m .
4™ 4)q L m

Combining (3.33), (3.38), and (3.41), we obtain

I Y e B ] IR O

+ 411 J‘Q |”’l”’|2|u;1m|2dx +2 j@ [Re(u,lm%_m>]2dx + % Ll h(x) f(x) <Z',;m>2dl“

< (3-0) sl + 5 el + @)t

(3.42)
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Integrating (3.42) from 0 to t, we have

T e
+ ; Ll h(x)g(x) <Z'r,m>2dr+; L Ll h(x) f (x) <Z;§m>2d1“ds

5||u;1m(0)||2+||v',;m(0)”2+||vlm||%,+/42||vlm||2+y||z O] J h(x)g(x) (z1)2dT

25 [ o)t [ oo dsr2-p) j ||v;;m<s)|| ds.

(3.43)

Therefore, using the hypotheses on a and f, (2.7), (3.11), (3.29), (3.30), and Gronwall’s lemma,
we get

u 2+ o 2+ v 2+ v 2+ z! ’
nm nm nm||y, nm M| Znm 2r

t (3.44)
+||hl/2z;lm||§r + f f h(x) f (x) (z;;m)zdrds <Gy,
I Jodn
where Cy is a positive constant which is independent of m, 7, and .
According to (3.9), (3.27), and (3.44), we obtain that
{tym} is bounded in L*(0,T; V), (3.45)
{u',lm} is bounded in L* (o, T; LZ(Q)>, (3.46)
{0ym) is bounded in L* (o, T,V H2(9)>, (3.47)
{v;m} is bounded in L*(0,T;V), (3.48)
{ Zm} is bounded in L% <0 T; LZ(Q)> (3.49)
{hmz m} is bounded in L* (0, T; Lz(Fl)>, (3.50)
{hm ,1,,,} is bounded in L* <o, T; LZ(F1)>, (3.51)
{ W2z ,Ym} is bounded in L2<O,T; L2(1"1)>, (3.52)

rpylnooq||z’1m(t)||m(rl) =0 a.e. in [0,T]. (3.53)
7—0
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From (3.45)—(3.52), there exist subsequences {uy}, {vym}, and {zy,}, which we still denote
by {tym}, {(vym}, and {zym}, respectively, such that

Upm — Uy weak star in L*(0,T; V), (3.54)

u;lm — uﬁz weak star in L <0, T; L2(Q)>, (3.55)
Uym — vy weak star in L™ (O, T,Vn HZ(Q)>, (3.56)
v%m — vjl weak star in L*(0,T;V), (3.57)

Uym — U Weak star in L* (0, T; LZ(Q)>, (3.58)
hl/zzqm — hl/zzq weak star in L® (O, T; LZ(F1)>, (3.59)
hl/zz’,lm — hl/zz’,l weak star in L® <O, T; Lz(l"l)), (3.60)
hl/zz',;m — hl/zzfl weak star in L? <0, T; LZ(F1)>. (3.61)

We can see that (3.9), (3.27), and (3.44) are also independent of 7. Therefore, by
the same argument as (3.45)-(3.61) used to obtain u,, v;, and z, from uym, Vym, and z;m,
respectively, we can pass to the limit when 7 — 0 in u,, v;, and z,, obtaining functions u, v,
and z such that

uy — u weak star in L*(0,T; V),
u, — u' weak star in L* (0, T; L2(9)>,
v, — v weak star in L*” <O,T;V N HZ(Q)>,
!

v, — v’ weak star in L*(0,T; V),

.62
v;; —s ¢v” weak star in L (O, T; LZ(Q)>, (3.62)
hl/zzﬂ — h'?z weak star in L® <O, T; LZ(F1)>,
hl/zz',l —s h'/?Zz weak star in L® <0, T; LZ(F1)>,

hl/zz;; —s h'/2Z" weak star in L? (0, T; Lz(l"l)).

Thus, by the above convergences and (3.53), we can prove the existence of solutions to (1.1)
satisfying (2.8).

