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Abstract The Advanced Encryption Standard (AES) is a 128-bit block cipher with a user
key of 128, 192 or 256 bits, released by NIST in 2001 as the next-generation data encryption
standard for use in the USA. It was adopted as an ISO international standard in 2005. Impos-
sible differential cryptanalysis and the boomerang attack are powerful variants of differential
cryptanalysis for analysing the security of a block cipher. In this paper, building on the notions
of impossible differential cryptanalysis and the boomerang attack, we propose a new crypt-
analytic technique, which we call the impossible boomerang attack, and then describe an
extension of this attack which applies in a related-key attack scenario. Finally, we apply the
impossible boomerang attack to break 6-round AES with 128 key bits and 7-round AES with
192/256 key bits, and using two related keys we apply the related-key impossible boomerang
attack to break 8-round AES with 192 key bits and 9-round AES with 256 key bits. In the
two-key related-key attack scenario, our results, which were the first to achieve this amount
of attacked rounds, match the best currently known results for AES with 192/256 key bits
in terms of the numbers of attacked rounds. The (related-key) impossible boomerang attack
is a general cryptanalytic technique, and can potentially be used to cryptanalyse other block
ciphers.
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1 Introduction

Differential cryptanalysis, proposed by Biham and Shamir [11] in 1990, is well known as a
powerful technique for analysing the security of a block cipher. Typically, to break a block
cipher, differential cryptanalysis uses a relatively long differential (i.e. that operating on as
many rounds of the cipher as possible) with a probability larger than that for a random per-
mutation that operates on data blocks of the same length. In 1998 and 1999, Knudsen [33]
and Biham et al. [3] independently proposed a variant of differential cryptanalysis, known
as impossible differential cryptanalysis; it uses a (relatively long) differential with a zero
probability, called an impossible differential. In 1999, Wagner [46] proposed the boomerang
attack—another variant of differential cryptanalysis, which, unlike differential cryptanalysis,
involves something called a boomerang distinguisher that treats a block cipher as two parts and
uses two short differentials with relatively large probabilities on the two parts of the cipher,
instead of a long differential with a small probability on the entire cipher. Subsequently,
several variants of the boomerang attack have been proposed, including the amplified boo-
merang attack [27], the rectangle attack [5], the differential-(bi)linear boomerang attack [7]
and the related-key boomerang and rectangle attacks [8,24,30].

The Advanced Encryption Standard (AES) [43] is a 128-bit block cipher with a user
key of 128, 192 or 256 bits. It was released by NIST [44] in 2001 as the new-gen-
eration data encryption standard for use in the USA, and was adopted as an ISO [25]
international standard in 2005. We denote by AES-128/192/256 the versions of AES that
respectively use 128, 192 and 256 key bits. Due to its increasingly wide use in many
real-life cryptographic applications, AES has always been being analysed against different
cryptanalytic techniques, and a variety of cryptanalytic results have been published [1,8,
10,12–16,18,19,21–24,26,29,36,40,45,48–51]. In summary, in terms of the numbers of
attacked rounds, the most significant results are Biryukov and Khovratovich’s related-key
(amplified) boomerang attacks on the full-round AES-192/256 [14], and each attack uses four
related keys. (We note that Murphy [42] commented recently that the claims made in [14] by
Biryukov and Khovratovich for a related key boomerang analysis of AES must be regarded
as unsubstantiated). A related-key attack [2,28,31] assumes that the attacker knows or can
choose the differences between two or more unknown keys; the more keys are involved, the
more difficult and impractical the attack is to conduct. We assume that exhaustive key search
(i.e. brute force search) is the best generic attack in the related-key attack scenarios as well
as in the one key attack scenario, and an attack is regarded as effective if it is faster (i.e.
it has lower time complexity) than exhaustive key search. The two-key related-key attack
scenario is the simplest among the related-key attack scenarios. Thus, it is still of great sig-
nificance to continue investigating the security of AES in the single-key attack scenario and
the two-key related-key attack scenario. In the single-key attack scenario, attacks on 7-round
AES-128, 8-round AES-192 and 8-round AES-256 [1,21,23,36,50] are the best currently
known results for AES-128/192/256; and in the two-key related-key attack scenario, attacks
on 8-round AES-192 and 9-round AES-256 [13,26,29,48,51] are the best currently known
results for AES-192/256.1

1 When we initially submitted this paper, the related-key impossible differential attack on 8-round AES-256
given in [49] was the best cryptanalytic result for AES-256 in the two-key related-key attack scenario. Recently,
Biryukov et al. [13] gave a related-key differential attack on 9-round AES-256 in the two-key related-key attack
scenario; and they also described a few cryptanalytic results in a related-subkey attack scenario—a more diffi-
cult attack scenario than a related-key attack scenario. In this revised version, we incorporate Biryukov et al.’s
9-round AES-256 attack in the two-key related-key attack scenario, and do not consider the related-subkey
attack scenario.
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Since the standardization of AES in 2001, few new techniques have been reported, despite
the efforts of many cryptanalysts. Like AES, most modern block ciphers are designed to be
secure against differential cryptanalysis and linear cryptanalysis [41]. Thus, proposing new
cryptanalytic techniques is always desirable in the sense that it provides a better evaluation
of the security of a block cipher and also enables more secure ciphers to be designed. Impos-
sible differential cryptanalysis and the boomerang-type attacks (including the boomerang,
amplified boomerang and rectangle attacks as well as their variants in a related-key attack
scenario) have been used to yield the best currently published cryptanalytic results for a
number of state-of-the-art block ciphers [9,14,20,36]. These techniques are thus clearly of
importance.

In this paper, inspired by the notions that impossible differential cryptanalysis and the boo-
merang attack use, we propose a new cryptanalytic technique, which we call the impossible
boomerang attack. Such an attack is based on the use of a so-called impossible-boomerang
distinguisher, which, like a boomerang distinguisher, treats a block cipher E as two sub-
ciphers E0 ◦ E1. Typically, it uses two (or more) differentials with probability 1 for E0 and
two (or more) differentials with probability 1 for E1, where the XOR of the intermediate dif-
ferences of these differentials is not equal to zero (this point makes it different in nature from
the boomerang distinguisher). We then describe an extension of this attack that applies in a
related-key attack scenario, giving rise to what we call a related-key impossible boomerang
attack. Finally, we apply the impossible boomerang attack to break 6-round AES-128 and
7-round AES-192/256 (in the single-key attack scenario), and apply the related-key impos-
sible boomerang attack to break 8-round AES-192 and 9-round AES-256 in the two-key
related-key attack scenario. In terms of the numbers of attacked rounds, the impossible
boomerang attacks on AES-128/192/256 are one round less than the best currently known
cryptanalytic results in the single-key attack scenario, and the related-key impossible boo-
merang attacks on 8-round AES-192 and 9-round AES-256 match the best currently known
results for AES-192/256 in the two-key related-key attack scenario. Table 1 summarises our
new and the currently known main cryptanalytic results on AES in the single-key attack sce-
nario and the two-key related-key attack scenario, where CP and RK-CP respectively refer
to the required numbers of chosen plaintexts and related-key chosen plaintexts, Enc. refers
to the required number of encryption operations of the relevant reduced-round version of
AES-128/192/256, and MA refers to the number of memory accesses.

The reminder of the paper is organised as follows. In the next section we briefly describe
the notation and the AES block cipher. In Sect. 3 we propose the (related-key) impossi-
ble boomerang attack. In Sects. 4 and 5 we present our new cryptanalytic results on AES.
Sect. 6 concludes this paper.

2 Preliminaries

2.1 Notation

The 16 bytes of a 4×4 byte array are numbered from left to right from top to bottom, starting
with 0, as shown in Fig. 1. We use the following notation throughout this paper.

