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Characterization of Oblique Dual Frame Pairs
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Given a frame for a subspace W of a Hilbert space H , we consider all possible families of oblique dual frame vectors on an
appropriately chosen subspace V. In place of the standard description, which involves computing the pseudoinverse of the frame
operator, we develop an alternative characterization which in some cases can be computationally more efficient. We first treat
the case of a general frame on an arbitrary Hilbert space, and then specialize the results to shift-invariant frames with multiple
generators. In particular, we present explicit versions of our general conditions for the case of shift-invariant spaces with a single
generator. The theory is also adapted to the standard frame setting in which the original and dual frames are defined on the same
space.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

Frames are generalizations of bases which lead to redundant
signal expansions [1–4]. A frame for a Hilbert space is a set
of not necessarily linearly independent vectors that has the
property that each vector in the space can be expanded in
terms of these vectors. Frames were first introduced by Duf-
fin and Schaeffer [1] in the context of nonharmonic Fourier
series, and play an important role in the theory of nonuni-
form sampling [1, 2, 5, 6]. Recent interest in frames has
been motivated in part by their utility in analyzing wavelet
expansions [7, 8], and by their robustness properties [3, 8–
13].

Frame-like expansions have been developed and used in a
wide range of disciplines. Many connections between frame
theory and various signal processing techniques have been
recently discovered and developed. For example, the theory
of frames has been used to study and design oversampled fil-
ter banks [14–17] and error correction codes [18]. Wavelet
families have been used in quantum mechanics and many
other areas of theoretical physics [8, 19].

One of the prime applications of frames is that they lead
to expansions of vectors (or signals) in the underlyingHilbert
space in terms of the frame elements. Specifically, if H is a
separable Hilbert space and { fk}∞k=1 is a frame for H , then
any f inH can be expressed as

f =
∞∑
k=1

〈
f , gk

〉
fk, (1)

for some dual frame {gk}∞k=1 for H . In order to use this
representation in practice, we need to be able to calculate
the coefficients 〈 f , gk〉. A popular choice of {gk}∞k=1 is the
minimal-norm dual frame, that is, the canonical dual frame.
However, computing the minimal-norm dual is highly non-
trivial in general. Another issue is that the frame { fk}∞k=1
might have a certain structure which is not shared by the
minimal-norm dual. This complication appears, for exam-
ple, if { fk}∞k=1 is a wavelet frame: there are cases where the
canonical dual of a wavelet frame does not have the wavelet
structure (cf. [8]). One way to circumvent these types of
problems is to search for more general choices of duals. Usu-
ally, one requires additional constraints on the choice of
{gk}∞k=1; for example, if { fk}∞k=1 has a shift-invariant struc-
ture, it is natural to require that {gk}∞k=1 also share this struc-
ture.

More recently, the traditional concept of frames has been
broadened to include frames on subspaces. Oblique frame
decompositions, which were suggested in [10, 20] and fur-
ther developed in [21–23], allow for frame expansions in
which (1) is restricted to signals f in a given closed subspace
X of H . The vectors { fk}∞k=1 and {gk}∞k=1 are still required
to be frames, but only for subspaces of H ; { fk}∞k=1 forms a
frame forX and {gk}∞k=1 constitutes a frame for a possibly dif-
ferent subspace S such thatH = X⊕S⊥, where S⊥ denotes the
orthogonal complement of S inH . By choosing S = X =H ,
we recover the conventional dual frames; however, oblique
dual frames allow for more freedom in the design since the
analysis space S is not restricted to be equal to the synthe-
sis space X as in traditional frame expansions. A further
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generalization of this concept leads to pseudoframes [24]. As
in oblique dual frames, (1) is restricted to f ∈ X , but { fk}∞k=1
and {gk}∞k=1 are no longer constrained to be frame sequences.
Since, in this paper, we are interested in frame decompositions,
we focus our attention on oblique dual frames which provide
a general setting for frame analysis.

Given a frame { fk}∞k=1 for a subspace X , a complete char-
acterization of all possible oblique dual frames on a sub-
space S has been obtained in [22, 24]. This characterization
involves computing the pseudoinverse of the frame opera-
tor TT∗, where T is the preframe operator associated with
the frame { fk}∞k=1. In many cases, computing this pseudoin-
verse is computationally demanding. An interesting question
therefore is whether there is an alternative characterization
for all oblique duals which does not necessarily involve the
pseudoinverse of TT∗. Our main result, derived in Section 3,
shows that the oblique dual frames can be characterized in
an alternative way in which the pseudoinverse of TT∗ is re-
placed by the pseudoinverse of HT∗, where H is an appro-
priately chosen operator. The advantage of this characteriza-
tion is that there is freedom in choosing the operator H so
that it can be tailored such that the pseudoinverse of HT∗ is
easier to compute than the pseudoinverse of TT∗. Concrete
examples demonstrating this computational advantage have
recently been explored in [25–27] in the context of Gabor
expansions.

An important class of frames in signal processing ap-
plications are shift-invariant frames, which are generated
by translates of a set of generators [6]. The advantage of
these frames is that the corresponding frame expansion can
be implemented using linear time-invariant (LTI) filters.
In Section 4, we specialize our results to the case of shift-
invariant frames. As we show, while the classical frame rep-
resentation may involve ideal filters which cannot be imple-
mented in practice, by using the proposed alternative repre-
sentation, the ideal filters can often be replaced by non ideal
realizable filters. Furthermore, our general conditions take a
particular simple form in the case of a shift-invariant space
generated by a single function.

Before proceeding to the detailed development, in the
next section, we summarize the required mathematical pre-
liminaries.

2. DEFINITIONS AND BASIC RESULTS

We now introduce some definitions and results that will be
used throughout the paper.

