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Abstract This note addresses the tracking problem for model predictive control. It
presents simple procedures for both linear and nonlinear constrained model predictive
control when the desired equilibrium state is any point in a specified set. The resultant
region of attraction is the union of the regions of attraction for each equilibrium state
in the specified set and is therefore larger than that obtained when conventional model
predictive control is employed.

Keywords Model predictive control · Tracking · Equilibrium state · Region of
attraction

1 Introduction

Model predictive control of a dynamic systemdetermines the current control by solving
a finite horizon optimal control problem; the optimization yields the optimal control
sequence that satisfies the state and control constraints as well as a terminal state
constraint. The control applied to the system is the first element of the optimal control
sequence. Because the optimal control problem has a finite horizon, the implicit model
predictive control law is not necessarily stabilizing. To overcome this obstacle, one
of two approaches is usually adopted; either the optimal control problem is modified
by the addition of a terminal cost and constraint [1] or a sufficiently large horizon is
chosen [2]. With the first approach, for each horizon, the feasible set for the optimal
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control problem (the set of states for which there exists a control sequence satisfying
all constraints) is control invariant (if the terminal constraint set is control invariant)
and is a subset of the feasible set for a larger horizon, a feature that ensures recursive
feasibility. The size of the feasible set, which is also the region of attraction, depends
on the terminal constraint set and can be smaller than desired if the terminal constraint
set is small.

In the literature, a variety of approaches to the problem of enlarging the region of
attraction, including increasing the horizon length [3], has therefore been proposed. In
[4], a version of model predictive control that can cope with a family of set-points is
developed; pseudo-linearization is employed to yield a transformed system that has the
same linearization at each set-point in the family, permitting use of the same terminal
set and terminal penalty for each set-point. In [5], the single terminal constraint set
is replaced by a nested set of three terminal sets in which the first set is the terminal
constraint set and each set is a subset set of its successor; each point in any set in
the sequence can be steered into the preceding set by an admissible control. In the
optimal control problem solved online, the last terminal set is employed at the initial
time, the last but one set at the next time, followed by the second last and, thereafter,
the conventional terminal set. The implicit model predictive control law is therefore
time-varying in the first few iterations during which the optimal cost can increase. The
domain of attraction is now the set of states that can be steered by an admissible control
into the third set in the sequence; this is clearly larger than the region of attraction for
conventionalmodel predictive control. In [6], an enlargement of the region of attraction
is obtained by constraining the unstable states to a set of states that can be controlled
to the terminal set in a fixed number of steps. In [7,8], the terminal set and, hence,
the region of attraction is enlarged by using a local saturating control law in place of
the conventional linear control law in the terminal constraint set. A larger terminal
region can also be obtained by employing a detuned local control law in the terminal
set at the price of losing local optimality as shown in [9]. An alternative approach for
linear systems is interpolation-based MPC, discussed in [9], in which a set of local
stabilizing controllers is employed togetherwith their associated invariant sets inwhich
all constraints are satisfied. Each of these sets could serve as a terminal constraint set.
A larger terminal set that is the convex hull of these sets is obtained by expressing
the current state as a convex combination of states in these sets and employing the
local control law that is the same convex combination of the associated controls. The
interpolation procedure is extended in [10] in which a set of state trajectories, each
terminating in a standard terminal constraint set, is computed. For each trajectory,
the terminal constraint set is translated and scaled; the scaling is chosen to ensure
satisfaction of the state and control constraints in each set. The enlarged terminal set is
the convex hull of these translated and scaled sets. A similar but simplified approach
is adopted in [11] where a single trajectory is employed. For each state in this single
trajectory, a set is chosen to ensure satisfaction of the state and control constraints. The
terminal set is then defined by the convex hull of these sets. Attention has also been
given [12–14], to the problem of increasing the region of attraction in the context of
the tracking problem. Very recently, a method for increasing the region of attraction
for conventional and economic MPC [15] has been proposed and analysed.
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The main purpose of this paper is to present simple methods for increasing the
region of attraction to any desired equilibrium state in a given set since simplicity
is an important requirement in many process applications. The method bears some
resemblance to phase 1–phase 2 algorithms [16, §2.6] for constrained optimization in
which, in the first phase, the algorithm satisfies the constraints and, in the second phase,
minimizes the cost function while maintaining feasibility. It therefore also has some
resemblance to dual-mode model predictive control as proposed in [17] for tracking
in that, in the initial stages of the algorithm when the terminal constraint is not satis-
fied, the controller acts to satisfy this constraint even if, as a consequence, the optimal
cost increases. Although developed independently, the proposed methods for linear
systems are similar in some respects to the procedure described in [18, Chapter 5]
and [19] that addresses a different problem, distributed economic model predictive
control. Whereas our algorithm generates a sequence of set-points converging to a
neighbourhood of a known set-point, the algorithm in [19] does not assume the eco-
nomic set-point is known; instead, a sequence of set-points converging to the economic
set-point is computed by a distributed optimization algorithm. Bothmethods therefore
require generation of a sequence of terminal constraint sets; the centre of each terminal
constraint set is the ‘virtual’ set-point that converges to, or approaches, the desired set-
point ([19] does not employ the term ‘virtual set-point’). In [19], to ensure recursive
feasibility, the size of the terminal constraint set is reduced at each time. In this paper,
both the centre (the virtual set-point) and size of the terminal constraint set is altered
(kept constant in Linear Control Algorithm 1 and increased or decreased in Linear
Control Algorithm 2) at each iteration to ensure recursive feasibility; the virtual set-
point reaches the desired set-point in finite time. A similar procedure is also employed
in [14]. A more detailed comparison of the two methods and their similarities and
differences is given in Sect. 2.1 after relevant notation has been defined.

