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Abstract We investigate net proton fluctuations as impor-
tant observables measured in heavy-ion collisions within the
hadron resonance gas (HRG) model. Special emphasis is
given to effects which are a priori not inherent in a ther-
mally and chemically equilibrated HRG approach. In par-
ticular, we point out the importance of taking into account
the successive regeneration and decay of resonances after
the chemical freeze-out, which lead to a randomization of
the isospin of nucleons and thus to additional fluctuations
in the net proton number. We find good agreement between
our model results and the recent STAR measurements of the
higher-order moments of the net proton distribution.

1 Introduction

Relativistic heavy-ion collisions have contributed tremen-
dously to our understanding of strongly interacting matter
at high temperatures T and net baryon densities n(net)

B . The
energy densities, which are locally reached in the experi-
ments [1–6], are high enough to create a deconfined, strongly
coupled plasma of quarks and gluons, in accordance with
first-principle lattice QCD calculations [7,8]. The latter also
showed that the transition from this deconfined phase to con-
fined, hadronic matter is an analytic crossover for vanishing
n(net)
B [9]. In the confined phase, HRG model and lattice QCD

results agree remarkably well with each other for the equilib-
rium thermodynamics [10,11]. Moreover, within statistical
hadronization model analyses, experimental data on particle
production are quite successfully described by correspond-
ing thermal abundances calculated in HRG models with only
a few freeze-out parameters for all collision energies rang-
ing from AGS to the LHC; see e.g. [12–14] and references
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therein. Thereby, the application of HRG models to charac-
terize the bulk properties of hadronic matter is based on the
assumption that after hadronization a thermally and chemi-
cally equilibrated system of strongly interacting hadrons is
formed, which is well described in terms of a non-interacting
gas of hadrons and resonances [15].

Recently, fluctuation observables have attracted much
attention within theoretical and experimental studies. In fact,
(higher-order) moments of particle multiplicity distributions
provide an excellent opportunity to reveal more details of the
collision process and, thus, of the phase structure of QCD.
In particular, strictly conserved quantum numbers (charges)
of the strong interaction, like baryon number (B), electric
charge (Q) and strangeness (S) expressed in terms of their net
numbers N (net)

B , N (net)
Q , and N (net)

S , are of interest in heavy-
ion collisions. For the conjectured critical point, for exam-
ple, one expects a non-monotonic behavior in the fluctua-
tions of net baryon number and net electric charge [16–20].
Higher-order moments should be especially sensitive to crit-
ical phenomena if the correlation lengths grow in the vicinity
of the critical point [21]. However, non-equilibrium, dynam-
ical effects such as critical slowing down can limit the growth
of the correlation lengths [22] and thus influence the behav-
ior of the higher-order moments [23]. For vanishing n(net)

B
fluctuation observables have also received revived attention
because of the possibility to extract freeze-out parameters
from first principles by comparing experimental data to lat-
tice QCD results [24–27].

In 2010 and 2011, the RHIC facility has engaged in the
search for the critical point and the exploration of the QCD
phase diagram by running a beam energy scan program
with center-of-mass collision energies per nucleon-nucleon
pair of

√
s = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV.

Recently, results on the net-proton fluctuations in terms of
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ratios of higher-order cumulants of the net proton distribution
were reported [28]. Due to the fact that isospin fluctuations
remain finite at the critical point, the critical fluctuations in
the net baryon number are directly imprinted in the net pro-
ton fluctuations [29]. Sources of finite and non-equilibrium
fluctuations can, however, significantly hide the critical fluc-
tuations in the net proton number as compared to net baryon
number fluctuations [30,31].

Fluctuation observables have been investigated in various
theoretical baseline studies within the HRG model [32–35]
or in transport approaches [36,37]. In this work, we com-
pare different HRG model calculations of net proton fluctua-
tions in a grand-canonical ensemble study by systematically
including various refinements: a restriction from net baryon
number fluctuations to net proton fluctuations, the applica-
tion of experimentally realized kinematic cuts, an inclusion
of the effects of strong resonance decays as well as of isospin-
changing interactions of the nucleons with thermal pions after
the chemical freeze-out. This study is of importance for future
investigations of critical fluctuations produced in dynamical
models of heavy-ion collisions in two ways: it serves as a non-
critical baseline, and the considered refinements can also be
applied to critical fluctuations.