⊕ bitwise logical exclusive OR (XOR) of two bit strings of the same length
◦ functional composition. When composing functions X and Y , X ◦Y denotes the function

obtained by first applying X and then applying Y
� an arbitrary 8-bit value, where two values represented by the � symbol may be different
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Table 1 Summary of our new and the currently known main cryptanalytic results on AES in the single-key
attack scenario and the two-key related-key attack scenario

Cipher Keys Attack technique Rounds Data Time Source

AES-128 1 Square 7 2119−2128CP 2120Enc. [21]
Collision 7 232CP 2128Enc. [23]
Impossible differential 7 2112.2CP 2117.2MA [36]
Impossible boomerang 6 2112.2CP 2112.3Enc. Sect. 4.2

AES-192 1 Square 8 2119−2128CP 2188Enc. [21]
Impossible boomerang 7 2112.5CP 2186.3Enc. Sect. 4.2

2 Related-key impossible differential 8 288RK-CP 2183Enc. [26]
8 2112RK-CP 2136Enc. [48]

Related-key rectangle 8 294RK-CP 2120Enc. [29]
Related-key differential-linear 8 2118RK-CP 2165Enc. [51]
Related-key impossible boomerang 8 2122.4RK-CP 2167.7Enc. Sect. 5.1

AES-256 1 Square 8 2119−2128CP 2204Enc. [21]
Meet-in-the-middle 8 232CP 2200Enc. [19]
Impossible differential 8 289.1CP 2229.7MA [36]
Impossible boomerang 7 2112.8CP 2186.9Enc. Sect. 4.2

2 Related-key impossible differential 8 2112RK-CP 2143Enc. [49]
Related-key differential 9 238RK-CP 239Enc. [13]
Related-key impossible boomerang 9 2123RK-CP 2239.9Enc. Sect. 5.2

Fig. 1 The 16 byte positions
of a 4 × 4 byte array 0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

�x� the largest integer that is less than or equal to x
EK a block cipher E when used with a user key K

2.2 The AES block cipher

AES [43] takes as input a 128-bit plaintext block P , represented as a 4 × 4 byte array, and
has a total of Nr rounds, where Nr is 10 for AES-128, 12 for AES-192, and 14 for AES-256.
AES uses the following four elementary operations to construct the round function:

– The AddRoundKey operation (denoted below by ARK) XORs a 4 × 4 byte array with a
16-byte subkey.

– The SubBytes operation (denoted below by SB) applies the same 8×8-bit bijective S-box
16 times in parallel to a 4 × 4 byte array.

– The ShiftRows operation (denoted below by SR) cyclically shifts the j th row of a 4 × 4
byte array to the left by j bytes, (0 ≤ j ≤ 3).

– The MixColumns operation (denoted below by MC) pre-multiplies a 4 × 4 byte array by
a fixed 4 × 4 byte matrix.

The encryption procedure is, where K0, Ki and KNr are 16-byte subkeys, and x is a
16-byte variable.
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1. x = ARK(P, K0).
2. For i = 1 to Nr − 1:

x = SB(x),
x = SR(x),
x = MC(x),
x = ARK(x, Ki ).

3. x = SB(x), x = SR(x).
4. Ciphertext = ARK(x, KNr ).

An equivalent description of the algorithm can be derived by reversing the order of the
third and fourth operations of Step 2 of the above description, i.e. the operations involving
MC and ARK. These two steps then become:

x = ARK(x, ̂Ki ),
x = MC(x),

where ̂Ki = MC−1(Ki ). We use this alternative representation in certain of the attacks
described later.

The i th iteration of Step 2 in the above description is referred to below as Round i , and
the transformations in Steps 3 and 4 are referred to below as the final round (i.e. Round Nr ).
We write Ki, j (respectively, ̂Ki, j ) for the j th byte of Ki (respectively, ̂Ki ), (0 ≤ j ≤ 15).

3 The (related-key) impossible boomerang attack

Typically, when formulating a differential cryptanalysis attack, it is desirable to use a rela-
tively long differential. Of course, the longer the differential is, the smaller its probability is
likely to be. The boomerang attack is based on a somewhat different idea, namely of using
two differentials with large probabilities on two different parts of the cipher, instead of using
a single differential with a small probability on the entire cipher. Impossible differential
cryptanalysis involves using a differential that will never occur. The attack we propose in this
paper, i.e. what we call the impossible boomerang attack, combines the boomerang attack
with impossible differential cryptanalysis. Possible combinations of cryptanalytic techniques
have been proposed in the past, and have proved effective [6–8,24,30,34]; a good example
is provided by differential-linear cryptanalysis [6,34].

3.1 The basic impossible boomerang attack

As mentioned earlier, an impossible boomerang attack is constructed on an impossible-
boomerang distinguisher.

3.1.1 Impossible-boomerang distinguisher using two tuples

An impossible-boomerang distinguisher is defined as follows.

Definition 1 Suppose E : {0, 1}n × {0, 1}k → {0, 1}n is a block cipher and K ∈ {0, 1}k is
a key for E. If α, α′, δ, δ′ are n-bit blocks, and any pair of plaintexts (X, X ′) cannot simul-
taneously meet EK (X) ⊕ EK (X ′) = δ and EK (X ⊕ α) ⊕ EK (X ′ ⊕ α′) = δ′, then the
combination of α, α′, δ, δ′ is called an impossible-boomerang distinguisher for EK , written
(�α,�α′) � (�δ,�δ′).
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128 J. Lu

(a) (b)

Fig. 2 Basic impossible-boomerang and related-key impossible-boomerang distinguishers

Subsequently, we formulate an impossible-boomerang distinguisher. An impossible-
boomerang distinguisher treats a block cipher E : {0, 1}n × {0, 1}k → {0, 1}n as two sub-
ciphers E0 and E1, where E = E0 ◦ E1. Such a distinguisher is made up of four related
differentials (or truncated differentials [32]), two for E0 and two for (E1)−1, all of which
must have probability 1. That is, an impossible-boomerang distinguisher consists of:

– a differential �α → �β with probability 1 for E0;
– a differential �α′ → �β ′ with probability 1 for E0;
– a differential �δ → �γ with probability 1 for (E1)−1;
– a differential �δ′ → �γ ′ with probability 1 for (E1)−1,

where α, α′, β, β ′, γ, γ ′, δ and δ′ are all n-bit blocks, and β, β ′, γ and γ ′ meet the condition
β ⊕β ′ ⊕ γ ⊕ γ ′ 
= 0. This condition makes it different in nature from the boomerang distin-
guisher (where the XOR of the intermediate differences of the differentials used to construct a
boomerang distinguisher is equal to zero). An impossible-boomerang distinguisher is shown
pictorially in Fig. 2a.

The following theorem provides the theoretical basis for the impossible-boomerang dis-
tinguisher.

Theorem 1 Suppose that X and X ′ are n-bit blocks and K is a key for an n-bit block cipher
E, where E = E0 ◦ E1 for some E0 and E1. Suppose that �α → �β and �α′ → �β ′ are
differentials with probability 1 for E0

K , and �δ → �γ and �δ′ → �γ ′ are differentials
with probability 1 for (E1

K )−1, where β ⊕ β ′ ⊕ γ ⊕ γ ′ 
= 0. Then the following pair of
equations cannot both hold:

EK (X) ⊕ EK (X ′) = δ, (1)

EK (X ⊕ α) ⊕ EK (X ′ ⊕ α′) = δ′. (2)
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The impossible boomerang attack and its application 129

Proof Suppose that Eqs. 1 and 2 both hold for some X , X ′ and K . Since both the differentials
�α → �β and �α′ → �β ′ for E0

K hold with probability 1, we have

E0
K (X) ⊕ E0

K (X ⊕ α) = β,

E0
K (X ′) ⊕ E0

K (X ′ ⊕ α′) = β ′.