Given a transformation T , we denote byN (T) andR(T)
the null space and range space of T , respectively. TheMoore-
Penrose pseudoinverse of T is written as T† and the adjoint is
denoted by T∗. The inner product between vectors x, y ∈H
is denoted by 〈x, y〉, and is linear in the first argument. We
useR and Z to denote the reals and integers, respectively. The
complex conjugate of a complex function f (x) is denoted by
f (x). For a subspace W of a Hilbert space H , W⊥ is the or-
thogonal complement of W in H . Given a sequence of vec-
tors {gk}∞k=1 ⊂ H , we let span{gk}∞k=1 be the closure of the
span of {gk}∞k=1, that is, the smallest closed subspace contain-
ing {gk}∞k=1 (the span of a set of vectors consists by definition

of all finite linear combinations of the vectors with complex
coefficients).

Projection operators play an important role in our devel-
opment. Given closed subspacesW and V of a Hilbert space
H such thatH =W ⊕V⊥ (a direct sum, not necessarily or-
thogonal), the oblique projection EWV⊥ ontoW along V⊥ is
defined as the unique operator satisfying

EWV⊥w = w for any w ∈W ,

EWV⊥v = 0 for any v ∈ V⊥.
(2)

Thus,R(EWV⊥) = W and N (EWV⊥) = V⊥. IfW = V, then
EWV⊥ is the orthogonal projection ontoW , which we denote
by PW . On the other hand, any projection P (i.e., a bounded
linear operator onH for which P2 = P) leads to a decompo-
sition of H ; in fact, as proved in, for example, [28, Proposi-
tion 38.4],

H =R(P)⊕N (P). (3)

That is, there is a one-to-one correspondence between de-
compositions of H and projections on H . Thus, our results
in this paper obtained via the splitting assumption H =
W ⊕ V⊥ could as well be formulated starting with a projec-
tion.

For f ∈ L1(R), we denote the Fourier transform by

F f (ω) = f̂ (ω) =
∫∞
−∞

f (x)e−2πixωdx. (4)

As usual, the Fourier transform is extended to a unitary op-
erator on L2(R). For a sequence c = {ck} ∈ �2, we define the
discrete-time Fourier transform as the 1-periodic function in
L2(0, 1) given by

F c
(
e2πiω

) = C
(
e2πiω

) = ∑
k∈Z

cke
−2πikω. (5)

The discrete-time convolution ak = ck ∗ dk between two
sequences c,d ∈ �2 is defined by

ak =
∑
m∈Z

cmdk−m. (6)

The continuous-time convolution between two functions
φ,φ1 ∈ L2(R) is given by

φ(x)∗ φ1(x) =
∫∞
−∞

φ(y)φ1(x − y)dy. (7)

A set of vectors { fk}∞k=1 forms a Bessel sequence for a
Hilbert spaceH if there exists a constant B <∞ such that

∞∑
k=1

∣∣〈x, fk〉∣∣2 ≤ B‖x‖2, (8)
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for all x ∈H . The vectors { fk}∞k=1 form a frame for a Hilbert
spaceH if there exist constants A > 0 and B <∞ such that

A‖x‖2 ≤
∞∑
k=1

∣∣〈x, fk〉∣∣2 ≤ B‖x‖2, (9)

for all x ∈H [3].
The preframe operator associated with a Bessel sequence

{ fk}∞k=1 is given by

T : �2 −→H , T
{
ck
} = ∑

k∈Z
ck fk, (10)

and its adjoint is given by

T∗ :H −→ �2, T∗ f = {〈 f , fk〉}∞k=1. (11)

The assumption H = W ⊕ V⊥ will play a crucial role
throughout the paper. Lemma 1, proved by Tang (see [29,
Theorem 2.3]), deals with this condition, and relies on the
concept of the angle between two subspaces. The angle from
V toW is defined as the unique number θ(V,W) ∈ [0,π/2]
for which

cos θ(V,W) = inf
f∈V,‖ f ‖=1

∥∥PW f
∥∥. (12)

Lemma 1. Given closed subspaces V,W of a separable Hilbert
spaceH , the following are equivalent:

(i) H =W ⊕V⊥;
(ii) H = V ⊕W⊥;
(iii) cos θ(V,W) > 0 and cos θ(W ,V) > 0.

More information on the condition H = W ⊕ V⊥ in
general Hilbert spaces can be found in [22].

3. CHARACTERIZATION OF DUALS

3.1. Oblique dual frames

Let { fk}∞k=1 be a frame for a closed subspace W ⊆ H , and
let {gk}∞k=1 be a frame for a closed subspaceV ⊆H such that
H =W⊕V⊥. The vectors {gk}∞k=1 inV form an oblique dual
frame of { fk}∞k=1 on V [10, 20–22] if

f =
∞∑
k=1

〈
f , gk

〉
fk, ∀ f ∈W . (13)

The terminology oblique dual frame originates from the re-
lation of these frames with oblique projections, as incorpo-
rated in the following lemma [22].

Lemma 2. Assume that { fk}∞k=1 and {gk}∞k=1 are Bessel se-
quences in H , let W = span{ fk}∞k=1 and V = span{gk}∞k=1,
withH =W ⊕V⊥. Then the following are equivalent.

(i) f =∑∞
k=1〈 f , gk〉 fk, for all f ∈W .

(ii) EWV⊥ f =∑∞
k=1〈 f , gk〉 fk, for all f ∈H .

(iii) EVW⊥ f =∑∞
k=1〈 f , fk〉gk, for all f ∈H .

(iv) 〈EVW⊥ f , g〉 =∑∞
k=1〈 f , fk〉〈gk, g〉, for all f , g ∈H .