We treat resonance decays as in [32,34], but split the full
contributions of the decaying resonances to the final net-
proton fluctuations into two parts: an average and a proba-
bilistic part. The average contributions stem from the thermal
fluctuations in the numbers of resonances only, where fixed
numbers of decay products are assumed, which are deter-
mined by the average branching ratios. The additional, prob-
abilistic contributions account for the probabilistic character
of the decay process implying fluctuations in the actual num-
bers of decay products. From the average contributions only,
which we rederive via appropriate derivatives of the pressure,
we observe a significant deviation of the net proton fluctu-
ations from the Skellam limit. Considering furthermore the
probabilistic contributions from resonance decays as well as
isospin-changing scatterings of nucleons with thermal pions
via intermediate �-resonances, which both lead to additional
fluctuations in the net proton number, is, however, important.
A consistent treatment of these effects, especially of the lat-
ter via the Kitazawa–Asakawa (KA) formalism [30,31], can
reconcile HRG model calculations for net proton fluctuations
with the experimental data on the same level as net baryon
number fluctuations calculated in a full HRG model.

Besides the effects considered explicitly in this work, fur-
ther possible sources of fluctuations exist, which are impor-
tant when comparing to experimental data:

1. in heavy-ion collisions the global net baryon number, net-
electric charge and net strangeness are conserved exactly
and not only on average as in a grand-canonical ensemble.
This can cause large effects on the fluctuations [36,38].

In fact, it is only due to the limitations in the kinematic
acceptance that one can assume the measured data to be
describable within a grand-canonical ensemble. In stud-
ies using the UrQMD transport model, which accounts
for the micro-canonical nature of the individual scatter-
ings, it was shown that while net baryon number fluctu-
ations are strongly affected, the net proton fluctuations
are affected only at lower

√
s [36], which is in agree-

ment with the latest UrQMD calculations performed by
the STAR collaboration [28].

2. Experimental reconstruction efficiencies and impurities
also lead to fluctuations. The STAR net proton data in [28]
is corrected for reconstruction efficiencies, except for
the ratio of second- to first-order cumulants. Our stud-
ies showed that the difference between the uncorrected
and the corrected results for this ratio is negligible as
long as the reconstruction efficiencies for protons and
anti-protons exceed 70 %, which is the case for all

√
s.

For the corrections in the higher-order cumulants a bino-
mial distribution was assumed in [28]. The purity of the
proton sample is 98 %. In line with [39], one can esti-
mate that the remaining 2 %, assuming they are Poisson-
distributed, affect the results for the ratios of the third-
to second-order cumulants by 1 % and of the fourth- to
second-order cumulants only by 0.1 %.

This paper is organized as follows: in the next section we
discuss aspects of the HRG model, which is used through-
out this work. Section 3 presents step-by-step our results for
the ratios of the higher-order cumulants of the net proton
distribution including kinematic cuts, resonance decays and
isospin-changing reactions. Conclusions follow in Sect. 4.

2 Hadron resonance gas

We perform our study of net proton fluctuations within a HRG
model, which includes 113 mesons, 103 baryons and their
corresponding anti-baryons up to masses of approximately
2 GeV, as used in [40] for the construction of a QCD equation
of state. The equilibrium pressure P is given by the sum of
the partial pressures of all particle species i included in the
model

P/T 4 = 1

VT 3

∑

i

lnZM/B
mi (V, T, μB , μQ, μS) , (1)

where the natural logarithms of the grand-canonical parti-
tion functions ZM/B

mi for mesons (M, upper signs) and (anti-)
baryons (B, lower signs) are given by a momentum integral,

lnZM/B
mi = ∓ Vdi

(2π)3

∫
d3k ln(1 ∓ zi exp(−εi/T )) . (2)
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Here, the single-particle energy reads εi =
√
k2 + m2

i with
the particle mass mi , di is the degeneracy factor, V is the
volume and

zi = exp((BiμB + QiμQ + SiμS)/T ) ≡ exp(μi/T ) (3)

is the fugacity. In Eq. (3), the μX denote the chemical poten-
tials conjugate to the net densities of the conserved charges
X and Xi = Bi , Qi , Si represent the quantum numbers of
baryon charge, electric charge and strangeness of each parti-
cle species. The partial derivative of the pressure with respect
to the particle chemical potential μi gives the density of par-
ticles i ,

ni (T, μi ) = di
(2π)3

∫
d3k fFD/BE(T, μi ) (4)

with the Fermi–Dirac (FD) or Bose–Einstein (BE) distribu-
tion function fFD/BE for (anti-)baryons or mesons. Summing
ni multiplied by Xi over all particle species i , one obtains the
net-density of the conserved charge X , n(net)

X = ∑
i Xi ni ≡∑

i Xi 〈Ni 〉/V , which corresponds to ∂P/∂μX |T .
In a HRG model, particles are usually considered as point-

like, a point of view which we also take. The influence of
repulsive van-der-Waals forces on the fluctuations, included
in the model in form of excluded volumes of the particles,
has been discussed in [34].