3.4. Uniqueness

Let (u1,v1,z1) and (u2,v2, z2) be two-solution pair to problem (1.1). Then we put

U:=u — Uy, V:i=U1 — Uy, Z =21 — Zp. (3.63)
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From (3.2), we have

~ o~ 2 2 ~ .
(', w) +i(Vu, Vw) + <|u1| uy — |uy| uz,w> +a(i, w) = i(u1v) — U0y, w),

(,y) + (V8,Vy) + §2(8,y) + B(@,y) - (hZ,po(@))y, = (jm] - [l ), (3.64)
(hypo(@) + 2 + g2], &)y, =0,

for all w,y € VN H*(Q) and ¢ € L*(T). By replacing w = %, y = ¥/, and ¢ = Z’ in (3.64), it
holds that

1d,_n .- - N -

Eﬁllullz +illally + alli)® + <|u1|2u1 - |u2|2u2,u> = i(u1v1 — upvy, U), (3.65)

1 d ~ ~ ~ ~) ~] o~/ ad)

5 I+ 181 + w20517] + pIE | - (h2, &)y, = (il - al®, &), (3.66)
y(ho,2)p, + (hfZ,2);, + (hgZ,Z), =0. (3.67)

Taking the real part in (3.65), we get

| =

)% + al|ii]® + Re[(|u1|2u1 - |u2|2u2,ﬁ)] = Re[i (1101 — U202, )] (3.68)

N =
Q£

t

We now estimate the last term on the left-hand side of (3.68) and the term on the right-hand
side of (3.68). We can easily check that

f (|u1|2u1—|uz|2uz)<u—1—u—z>dx=f al* + ol — s Pourizs - aPusiindx. (3.69)
Q Q

By using the fact that Re(z1z;) = Re(z1z2) for all z;, z; € C, we obtain

Re[ (s P = P, 7)] = Re |l + il = s P ~ P
Q
:I il + el — (fs? + [u2) Re(uy7)dx
Q (3.70)
> [ (1l = P ] - )
Q

> 0.
Also,

f (1101 — U0y )iidx = f (ur (01 — 3) + Va2 (U1 — up))iidx = J‘ w110 + |l v dx. (3.71)
Q Q Q
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Hence by Holder’s inequality, (3.45), and (3.47), we deduce

Re[i(u1v1 — upvy, i) ]

. ~~ ~ . ~~ ~ ~ ~ 1 ~
=Re zf W TID + |u|2v2dx] =Re H uluvdx] < Nl BN < Csll D)3 + Z||u||2,
Q Q
(3.72)
where Cg is a positive constant. Replacing (3.70) and (3.72) in (3.68), we have
1d .o =12 1 ~12
—— < - - . 3.73
5 Sl < Callfy + (5 -a )il (673)
On the other hand, we can easily check that
<|u1|2 - |u2|2,5') = f (U1t — Uty + Uty — Uplp) ' dx
Q
= f <ﬁu_1 + Em)z?’dx
Q (3.74)
< [ s papy|'|ax
Q
< Collall” +4{|7'||",
where Cy is a positive constant. Therefore, we can rewrite (3.66) as
1d ~112 ~12 21153112 =~ ~12 ~I12 3.75
S| IFIF 181 + k21817 - (h2,8)y, < Colll + 4-pIFI. G79)

Adding (3.67), (3.73), and (3.75), we get

Td | <2 n=mn2 . 1=n2 22 1 ~2 ~n2 2 ~112
m[nun Y LR G EEIC dr] < Cuo (JlP + 151 + 7'])-
(3.76)

Applying Gronwall’s lemma, we conclude that % = o = Z = 0. This completes the proof of
existence and uniqueness of solutions for problem (1.1).

4. Uniform Decay

Multiplying the first equation of (1.1) by u and integrating over 2, we get

d ; :
gl il + el + alful® = zf vluf dx. (41)
Q

N —
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Taking the real part in the above equality, it follows that

IIuII2 = —luells — allu]*. (42)

h..|m_‘

1
2
Now, multiplying the second equation of (1.1) by v' and integrating over Q, we have
Ld [||v'||2 +/42||v||2] - (Av,v') = I v'|ul*dx —[5||v'||2. (4.3)
2dt o
Taking into account (1.1)s and (1.1)¢ (the fifth and sixth equations of (1.1)), we can see that
1 ]. 2 1 "2
-(Av,v') = lolly + h(x)g(x)z*dl [+ = | h(x)f(x)(2")°dI. (4.4)
2dt Y I Y
Therefore (4.3) can be rewritten as

Tdfn e 2202 lf 2
2 dt [”U "+ llolly + p2lloll” + . h(x)g(x)z=dl'

(4.5)
[ vluPax-pllo - 1 [ hofeE)’ar,
Q Y
Adding (4.2) and (4.5), we obtain
d
x [nun I + ol + ol | h(x)g(x)zzdr]
= f o'luPdx - |lull; - allu))? - ||| - 1 J h(x)f(x)(2')*dr (4.6)
Q Y
4 2 1 "2 1 N2
<=l ~alul’ = (5~ 5o Yl - 1 | neofee)(2)ar
By choosing € = 1/2f and the hypotheses on 5, we get
203 —
E()<- ﬁzﬁ i~ el - & o f h(x)f (x) () dI <0. (47)