(v) 〈EWV⊥ f , g〉 =∑∞
k=1〈 f , gk〉〈 fk, g〉, for all f , g ∈H .

gk

v

g̃k
w

Figure 1: Geometrical interpretation of oblique dual frames. The
vector g̃k is a dual vector inW and gk is an oblique dual vector inV.

In case the equivalent conditions are satisfied, {gk}∞k=1 is an
oblique dual frame of { fk}∞k=1 on V, and { fk}∞k=1 is an
oblique dual frame of {gk}∞k=1 on W . Furthermore, { fk}∞k=1
and {PWgk}∞k=1 are dual frames for W (in the sense of classi-
cal frame theory), and {gk}∞k=1 and {PV fk}∞k=1 are dual frames
for V.

Lemma 2 leads to a simple geometric interpretation of
the oblique dual frames. Given a classical dual {g̃k}∞k=1
of { fk}∞k=1, that is, a dual in W , we can extend {g̃k}∞k=1
to an oblique dual on V by constructing the sequence
{gk}∞k=1 ∈ V whose orthogonal projection onto W is the
sequence {g̃k}∞k=1. The corresponding vectors are {gk}∞k=1 =
{EVW⊥ g̃k}∞k=1. This interpretation is illustrated in Figure 1.

Denoting by T the preframe operator of the frame
{ fk}∞k=1, it was shown in [22, 24] that the oblique dual frames
of { fk}∞k=1 on V are the families

{
gk
}∞
k=1=

{
EVW⊥

(
TT∗

)†
fk+hk−

∞∑
j=1

〈(
TT∗

)†
fk, f j

〉
hj

}∞
k=1

,

(14)

where {hk}∞k=1 ∈ V is a Bessel sequence. The characteri-
zation (14) involves computing the pseudoinverse of TT∗

which can be computationally demanding. An interesting
question therefore is whether there is an alternative char-
acterization for the duals which does not involve the pseu-
doinverse of TT∗. Our main result, Theorem 1, shows that
the oblique dual frames can be characterized in an alterna-
tive way in which the pseudoinverse (TT∗)† is replaced by
(HT∗)†, where H is an appropriately chosen operator. The
advantage of this characterization is that there is freedom in
choosing the operator H so that it can be tailored such that
(HT∗)† is easier to compute than (TT∗)†. Furthermore, in
this representation, the infinite sum is no longer required.

In Section 4, we specialize the results to the case of shift-
invariant frames which are important in signal processing
applications since frame expansions involving shift-invariant
frames can be implemented using LTI filters.
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3.2. Mathematical preliminaries

The proof of our main theorem is based on some general re-
sults from the theory of operators on Hilbert spaces. There-
fore, before stating our result, we collect the needed facts in
Lemma 4. We first present a well-known identity, which we
will use in the sequel.

Lemma 3. Let A and B be bounded operators with closed
range. If R(B) = N (A)⊥, N (AB) = N (B), and R(AB) =
R(A), then

(AB)† = B†A†. (15)

Proof. The lemma is proven in a straightforward manner by
showing that under the conditions of the lemma, B†A† satis-
fies the Moore-Penrose conditions [30].

Lemma 4. LetH1,H2 be separable Hilbert spaces, and letW ,
V be closed subspaces ofH2 such thatH2 =W ⊕V⊥. Further,
let Y : H1 → H2 and U : H1 → H2 be bounded operators
withR(Y) =W , R(U) = V. Then the following hold.

(i) R(Y∗U) = R(Y∗) and (Y∗U)† is a bounded oper-
ator fromH1 toH1.
(ii) (Y∗U)†Y∗U is the orthogonal projection onto
N (U)⊥.
(iii) The oblique projection ontoV alongW⊥ can be wri-
tten as

EVW⊥ = U
(
Y∗U

)†
Y∗. (16)

(iv) The operator

M = U
(
Y∗U

)†
(17)

is independent of the choice of the bounded operator U :
H1 →H2, as long asR(U) = V.
(v) The bounded operators U : H1 → V for which
UY∗ = EVW⊥ are the operators having the form
EVW⊥(HY∗)†H , where H : H1 → H2 is a bounded op-
erator with closed range, satisfying that H1 = N (H) ⊕
R(Y∗).

For the proof, see the appendix.
We note that Lemma 4(iii) provides an explicit method

for computing the oblique projection EVW⊥ ; it is especially
convenient if we choose H1 = �2, in which case Y∗U be-
comes an operator on �2.

3.3. Oblique dual families

We now present our main result, which provides an alterna-
tive characterization of all oblique duals.

Theorem 1. Let { fk}∞k=1 be a frame for a subspace W ⊆ H
with preframe operator T , and let V be a closed subspace such
that H = W ⊕ V⊥. Then the oblique dual frames of { fk}∞k=1
on V are precisely the families

{
gk
}∞
k=1 =

{
EVW⊥

(
HT∗

)†
hk
}∞
k=1, (18)

where {hk}∞k=1 is a frame sequence with preframe operator H ,
satisfying thatN (H)⊕R(T∗) = �2. Alternatively,

{
gk
}∞
k=1 =

{
B
(
T∗B

)†
ER(T∗)Sδk

}∞
k=1, (19)

where B : �2 → H is any bounded operator with R(B) = V,
S is a closed subspace of �2 such that �2 = R(T∗) ⊕ S, and
{δk}∞k=1 is the canonical orthonormal basis for �2.

Note that from Lemma 4(iv), it follows that the families
defined by (19) differ only in the choice of S.

Proof. The proof of the theorem relies on the following
lemma.