2 Increasing the Region of Attraction for Constrained Systems

In the sequel, we use f (·) to denote a function irrespective of the number of its
arguments. B(x, c) denotes {z : |z − x | ≤ c}. For any two integers i, j, Ii : j denotes
{i, i + 1, i + 2, . . . , j − 1, j}.

The system to be controlled is described by

x+ = f (x, u) y = h(x) (1)

Given a reference r∗ ∈ R, R a compact subset of Rp, the control objective is to
stabilize the equilibrium state xr∗ . For each r ∈ R, the corresponding equilibrium pair
(xr , ur ) is defined as the solution, if it exists, of

xr = f (xr , ur ), y = h(xr ) = r (2)

For simplicity, we assume that y and u have the same dimension and that Eq. (2)
has a unique solution ur = φu(r), xr = φx (r) for all r ∈ R; in the linear case
(i.e. x+ = Ax + Bu, y = Cx), φu(·) and φx (·) are linear (φu(r) = Mur, φx (r) =
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Mxr ) and our assumption is equivalent to the assumption that the zero frequency gain
G(0) = C(I − A)−1B is non-singular. If a solution to (2) does not exist, there does not
exist a constant u such that y(t) = r for all t . The analysis can be extended to the case
when there are more outputs than inputs [20, §1.5.1]. The system is subject to state and
control constraints x ∈ X and u ∈ U. It is assumed that R satisfies (xr , ur ) ∈ X × U

for all r ∈ R and that X is polyhedral and that U is a polytope. For each (x, r), the
optimal control problem PN (x, r) solved on line is

V 0
N (x, r) = min

u
{VN (x, r,u) : u ∈ UN (x, r)} (3)

in which

VN (x, r,u) :=
N−1∑

i=0

�
(
xu(i; x), r, u(i)

) + V f
(
xu(N ; x), r) (4)

and, for i = 0, 1, . . . , N , xu(i; x) denotes the solution of x+ = f (x, u) at time i
with x(0) = x and input u := {u(0), u(1), . . . , u(N − 1)}; the corresponding state
sequence is xu := {xu(0; x), xu(1; x), . . . , xu(N ; x)} with xu(0; x) = x . The stage
cost �(x, r, u) := (1/2)|x − xr |2Q + (1/2)|u − ur |2R where Q and R are positive
definite. Also, UN (x, r) is the set of control sequences u that, given (x, r), satisfy the
state and control constraints and the terminal constraint xu(N ; x) ∈ X f (r) := {x ∈
R
n : V f (x, r) ≤ cr } for some cr > 0:

UN (x, r) := {
u : u(i) ∈ U, xu(i; x) ∈ X, i ∈ I0:N−1, x

u(N ; x) ∈ X f (r)
}

(5)