The chemical composition of a HRG in local thermal and
chemical equilibrium is then determined by the indepen-
dent chemical potentials μi of each individual species, their
masses and the temperature. Due to the rapid expansion of the
created matter, however, the density decreases, which leads to
an enhancement of the particle mean free path. At a given set
of thermodynamic parameters (T fo, μfo

B , μfo
Q, μfo

S ), reactions
like baryon–anti-baryon annihilation (e.g. p p̄ → πππππ )
or pion production (e.g. Nπ → N∗(1520) → �π → Nππ

and ππ → ωπ → ππππ ) and their corresponding back-
reactions become too rare to maintain chemical equilib-
rium among different particle species. This set of parameters
describes the chemical freeze-out, an instant at which chemi-
cal equilibrium is lost, the chemical composition of the gas is
frozen-out and after which only elastic scatterings occur fre-
quently enough to maintain local thermal equilibrium until
even these become too rare and the particles start to stream
freely after the kinetic freeze-out.

A more realistic picture of the hadronic stage assumes
that chemical equilibrium is not completely lost just after
the chemical freeze-out [41]: as long as T is high enough,
specific reactions in the form of resonance regenerations and
decays, (e.g. ππ → ρ → ππ , Kπ → K ∗ → Kπ , and
pπ → � → pπ ), continue to occur at a significant rate.
Resonances are consequently still in chemical equilibrium
with their decay products. However, the final numbers N̂h

(i.e. primordial numbers as present at the chemical freeze-out
plus resonance decay contributions) of those hadron species
h, which do not decay strongly within the duration of the
hadronic stage, are conserved because the aforementioned
particle number changing reactions are inefficient after the
chemical freeze-out. The hadronic matter is, thus, in a state
of partial chemical equilibrium. Consequently, the chemical
potentials of all stable hadrons, μh , become T -dependent,
while the chemical potentials of the resonances, μR , become
functions of the μh via μR = ∑

h μh〈nh〉R . Here, the sum
runs over all stable hadrons and 〈nh〉R ≡ ∑

r b
R
r nR

h,r is the
decay-channel averaged number of hadrons h produced in the
decay of resonance R, where bRr is the branching ratio of the
decay-channel r of R and nR

h,r = 0, 1, . . . is the number of
h formed in that specific decay-channel. With decreasing T ,
eventually all resonances decay either directly or via a decay
chain into stable hadrons and are not regenerated anymore.

In this work, the chemical freeze-out parameters are taken
as an input. According to [13], the temperature is described
by a polynomial function of μB via

T fo(μfo
B ) = a − b (μfo

B )2 − c (μfo
B )4 (5)

with a = (0.166±0.002) GeV, b = (0.139±0.016) GeV−1,
and c = (0.053 ± 0.021) GeV−3. The baryon-chemical
potential itself is given as a function of

√
s in the form

μfo
B (

√
s ) = dB

1 + eB
√
s

, (6)

with dB = (1.308 ± 0.028) GeV and eB = (0.273 ±
0.008) GeV−1. The

√
s-dependence of the electric charge

and strangeness chemical potentials, μQ and μS , has to be
determined from requiring [33]

n(net)
S (T, μB , μQ, μS) = 0 , (7)

n(net)
Q (T, μB , μQ, μS) = x n(net)

B (T, μB , μQ, μS) . (8)

These conditions reflect the situation in a heavy-ion collision,
namely the net strangeness neutrality and the ratio of protons
to baryons x 	 0.4 for Au + Au and Pb + Pb collisions present
in the initial state. The equality for n(net)

Q in Eq. (8) takes also
into account that due to the lack of stopping at high beam
energies the interesting mid-rapidity region is almost isospin
symmetric. This is ensured through the

√
s-dependence of

μB and the correspondingly small n(net)
B at high

√
s. In

the same form as in Eq. (6), μfo
Q and μfo

S can be approxi-
mated parametrically as functions of

√
s. The parameters in

our HRG model approach are dQ = −0.0202 GeV, eQ =
0.125 GeV−1 and dS = 0.224 GeV, eS = 0.184 GeV−1.
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3 Fluctuations in a hadron resonance gas

The susceptibilities describing fluctuations in the number of
particles of species i in a thermally and chemically equili-
brated HRG are defined by derivatives of the scaled pressure
in Eq. (1) with respect to the corresponding particle chemical
potential

χ
(i)
l = ∂ l(P/T 4)

∂(μi/T )l

∣∣∣∣
T

(9)

and can be related to the cumulants of the distribution of that
particle species via

χ
(i)
1 = 1

VT 3 〈Ni 〉c = 1

VT 3 〈Ni 〉 , (10)

χ
(i)
2 = 1

VT 3 〈(�Ni )
2〉c = 1

VT 3 〈(�Ni )
2〉 , (11)

χ
(i)
3 = 1

VT 3 〈(�Ni )
3〉c = 1

VT 3 〈(�Ni )
3〉 , (12)

χ
(i)
4 = 1

VT 3 〈(�Ni )
4〉c

≡ 1

VT 3

(
〈(�Ni )

4〉 − 3〈(�Ni )
2〉2

)
, (13)

where the first three cumulants are equal to the correspond-
ing central moments, while the fourth cumulant is given by
a combination of fourth and second central moments, and
�Ni = Ni − 〈Ni 〉.