Lemma 5 (see [22]). Let { fk}∞k=1 be a frame forW , and let V
be a closed subspace such that H = W ⊕ V⊥. Let {δk}∞k=1 be
the canonical orthonormal basis for �2. The oblique dual frames
for { fk}∞k=1 on V are the families {gk}∞k=1 = {Vδk}∞k=1, where
V : �2 → V is a bounded operator for which VT∗ = EVW⊥ .

By Lemmas 4 and 5, we can characterize the oblique dual
frames on V alongW⊥ as all families of the form

{
gk
}∞
k=1 =

{
EVW⊥

(
HT∗

)†
Hδk

}∞
k=1, (20)

where H : �2 → H is a bounded operator with closed range,
satisfying that �2 = N (H) ⊕R(T∗). Such an operator has
the form H{cj}∞j=1 =

∑∞
j=1 cjhj with {hk}∞k=1 ∈ H a frame

sequence. By inserting this expression for H in (20), we get

{
gk
}∞
k=1 =

{
EVW⊥

(
HT∗

)†
hk
}∞
k=1. (21)

From Lemma 4(iii), we can write EVW⊥ as

EVW⊥ =MT∗, (22)

where M = B(T∗B)†. Substituting (22) into (18), we have
that

gk =MT∗
(
HT∗

)†
Hδk =MER(T∗)Sδk, (23)

with S = N (H), thus completing the proof.

In the special case in which W = H , Theorem 1 implies
that the classical dual frames of { fk}∞k=1 are the families

{
gk
}∞
k=1 =

{(
HT∗

)†
hk
}∞
k=1, (24)

where {hk}∞k=1 is a frame sequence, satisfying that N (H) ⊕
R(T∗) = �2. This should be compared with the known char-
acterization [31]

{
gk
}∞
k=1 =

{(
TT∗

)†
fk + hk −

∞∑
j=1

〈(
TT∗

)−1
fk, f j

〉
hj

}∞
k=1

,

(25)

where {hk}∞k=1 ∈H is a Bessel sequence.
Note that if { fk}∞k=1 is a Riesz basis, then R(T∗) = �2,

that is, the condition N (H) ⊕ R(T∗) = �2 is satisfied if
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and only if H is injective. However, if { fk}∞k=1 is overcom-
plete, then R(T∗) is a subspace of �2; the more redundant
the frame is, the “smaller” R(T∗) is, that is, the larger the
kernel of H is forced to be.

In [25–27], it is shown that using the characterization
(24) in a finite-dimensional setting can lead to Gabor expan-
sions that are computationallymuchmore efficient than con-
ventional Gabor expansions. Furthermore, by proper choice
ofH , one can improve the condition number ofHT∗. Specif-
ically, consider the case in which we are given the Gabor
expansion of a finite-length signal, and the goal is to re-
construct the signal from these samples. Instead of using
the minimal-norm dual for reconstruction, corresponding
to (TT∗)†T , it is suggested to use a nonminimal norm dual
of the form (HT∗)†H , where H is chosen such that HT∗

is efficient to compute. For example, if T is a frame opera-
tor corresponding to a Gabor frame with a Gaussian window
φ[k] = e−k2/σ

2
1 for some σ21 > 0, then we can choose H as a

frame operator corresponding to a Gabor frame with a Gaus-
sian window h[k] = e−k2/σ

2
2 , where σ2 is chosen such that the

effective spread of h[k] is equal to a. If L/b is divisible by a,
where L is the length of the signal and a and b are the shifts
along the time and frequency axes, respectively, then the ma-
trixHT∗ is invertible for any choice of σ2. Because of the lim-
ited spread of h[k], the matrix HT∗ can be computed very
efficiently, resulting in an efficient method for reconstruct-
ing the signal from its Gabor coefficients.

One more advantage of the approach is that for large val-
ues of σ1, the matrix TT∗ can be poorly conditioned. By ap-
propriately selecting the spread σ2 of h[k], it is possible to
improve the condition number of HT∗, leading to a more
stable reconstruction algorithm.

3.4. Minimal-norm duals

We now use the representation of Theorem 1 to develop al-
ternative forms of the minimal-norm oblique duals.

Given a bounded operator B with R(B) = V, the
minimal-norm oblique dual vectors of { fk}∞k=1 on V along
W , that is, the oblique dual vectors leading to coefficients
with minimal �2 norm, can be written as [10, 20]

gk = B
(
T∗B

)†
δk. (26)

The representation (26) follows fromTheorem 1 if we choose
S = N (T). Indeed, in this case, ER(T∗)S = PR(T∗). Since
N ((T∗B)†) = R(T∗B)⊥ = R(T∗)⊥, (19) reduces to (26).
Alternatively, it was shown in [22] that the minimal-norm
oblique duals can be expressed as

gk = EVW⊥
(
TT∗

)†
fk. (27)

This characterization also follows fromTheorem 1, withH =
T . More generally, we can obtain this characterization by
choosing H as an arbitrary operator with N (H) = N (T),
as incorporated in the following theorem.

Theorem 2. Let { fk}∞k=1 be a frame for a subspace W ⊆ H
with preframe operator T , and let V be a closed subspace such

that H = W ⊕ V⊥. Then the minimal-norm oblique dual
frames of { fk}∞k=1 on V can be expressed as

{
gk
}∞
k=1 =

{
EVW⊥

(
HT∗

)†
hk
}∞
k=1, (28)

where {hk}∞k=1 is a frame sequence with preframe operator H ,
satisfying thatN (H) = N (T). Alternatively,

{
gk
}∞
k=1 =

{
B
(
T∗B

)†
δk
}∞
k=1, (29)

where B is a bounded operator withR(B) = V and {δk}∞k=1 is
the canonical orthonormal basis for �2.