The control applied to the system is u0(0; x, r), the first element of u0(x, r); the
implicit model predictive control law is, therefore, κN (·) defined by κN (x, r) :=
u0(0; x, r). Let xκN (i; x, r) denote the solution at time i of the closed loop system
x+ = f κN (x, r) := f (x, κN (x, r)) if the initial state at time 0 is x . The equilibrium
state is asymptotically stablewith a region of attraction XN (r) := {x : UN (x, r) �= ∅}
for the closed loop system if the terminal ‘ingredients’ X f and V f (·) satisfy the usual
stability condition:

Stability Condition V f (·) is continuous and satisfies V f (xr , r) = 0 and V f (x, r) > 0
if x �= xr . For all r ∈ R, all x ∈ X f (r), there exists a u ∈ U such that (i) x+ =
f (x, u) ∈ X f (r), and (ii) V f (x+, r) ≤ V f (x, r) − �(x, r, u).
Condition (i) implies, for each r ∈ R, that X f (r) is control invariant and condition

(ii) implies, again for each r ∈ R, that V f ( · , r) is a local control Lyapunov function
for PN (x, r). Under mild conditions, there exists a local control law κ f (·) such that
u = κ f (x, r) satisfies (i) and (ii) above.

The stability conditions are satisfied if V f (·) is the value function for the uncon-
strained infinite horizon problem or if V f (·) is the infinite horizon cost for the
unconstrained system with any locally stabilizing controller u = κ f (x, r). Such a
V f (·) is easily determined if f (·) is linear in which case we assume that (A, B) is
stabilizable. The local control law κ f (·) is then affine (κ f (x, r) := ur + Kr (x − xr )).
We choose R and c > 0 such that the terminal constraint set X f (r) satisfies
X f (r) ⊂ X

′ := {x ∈ R
n : x ∈ X, κ f (x, r) ∈ U} for all r ∈ R so that
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x0(N ; x, r) ⊂ X for all (x, r) ∈ XN (r)×Rwith XN (r) := {x : UN (x, r) �= ∅}. The
control invariance of X f (r) follows from the fact that V f ( · , r) is a local Lyapunov
function for x+ = f κ f (x) := f (x, κ f (x, r)). If f (·) is nonlinear, it is possible, under
mild conditions, to determine a terminal cost function V f (·) and associated constraint
set X f (r) satisfying the stability conditions.

We show below that, for any r∗ ∈ R, it is possible to design a model predictive
controller such that xr∗ is asymptotically stable with a region of attraction XN (R) :=
∪r∈RXN (r) [rather than XN (r∗)].

2.1 Model Predictive Controller with Extended Region of Attraction: Linear
Systems

Some simplifications can be made if the system being controlled is linear ( f (x, u) :=
Ax + Bu, y = Cx). We consider first the simple case when the terminal con-
straint sets are ellipsoidal and differ only by translation since, for each r, X f (r) :=
{x : V f (x, r) ≤ c} and V f (x, r) := (1/2)(x − xr )′P(x − xr ); P and c do not
vary with r (Pr = P and cr = c for all r ). A consequence is that, for all r ∈ R,
the local stabilizing control law is affine (κ f (x, r) = ur + K (x − xr )); P is a sym-
metric positive definite matrix satisfying P = A′

K P AK + Q∗ with AK := A + BK
a stability matrix; Q∗ := Q + K ′RK is symmetric and positive definite. Moreover,
the successor state x+ = f (x, κ f (x, r)) satisfies x+ − xr = AK (x − xr ) so that
V f (x+, r) = (1/2)(x+ − xr )′P(x+ − xr ) = (1/2)(AK (x − xr ))′P(AK (x − xr )) =
(1/2)(x − xr )′(P − Q∗)(x − xr ) for all x ∈ X f (r), all r ∈ R.

In conventional model predictive control, the value function of the online optimal
control problem decreases monotonically with time. In the modified version described
below, the value function, as in phase 1–phase 2 optimization, may increase until
feasibility of the terminal inequality constraint with r = r∗ is achieved; thereafter, the
value function decreases monotonically. The control algorithm can be simply stated:
Linear Control Algorithm 1:
Step 0: (Initialization:) Determine, at the initial state x , a r ∈ R such that x ∈ XN (r)
(i.e. such that PN (x, r) is feasible).
Step 1: At each (x, r), solve PN (x, r) to obtain u0(x, r) and, hence, x+ = Ax +
BκN (x, r).
Step 2: If xN := x0(N ; x, r) /∈ X f (r∗), set r+ = r + λ0(r∗ − r), λ0 := max{λ ∈
[0, 1] : x+

N ∈ X f (r + λ(r∗ − r))} with x+
N := AxN + Bκ f (xN , r). If xN ∈ X f (r∗),

set r+ = r∗.
Step 3: Set (x, r) = (x+, r+) and go to Step 1.