As both the differentials �δ′ → �γ ′ and �δ → �γ for (E1
K )−1 hold with probability 1,

we can get the following equation with probability 1:

E0
K (X ′) ⊕ E0

K (X ′ ⊕ α′)
= (E0

K (X ′) ⊕ E0
K (X)) ⊕ (E0

K (X) ⊕ E0
K (X ⊕ α)) ⊕ (E0

K (X ⊕ α)

⊕ E0
K (X ′ ⊕ α′))

= ((E1
K )−1(EK (X ′)) ⊕ (E1

K )−1(EK (X))) ⊕ (E0
K (X) ⊕ E0

K (X ⊕ α))

⊕ ((E1
K )−1(EK (X ⊕ α)) ⊕ (E1

K )−1(EK (X ′ ⊕ α′)))
= γ ⊕ β ⊕ γ ′.

Hence, from the above discussion we have E0
K (X ′) ⊕ E0

K (X ′ ⊕ α′) = β ′ = γ ⊕ β ⊕ γ ′.
However, this contradicts with the condition that β ⊕ β ′ ⊕ γ ⊕ γ ′ 
= 0. Therefore, the result
follows. ��
From Theorem 1 we know that a distinguisher of the form shown in Fig. 2a is an impossi-
ble-boomerang distinguisher, i.e., (�α,�α′) � (�δ,�δ′).

Note that the two differentials for E0 or for (E1)−1 may be identical, as long as the
condition β ⊕ β ′ ⊕ γ ⊕ γ ′ 
= 0 holds.

3.1.2 A key recovery attack

Typically, an impossible boomerang attack involves treating a block cipher E : {0, 1}n ×
{0, 1}k → {0, 1}n as a cascade of four sub-ciphers E = Ea◦E0◦E1◦Eb, where E0◦E1 denotes
the rounds for which the impossible-boomerang distinguisher (�α,�α′) � (�δ,�δ′)holds,
Ea denotes a number of rounds before E0, and Eb denotes a number of rounds after E1.

In a chosen plaintext attack scenario, given a guess for the subkeys used in Ea and Eb,
the impossible boomerang attack involves checking whether a candidate quartet consisting
of two pairs of plaintext blocks meets the differential conditions required by the impossi-
ble-boomerang distinguisher. Specifically, suppose Ka is the guess for the subkey used in
Ea , and Kb is the guess for the subkey used in Eb, then the attacker checks whether a candi-
date quartet of known plaintext-ciphertext pairs (((P, C), (P∗, C∗)), ((P ′, C ′), (P ′∗, C ′∗)))
satisfies the following four conditions:

Ea
Ka

(P) ⊕ Ea
Ka

(P∗) = α, (3)

Ea
Ka

(P ′) ⊕ Ea
Ka

(P ′∗) = α′, (4)

(Eb
Kb

)−1(C) ⊕ (Eb
Kb

)−1(C ′) = δ, (5)

(Eb
Kb

)−1(C∗) ⊕ (Eb
Kb

)−1(C ′∗) = δ′. (6)

If there exists a candidate quartet satisfying Eqs. 3–6, then the subkey guess (Ka, Kb) must
be incorrect, and can be discarded. Thus, given a sufficient number of chosen plaintext pairs,
the attacker can find the correct subkeys used in Ea and Eb by discarding all the wrong
guesses.
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Fig. 3 A 6-fold
impossible-boomerang
distinguisher

Depending on the design of E, the attacker can use the early abort techniques described
in [37–39] to improve the efficiency of the attack; see Chap. 4 of [35] for a summarized
description of the early abort techniques.

3.2 The impossible boomerang attack using more tuples

The impossible-boomerang distinguisher described above uses two tuples, i.e. (X, X∗ =
X ⊕ α) and (X ′, X ′∗ = X ′ ⊕ α′). In fact, we can construct an impossible-boomerang distin-
guisher using more tuples.

For example, suppose we have a third tuple (X ′′, X ′′∗ = X ′′ ⊕ α′′), and we have two
additional differentials �α′′ → �β ′′ and �δ′′ → �γ ′′ for E0 and (E1)−1, respectively, both
with probability 1. Suppose also that β ⊕β ′ ⊕β ′′ ⊕γ ⊕γ ′ ⊕γ ′′ 
= 0. Then we can construct
a 6-fold impossible-boomerang distinguisher, as shown pictorially in Fig. 3, which can be
used to construct an attack, given a sufficient number of plaintext pairs.

3.3 The related-key impossible boomerang attack

A related-key attack scenario [2,28,31] assumes that the attacker knows or can choose the
specific differences between one or more pairs of unknown keys. As shown in [28], some
of the current real-world applications allow for practical such attacks, say key-exchange
protocols.

A related-key impossible-boomerang distinguisher involving four related keys is defined
as follows.

Definition 2 Suppose E : {0, 1}n × {0, 1}k → {0, 1}n is a block cipher and K A, K B ,

KC , K D ∈ {0, 1}k are related user keys for E. If α, α′, δ, δ′ are n-bit blocks, and any
pair of plaintexts (X, X ′) cannot simultaneously meet EK A (X) ⊕ EKC (X ′) = δ and
EK B (X ⊕ α) ⊕ EK D (X ′ ⊕ α′) = δ′, then the combination of α, α′, δ, δ′ is called a
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related-key impossible-boomerang distinguisher for E with respect to (K A, K B , KC , K D),

written (�α,�α′) K A,K B ,KC ,K D
� (�δ,�δ′).

Such a related-key impossible-boomerang distinguisher is depicted in Fig. 2b, where
β, β ′, γ, γ ′ are n-bit blocks. Under the requirement that all the four related-key differen-
tials �α → �β, �α′ → �β ′, �δ → �γ and �δ′ → �γ ′ hold with probability 1
and β ⊕ β ′ ⊕ γ ⊕ γ ′ 
= 0, we can similarly learn that the distinguisher is a related-key

impossible-boomerang distinguisher, i.e., (�α,�α′) K A,K B ,KC ,K D
� (�δ,�δ′). Similarly to

the impossible boomerang attack described in Sect. 3.1.2, we can use a related-key impos-
sible-boomerang distinguisher as the basis for an attack in the related-key attack scenario.
Following the descriptions in Sect. 3.2 we can similarly construct a related-key impossible-
boomerang distinguisher involving more related keys.

It is worthy to note that with slight modifications the (related-key) impossible boomerang
attack can also work in an adaptively chosen plaintext and ciphertext attack scenario, in a
similar way to the boomerang attack [46].

3.4 A comparison

Below we compare the (related-key) impossible boomerang attack with (related-key) impos-
sible differential cryptanalysis and the boomerang-type attacks.

Proposition 1 From an impossible-boomerang distinguisher, an impossible differential for
the same number of rounds can be obtained. A block cipher resistant to related-key impossi-
ble differential cryptanalysis will not necessarily resist a related-key impossible boomerang
attack.

Consider an impossible-boomerang distinguisher using two tuples. From the condition β ⊕
β ′ ⊕ γ ⊕ γ ′ 
= 0 we have β ⊕ γ 
= β ′ ⊕ γ ′, which implies that the values β ⊕ γ and
β ′ ⊕ γ ′ cannot both be equal to zero. Since the four differentials required by the impossi-
ble-boomerang distinguisher have a probability of one and they work under the same key
K , we always have an impossible differential α � δ or α′

� δ′, and thus the above result
applies when using two tuples. A similar result holds when using more tuples. This makes
a limitation to the impossible boomerang attack; however, this limitation does not necessar-
ily hold for their variants in a related-key attack scenario, for the related-key differentials
work under the four keys K A, K B , KC and K D and we cannot concatenate two related-key
differentials when they work under a different set of keys. When formulating a related-key
impossible differential, choosing the subkey difference for E0 usually incurs a fixed subkey
difference for E1, and vice versa; but when formulating a related-key impossible-boomerang
distinguisher we have more flexibility in choosing the subkey differences for E0 and E1: we
can use a subkey difference for E0 and use an independent subkey difference for E1, and
even more flexibly, we can use two different subkey differences for E0 or E1. These degrees
of freedom in choosing the key differences may potentially enable us to break more rounds
of the cipher using a related-key impossible boomerang attack, as exhibited by our attacks
on reduced-round AES-192 and AES-256 in Sect. 5. Given only the two differentials (with
probability 1) used to build an impossible differential, one may suppose that they can be used
to build an impossible-boomerang distinguisher involving an odd number of tuples, with one
used for E0 and the other used for E1. However, after a simple analysis we learn this is not
correct.