For an equilibrium HRG model in the grand-canonical
ensemble formulation, thermally produced and non-interac-
ting particles and anti-particles are uncorrelated. Thus, the
susceptibilities of the net-distributions can be expressed via
the susceptibilities of particle and anti-particle distributions
as

χ
(net,i)
l = χ

(i)
l + (−1)l χ

(ī)
l . (14)

Particular ratios of the susceptibilities can be expressed in
terms of the mean M = 〈N 〉, the variance σ 2 = 〈(�N )2〉,
the skewness S = 〈(�N )3〉/〈(�N )2〉3/2 and the kurtosis
κ = 〈(�N )4〉/〈(�N )2〉2 − 3, for example

χ2

χ1
= σ 2

M
,

χ3

χ2
= Sσ,

χ4

χ2
= κσ 2. (15)

In these ratios, the experimentally unkown volume term can-
cels on average as well as the dependence on the particle
numbers due to the central limit theorem. In general, vol-
ume fluctuations due to fluctuations in the initial collision
geometry can influence the cumulant ratios [42].

In Fig. 1, we compare the ratios in Eq. (15) evaluated for
different degrees of refinements of the HRG model to the
STAR data for central (0–10 %) collisions [28]. For the full
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Fig. 1 Beam energy dependence of the susceptibility ratios χ2/χ1
(upper panel), χ3/χ2 (middle panel) and χ4/χ2 (lower panel) which
are connected to the experimental observables as in Eq. (15). The full
squares depict experimental data on net proton fluctuations as measured
by the STAR collaboration [28] for the two most central collision classes
(0–10 %). These are compared to specific HRG model results: empty
circles show the susceptibility ratios for the net baryon number fluctu-
ations in our full HRG model containing 103 baryon species and their
anti-baryons. The empty triangles show the corresponding ratios for the
net proton fluctuations considering primordial protons and anti-protons
only, while the empty squares highlight the additional, negligibly small
influence of applying kinematic cuts as explained in the text. The solid
curves show the corresponding Skellam limits for a Boltzmann gas of
baryons and anti-baryons

HRG model, we calculate the susceptibility ratios for the net
baryon number, to which all 103 baryons included in the
model and their anti-baryons contribute. One finds a rather
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good agreement with the experimental data with some devia-
tions around the dip in κσ 2, for the lower beam energies in Sσ

and for the
√
s = 200 GeV data point in σ 2/M . Our results

also agree nicely with the ones obtained in [33] and with the
same quantities calculated within the Boltzmann approxima-
tion to the HRG model, which gives a good description for
(mi − μB)/T 
 1. In this approximation the primordial
net baryon and net proton distributions are given by Skellam
distributions, as indicated for net baryon number by the solid
curves in Fig. 1. If one restricts the particle sample to pri-
mordial protons and anti-protons, the results remain similar
to those for the net baryon number fluctuations in the full
HRG model. Small differences are seen only for high

√
s in

σ 2/M , for intermediate
√
s in Sσ and for low

√
s in κσ 2.

3.1 Experimental cuts

The experimental phase-space coverage is limited in rapid-
ity y and transverse momentum kT according to the detector
design and the demands from reconstruction efficiency and
particle identification. In their recent analysis [28], the STAR
collaboration considered the following kinematic acceptance
cuts: |y| ≤ 0.5 and 0.4 GeV ≤ kT ≤ 0.8 GeV with full
azimuthal, i.e. φ = 2π , coverage. For a meaningful compar-
ison with the experimental data one should, therefore, aim at
including these cuts in the model calculations, too.

In [35], it was proposed to model acceptance cuts by lim-
iting the integration range in Eqs. (2) and (4) accordingly.
To this aim, the momentum variables (kx , ky, kz) are trans-
formed into (kT , y, φ), which implies replacing the integra-

tion measure d3k by kT
√
k2
T + m2

i cosh(y) dkT dy dφ and the

single-particle energies εi by cosh(y)
√
k2
T + m2

i . By apply-
ing the same strategy for primordial protons and anti-protons,
we obtain results for the net-proton fluctuations as shown in
Fig. 1. In the Boltzmann approximation to the HRG model
one can separate the fugacity factors from the momentum
integrals. One thus expects that the influence of cuts in y
and kT is negligible, since in this approximation the cutted
integrals cancel in the considered cumulant ratios of the net
proton distribution. This observation is indeed made in Fig. 1
and remains true for all following refinements of the HRG
model, which we investigate in this paper. We note here that
while in our model approach all momentum integrals are
evaluated at the chemical freeze-out, the final kinematics,
which is subject to the acceptance cuts, is determined at the
lower, kinetic freeze-out temperature. In principle, a study
of the evolution of the thermal distributions of the particles
until the kinetic freeze-out, taking elastic scatterings in the
thermally equilibrated hadronic phase into account, would
be needed in order to implement the kinematic cuts more
realistically.