To establish properties of the algorithm, two preliminary results are required.

Proposition 2.1 There exists a d ∈]0, c[ such that for all x ∈ X f (r) =
{x : V f (x, r) ≤ c}, all r ∈ R, the successor state x+ = f (x, κ f (x, r)) under
the control law κ f (·) satisfies x+ ∈ {x : V f (x, r) ≤ d}.
Proof Because the state and control constraints for x+ = f (x, κ f (x, r)) are inactive
for x ∈ X f (r), it follows that

V f (x
+, r) = V f (x, r)−(1/2)(x−xr )

′Q∗(x−xr ) = (1/2)(x−xr )
′(P−Q∗)(x−xr )
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for all x ∈ X f (r), all r ∈ R. Let |x |P := (x ′Px)1/2 = |P1/2x | so that X f (r) =
{x : |x − xr |P ≤ √

2c}. For any c1 ∈]0, c[ let e := minx {(1/2)x ′Q∗x : |x |P ∈
[c1, c]}. Since e → 0 as c → 0, there exists a c1 ∈]0, c[, sufficiently small, such
that d := c − e ∈ [c1, c]. It follows that V f (x+, r) ≤ V f (x, r) − e, x+ :=
f (x, κ f (x, r)), for all x such that V f (x, r) ∈ [c1, c]. Since c1 ≤ d, it follows that
x+ ∈ {x : V f (x, r) ≤ d} = {x : |x |P ≤ √

2d}, for all x ∈ X f (r). �
Proposition 2.2 For all r ∈ R, x ∈ XN (r) implies x+ ∈ XN (r+), x+ :=
f (x, κN (x, r)), r+ := r + λ0(r∗ − r) so that x+ is feasible for PN (x+, r+). There
exists a δ > 0 such that, if |xr∗ − xr |P ≥ δ, |xr+ − xr |P ≥ δ.

Proof Let x ∈ XN (r) so that xN := x0(N ; x, r) ∈ X f (r) = {x : |x − xr |P ≤ √
2c}.

From Proposition 2.1, x+
N := f (xN , κ f (xN , r)) ∈ {x : |x − xr |P ≤ √

2d}. It
follows from the triangle inequality that, if |x − xr |P ≤ δ := √

2c − √
2d, then

|z − x |P ≤ |z − xr |P + |xr − x |P ≤ √
2c for all z ∈ {x : |x − xr |P ≤ √

2d},
all x such that |x − xr |P ≤ δ. In particular, |x+

N − x |P ≤ √
2c for all x such that

|x − xr |P ≤ δ. Let (r, s) ∈ R be such that |xs − xr | = δ = √
2c − √

2d; it then
follows from the inequality above that x+

N ∈ X f (r) ∩ X f (s) so that the initial state
x+ = f (x, κN (x, r)) lies in XN (r) ∩ XN (r+). It further follows from the algorithm
that |xr+ −xr |P ≥ |xs−xr |P = δ and |xr∗ −xr+|P ≤ |xr∗ −xr |P−δ if |xr∗ −xr |P ≥ δ.

�
Our main result follows.

Theorem 2.1 Suppose Q and R are positive definite, (A, B) is stabilizable, and the
stability condition is satisfied with X f (r) ⊂ X and κ f (X f (r), r) ⊂ U for all r ∈ R.
Then, for all r∗ ∈ R, xr∗ is exponentially stable with a region of attraction XN (R).