The (related-key) boomerang attack works in an adaptively chosen plaintext and cipher-
text attack scenario, and the (related-key) amplified boomerang and rectangle attacks work
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132 J. Lu

in a chosen plaintext (or ciphertext) attack scenario. The (related-key) impossible boomer-
ang attack can work in a chosen plaintext (or ciphertext) attack scenario, or in an adaptively
chosen plaintext and ciphertext attack scenario. One advantage of the (related-key) impossi-
ble boomerang attack over the boomerang-type attacks is analogous to that of (related-key)
impossible differential cryptanalysis over (related-key) differential cryptanalysis.

Proposition 2 A block cipher resistant to the boomerang-type attacks will not necessarily
resist a (related-key) impossible boomerang attack. A (related-key) impossible-boomerang
distinguisher is more reasonable than the boomerang-type distinguishers.

A (related-key) impossible-boomerang distinguisher is more reasonable than the boomer-
ang-type distinguishers, in that the latter use (related-key) differentials usually under the
following independence assumptions: (1) The output of one intermediate round of the cipher
is uniformly distributed and is independent from that of previous rounds, (or a different
assumption with an equivalent meaning); and (2) The two groups of (related-key) differ-
entials used for either sub-cipher are treated as independent. These assumptions are often
observed to give probability values that are highly inaccurate [42,47]. However, a (related-
key) impossible-boomerang distinguisher does not require the assumptions, and it has an
accurate probability value (i.e. 0).

4 Impossible boomerang attacks on 6-round AES-128, 7-round AES-192
and 7-round AES-256

In the single-key attack scenario, the square attack [17], the collision attack, the meet-in-
the-middle attack [4], the impossible differential attack and the boomerang attack are the
currently known cryptanalytic techniques that have been used to break 6 or more rounds of
AES-128/192/256. In this section we show that the impossible boomerang attack can also
break 6 or more rounds of AES-128/192/256. We first describe certain 4-round impossible-
boomerang distinguishers (using two tuples) of AES. These then allow us to construct an
impossible boomerang attack on 6-round AES-128, 7-round AES-192 and 7-round AES-256.

4.1 4-Round impossible-boomerang distinguishers

Let E0 denote Rounds 2 and 3 including the ARK operation of Round 1, and E1 denote
Rounds 4 and 5 excluding the MC operation for Round 5. Fig. 4 shows the set of four dif-
ferentials making up the 4-round impossible-boomerang distinguishers for E0 ◦ E1. In this
figure, a (small) square corresponds to a byte, a blank indicates a zero 8-bit difference, and a
square labeled a value a, b, · · · indicates an (arbitrary2) nonzero 8-bit difference. The sym-
bols given in the figure for individual byte differences are used to simplify our description
below.

The first differential �α → �β for E0 is ((a, 0, 0, 0), (0,0,0,0), (0,0,0,0), (0,0,0,0)) →
((e0, e1, e2, e3), (e4, e5, e6, e7), (e8, e9, e10, e11), (e12, e13, e14, e15)), as shown in Fig. 4a.

The second differential �α′ → �β ′ for E0 has the same format with �α → �β; we
denote it by ((a′, 0, 0, 0), (0,0,0,0), (0,0,0,0), (0,0,0,0)) → ((e′

0, e′
1, e′

2, e′
3), (e

′
4, e′

5, e′
6,

e′
7), (e′

8, e′
9, e′

10, e′
11), (e

′
12, e′

13, e′
14, e′

15)).
The first differential �δ → �γ for (E1)−1 is (( f0, 0, 0, 0), ( f4,0,0,0), ( f8,0,0,0), (0,0,

0, 0)) → ((i0, i1, i2, 0), (0, i5, i6, i7), (i8, 0, i10, i11), (i12, i13, 0, i15)), as shown in Fig. 4b.

2 By “arbitrary” we mean that these differentials hold with probability 1.
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(b)

(c)

(a)

Fig. 4 The differentials making up the 4-round impossible-boomerang distinguisher

The second differential �δ′ → �γ ′ for (E1)−1 is (( j0,0,0,0), ( j4,0,0,0), (0,0,0,0), (0,0,

0,0)) → ((n0, n1, 0, 0), (0, n5, n6, 0), (0, 0, n10, n11), (n12, 0, 0, n15)), as shown in Fig. 4c.
We can now give the following result.

Property 1 The four differentials described above constitute an impossible-boomerang
distinguisher for E0 ◦ E1: (((a, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)), ((a′, 0, 0, 0),

(0,0,0, 0), (0, 0, 0, 0), (0, 0, 0, 0))) � ((( f0, 0, 0, 0), ( f4, 0,0, 0), ( f8, 0, 0, 0), (0,0,0,0)),

(( j0, 0, 0, 0), ( j4, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0))), where a, a′, f0, f4, f8, j0, j4 are
arbitrary but nonzero 8-bit values.

Proof For the differential �α → �β, we have (by definition of MC):

e4 = d0, (7)

e8 = d0. (8)

Similarly, for the differential �α′ → �β ′, we have:

e′
4 = d ′

0, (9)

e′
8 = d ′

0. (10)

From [18] we know that MC has a branch number of 5; hence h10 
= 0. Consequently, i8 
= 0.
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Note that the 4th and 8th bytes of �γ are 0 and i8, respectively; and the 4th and 8th bytes
of �γ ′ are both 0. Thus, from Eqs. 7 and 9, the 4th byte of β⊕β ′⊕γ ⊕γ ′ is e4⊕e′

4 = d0⊕d ′
0,

and by Eqs. 8 and 10 the 8th byte of β ⊕ β ′ ⊕ γ ⊕ γ ′ is e8 ⊕ e′
8 ⊕ i8 = d0 ⊕ d ′

0 ⊕ i8.
Since i8 
= 0, then d0⊕d ′

0 and d0⊕d ′
0⊕i8 cannot both be zero, and henceβ⊕β ′⊕γ⊕γ ′ 
= 0

holds for the four differentials. The result follows. ��
Before proceeding observe that there are many other similar 4-round impossible-

boomerang distinguishers for AES; for example, the differences a and a′ in the above
4-round distinguisher can locate in any one or two positions of the first column.

4.2 Attacking 6-round AES-128, 7-round AES-192 and 7-round AES-256

We can use the 4-round impossible-boomerang distinguishers to mount impossible boomer-
ang attacks on 6-round AES-128, 7-round AES-192 and 7-round AES-256. The 6-round
AES-128 attack is based on encrypting 2112.2 chosen plaintexts and has a time complexity of
2112.3 encryptions; the 7-round AES-192 attack is based on encrypting 2112.5 chosen plain-
texts and has a time complexity of 2186.3 encryptions; and the 7-round AES-256 attack is
based on encrypting 2112.8 chosen plaintexts and has a time complexity of 2186.9 encryptions.
As these attacks are similar to those attacks in Sect. 5, we omit the full details here and refer
the interested reader to [35]. We note certain of these attacks rely on the following property:

Property 2 Let � be the set of 4 × 255 ≈ 210 differences in bytes (0, 5, 10, 15) just after the
SB operation, each of which is transformed by the SR ◦ MC operation to a difference with
only one nonzero byte in the first column. Then, the differences in � have distinct values in
the pair of byte positions (0, 5).