3.2 Resonance decays

Resonances play an important role in the evolution of the cre-
ated strongly interacting, hadronic matter and their decays
can significantly influence the final numbers of the stable
hadrons as well as fluctuations therein. Just after the chemi-
cal freeze-out, when the matter is in a state of partial chemical
equilibrium, the μR depend on the μh . This dependence pro-
vides a means to derive the average influence of the resonance
decays on the fluctuations in the final particle numbers: con-
sidering the derivative of P/T 4 with respect to μh/T as in
Eq. (9), but keeping in mind that only the chemical potentials
μh are independent of each other, while the μR depend on
μh , one arrives at

VT 3 ∂(P/T 4)

∂(μh/T )

∣∣∣∣
T

= 〈Nh〉 +
∑

R

〈NR〉〈nh〉R . (16)

This is equivalent to the mean of the final number 〈N̂h〉 of
the stable hadron species h after resonance decays discussed
in Sect. 2 [41]. In Eq. (16), 〈Nh〉 and 〈NR〉 denote the means
of the primordial numbers of hadrons and resonances and
the sum runs over all the resonances in the model. In agree-
ment with the QCD equations of state constructed in [43], we
consider here 26 different particle species as stable, namely

π0, π+, π−, K+, K−, K 0, K
0
, η as well as p, n, 0, �+,

�0, �−, �0, �−, �−, and their anti-baryons. This implies
that contributions stemming from weak decays are not taken
into account, which is in accordance with the experimental
analysis [28].

In the following, we concentrate on the fluctuations in the
final numbers of protons and anti-protons only. Making use
of the μp-dependence of the μR , the cumulants of the final
distribution of protons (the same expressions hold for anti-
protons when p is replaced by p) follow from derivatives of
P/T 4 with respect to μp/T and read

〈N̂p〉 = 〈Np〉 +
∑

R

〈NR〉〈n p〉R , (17)

〈(�N̂p)
2〉 = 〈(�Np)

2〉 +
∑

R

〈(�NR)2〉〈n p〉2
R , (18)

〈(�N̂p)
3〉 = 〈(�Np)

3〉 +
∑

R

〈(�NR)3〉〈n p〉3
R , (19)

〈(�N̂p)
4〉c = 〈(�Np)

4〉c +
∑

R

〈(�NR)4〉c〈n p〉4
R . (20)

The related susceptibilities are given by

χ̂
(p)
l = χ

(p)
l +

∑

R

χ
(R)
l 〈n p〉lR . (21)

123



573 Page 6 of 10 Eur. Phys. J. C (2015) 75 :573

These expressions account for the contributions arising from
the thermal fluctuations in the numbers of primordial reso-
nances if one assumes fixed, average numbers of produced
protons as determined by the branching ratios of the reso-
nance decays.

Resonance decays are, however, probabilistic processes.
For example, the decay of the resonance �+(1232) yields
only on average 〈n p〉�+ protons, 〈nn〉�+ neutrons, 〈nπ+〉�+
positive pions and 〈nπ0〉�+ neutral pions, where we use
〈n p〉�+ = 0.669, 〈nn〉�+ = 0.331, 〈nπ+〉�+ = 0.331,
and 〈nπ0〉�+ = 0.663. In reality, the actual numbers of
decay products follow a multinomial distribution, which
itself results in fluctuations in the final particle numbers. In
order to take this into account one is required to go beyond
thermal derivatives. The full impact of resonance decays was
studied for the first two cumulants in [32] and for the third
and fourth cumulant in [34] starting from the general proba-
bility distribution for the decay of resonances. For a grand-
canonical ensemble, the corresponding cumulants of the final
proton distribution read

〈N̂p〉 = 〈Np〉 +
∑

R

〈NR〉〈n p〉R , (22)

〈(�N̂p)
2〉 = 〈(�Np)

2〉 +
∑

R

〈(�NR)2〉〈n p〉2
R

+
∑

R

〈NR〉〈(�n p)
2〉R , (23)

〈(�N̂p)
3〉 = 〈(�Np)

3〉 +
∑

R

〈(�NR)3〉〈n p〉3
R

+ 3
∑

R

〈(�NR)2〉〈n p〉R〈(�n p)
2〉R

+
∑

R

〈NR〉〈(�n p)
3〉R , (24)