So we conclude that E(t) is a nonincreasing function.
Now we consider a perturbation of E(t). For each € > 0, we define

Ec(t) = E(t) + ep(t), (4.8)
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where

p(t) = j (uu +2(m - Vo)v' + (n-1)vo")dx
¢ (4.9)
f (4g(x)(m - v) + yh( x))(yvz+ f®) z)dl"

By definition of the function p(t), Poincare’s inequality, and imbedding theorem, we
have

lp(t)] S||u||2+2j |(m-Vv)v’|dx+(n—1)f |vv’|dx+zf |g(x)(m - v)vz|dl
Q Q Yo

f [h(x)0zldI + j | (4g(x) (m - v) + yh(x)) f (x) 22| AT

c(n—-1
< ul? + Riolf, + Rl + 2

,»  (n-1)
lolly + =

m2
I/l

¢ e lolP + — h(x)22dT + S|l 0]
+TO||g||C(f1)II ||c(r1)||U||V+m”g”c(fl) N (x)z +Z” ey llolly
+lf h(x)z*dT + L||f|| = f h(x)g(x)zzdl"+l||f|| = f h(x)z*dT

4 )5 Y2 Ao C(I) I, 4y C() I

2

< <”+1+4R+C(” 1) A ”g”C(Fl)”h”C(F]) Xogo ”g”cm)

2 1
Wl * 71 ) EC,

¢
g, + 2Lgo +
(4.10)

where ¢ is a Poincare constant. Hence, from (4.8) and (4.10), there exists a positive constant
C1o such that

|Ee(t) — E(t)] < eCroE(t), (4.11)
for all € > 0 and t > 0. This means that there exist positive constants C1; and C, such that
C1iE(t) < E () < CppE(t), Vt>0. (4.12)
On the other hand, differentiating E.(t), we have

E.(t) =E'(t) +ep'(t), (4.13)
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where

p'(t) =2Re[(u,u)] + ng (m-Vo')o'dx + ZJ‘ (m - Vo)v"dx

_ " )P L4
+(n 1)szv dx+ n-1)||'||" + 2 di

U (4g(x)(m- V)+Yh(x))<YUZ+f( ) 2>dr].

Now, we will estimate the terms on the right-hand side of (4.14).

Estimates for I := 2Re[ (1, u)]

Using the first equation of (1.1), we can easily check that

2Re[(u,u)] = 2Re[<iAu - |ul*u — au + iuv, u)]
= 2Re =illull} - [[ull} - allul® + i(wo, u)|

4 2
= =2[ully = 2ex]u]|.

Estimates for I, := 2 [ (m - Vv')v'dx

Applying Green’s formula, we deduce
ZJ‘ (m-Vv')v'dx = I (m-v) (v’)zdl" - n||v’||2.
Q I

Estimates for I3 := 2 [ (m - Vo)v"dx

Using the second equation of (1.1) and Young's inequality, we have

I; = 2J‘ (m- Vo) (Av - prv - po’ + |u|2>dx
Q

szf (m-vU)Avdx+R<2Rp2+2R+1)ﬂ2||v||zv+Rﬂ2||v||2+ ot
Q

1 2
< (n-2+ 2% + 2R3 + Ry ol + Rye?Jo] + z—ﬂzllv'll t5a

2 (m-Vv)h(x)z’dl"—f (m - v)|Vo|*dr.
F1 rl

(4.14)

(4.15)

(4.16)

IIu||4

(4.17)
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Estimates for Iy := (n - 1) [, v0"dx

Similar to estimates for I3, we have

2
(n-1) J'Q v0'"dx<(n-1) | h(x)vzdl + (n- 1)< ﬂ’ll 4112 - 1>‘uz||’0||2

a (4.18)

- (m=-1)|olly +

m-Dn, ,2 (n 1)712
—|lv = ull}
2+ T el

By replacing (4.15)-(4.18) in (4.14) and choosing 71 = 1/16(n — 1) and 1, = 1/2(n - 1), we
conclude that