Proof. The proof of the theorem follows from the fact that if
T : H1 → H2 is a bounded operator with closed range, then
the operator

M = (UT∗
)†
U (30)

is independent of the choice of the bounded operator U :
H1 → H2, as long as N (U) = N (T) and the range of U is
closed. Indeed, sinceR(U∗) = N (U)⊥ = N (T)⊥ =R(T∗),
we have that H1 = R(T∗) ⊕ R(U∗)⊥. From Lemma 4, it
then follows that the pseudoinverse (UT∗)† is a well-defined
bounded operator. Because U is bounded with N (U) =
N (T), it can be expressed as U = XT for a bounded op-
erator X : H2 → H2 with N (X) = R(T)⊥. In particular, we
can choose

X = UT†. (31)

From Lemma 3, it then follows that
(
UT∗

)† = (XTT∗)† = (TT∗)†X†. (32)

Therefore,
(
UT∗

)†
U=(TT∗)†X†XT=(TT∗)†PN (X)⊥T=

(
TT∗

)†
T ,
(33)

thus completing the proof.

If V = W , then the vectors gk defined by Theorem 2 are
the conventional minimal-norm dual frame vectors. Thus,
Theorem 2 provides an alternative method for computing
the conventional dual frame vectors, which are typically
given by

gk =
(
TT∗

)†
fk = T

(
T∗T

)†
δk. (34)

By using Theorem 2, we may choose B so that (T∗B)† is eas-
ier to compute than (T∗T)†; alternatively, we may choose
H such that (HT∗)† can be evaluated more efficiently than
(TT∗)†.

4. FRAME SEQUENCES IN SHIFT-INVARIANT SPACES

We now consider frames of translates in shift-invariant
spaces. The importance of this class of frames stems from the
fact that the corresponding frame expansions can be imple-
mented using LTI filters.
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f (x)

h0(−x) � φ0(x)

...
...

∑
kεZ δ(x − k)

hN−1(−x)
∑

kεZ δ(x − k)

φN−1(x)

f (x)

�

+

Figure 2: Filter bank representation of a shift-invariant frame expansion.

4.1. Shift-invariant frames

A shift-invariant frame with multiple generators is a frame
{ fk j}k∈Z, j∈J of the form
{
fk j
}
k∈Z, j∈J =

{
φj(x − k)

}
k∈Z, j∈J �

{
Tkφj

}
k∈Z, j∈J , (35)

where J is an index set, φj ∈ L2(R) and we define the trans-
lation operator acting on functions in L2(R) by Tk f (x) =
f (x − k), x ∈ R, k ∈ Z. The corresponding space

W := span
{
Tkφj

}
k∈Z, j∈J =

{ ∑
k∈Z, j∈J

ck jTkφj :
{
ck j
} ∈ �2

}

(36)

is said to be shift-invariant.
A shift-invariant frame expansion of the form f =∑N−1

j=0
∑

k∈Z 〈 f ,hk j〉φk j , where hk j = Tkhj and φk j = Tkφj ,
can be implemented using a bank of LTI filters, as depicted
in Figure 2. To see this, we first note that for fixed j, the coef-
ficients

ck j =
〈
f ,hk j

〉 =
∫∞
−∞

f (x)hj(x − k)dx, k ∈ Z, (37)

can be expressed as samples at x = k of a convolution integral

ck j =
∫∞
−∞

f (x)hj(k − x)dx = f (x)∗ g(x)|x=k, k ∈ Z,

(38)

where g(x) = hj(−x). Thus, the sequence ck j can be viewed
as samples at x = k of the output of an LTI filter with impulse
response hj(−x), with f (x) as its input. Next, we note that
the sum

∑
k∈Z ck jφj(x− k) can be expressed as a convolution

∑
k∈Z

ck jφj(x − k) = p(x)∗ φj(x), (39)

where p(x) is the modulated impulse train

p(x) =
∑
k∈Z

ck jδ(x − k). (40)

4.2. Shift-invariant duals

Having defined shift-invariant frames, our goal now is to ob-
tain shift-invariant oblique dual frames via Theorem 1.

For φj ,hj ∈ L2(R), j ∈ J , we let

W = span
{
Tkφj

}
k∈Z, j∈J , V = span

{
Tkhj

}
k∈Z, j∈J . (41)

We further denote by T and H the preframe operators of
the sequences {Tkφj}k∈Z, j∈J and {Tkhj}k∈Z, j∈J , respectively.
Throughout the section, wemake the following assumptions:

(i) L2(R) =W ⊕V⊥;
(ii) �2 =R(T∗)⊕N (H).

Note that if {Tkφj}k∈Z, j∈J is a frame sequence, then these
conditions can be formulated entirely in terms of the oper-
ators T and H via

L2(R) =R(T)⊕R(H)⊥, �2 = N (T)⊕N (H)⊥. (42)

This formulation shows that in general, the two conditions
are unrelated. In fact, if {Tkφj}k∈Z, j∈J and {Tkhj}k∈Z, j∈J are
frames for L2(R), then the first condition holds; but if, for
example, {Tkφj}k∈Z, j∈J is a Riesz basis and {Tkhj}k∈Z, j∈J is
overcomplete, then the second condition does not hold. On
the other hand, if {Tkφj}k∈Z, j∈J and {Tkhj}k∈Z, j∈J are Riesz
sequences, then the second condition holds; but in case one
of these sequences spans L2(R) and the other does not, then
the first condition is not satisfied.