〈(�N̂p)
4〉c = 〈(�Np)

4〉c +
∑

R

〈(�NR)4〉c〈n p〉4
R

+ 6
∑

R

〈(�NR)3〉〈n p〉2
R〈(�n p)

2〉R

+
∑

R

〈(�NR)2〉
[

3 〈(�n p)
2〉2

R

+ 4 〈n p〉R〈(�n p)
3〉R

]

+
∑

R

〈NR〉〈(�n p)
4〉R,c . (25)

In general, the factors 〈(�nh)2〉R , 〈(�nh)3〉R , and
〈(�nh)4〉R,c vanish exactly for those resonances, which have
only one decay-channel, or for which the number of formed
hadrons nR

h,r of species h is the same in each decay-channel r .
For protons this is the case for �++(1232) and �++(1930),
which only have one decay-channel, and for all mesonic

resonances because they do not decay into protons. Equa-
tions (22)–(25) clearly contain the average fluctuation contri-
butions from resonance decays as derived above in Eqs. (17)–
(20).

Two remarks are in order here. First, since in our frame-
work primordial protons and anti-protons are uncorrelated,
and no baryonic (anti-baryonic) resonance decays into an
anti-proton (proton), the formula of independent production
in Eq. (14) remains valid for the susceptibilities of the net
proton distribution even when resonance decays are included.
Second, we apply the same kinematic cuts to the resonances
as to the primordial protons and anti-protons although exper-
imentally the decay products are subject to the kinematic
acceptance cuts. In general, the kinematics is different for the
decay products and for the resonances. A Monte-Carlo study
in [44] showed, however, that for cuts in rapidity this differ-
ence has only a negligible influence of less than 1 % on the
results. In addition, due to the elastic scatterings in the ther-
mally equilibrated hadronic phase it seems to be more likely
that the kinematic cuts affect the primordial (anti-)protons in
the same manner as the (anti-)protons stemming from reso-
nance decays.

In Fig. 2, the influence of resonance decays on the net-
proton fluctuations is exhibited and contrasted with our
results for primordial protons and anti-protons without res-
onance decay contributions as shown in Fig. 1. The average
contributions of the resonance decays result in large devia-
tions from our results for the net baryon number fluctuations
in the full HRG model (up to 20 % in σ 2/M , 10 % in Sσ and
20 % in κσ 2, cf. Fig. 1). This is a consequence of the fact that
for most of the proton-producing resonances 0 < 〈n p〉R < 1,
such that the resonance decay contributions in Eqs. (17)–(21)
induce significant differences from Poissonian behavior in
the final proton (and equivalently anti-proton) susceptibili-
ties (most easily seen in the lower panel of Fig. 2, where with
the average resonance decay contributions κσ 2 < 1). Com-
paring to the experimental data one arrives at slightly differ-
ent conclusions for the different susceptibility ratios: while
the agreement with the data for σ 2/M is globally worsened,
the description of Sσ at lower beam energies improves. For
κσ 2 the deviations from the Skellam limit are clearly seen.
The agreement with the data is slightly improved at lower√
s, where the error bars are large, and worse at higher

√
s.

The additional, probabilistic contributions balance the
effect of the average resonance decay contributions and the
final net proton fluctuations with the full impact of resonance
decays come close to the original results for the primordial
net proton fluctuations. This is a consequence of the fact that
for each resonance R the actual number nR

p,r of produced pro-
tons for a given decay-channel r is either 0 or 1 (similarly for
anti-protons) such that 〈nlp〉R ≡ ∑

r b
R
r (nR

p,r )
l = 〈n p〉R . We

stress that this situation is notably different for pions. Within
the Boltzmann approximation, the full resonance decay con-
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Fig. 2 Similar to Fig. 1, but considering additional refinements of the
HRG model calculations: the empty squares show the same as in Fig. 1,
while the empty diamonds highlight the average influence of the reso-
nance decays on the net-proton fluctuations. The empty triangles show
the full impact of resonance decays, including the probabilistic contri-
butions

tributions to each cumulant in the Eqs. (23)–(25) individually
add then up to

∑
R〈NR〉〈n p〉R , as in Eq. (22), such that the

final proton (or anti-proton) number follows the Poisson dis-
tribution.

3.3 Isospin randomization

In addition to the resonance decays further important interac-
tions take place after the chemical freeze-out. Notably, pro-
cesses of the form

p(n) + π0(π+) → �+ → n(p) + π+(π0) , (26)

p(n) + π−(π0) → �0 → n(p) + π0(π−) (27)

via an intermediate �-resonance [preferably �(1232)] can
change the isospin identity of the nucleons in the hadronic
phase. Similar processes occur for the anti-nucleons. These
reactions do not alter average quantities and are, thus, irrel-
evant for statistical hadronization model fits to the ratios of
particle yields, but they certainly affect the higher-order fluc-
tuations. Due to this additional source of stochastic fluctua-
tions one can expect that any original distribution of (anti-)
protons will be pushed closer toward the Poisson limit.