EL(H) = E'(t) +ep' (1)

o g =l - Pllo'|? - Lh(x)f(x)(z’)zdr

1 (n 1),12 ) 1 (n—-1)n 2
+€{<_z+ﬂ+ )n ull} - 2aju| +( 1+@+T)IIUII

Frn-Dp2 (-1 >” o
4,

+ <Ry2— (n—1)p*+ yrs

+ (1 2R+ 2R3 + Ry ol

+ f [(m -v) (v')2 +2(m - Vo)h(x)z' — (m-v)|Vo|* + (n - 1)h(x)vz'] dr
I

d
st scaimeny e gmioy (o L2 )ar] |
26-1 , ) |
= _< ﬂZﬂ 16 2)” ully - alull” - <§ - !%)Ilv |12 + ello® - . J'rl h(x) f(x) (2')’dT

2
¥ 6{‘2”””3 = 2aul - ||7'||* + <—1 ¥ <R— (n-1)+ 4 (n -1+ —21> >#2>

x [|o||® + (_1 + <2R2[32 +2R? + R>y2> loll3
+ f [(m ) ()2 +2(m - Vo)h(x)Z - (m - v)|Vol> + (n - 1)h(x)vz'] dr
I

2 52 df U (4g(x)(m - v)+Yh(x))<yvz+f( ) 2>d1‘]}

(4.19)
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From (2.9) and (4.19), we obtain

Zﬂ— 1 9¢ ﬁ € 2
! < Y e 4 2_(EF_ & / 2
EL(t) < —eCrE() ( 2 16ﬂz)num ajul ( 5 #z) [o']]* + el

_ Hr h(x)f(x) () dl + e{frl [<m ) (@) + %h(x)g(x)zz +2(m- Vo)h(x)z

+(n—1)h(x)vz' — (m-v)|Vo*|dl + ZLYZ%
I:f (4g(x)(m-v) + yh(x)) (yvz +— fx) 2>dr]}
(4.20)
We now estimate the last term on the right-hand side of (4.20).
Estimates for Is := IF] [(m - D) (v')2 + %h(x)g(x)ﬁ] ar
From the fifth equation of (1.1), we have
Is = J‘rl [%(m V) (f(x)z' + g(x)z)2 + %h(x)g(x)zz] dr
<= f (m-v) f2(x) (2 ) dl + — 272 f (4g(x)(m - v) + yh(x)) g(x)z*dl
(4.21)

- % fn (m - v) f3(x) () T + % Ll (4g(x)(m - v) + yh(x))0z*dT

——Zd—[f (4g(x)(m - v)+yh(x))<yvz+f( ) 2>dr]

Estimates for Ig := 2 frl (m - Vo)h(x)z'dl

By Young’s inequality, we have

I < RL <713h(x)|Vv| + h(x)| 4 >dF, (4.22)
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where 73 is an arbitrary positive constant. By replacing (4.21) and (4.22) in (4.20), we get

Zﬁ—l 9¢ 4 2 (ﬁ €> 2 2
' <_ _ (P _ _(F_ € '
() < ~eCuE@) - ( F - 1205 )l - alu® = (5= ) o/ + el

B % Ll (f(x) - %)h(x) (z)2dr

+e{%frl(m-v)f2(x)(z')2df
1 J‘ ! 2
+— | (4g(x)(m-v)+y@2n-1)h(x))vz'dl - I ((m-v) = Rzh(x))|Vo| dF}.
2y Jr, I
(4.23)
We note that
f (4g(x)(m - v)+y(2n-1)h(x))vz'dl <2MZensE(t)
T
bt f (m - v) (4g(x) + y(2n-1)A(x)) (') ’dT
4713 I ’
(4.24)

where M = max_ g {4g(x)(m - v) + y(2n — 1)h(x)}. By the above inequality and choosing 73
such that

>0, 1-Rlp>0, (4.25)

we conclude that

, 2p-1 9¢ € ,
ELt) < —eCuE() - (T - 20 Ykt =l = (§ = ) /P + el

~ J (m-v) [)L(x)f(x) ~ €<8y2R + 1673 f2(x) +4yg(x) + y2(2n - 1)A(x) >] ()T,
Iy

Y 8y*113
(4.26)
where Cy4 is a positive constant. Now choosing ¢ sufficiently small, we obtain
) Cis
E.(t) < -Ci5E(t) < —C—Ee(f), (4.27)
12

where Cj5 is a positive constant. Therefore,

E.(t) < C12E(0) exp<—g—it>. (4.28)



22 Boundary Value Problems

From (4.12), we have
Ci < Cis )
E(t) < =—E(0)exp( ——=t ). 4.29
(< G2EO) exp( - (429)
This implies the proof of Theorem 2.1 is completed.
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