Proof Let (xi , ri , λi ) denote the value of (x, r, λ) at the i th iteration of the algorithm.
The sequence {xri : i ∈ I≥0} satisfies xri ∈ [xr0 , xr∗ ]. Suppose PN (xi , ri ) is feasible
so that x0(N ; xi , ri ) ∈ X f (ri ). If x0(N ; xi , ri ) /∈ X f (r∗), it follows from Step 2 of
the algorithm and Proposition 2.2 that PN (xi+1, ri+1) is feasible and |xr∗ − xri+1 |P ≤
|xr∗ − xri |P − δ. Hence, there exists a finite time j such that xr j ∈ X f (r∗); using the
definition of λ0, xr j+1 = xr∗ . For all i ≥ j + 1, the algorithm is conventional MPC
so that, from known results, xr∗ is exponentially stable with a region of attraction
XN (R). �
To compare the results above with those of [19], we note that [19] defines (using our
notation) the terminal cost function V f (·) as we do but defines the terminal constraint
set by X f (r) := {x : E(x − xr ) ≤ αr } (since r in our analysis replaces time
t in [19]), whereas our terminal constraint set is defined in Sect. 2.1 by X f (r) :=
{x : V f (x, r) ≤ c} (c independent of r ). Lemma 1 in [19] then shows how to choose
the virtual reference xr+ and αr+ so that, for all x ∈ X f (r), x+ := f (x, κ f (x, r))
satisfies x+ ∈ X f (r+); crucially (Assumption 2(ii) in [19]) X f (r) has the contraction
property E(x+ − xr ) ≤ E(x − xr ) − (x − xr )′Q(x − xr ) with Q positive definite.
Using this, [19, Theorem 1] shows xri converges to xr∗ as time i → ∞. In Linear
Control Algorithm 1, X f (r) has a different property; Proposition 2.1 shows that if
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x ∈ X f (r) := {x : V f (x, r) ≤ c}, then x+ ∈ {x : V f (x, r) ≤ d} where 0 < d < c.
This enables us to show that xri enters X f (xr∗) in finite time. In [19], the terminal
constraint set X f (ri ) decreases in size (αri decreases) as i increases, whereas in Linear
Control Algorithm 1, the terminal constraint set has constant size.

The fact that X f (r) in Linear Control Algorithm 1 has constant size (since c is
constant) constrains each X f (r) to be small if, for some r ∈ R, xr is close to the
boundary of X and/or κ f (x, r) is close to the boundary of U. To overcome this disad-
vantage, we replace Step 2 in Control Algorithm 1 by an optimization algorithm that
provides a terminal set X f (r) that increases in size (cr larger) where it is possible to
do so without transgressing the state or control constraints. The terminal set is now
defined by X f (r) := {x : V f (x, r) ≤ cr } in which cr varies with r . The optimization
algorithm, P̄N (x, r), x ∈ X f (r), employed in Step 2, is defined for all x by

min
λ,c

{
|r∗ − s|2 : λ ∈ [0, 1], c > 0, x ∈ X f (s), X f (s) ⊂ X

′} (6)

in which X
′ := {x : x ∈ X, κ f (x, s) ∈ U} and s := r + λ(r∗ − r). Let

(λ0(x, r), c0(x, r)) denote the solution of P̄N (x, r). It is shown in the ‘Appendix’
that P̄N (x, r) may be reformulated as an LMI problem for which standard algorithms
are available [21]. The modified control algorithm is:
Linear Control Algorithm 2:
Data: r∗ and cr∗ .
Step 0: (Initialization:) Determine, at the initial state x , a r ∈ R and a c = cr > 0
such that x ∈ XN (r) (i.e such that PN (x, r) is feasible).
Step 1: At each (x, r), solve PN (x, r), to obtain u0(x, r) and, hence, x+ =
f (x, κN (x, r)) = Ax + BκN (x, r).
Step 2: If xN := x0(N ; x, r) /∈ X f (r∗), solve P̄N (x+

N , r), x+
N := f (xN , κ f (xN , r)),

to obtain (λ0(x+
N , r), c0(x+

N , r)). Set r+ = s0(x+
N , r) := r + λ0(x+

N , r)(r∗ − r) and
cr+ = c0(x+

N , r). If xN ∈ X f (r∗), set r+ = r∗ and cr+ = cr∗ .
Step 3: Set (x, r) = (x+, r+) and go to Step 1.

Because cr varies with r , we have to modify the analysis given for the Linear
Control Algorithm 1. We assume that R is chosen so that there exists a c > 0 such
that cr ≥ c for all r ∈ R. Next, let e be computed as in the proof of Proposition 2.1,
and, for all r ∈ R, let dr := cr − e. It can be shown that Proposition 2.1 still holds
for all r ∈ R with c replaced by cr and d replaced by dr , i.e. e is independent of r .
However, because the size of X f (r) now varies with r , modification of Proposition
2.2 is required; we need to know how cs varies with s = s(λ) := r + λ(r∗ − r) ∈ R.