Proof Suppose there exist two differences x and y from � that have the same value in bytes
(0, 5), that is to say, x ⊕ y is equal to zero in the first two bytes. Since x and y are transformed
by the MC−1 ◦ SR−1 operation from two differences with only one non-zero byte in the first
column, say x̃ and ỹ, it follows that at least two out of the four bytes of x̃ ⊕ ỹ should be zero;
however, this is impossible, because the MC operation has a branch number of 5 [18]. ��

5 Related-key impossible boomerang attacks on 8-round AES-192 and 9-round
AES-256 in the two-key related-key attack scenario

In this section we describe 6-round related-key impossible-boomerang distinguishers (using
two tuples) of AES-192/256, and use them as the basis of a related-key impossible boo-
merang attack on 8-round AES-192 and 9-round AES-256 in the two-key related-key attack
scenario. We use a related-key impossible-boomerang distinguisher such that K A = KC and
K B = K D , that is, it involves two keys.

Let E0 denote Rounds 2–5 (of AES-192/256) including the ARK operation of Round 1,
and E1 denote Rounds 6–7 excluding the MC operation of Round 7. We choose non-zero
key differences for differentials of E0 and a zero key difference for differentials of E1.

5.1 Attacking 8-round AES-192 in the two-key related-key attack scenario

5.1.1 6-Round related-key impossible-boomerang distinguishers

The two related-key differentials �α → �β and �α′ → �β ′ for E0 are both ((0, 0, a, a),

(0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)) → ((�, �, �, �), (�, �, �, �), (�, �, �, �), (�, �, �, �)),
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Table 2 The subkey differences for the 8-round AES-192 attack

i �K5i �K5i+1 �K5i+2 �K5i+3 �K5i+4

0

⎛

⎜

⎝

a 0 a 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

0 0 a a
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

a 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

0 0 a a
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎠

1

⎛

⎜

⎝

a a a a
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

a 0 a 0
0 0 0 0
0 0 0 0
b b b b

⎞

⎟

⎠

⎛

⎜

⎝

a 0 a a
0 0 0 0
0 0 c c
b b b 0

⎞

⎟

⎠

⎛

⎜

⎝

0 0 a a
0 0 0 0
c c c c
b 0 b 0

⎞

⎟

⎠ /

where the key difference is K A ⊕K B(= KC ⊕K D) = ((a, 0, a, 0, 0, 0), (0,0,0,0,0,0), (0,0,

0,0,0,0), (0, 0, 0, 0, 0, 0)), with a being a specific nonzero 8-bit value. The differentials for
(E1)−1 are the same as those in Fig. 4b and c. Table 2 gives the subkey differences for the first
eight rounds of AES-192 given the user key difference ((a, 0, a, 0, 0, 0), (0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0)), where b and c are indeterminate 8-bit nonzero values.
Similar to that described in Sect. 4.1, we can learn that there exist the following

6-round related-key impossible-boomerang distinguishers for E0 ◦ E1: (((0,0, a, a),

(0,0,0,0), (0,0,0,0), (0,0,0,0)), ((0, 0, a, a), (0,0,0,0), (0,0,0,0), (0,0,0,0)))
K A,K B ,K A,K B

�

(((�, 0, 0, 0), (�, 0, 0, 0), (�, 0, 0, 0), (0, 0, 0, 0)), ((�, 0, 0, 0), (�, 0, 0, 0), (0, 0, 0, 0), (0, 0,

0, 0))).

5.1.2 Attack procedure

We now describe a related-key impossible boomerang attack on 8-round AES-192 based on
a 6-round related-key impossible-boomerang distinguisher.

The attacked 8 rounds are the first 8 rounds (i.e. Rounds 1–8). We reverse the order of the
operations MC and ARK for Round 7. From Table 2 we know that both �K8,0 and �K8,7

are zero. The attack procedure is as follows.

1. Choose 257.4 structures Si , (i = 1, 2, . . . , 257.4), where a structure Si is defined to be
a set of 264 plaintexts Pi, j with bytes (2, 3, 4, 7, 8, 9, 13, 14) of the 264 plaintexts tak-
ing all the possible values and the other 8 bytes being fixed, ( j = 1, 2, . . . , 264). In a
chosen-plaintext attack scenario, obtain all the 2121.4 ciphertexts for the 264 plaintexts
in each of the 257.4 structures encrypted with K A; we denote by Ci, j the ciphertext for
plaintext Pi, j .

2. Choose 257.4 structures ˜Si , (i = 1, 2, . . . , 257.4), where a structure ˜Si is defined to be a set
of 264 plaintexts ˜Pi, j with ˜Pi, j = Pi, j ⊕ ((a, 0, 0, 0), (0,0,0,0), (0,0,0,0), (0,0,0,0)),
( j = 1, 2, . . . , 264). In a chosen-plaintext attack scenario, obtain all the 2121.4 cipher-
texts for the 264 plaintexts in each of the 257.4 structures encrypted with K B ; let ˜Ci, j be
the ciphertext for plaintext ˜Pi, j .

3. Identify the ciphertext quartets ((Ci1, j1 ,
˜Ci1, j2), (Ci2, j3 ,

˜Ci2, j4)) with the property
Ci1, j1 ⊕ Ci2, j3 = ((�, 0, 0, 0), (0, 0, 0, �), (0, 0, 0, 0), (0, 0, 0, 0)) and ˜Ci1, j2 ⊕ ˜Ci2, j4 =
((�, 0, 0, 0), (0, 0, 0, �), (0, 0, �, 0), (0, 0, 0, 0)) in the following way, where 1 ≤
i1, i2 ≤ 257.4, 1 ≤ j1 
= j2, j3 
= j4 ≤ 264.

(a) Store the 2121.4 ciphertexts Ci, j in a hash table indexed by bytes (1, 2, . . . , 6, 8, 9,

. . . , 15) of the ciphertexts Ci, j , and obtain the ciphertext pairs (Ci1, j1 , Ci2, j3) that
meet Ci1, j1 ⊕ Ci2, j3 = ((�, 0, 0, 0), (0, 0, 0, �), (0, 0, 0, 0), (0, 0, 0, 0)).
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(b) Store the 2121.4 ciphertexts ˜Ci, j in a hash table indexed by bytes (1, 2, . . . , 6, 8, 9,

11, . . . , 15) of the ciphertexts ˜Ci, j , and obtain the ciphertext pairs (˜Cl1,t1 ,
˜Cl2,t2)

that meet ˜Cl1,t1 ⊕ ˜Cl2,t2 = ((�, 0, 0, 0), (0, 0, 0, �), (0, 0, �, 0), (0, 0, 0, 0)), where
1 ≤ l1, l2 ≤ 257.4, 1 ≤ t1, t2 ≤ 257.4. Store the ciphertext pairs (˜Cl1,t1 ,

˜Cl2,t2) in a
hash table T indexed by (l1, l2).

(c) For each ciphertext pair (Ci1, j1 , Ci2, j3) obtained in Step 3(a), go to entry (i1, i2)

of the hash table T , and record all the possible quartets ((Ci1, j1 ,
˜Ci1, j2), (Ci2, j3 ,

˜Ci2, j4)).

4. Guess a value for the subkey bytes (K8,0, K8,7), and perform the following two sub-steps
for every remaining quartet ((Ci1, j1 ,

˜Ci1, j2), (Ci2, j3 ,
˜Ci2, j4)).

(a) Partially decrypt Ci1, j1 and Ci2, j3 with (K8,0, K8,7) to get the corresponding values
for bytes (0,4) just after the MC operation of Round 7, and check whether they
produce a difference that has a zero in only one of bytes (0, 4, 8, 12) just after
the ARK operation of Round 7. Keep only the ciphertext quartets that meet this
condition.

(b) Guess a value for the subkey byte K B
8,10 under K B . Partially decrypt ˜Ci1, j2 and ˜Ci2, j4

with (K8,0, K8,7, K B
8,10) to get the corresponding values for bytes (0, 4, 8) just after

the MC operation of Round 7, and check whether they produce a difference that
has a zero in only two of bytes (0, 4, 8, 12) just after the ARK operation of Round
7, where the two byte positions include the one byte position with a zero difference
in Step 4(a). Keep only the ciphertext quartets that meet this condition.