Theorem 3. Let φj ,hj ∈ L2(R), j ∈ J , and assume that
{Tkφj}k∈Z, j∈J and {Tkhj}k∈Z, j∈J are frame sequences. Then,
under assumptions (i) and (ii), the sequence

{
gk j
}
k∈Z, j∈J =

{
EVW⊥

(
HT∗

)†
Tkhj

}
k∈Z, j∈J =

{
Tkgj

}
k∈Z, j∈J

(43)

is a shift-invariant oblique dual frame of {Tkφj}k∈Z, j∈J on V,
with {gj} j∈J = {EVW⊥(HT∗)†hj} j∈J .
Proof. We first show that

TkHT∗ = HT∗Tk. (44)

Indeed, for any f ∈H ,

HT∗Tk f =
∑
mj

〈
Tk f ,Tmφj

〉
Tmhj =

∑
mj

〈
f ,Tm−kφj

〉
Tmhj

=
∑
mj

〈
f ,Tmφj

〉
Tm+khj = TkHT∗ f .

(45)
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Now, hj = Haj for some aj . From assumption (ii), we can
express aj as aj = aH j + aT j , where aH j ∈ N (H) and
aT j ∈ R(T∗). Therefore, hj = Haj = HaT j . But since
aT j ∈ R(T∗), we have that aT j = T∗bj for some bj ∈
N (T∗)⊥ = R(T) = W . We conclude that hj = HT∗bj for
some bj ∈W , and

gk j = EVW⊥
(
HT∗

)†
TkHT∗bj . (46)

Substituting (44) into (46), we have that

gk j = EVW⊥
(
HT∗

)†
HT∗Tkbj = EVW⊥PTkbj , (47)

where P is an orthogonal projection ontoN (HT∗)⊥. But, by
assumption (ii), N (HT∗) = N (T∗) = R(T)⊥ = W⊥, so
that P = PW . Since EVW⊥PW = EVW⊥ , (47) reduces to

gk j = EVW⊥Tkbj . (48)

Now, it was shown in [22, Corollary 4.2] that ifW and V are
shift-invariant, then EVW⊥Tk = TkEVW⊥ , which from (47)
implies that

gk j = TkEVW⊥bj = Tkgj , (49)

where gj = EVW⊥(HT∗)†hj .

4.3. Single generator

An important special case of a shift-invariant frame is a
frame of the form {Tkφ}k∈Z, with a single generator φ. These
frames are especially easy to analyze. In particular, as the fol-
lowing proposition shows, one can immediately characterize
the generators that create a frame for their closed linear span
({Tkφ}k∈Z cannot be a frame for all of L2(R), cf. [32]).

Proposition 1 (see [4, 33]). Let φ ∈ L2(R),

Φ
(
e2πiω

) = ∑
k∈Z

∣∣φ̂(ω + k)
∣∣2,

N (Φ) = {ω : Φ
(
e2πiω

) = 0
}
.

(50)

Then {Tkφ}k∈Z is a frame sequence with bounds A, B if and
only if

A ≤ Φ
(
e2πiω

) ≤ B, a.e. on
{
ω : Φ(ω) �= 0

}
. (51)

It turns out that for single-generated systems, the condi-
tions L2(R) =W ⊕V⊥ and �2 =R(T∗)⊕N (H) of the pre-
vious section are also easy to verify. Suppose that {Tkφ}k∈Z
and {Tkh}k∈Z are frame sequences, and let

W := span
{
Tkφ

}
k∈Z, V := span

{
Tkh

}
k∈Z. (52)

The following proposition, proved in [22], provides an eas-
ily verifiable condition on the generators φ and h such that
L2(R) =W ⊕V⊥.

Proposition 2. Let φ,h ∈ L2(R), and assume that {Tkφ}k∈Z
and {Tkh}k∈Z are frame sequences. Define Φ and N (Φ) as in
(50), and introduce Ψ,N (Ψ)similarly for the function h. Then

the following are equivalent:

(i) L2(R) =W ⊕V⊥;
(ii) N (Φ) = N (Ψ) and there exists a constant A > 0
such that

A ≤
∣∣∣∣∣
∑
k∈Z

φ̂(ω + k)ĥ(ω + k)

∣∣∣∣∣ on
{
ω : Φ

(
e2πiω

) �= 0
}
.

(53)

We now show that the second condition �2 = R(T∗) ⊕
N (H) is actually contained in the first condition L2(R) =
W ⊕ V⊥. Thus, only the first condition needs to be veri-
fied, which can be done in a straightforward way by using
Proposition 2.

Proposition 3. Assume thatT andH are preframe operators of
shift-invariant frames {Tkφ} and {Tkh}, respectively. DefineΦ
andN (Φ) as in (50), and introduce Ψ,N (Ψ) similarly for the
function h. Then,R(T∗)⊕N (H) = �2 if and only ifN (Φ) =
N (Ψ).

Proof. It was shown in [22, Lemma 4.7] that the range of
the adjoint of the preframe operator associated to any single-
generated shift-invariant frame is

R
(
T∗
) = {c ∈ �2 : C

(
e2πiω

) = 0 onN (Φ)
}
. (54)

Applying this result to the preframe operator H , it follows
that

N (H) =R
(
H∗)⊥ = {c ∈ �2 : C

(
e2πiω

) = 0 onN (Ψ)
}⊥

= {c ∈ �2 : C
(
e2πiω

) = 0 onN (Ψ)c
}
.

(55)

Thus, if N (Ψ) = N (Φ), then N (H) = R(T∗)⊥ and �2 =
N (H)⊕R(T∗).

Conversely, suppose that R(T∗) ⊕N (H) = �2. We now
show that if we identify N (Φ),N (Ψ) with subsets of [0, 1],
thenN (Φ)∪N (Ψ)c = [0, 1] andN (Φ)∩N (Ψ)c = ∅; this
implies thatN (Φ) = N (Ψ).