The importance of the above final state interactions for
relating the measured net proton fluctuations to the theo-
retically more interesting net baryon number fluctuations
has first been realized in [30,31]. The probability that after
one cycle of the processes in Eqs. (26) and (27) a nucleon
(anti-nucleon) has changed its isospin identity is 4/9. After
two cycles this probability is approximately 50 %. Thus, the
(anti-)nucleon isospin gets completely randomized if one can
assume that the (anti-)nucleons undergo at least two of these
cycles in the hadronic phase between chemical and kinetic
freeze-out. The number of protons among a given number
of nucleons is then given by a binomial distribution and the
probability distributions for the numbers of protons, anti-
protons, neutrons and anti-neutrons factorize.

In order to be efficient, the isospin randomization requires
short mean times for the processes in Eqs. (26) and (27)
compared to the duration of the stage between chemical
and kinetic freeze-out. While the regeneration time for the
�(1232)-resonances depends crucially on the pion den-
sity and is approximately 3–4 fm in the temperature range
between 150–170 MeV [30,31], their lifetimes are about
1.8 fm. According to the transport calculations in [45], the
pion density and the duration of the hadronic phase are suf-
ficient to fully randomize the isospin of the nucleons for√
s � 10 GeV, cf. [30,31]. At top-RHIC energy, STAR mea-

surements [46,47] suggest, however, that the system expands
very fast and that the duration of the hadronic stage is only
of about 4–6 fm. Full isospin randomization might, thus, no
longer be achieved at top-RHIC and LHC energies. We do
not discuss this question further but present our results as an
upper limit for the impact of the isospin randomization at all
beam energies considered in this work.

While the main purpose of the work in [30,31] was to
obtain the net baryon number fluctuations from the net proton
fluctuations, here, we apply Eqs. (36)–(40) from Ref. [31] in
order to reconstruct the net proton fluctuations. In these equa-
tions, we use the cumulants of the nucleon and anti-nucleon
distributions instead of the cumulants of the baryon and anti-
baryon distributions because weak decays are excluded in
our approach. For the final nucleon number N̂N = N̂p + N̂n ,

123



573 Page 8 of 10 Eur. Phys. J. C (2015) 75 :573

10010

√s [GeV]

0

2

4

6

8

10

χ 
 /χ

STAR 0-10%
p* + av. decays + cuts
p* + av. decays + KA + cuts
p* + decays + KA + cuts

2
1

10010

√s [GeV]

0

0.2

0.4

0.6

0.8

1

χ 
 /χ

STAR 0-10%
p* + av. decays + cuts
p* + av. decays + KA + cuts
p* + decays + KA + cuts

3
2

10010

√s [GeV]

0

0.2

0.4

0.6

0.8

1

1.2

χ 
 /χ

STAR 0-10%
p* + av. decays + cuts
p* + av. decays + KA + cuts
p* + decays + KA + cuts

4
2

Fig. 3 Similar to Fig. 1, but comparing three different HRG model
calculations for net proton fluctuations with each other: the empty dia-
monds depict the same results as in Fig. 2, while the plus-signs show
the additional impact of the isospin randomization described by the
Kitazawa–Asakawa (KA) formalism. Results for the KA-formalism
with full resonance decay contributions as input are shown as crosses

including the average contributions from resonance decays,
the related susceptibilities follow from

χ̂
(N )
l = χ

(p)
l + χ

(n)
l +

∑

R

χ
(R)
l

(〈n p〉R + 〈nn〉R
)l

. (28)

For l > 1, the cumulants of the final nucleon distribution
are, thus, not a simple sum of the final proton and neutron
cumulants. In fact, for all non-strange baryonic resonances
the sum 〈n p〉R + 〈nn〉R = 1, such that the final nucleon

cumulants are essentially given by the sum of the primor-
dial proton, neutron and proton- and/or neutron-producing
resonance cumulants.

In Eq. (28), the probabilistic decay contributions are not
included, since they are suppressed when we consider pro-
tons and neutrons (similarly anti-protons and anti-neutrons)
together. In fact, only excited strange baryons, e.g. (1520),
which decay for example into �π , (�)ππ or p(n)K in dif-
ferent decay-channels, would contribute to the probabilistic
part. In the effective description of complete isospin random-
ization the probabilistic decay of the �-resonances is already
included and it can be assumed that the additional effect of
the probabilistic decay of further resonances as input to the
KA-modifications is small.