5. For every plaintext quartet ((Pi1, j1 ,
˜Pi1, j2), (Pi2, j3 ,

˜Pi2, j4)) corresponding to a remaining
ciphertext quartet ((Ci1, j1 ,

˜Ci1, j2), (Ci2, j3 ,
˜Ci2, j4)), do as follows.

(a) Guess a value for the subkey byte K0,2. Partially encrypt Pi1, j1 and ˜Pi1, j2 with K0,2

and K0,2 ⊕ a respectively to get the corresponding values for byte (2) just after
the SR operation of Round 1, and check whether they have a difference equal to
byte (0) of MC−1(a, 0, 0, 0); and partially encrypt Pi2, j3 and ˜Pi2, j4 with K0,2 and
K0,2 ⊕ a respectively to get the corresponding values for byte (2) just after the SR
operation of Round 1, and check whether they have a difference equal to byte (0) of
MC−1(a, 0, 0, 0). Keep only the plaintext quartets that meet both the conditions.

(b) Perform the following two sub-steps for m = 7, 8, 13:
– Guess a value for the subkey byte K0,m .
– Partially encrypt Pi1, j1 and ˜Pi1, j2 with K0,m to get the corresponding values for

byte ((m − 5�m
4 �) mod 4 + 4�m

4 �) just after the SR operation of Round 1, and
check whether they have a difference equal to byte (�m

4 �) of MC−1(a, 0, 0, 0);
and partially encrypt Pi2, j3 and ˜Pi2, j4 with K0,m to get the corresponding values
for byte ((m−5�m

4 �) mod 4+4�m
4 �) just after the SR operation of Round 1, and

check whether they have a difference equal to byte (�m
4 �) of MC−1(a, 0, 0, 0).

Keep only the plaintext quartets that meet both the conditions.

6. For every remaining plaintext quartet ((Pi1, j1 ,
˜Pi1, j2), (Pi2, j3 ,

˜Pi2, j4)), do as follows.

(a) Perform the following two sub-steps for m = 3, 4, 9:
– Guess a value for the subkey byte K0,m .
– Partially encrypt Pi1, j1 and ˜Pi1, j2 with K0,m to get the corresponding values for

byte ((m − 5�m
4 �) mod 4 + 4�m

4 �) just after the SR operation of Round 1, and
check whether they have a difference equal to byte (�m

4 �) of MC−1(a, 0, 0, 0);
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and partially encrypt Pi2, j3 and ˜Pi2, j4 with K0,m to get the corresponding values
for byte ((m−5�m

4 �) mod 4+4�m
4 �) just after the SR operation of Round 1, and

check whether they have a difference equal to byte (�m
4 �) of MC−1(a, 0, 0, 0).

Keep only the plaintext quartets that meet both the conditions.
(b) Guess a value for the subkey byte K0,14. Partially encrypt Pi1, j1 and ˜Pi1, j2 with

K0,14 to get the corresponding values for byte (15) just after the SR opera-
tion of Round 1, and check whether they have a difference equal to byte (3) of
MC−1(a, 0, 0, 0); and partially encrypt Pi2, j3 and ˜Pi2, j4 with K0,14 to get the
corresponding values for byte (15) just after the SR operation of Round 1, and
check whether they have a difference equal to byte (3) of MC−1(a, 0, 0, 0). If
there exists a plaintext quartet meeting both the conditions, discard the guessed
value for (K8,0, K8,7, K B

8,10, K0,2, K0,3, K0,4, K0,7, K0,8, K0,9, K0,13, K0,14), and
repeat Steps 4–6 with another guess; otherwise, execute Step 7.

7. For every remaining value of (K0,2, K0,3, K0,4, K0,7, K0,8, K0,9, K0,13, K0,14) after
Step 6, determine the correct user key by exhaustively searching the remaining 128
key bits.

The attack requires 2122.4 chosen plaintexts. There are 2121.4 × 2121.4 × 2−14×8 = 2130.8

qualified ciphertext pairs (Ci1, j1 , Ci2, j3) in Step 3(a), and 2121.4 × 2121.4 × 2−13×8 = 2138.8

qualified ciphertext pairs (˜Cl1,t1 ,
˜Cl2,t2) in Step 3(b). For each of the 257.4 × 257.4 = 2114.8

possible pairs of structure indexes (i1, i2), on average there are 2138.8

2114.8 = 224 ciphertext pairs

(˜Ci1,t1 ,
˜Ci2,t2). As a result, in Step 3(c), for each of the 2130.8 ciphertext pairs (Ci1, j1 , Ci2, j3)

there are 224 × 1
2 = 223 ciphertext pairs (˜Ci1, j2 ,

˜Ci2, j4) that can form a useful quartet. It is
expected that 2130.8 × 223 = 2153.8 candidate ciphertext quartets are recorded in Step 3. In
Step 4(a), a ciphertext quartet meets the condition with probability

(4
1

) × 2−8 = 2−6, so it
is expected that after Step 4(a) there remain 2153.8 × 2−6 = 2147.8 ciphertext quartets for
every subkey guess. In Step 4(b), a ciphertext quartet meets the condition with probability
(3

1

) × 2−16 = 2−14.42, and thus 2147.8 × 2−14.42 ≈ 2133.38 ciphertext quartets are expected
to pass Step 4(b) for every subkey guess. In Step 5(a) and each iteration of Step 5(b), a
plaintext quartet meets both the conditions with probability (2−8)2 = 2−16, and thus after
Step 5 there remain 2133.38 × 2−16×4 = 269.38 plaintext quartets for every subkey guess.
In each iteration of Step 6(a), a plaintext quartet meets both the conditions with probability
(2−8)2 = 2−16; thus it is expected that 269.38 × 2−16×3 = 221.38 plaintext quartets pass Step
6(a) for every subkey guess. In Step 6(b), the probability that there exists a plaintext quar-
tet meeting both the conditions is 2−8×2 = 2−16; thus after analysing the remaining 221.38

plaintext quartets we get that there remain only 288 × (1 − 2−16)221.38 ≈ 228.04 guessed val-
ues for (K8,0, K8,7, K B

8,10, K0,2, K0,3, K0,4, K0,7, K0,8, K0,9, K0,13, K0,14). Therefore, it is

expected that we can find the correct key using 228.04 × 2128 = 2156.04 trial encryptions in
Step 7.

Steps 1 and 2 have a time complexity of 2122.4 8-round AES-192 encryptions. In
Step 3(a), a simple implementation takes 2121.4 memory accesses to obtain the 2130.8 quali-
fied ciphertext pairs (Ci1, j1 , Ci2, j3); and in Step 3(b), a simple implementation takes 2121.4

memory accesses to obtain the 2138.8 qualified ciphertext pairs (˜Cl1,t1 ,
˜Cl2,t2). Step 3(c) takes

2130.8×223 = 2153.8 memory accesses to obtain the useful ciphertext quartets. Step 4(a) has a
time complexity of 2×2153.8×216× 2

16 × 1
8 = 2164.8 8-round AES-192 encryptions. Step 4(b)

has a time complexity of 2 × 2147.8 × 224 × 3
16 × 1

8 ≈ 2167.38 8-round AES-192 encryptions.
Step 5(a) has a time complexity of 4 × 2133.48 × 232 × 1

16 × 1
8 = 2160.48 8-round AES-192
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Table 3 The subkey differences for the 9-round AES-256 attack

i �K5i �K5i+1 �K5i+2 �K5i+3 �K5i+4

0

⎛

⎜

⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

0 a a 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

0 a 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎠

1

⎛

⎜

⎝

0 a a a
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

0 0 0 0
0 0 0 0
0 0 0 0
b b b b

⎞

⎟

⎠

⎛

⎜

⎝

0 a 0 a
0 0 0 0
0 0 0 0
c c c c

⎞

⎟

⎠

⎛

⎜

⎝

0 0 0 0
0 0 0 0
d d d d

b ⊕ e e b ⊕ e e

⎞

⎟

⎠

⎛

⎜

⎝

0 a a 0
0 0 0 0
f f f f

g ⊕ c g g ⊕ c g

⎞

⎟

⎠

encryptions. Step 5(b) has a time complexity of
∑2

l=0(4 × 2117.48−16×l × 232+(l+1)×8 ×
1

16 × 1
8 ) ≈ 2152.48 8-round AES-192 encryptions. Step 6(a) has a time complexity of

∑2
l=0(4×269.48−16×l ×256+(l+1)×8 × 1

16 × 1
8 ) ≈ 2128.48 8-round AES-192 encryptions. Step

6(b) has a time complexity of 4×288×[1+(1−2−16)+· · ·+(1−2−16)221.48 ]× 1
16 × 1

8 ≈ 299

8-round AES-192 encryptions. Therefore, the attack has a total time complexity of approxi-
mately 2167.7 8-round AES-192 encryptions.