We first show that R(T∗) ∩ N (H) = {0} implies that
N (Φ) ∪ N (Ψ)c = [0, 1]. To see this, we note that if c ∈
R(T∗) ∩ N (H), then from (55), we have that C(e2πiω) =
0 on N (Φ) ∪ N (Ψ)c. Now, suppose that N (Φ) ∪ N (Ψ)c

was just a subset of [0, 1]; then we could construct a func-
tion C(e2πiω) = ∑

k cke
−2πikω which is zero on the subset,

but nonzero on the rest of [0, 1]. Since C(e2πiω) = 0 on
N (Φ)∪N (Ψ)c, we have that c ∈R(T∗)∩N (H) = {0}, and
therefore C(e2πiω) is forced to be zero on [0, 1]. This contra-
diction shows that indeedN (Φ)∪N (Ψ)c = [0, 1].

Next, we show that R(T∗) + N (H) = �2 implies that
N (Φ) ∩ N (Ψ)c = ∅. If R(T∗) + N (H) = �2, then any
c ∈ �2 can be written as c = c1 + c2, where c1 ∈ R(T∗) and
c2 ∈ N (H). This in turn implies that

C
(
e2πiω

) = C1
(
e2πiω

)
+ C2

(
e2πiω

)
,

C1
(
e2πiω

) = 0 onN (Φ),

C2
(
e2πiω

) = 0 onN (Ψ)c.

(56)
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From (56), we conclude thatC(e2πiω) = 0 onN (Φ)∩N (Ψ)c.
Thus, if R(T∗) + N (H) = �2, then (56) implies that for
any c ∈ �2, its discrete-time Fourier transform satisfies
C(e2πiω) = 0 on N (Φ) ∩ N (Ψ)c, from which we conclude
thatN (Φ)∩N (Ψ)c = ∅.

Combining our results leads to the following charac-
terization of all oblique duals in the single-generated shift-
invariant case.

Theorem 4. Let φ,h ∈ L2(R), let

Φ
(
e2πiω

)=∑
k∈Z

∣∣φ̂(ω+k)∣∣2, Ψ
(
e2πiω

)=∑
k∈Z

∣∣ĥ(ω+k)∣∣2,
(57)

and let

N (Φ)={ω : Φ
(
e2πiω

)=0
}
, N (Ψ)={ω : Ψ

(
e2πiω

)=0
}
.

(58)

Suppose that {Tkφ}k∈Z is a frame sequence so that

A ≤ Φ
(
e2πiω

) ≤ B, a.e. on
{
ω : Φ(ω) �= 0

}
(59)

for some A > 0. Then, the sequence

{
gk
}
k∈Z =

{
EVW⊥

(
HT∗

)†
Tkh

}
k∈Z =

{
Tkg

}
k∈Z (60)

is a shift-invariant oblique dual frame of {Tkφ}k∈Z on V, with
g = EVW⊥(HT∗)†h, if and only if

α ≤ Ψ
(
e2πiω

) ≤ β, a.e. on
{
ω : Ψ(ω) �= 0

}
(61)

for some α > 0, N (Φ) = N (Ψ), and there exists a constant
C > 0 such that

C ≤
∣∣∣∣∣
∑
k∈Z

φ̂(ω + k)ĥ(ω + k)

∣∣∣∣∣ on
{
ω : Φ

(
e2πiω

) �= 0
}
.

(62)

4.3.1. LTI representation of minimal-norm duals

We now develop an LTI representation of the minimal-norm
duals of a single-generated shift-invariant frame.

We have seen in Theorem 2 that the minimal-norm
oblique duals can be characterized as gk = B(T∗B)†δk, where
B : �2 → H is a bounded operator with range V such that
H = W ⊕ V⊥. Suppose now that we let T be the pre-
frame operator of a shift-invariant frame {Tkφ}k∈Z for W
and choose B as the preframe operator of a shift-invariant
frame {Tkb}k∈Z. Proposition 2 provides necessary and suffi-
cient conditions on b̂(ω) such that H = W ⊕ V⊥. Given a
generator b(x) satisfying these conditions, we now show how
to implement the operator B(T∗B)† using LTI filters.

Lemma 6. Let φ, b ∈ L2(R), and assume that {Tkφ}k∈Z and
{Tkb}k∈Z are frame sequences with preframe operators T and
B, respectively. Then, the operator B(T∗B)† : �2 → H can be

implemented using the block diagram of Figure 3, where

A
(
e j2πω

)=
⎧⎪⎨
⎪⎩

1∑
k∈Z φ̂(ω+k)b̂(ω+k)

, Φ
(
e2πiω

) �=0,

0, Φ
(
e2πiω

)=0.
(63)

Proof. We first show that if c = (T∗B)†d, then the sequence
ck can be obtained by filtering the sequence dk with the filter
A(e j2πω). To this end, we note that if d = T∗Bg, then d can
be obtained by filtering the sequence gk with a filter

H
(
e j2πω

) = ∑
k∈Z

φ̂(ω + k)b̂(ω + k). (64)

Indeed,

dk =
∑
m∈Z

∫
φ(x − k)gmb(x −m)dx

=
∑
m∈Z

gm

∫
φ(x)b(x + k −m)dx = gk ∗ hk,

(65)

where hk =
∫
φ(x)b(x+k)dx. Now, we can express hk as hk =

f (k), where

f (x) =
∫
φ(y)b(y + x)dy = φ(x)∗ b(−x). (66)

It then follows that hk are the samples at the points x = k
of the function f (x) whose Fourier transform is given by

f̂ (ω) = φ̂(ω)b̂(ω). Therefore,

H
(
e j2πω

) = ∑
k∈Z

f̂ (ω + k) =
∑
k∈Z

φ̂(ω + k)b̂(ω + k). (67)

Thus, (T∗B)† is equivalent to filtering the input sequence
with the filterA(e j2πω). To conclude the proof, we note that if
f = Bg, then f (x) =∑k∈Z gkb(x− k), which is equivalent to
modulating the sequence gk by an impulse train, and filtering
the modulated sequence with a filter with impulse response
b(x).