In Fig. 3, we show our results which include the isospin
randomization via �-resonance regeneration and decay. This
effect is implemented independently of the beam energy. We
observe a substantial improvement in the agreement with
the data for σ 2/M in comparison with the previous scenario
(i.e. primordial net protons plus average decay contributions
and cuts), although for

√
s = 200 GeV our result is above the

measured value. This deviation is, however, smaller than the
one for the net baryon number fluctuations in the full HRG
model (cf. upper panel of Fig. 1). The description of the
experimental data for Sσ at lower

√
s is less good than in the

previous scenario, but comparable with the full HRG model
(cf. middle panel of Fig. 1). For higher

√
s the experimental

data for κσ 2 is described slightly better than in the previ-
ous scenario. Overall, the global agreement with the data is
slightly improved compared to the net baryon number fluctu-
ations in the full HRG model (cf. Fig. 1) due to the improved
description of σ 2/M . We have checked that the probabilistic
decay contributions to the nucleon susceptibilities as input
for the KA-modifications has only a small additional effect
as seen by comparing the plus-signs and the crosses in Fig. 3.
We note, again, that the Kitazawa–Asakawa (KA) formalism
is limited to

√
s � 10 GeV and should, most likely, not be

applied to the lowest beam energy of
√
s = 7.7 GeV included

in this study.

4 Conclusions

In this paper, we investigated systematically the influence of
various refinements in the HRG model calculation of net pro-
ton fluctuations and compared our results to the recent STAR
data in [28]. Starting from the net baryon number fluctuations
in our full HRG model containing 103 baryon species and
their anti-baryons, we restricted the sample to primordial pro-
tons and anti-protons and determined the corresponding net
proton fluctuations. For the considered freeze-out parame-
ters, these results agree well with the experimental data and
are close to the Skellam limit.
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Unlike in studies of the conserved charges of QCD, res-
onance decays can become important for restricted particle
samples. We find that the average contributions from reso-
nance decays are derivable within the framework of a HRG in
partial chemical equilibrium. They induce significant devia-
tions from Poissonian behavior in the (anti-)proton suscep-
tibilities and worsen the agreement with the data for σ 2/M .
On the contrary, the probabilistic character of the decay pro-
cess, which cannot be accounted for by thermal derivatives,
restores the results toward the Poisson limit by adding an
additional source for fluctuations. A limitation of the momen-
tum integrals in accordance with the kinematic acceptance
cuts does not lead to visible changes of our results.

Finally, we applied the Kitazawa–Asakawa formalism [30,
31] in order to reconstruct the net proton susceptibilities from
the nucleon and anti-nucleon susceptibilities, for which we
either took only the average or the full resonance decay
contributions into account. In this way, the effect of the
isospin randomization of (anti-)nucleons via intermediate �-
resonance regeneration and decay on the final net proton fluc-
tuations was analyzed quantitatively for the first time. We find
that the agreement with the experimental data for σ 2/M is
mostly improved compared to the situation where only the
average influence of the resonance decays is considered. The
non-Poissonian signature inκσ 2 induced by the average reso-
nance decay contributions is obviously smoothed out through
additional stochastic components such as resonance regen-
eration effects. We note that these results represent an upper
limit obtained under the assumption of full isospin random-
ization in the hadronic phase for all

√
s. The application of

the KA-formalism was straightforward as all ingredients are
directly calculable within the HRG model. By including all
of these refinements we did not change a basic feature of the
HRG model, namely the possibility of describing fluctuation
observables with only two parameters, the freeze-out tem-
perature, T fo, and the freeze-out baryon-chemical potential,
μfo
B .
We note that other non-critical effects on fluctuation

results like volume fluctuations, efficiency corrections, exc-
luded volume corrections in a HRG model and the global
baryon-number conservation have the tendency to be more
important for the ratios of higher-order susceptibilities and
for lower

√
s. The separate impact of resonance decay and

regeneration, in contrast, shows up already in the lowest-
order ratio, χ2/χ1, as discussed in this work.

Our reconstructed results for the net proton fluctuations in
Fig. 3 agree also very nicely for most of the beam energies
with all three susceptibility ratios of the net baryon num-
ber fluctuations in Fig. 1. The good agreement of the latter
calculated in a full HRG model with the net proton fluc-
tuations measured by the STAR collaboration can, thus, be
understood as a combined impact of resonance decays and
isospin randomization in the hadronic phase after the chemi-

cal freeze-out. This may also be seen as a reinforcement that
any contribution going beyond a fully equilibrated hadron
resonance gas could be washed out in the net proton fluctu-
ations as pointed out in [30,31].

In future work it will be interesting to investigate how res-
onance decays and isospin randomization affect fluctuation
signals from a potential phase transition, in particular the
QCD critical point.
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