5.2 Attacking 9-round AES-256 in the two-key related-key attack scenario

5.2.1 6-Round related-key impossible-boomerang distinguishers

The two related-key differentials �α → �β and �α′ → �β ′ for E0 are both ((0, a, a, 0),

(0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0))→ ((�, �, �, �), (�, �, �, �), (�, �, �, �), (�, �, �, �)),
where the key difference is K A⊕K B(= KC ⊕K D) = ((0, 0, 0, 0, 0, a, a, 0), (0, 0, 0, 0, 0, 0,

0, 0), (0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0)), with a being a specific nonzero 8-bit
value. The same differentials as those in Fig. 4b and c are used for (E1)−1. Table 3 gives
the subkey differences for the first nine rounds of AES-256 given the user key difference
((0, 0, 0, 0, 0, a, a, 0), (0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0)),
where b, c, d, e, f, g are indeterminate 8-bit nonzero values.

We can similarly learn that there exist the following 6-round related-key impossible-
boomerang distinguishers for E0 ◦ E1: (((0, a, a, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)),

((0, a, a, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)))
K A,K B ,K A,K B

� (((�, 0, 0, 0), (�, 0, 0, 0),

(�, 0, 0, 0), (0, 0, 0, 0)), ((�, 0, 0, 0), (�, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0))).

5.2.2 Attack procedure

Using a 6-round related-key impossible-boomerang distinguisher, we can conduct a related-
key impossible boomerang attack on AES-256 reduced to the first 9 rounds (i.e. Rounds
1 to 9).

We reverse the order of the operations MC and ARK for Rounds 7 and 8. From the key
difference K A ⊕ K B we have: (i) �K9,0, �K9,3, �K9,6 and �K9,7 are all zero; (ii) �K9,9

and �K9,10 are identical and indeterminate nonzero values; (iii) �K9,12 and �K9,13 are dif-
ferent and indeterminate nonzero values, with neither of them equal to �K9,9 (or �K9,10);
and (iv) �̂K8,0 and �̂K8,7 are indeterminate.

1. Choose 258 structures Si , (i = 1, 2, . . . , 258), where a structure Si is defined to be
a set of 264 plaintexts Pi, j with bytes (1, 2, 6, 7, 8, 11, 12, 13) of the 264 plaintexts
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taking all the possible values and the other 8 bytes being fixed, ( j = 1, 2, . . . , 264). In a
chosen-plaintext attack scenario, obtain all the 2122 ciphertexts for the 264 plaintexts
in each of the 258 structures encrypted with K A and K B ; let Ci, j be the ciphertext for
plaintext Pi, j encrypted with K A.

2. Guess a value for the subkey bytes (K0,1, K0,2, K0,6, K0,7, K0,8, K0,11, K0,12, K0,13).
Partially encrypt every plaintext Pi, j in Si with (K0,1, K0,2, K0,6, K0,7, K0,8, K0,11,

K0,12, K0,13) to get the corresponding value for bytes (1, 2, 5, 6, 9, 10, 13, 14) just
after the MC operation of Round 1; we denote it by εi, j . Then, partially decrypt εi, j ⊕
((0, a, a, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)) with (K0,1, K0,2, K0,6, K0,7,K0,8,

K0,11, K0,12, K0,13) through MC−1 ◦ SR−1 ◦ SB−1 ◦ ARK−1 to get its correspond-
ing plaintext in Si ; we denote it by ˜Pi, j . Let ˜Ci, j be the ciphertext for plaintext ˜Pi, j

encrypted with K B . Finally, identify the ciphertext quartets ((Ci1, j1 ,
˜Ci1, j1), (Ci2, j2 ,

˜Ci2, j2)) such that Ci1, j1 ⊕ Ci2, j2 = ((�, 0, 0, �), (0, 0, �, �), (0, �, �, 0), (�, �, 0, 0)) and
˜Ci1, j1 ⊕ ˜Ci2, j2 = ((�, 0, �, �), (0, �, �, �), (�, �, �, 0), (�, �, 0, �)), where 1 ≤ i1, i2 ≤
258, 1 ≤ j1, j2 ≤ 264.

3. Guess a value for the subkey bytes (K9,0, K9,7, K9,10, K9,13), and do as follows.

(a) For every remaining ciphertext quartet ((Ci1, j1 ,
˜Ci1, j1), (Ci2, j2 ,

˜Ci2, j2)), partially
decrypt Ci1, j1 and Ci2, j2 with (K9,0, K9,7, K9,10, K9,13) to get the corresponding
values for bytes (0, 4, 8, 12) just after the ARK operation of Round 8, and check
whether they have a nonzero byte difference only in byte (0). Keep only the cipher-
text quartets that meet the condition.

(b) Guess a value for the subkey difference (�K9,10,�K9,13). For every remain-
ing ciphertext quartet ((Ci1, j1 ,

˜Ci1, j1), (Ci2, j2 ,
˜Ci2, j2)), partially decrypt ˜Ci1, j1 and

˜Ci2, j2 with (K9,0, K9,7, K9,10 ⊕ �K9,10, K9,13 ⊕ �K9,13) to get the correspond-
ing values for bytes (0, 4, 8, 12) just after the ARK operation of Round 8, and
check whether they have a nonzero byte difference only in byte (0). Keep only the
ciphertext quartets that meet the condition.

4. Guess a value for the subkey bytes (K9,3, K9,6, K9,9, K9,12), and do as follows.

(a) For every remaining ciphertext quartet ((Ci1, j1 ,
˜Ci1, j1), (Ci2, j2 ,

˜Ci2, j2)), partially
decrypt Ci1, j1 and Ci2, j2 with (K9,3, K9,6, K9,9, K9,12) to get the corresponding
values for bytes (3, 7, 11, 15) just after the ARK operation of Round 8, and check
whether they have a nonzero byte difference only in byte (7). Keep only the cipher-
text quartets that meet the condition.

(b) Guess a value for the subkey difference �K9,12. For every remaining ciphertext
quartet ((Ci1, j1 ,

˜Ci1, j1), (Ci2, j2 ,
˜Ci2, j2)), partially decrypt ˜Ci1, j1 and ˜Ci2, j2 with

(K9,3, K9,6, K9,9 ⊕ �K9,10, K9,12 ⊕ �K9,12) to get the corresponding values for
bytes (3, 7, 11, 15) just after the ARK operation of Round 8, and check whether they
have a nonzero byte difference only in byte (7). Keep only the ciphertext quartets
that meet the condition.

5. Guess a value for the subkey difference (K B
9,2, K B

9,5, K B
9,8, K B

9,15) under K B . For every

remaining ciphertext quartet ((Ci1, j1 ,
˜Ci1, j1), (Ci2, j2 ,

˜Ci2, j2)), partially decrypt ˜Ci1, j1 and
˜Ci2, j2 with (K B

9,2, K B
9,5, K B

9,8, K B
9,15) to get the corresponding values for bytes (2, 6, 10,

14) just after the ARK operation of Round 8, and check whether they have a nonzero byte
difference only in byte (10). Keep only the ciphertext quartets that meet the condition.