Lemma 6 can be used to develop an efficient method for
reconstructing a signal g(x) inW from coefficients c = T∗g.
Specifically, the reconstruction is obtained as g = B(T∗B)†c
which is the output of the block diagram in Figure 3 with
the sequence c as its input. Now, the kth coefficient ck can be
written as

ck =
〈
fk, g

〉 =
∫
f (t − x)g(x) = g(x)∗ f (−x)|x=k, (68)

and thus can be obtained by filtering the input signal g(x)
with a filter with impulse response f (−x) and frequency re-
sponse f̂ (ω), and then sampling the output at x = k.

The advantage of this reconstruction is that given the
samples c, we have freedom in choosing the filter b̂(ω) so that
it can be tailored such that the filters b̂(ω) and A(e2πiω) are
easy to implement.

Note that if the signal g(x) does not lie in the space
W spanned by the signals { f (x − k)}, then the output
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A(e j2πω) � b̂(ω)

∑∞
k=−∞ δ(t − k)

Figure 3: Filter-based implementation of the oblique dual frame vectors.

of the block diagram of Figure 3 will be equal to PWg(x).
This follows immediately from the fact that B(T∗B)†T∗ =
T(T∗T)†T∗ = PR(T) = PW .

A similar idea was first introduced in [34] in the con-
text of consistent sampling. In that setting, it was suggested
to choose a filter b̂(ω) that spans a space V, different from
the sampling space W , that is easy to implement, and then
use a discrete-time correction filter in order to compensate
for the mismatch between the sampling filter and the recon-
struction filter. Here we use a similar idea where the essential
difference is that in the scheme of Figure 3, the overall recon-
struction is equivalent to an orthogonal projection onto the
reconstruction space, while the scheme of [34] is equivalent
to an oblique projection.

5. CONCLUSION

We have obtained a complete characterization of the oblique
dual frames associated with a frame for a subspace of a
Hilbert space. Compared to the use of the classical dual
frame, this leads to considerable freedom in the design. In
[25, 26], we demonstrated that these results can lead to
much more efficient representations in the case of finite-
dimensional spaces; we believe that the results presented here
will lead to similar gains in the general case. As an impor-
tant special case, we considered frame expansions in shift-
invariant spaces. For the case of a single generator, our gen-
eral conditions take a particular simple form.

APPENDIX

PROOF OF LEMMA 4

We prove each part of the lemma separately.

(i) By Lemma 1, H2 = V ⊕W⊥; since W⊥ = R(Y)⊥ =
N (Y∗), this implies that

R
(
Y∗U

) = Y∗V =R
(
Y∗
)
, (A.1)

where we use the notation Y∗V to denote the image
of the space V under the operator Y∗. By assumption
R(Y) = W , which is closed, this implies that R(Y∗)
is closed, from which we conclude using (A.1) that
R(Y∗U) is closed. The fact thatR(Y∗U) is closed and
Y∗U is bounded implies that (Y∗U)† is a bounded
operator fromH1 intoH1.

(ii) It is well known that (Y∗U)†Y∗U is the orthogonal
projection ontoN (Y∗U)⊥. Now,

N
(
Y∗U

)⊥ =R
(
U∗Y

) =R
(
U∗) = N (U)⊥, (A.2)

where we used the fact that from (i), R(U∗Y) =
R(U∗), which is closed.

(iii) Suppose that x ∈ V. Then x = Uy for some y ∈
N (U)⊥ so that

U
(
Y∗U

)†
Y∗x = U

(
Y∗U

)†
Y∗Uy = Uy = x. (A.3)

On the other hand, if x ∈ W⊥ = R(Y)⊥ = N (Y∗),
then U(Y∗U)†Y∗x = 0. These calculations show that
U(Y∗U)†Y∗ has the properties characterizing EVW⊥ .

(iv) Suppose that U , Z : H1 → H2 are bounded oper-
ators with R(U) = R(Z) = V. Then, Z = UX
for some bounded operator X : H1 → H1 with
R(X) = N (U)⊥ (in particular, we can choose X =
U†Z. Indeed, since U is a bounded operator with
closed range, U† is bounded. Furthermore, using the
fact thatR(Z) = R(U) = N (U†)⊥, we haveR(X) =
R(U†) = N (U)⊥).
With Z = UX , we have that (Y∗Z)† = (Y∗UX)†.
To simplify (Y∗UX)†, we use Lemma 3, from which
it follows that

(
Y∗UX

)† = X†
(
Y∗U

)†
. (A.4)

Therefore,

Z
(
Y∗Z

)† = UXX†
(
Y∗U

)†
= UPR(X)

(
Y∗U

)† = U
(
Y∗U

)†
.

(A.5)

(v) IfH1 = N (H)⊕R(Y∗), then

H1 =R
(
H∗)⊥ ⊕R

(
Y∗
) =R

(
H∗)⊕R

(
Y∗
)⊥
. (A.6)

Applying (ii) with Y replaced byH∗ andU replaced by
Y∗ shows that (HY∗)†HY∗ = PW . Since EVW⊥PW =
EVW⊥ , we have that EVW⊥(HY∗)†HY∗ = EVW⊥ .
On the other hand, ifU :H1 → V satisfies thatUY∗ =
EVW⊥ , then it follows from [21, Proposition 3.4] that
N (U)⊕R(Y∗) =H1. By taking H = U ,

EVW⊥
(
HY∗

)†
H = EVW⊥

(
EVW⊥

)†
U = PVU = U. (A.7)
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