Consider the function λ �→ φ(λ) that maps λ to the minimum of |xs(λ) − z|P with
respect to z lying in a hyperplaneH; thisminimum is the distance, in norm |·|P , of xs(λ)

from the hyperplane H. Since xs = Mxs is linear, the function φ(·) is affine. Hence,
the function that maps λ to the distance (in norm | · |P ) of xs(λ) from the boundary
of the polyhedron X′, which has a finite number of faces, is continuous and piecewise
affine with a Lipschitz constant L < ∞. For each x ∈ R

n , let c(λ) denote the largest
value of c > 0 such that the set {x : V f (x, s(λ)) ≤ c} = {x : |x − xs(λ)|P ≤ √

2c}
is a subset of X′. From the discussion above, the function λ �→ √

2c(λ) is identical to
the function λ �→ φ(λ) and is, therefore, piecewise affine with Lipschitz constant L
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Fig. 1 Sets X f (x, r) for sampled values of (x, r)

so that
√
2c(λ) ≥ √

2c(0) − Lλ =
√
2cr − Lλ. From the triangle inequality

|x+
N − xs(λ)|P ≤ |x+

N − xr |P + |xr − xs(λ)|P ≤ q
√
2dr + λa

for some a > 0. Then, x+
N ∈ X f (s(λ)) if |x+

N − xs(λ)|P ≤ √
2c(λ). But

√
2c(λ) ≥√

2cr − Lλ so that x+
N ∈ X f (s(λ)) if

√
2dr + λa ≤ √

2cr − Lλ which is the case if
λ ≤ [√2cr − √

2dr ]/[L + a].
Thus, there exists δ′ ∈]0, δ] such that, if |xr∗ − xr |P > δ′, |xr+ − xr |P ≥ δ′.

Theorem 2.2 then holds for the modified algorithm.
The fact that the terminal constraint set X f (r) can increase in size (see Fig. 1)

when this is possible means that the region of attraction XN (R) is larger than that for
Linear Control Algorithm 1 (size fixed) and for [19, Algorithm 1] in which the size
of X f (r) decreases (in order to attain a more complex objective) as a consequence of
the different contraction property for X f (r).

2.2 Model Predictive Controller with Extended Region of Attraction: Nonlinear
Systems

With some further assumptions, the above procedure may bemodified to be applicable
to nonlinear systems. The control problem is described, as above, by Eqs. (1)–(5).
Because of the nonlinearity, the control algorithm has to be significantly altered.

To see this, consider the obvious extension of the above procedure. For each r ∈ R,
the terminal constraint set X f (r) is defined by X f (r) := {x : V f (x, r) ≤ cr } inwhich
V f (x, r) := (1/2)(x − xr )′Pr (x − xr ). The function V f ( · , r) and the set X f (r) can
be determined, for each r ∈ R, as in [22] using linearization of f (·) at each (xr , ur )
provided that the linearization of f (·) is stabilizable at each xr . Unlike the linear
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case, Pr and cr now vary with xr making simple extensions of Propositions 2.1 and
2.2 impossible. Because of the difficulty in determining X f (r) for each r ∈ R and
devising a suitable algorithm for adjustment of the virtual reference, we do not pursue
this approach.

The impasse can be resolved by using a simpler stabilizing condition, namely a
terminal equality constraint that is satisfied for each r ∈ R admittedly at some cost
since a terminal equality constraint has a smaller region of attraction than a terminal
constraint set; XN (r), the region of attraction, is now the set of states that can be steered
to xr in time N along a trajectory that satisfies the state and control constraints. It is
desirable that XN (r) is a large subset of Rn ; this is a strong assumption.

The optimal control problem P
1
N (x, r) solved at each state (x, r) now has the form:

V 0
N (x, r) = min

u
{VN (x, r,u) : u ∈ UN (x, r)} (7)

where VN (·) is defined by

VN (x, r,u) :=
N−1∑

i=0

�(xu(i; x), r, u(i)) (8)

UN (x, r) := {
u : u(i) ∈ U, xu(i; x) ∈ X, i ∈ I0:N−1, x

u(N ; x) = xr
}

(9)

�(x, r, u) = (1/2)(x − xr )
′Q(x − xr ) + (1/2)(u − ur )

′R(u − ur ) (10)

As before, the set of feasible points for P1
N (x, r) is XN (r) := {x : UN (x, r) �= ∅}.

The solution of P1
N (x, r) is u0(x, r), and the model predictive control that is applied to

the system is κN (x, r) := u0(0; x, r). The implicit control law is, therefore, κN ( · , r),
and the successor state is x+ = f (x, κN (x, r)).