6. Perform the following two sub-steps for every remaining quartet ((Ci1, j1 ,
˜Ci1, j1),

(Ci2, j2 ,
˜Ci2, j2)).
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(a) Guess a value for the subkey bytes (̂K A
8,0,

̂K A
8,7) under K A. For Ci1, j1 and Ci2, j2 , par-

tially decrypt the corresponding values for bytes (0, 7) just after the ARK operation
of Round 8 with (̂K A

8,0,
̂K A

8,7) to get the corresponding values for bytes (0,4) just
after the MC operation of Round 7, and check whether they produce a difference
that has a zero in only one of bytes (0, 4, 8, 12) just after the ARK operation of
Round 7. Keep only the ciphertext quartets that meet this condition.

(b) Guess a value for the subkey bytes (̂K B
8,0,

̂K B
8,7,

̂K B
8,10) under K B . For ˜Ci1, j1 and

˜Ci2, j2 , partially decrypt the corresponding values for bytes (0, 7, 10) just after
the ARK operation of Round 8 with (̂K B

8,0,
̂K B

8,7,
̂K B

8,10) to get the correspond-
ing values for bytes (0, 4, 8) just after the MC operation of Round 7, and check
whether they produce a difference that has a zero in only two of bytes (0, 4,
8, 12) just after the ARK operation of Round 7, where the two byte positions
include the one byte position with a zero difference in Step 6(a). If there exists
a ciphertext quartet meeting both the conditions, discard the guessed value for
(̂K A

8,0,
̂K A

8,7,
̂K B

8,0,
̂K B

8,7,
̂K B

8,10, K0,1, K0,2, K0,6, K0,7, K0,8, K0,11, K0,12, K0,13,

K9,0, K9,3, K9,6, K9,7, K9,9, K9,10, K9,12, K9,13, K B
9,2, K B

9,5,K
B
9,8,K

B
9,15,

�K9,10, �K9,12,�K9,13), and repeat Steps 2–5 with another guess; otherwise,
execute Step 6.

7. For every remaining value for (̂K B
8,0,

̂K B
8,7,

̂K B
8,10, K9,0, K B

9,2, K9,3, K B
9,5, K9,6, K9,7,

K B
9,8, K9,9, K9,10, K9,12, K9,13, K B

9,15,�K9,10,�K9,12,�K9,13), determine the correct
user key by exhaustively searching the remaining 136 bits of K B .

The attack requires 2123 chosen plaintexts. In Step 2, a structure Si yields 264 plaintext
pairs ((Pi, j , ˜Pi, j ) that produce difference ((0, a, a, 0), (0, 0, 0, 0), (0,0,0,0), (0,0,0,0)) just
after the MC operation of Round 1 under the subkey guess, and thus the 258 structures yield

a total of
(258+64

2

) ≈ 2243 candidate ciphertext quartets ((Ci1, j1 ,
˜Ci1, j1), (Ci2, j2 ,

˜Ci2, j2));
however, it is expected that there remain 2243 × 2−8×8 × 2−4×8 = 2147 ciphertext quartets
for every subkey guess after Step 2. In Step 3(a), a ciphertext quartet meets the condition
with probability 2−24, and thus after Step 3(a) there remain 2147 × 2−24 = 2123 cipher-
text quartets for every subkey guess. In Step 3(b), a ciphertext quartet meets the condition
with probability 2−24 as well, so 2123 × 2−24 = 299 ciphertext quartets are expected to
pass Step 3(b) for every subkey guess. In Step 4(a), a ciphertext quartet meets the condition
with probability 2−24, and thus after Step 4(a) there remain 299 × 2−24 = 275 ciphertext
quartets for every subkey guess. In Step 4(b), a ciphertext quartet meets the condition with
probability 2−24 as well, so 275 × 2−24 = 251 ciphertext quartets are expected to pass Step
4(b) for every subkey guess. In Step 5 a ciphertext quartet meets the condition with proba-
bility 2−24, so about 251 × 2−24 = 227 ciphertext quartets are expected to pass Step 5 for
every subkey guess. In Step 6(a), a ciphertext quartet meets the condition with probability
(4

1

) × 2−8 = 2−6, so it is expected that after Step 5(a) there remain 227 × 2−6 = 221 cipher-
text quartets for every subkey guess. In Step 6(b), a ciphertext quartet meets the condition
with probability

(3
1

) × 2−16 = 2−14.42, and thus after analysing the remaining 221 cipher-

text quartets we get that there remain only 2224 × (1 − 2−14.42)221 ≈ 286.24 guessed values
for (K0,1, K0,2, K0,6, K0,7, K0,8, K0,11, K0,12, K0,13, K9,0, K B

9,2,K9,3, K B
9,5, K9,6, K9,7,

K B
9,8, K9,9, K9,10, K9,12, K9,13, K B

9,15,
̂K A

8,0,
̂K A

8,7,
̂K B

8,0,
̂K B

8,7,
̂K B

8,10, �K9,10, �K9,12,

�K9,13). Therefore, it is expected that we can find the correct key using 286.24×2136 = 2222.24

trial encryptions in Step 7.
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Step 1 has a time complexity of 2123 9-round AES-256 encryptions. Step 2 takes 2×264 ×
2122 × 8

16 × 1
9 + 2123 ≈ 2182.84 9-round AES-256 encryptions, and a simple implementation

using a hash table takes 2122 × 264 = 2186 memory accesses to obtain the useful ciphertext
quartets. Step 3 has a time complexity of 2×296 ×2147 × 4

16 × 1
9 +2×2112 ×2123 × 4

16 × 1
9 ≈

2238.84 9-round AES-256 encryptions. Step 4 has a time complexity of 2×2144 ×299 × 4
16 ×

1
9 +2×2152 ×275 × 4

16 × 1
9 ≈ 2238.84 9-round AES-256 encryptions. Step 5 has a time com-

plexity of 2×2184×251× 4
16 × 1

9 ≈ 2230.84 9-round AES-256 encryptions. Step 6(a) has a time
complexity of 2×2200 ×227 × 2

16 × 1
9 ≈ 2221.84 9-round AES-256 encryptions. Step 6(b) has

a time complexity of 2×2224 ×[1+(1−2−14.42)+· · ·+(1−2−14.42)221 ]× 1
16 × 1

9 ≈ 2232.26

9-round AES-256 encryptions. Therefore, the attack has a total time complexity of approxi-
mately 2239.9 9-round AES-256 encryptions.

6 Conclusions

In this paper we have proposed a new cryptanalytic technique, called the impossible boomer-
ang attack, and have given an extension of this attack which applies in a related-key attack
scenario. The impossible boomerang attack can break 6-round AES-128, 7-round AES-192
and 7-round AES-256 in the single-key attack scenario, and the related-key impossible boo-
merang attack can break 8-round AES-192 and 9-round AES-256 in the two-key related-key
attack scenario. Note that trade-off versions between time and memory can be easily obtained
from these attacks by using the technique described in [36,39]. The presented cryptanalytic
results suggest a perspective never addressed before to look at the security of AES, exhibit-
ing some merits. The related-key impossible boomerang attack on 9-round AES-256 was the
first to achieve this amount of attacked rounds in the two-key related-key attack scenario, and
in this particular attack scenario the related-key impossible boomerang attacks on 8-round
AES-192 and 9-round AES-256 match the best currently known results for AES-192/256 in
terms of the numbers of attacked rounds.

The (related-key) impossible boomerang attack is a general cryptanalytic technique, and
can potentially be used to cryptanalyse other block ciphers except AES. Block cipher design-
ers should pay attention to this technique when designing ciphers.
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