The control algorithm requires, in addition, the solution of another optimization
problem P

2
N (x, r) that yields ŝ = ŝ(x, r) ∈ R and, hence, (xŝ, uŝ), a potentially

improved equilibrium pair; x is not altered. The optimal control problem P
2
N (x, r) is

defined by

θ(x, r) = min
u,s

{|xr∗ − xs | − |xr∗ − xr | : u ∈ UN (x, s), s ∈ R}

The solution to problem P
2
N (x, r) is (û(x, r), ŝ(x, r)); θ(·) is an optimality function

[16, §1.1] in that θ(x, r) < 0 implies |xr∗ − xr | can be reduced and θ(x, r) = 0
implies |xr∗ − xr | cannot be reduced. We assume:

Assumption 1 There exist an ε† > 0 and a c1 ∈]0, 1/2[ such that (i): for all r ∈ R,
the ball B(xr , ε†) ⊂ XN (r) and (ii): If |xr∗ − xr | > 0, θ(x, r) < 0; if |xr∗ − xr | ≥
ε†/2, θ(x, r) ≤ −c1ε†.

Assumption 1(i) excludes the degenerate case in which the feasible set XN (r) tends
to a set with an empty interior as r tends to some r ′ ∈ R.

Assumption 1(ii) ensures |xr∗ − xr | can be reduced for all r ∈ R, r �= r∗, and by a
finite amount for all r such that |xr∗ −xr | ≥ ε†/2 provided |x−xr | ≤ ε†/2. It is easily
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shown to be satisfied with c1 = 1/2 if f (·) is linear in which case the set {xr : r ∈ R}
is convex. Assumption 1(ii) ensures that Step 3 is executed only a finite number of
times and permits the use of standard descent algorithms for solving P2

N (x, r); this is
a strong assumption since it excludes the case when the problem P

2
N (x, r) has local

minima. Let B(z, ε) := {x : |x − z| ≤ ε}.
The control algorithm for the nonlinear case may now be defined:

Nonlinear Control Algorithm:
Data: x, r∗, c1 ∈]0, 1/2[.
Step 0: Determine, at the initial state x ∈ XN (R), a r ∈ R such that x ∈ XN (r).
Step 1: Solve P1

N (x, r) to obtain κN (x, r) and x+ = f (x, κN (x, r)). If r = r∗, set
(x, r) = (x+, r∗) and go to Step 1. Else go to Step 2.
Step 2: Set ε = |x+ − xr |. Solve P2

N (x+, r). If θ(x+, r) > −c1ε, set (x, r) = (x+, r)
and go to Step 1. Else go to Step 3.
Step 3: If θ(x+, r) ≤ −c1ε, set (x, r) = (x+, r+), r+ = ŝ(x+, r) and go to Step 1.

We show below that the algorithm repeatedly executes Steps 2 and 3, reducing
|xr∗ − xr | each time until the reference r remains constant with value r∗. Execution
of Step 1 then causes the state xi , where xi is the value of x at the i th iteration of the
algorithm, to converge to xr∗ .

Proposition 2.3 Suppose Assumption 1 is satisfied. (i) If x+ ∈ B(xr , ε†/2) for some
r ∈ R and |xr∗ − xr | ≥ ε†/2, then the solution r+ = ŝ(x+, r) of P2

N (x+, r) satisfies
θ(x+, r) ≤ −c1ε†. (ii) If x+ ∈ B(xr , ε†/2) and |x∗

r − xr | ≤ ε†/2, then the solution
r+ = ŝ(x+, r) of P2

N (x+, r) satisfies r+ = r∗.

Proof (i) x+ ∈ B(xr , ε†/2) and |xr − xs | ≤ ε†/2 imply x+ ∈ B(xs, ε†); by
Assumption 1(i), B(xs, ε†) ⊂ XN (s) so that x+ ∈ XN (s). Hence, PN (x+, s) has
a solution r+ = ŝ(x+, r) satisfying, by Assumption 1(ii), θ(x+, r) ≤ −c1ε†, i.e.
|xr∗ − xr+|− |xr∗ − xr | ≤ −c1ε†. (ii) x+ ∈ B(xr , ε†/2) and |x∗

r − xr | ≤ ε†/2 implies
xr ∈ XN (r∗). Since xr∗ also lies in XN (r∗), r+ = ŝ(xr , r) = r∗. �
We can now state our main result.

Theorem 2.2 Suppose that Assumption 1 is satisfied, f (·) is continuous, that the
parameters Q and R of the stage cost �(·) are positive definite, that (2) has a unique
solution for each r ∈ R, that (xr , ur ) ∈ X × U for all r ∈ R, that there exists a K∞
function α(·) such that, for all r ∈ R, all x ∈ XN (r), V 0

N (x, r) ≤ α(|x−xr |) and that
the stability condition is satisfied. Then, for all r∗ ∈ R, xr∗ is asymptotically stable
with a region of attraction XN (R) := ∪r∈RXN (r).

Proof Let xi , ri and εi denote the values of the state x , the virtual reference r and
ε at the i th iteration of the algorithm so that their initial values are x0 = x and
r0 = r . The reference ri remains constant while the condition in Step 2 is satisfied.
During these iterations, the solution of P1

N (xi , ri ), with ri constant, is standard model
predictive control so that xi converges to xri . After a finite number of iterations, the state
xi+1 = x+

i is sufficiently close to xri (x
+
i ∈ B(xri , ε

†/2)) for Proposition 2.3 to hold
so that θ(x+

i , ri ) ≤ −c1ε† ≤ −c1εi . The condition in Step 3 is therefore satisfied. It
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follows that ri is updated to ri+1 = r+
i = ŝ(x+

i , ri ) and |xr∗−xri+1 | ≤ |xr∗−xri |−c1ε†.
Steps 2 and 3 are then entered iteratively reducing |xi − xri |, |xr∗ − xri |, and εi
until x+

i = xi+1 ∈ B(xr∗ , ε†) so that x+
i ∈ XN (r∗). Since both x+

i and xr∗ lie in
XN (r∗), r+

i = ŝ(x+
i , ri ) = r∗. Thereafter, the algorithm iteratively solvesP1

N (xi , r∗).
This is a standard MPC algorithm with a constant reference r∗. Asymptotic stability
of xr∗ with a region of attraction XN (R) follows. �
As formulated, problemP

2
N (x, r) is complex largely because xs is a nonlinear function

φx (s) of the reference s ∈ R. The algorithm can be simplified by merely requiring
an approximate solution of P1

N and P
2
N ; techniques for doing this are given in [16].

A possible alternative is to restrict the choice of s by minimizing with respect to
λ ∈ [0, 1] and setting s = sλ = r + λ(r∗ − r).

3 Examples

3.1 Linear System

Our first example is the second-order linear system x+ = Ax +bu, y = Cx in which

A =
[−0.6 0.1

0 1.4

]
, B =

[
0

0.787

]
, C = [

1 0
]

The state and control constraint sets are

X = {x ∈ R
2 : x1 ∈ [−0.3, 0.4], x2 ∈ [−0.4, 0.4]}, U = {u ∈ R : u ∈ [−2, 2]}

The setR of references is
R = [−0.018, 0.018]

The actual reference is r∗ = 0. The stage cost is �(x, u) = |x − xr |2Q +|u−ur |2R with

Q =
[
100 0
0 10

]
, R = 1

P is the solution of the algebraic Riccati equation. The initial state is x(0) =
(0.077, 0.385). The initial reference is chosen to be that point in R closest to y(0).
The control horizon is N = 7. Feasibility of standard MPC can be recovered using a
horizon N = 11. Figure 2a shows the trajectory of the virtual reference as generated
by Linear Control Algorithm 2. Figure 2b shows the corresponding state trajectory.

Figure 1 shows the terminal sets generated by the subalgorithm P̄N (x, r) for sam-
pled values of x and r .

3.2 Nonlinear System

The nonlinear system is a continuous stirred tank reactor based on a model described
by
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Fig. 2 Linear Algorithm 2. a Virtual reference r versus time. b States x1 and x2 versus time
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Fig. 3 Output y = x2 (solid) and virtual reference r (dashed) versus time

ẋ1 = [(1 − x1)/θ ] − kx1 exp (−M/x2)

ẋ2 = (1/θ)[x f − x2] + kx1 exp (−M/x2) − βu(x2 − xc)

y = x2

in which x1 is the product concentration, x2 is the temperature and u is the coolant
flow rate. The model parameters are θ = 20, k = 300, M = 5, x f = 0.3947, xc =
0.3816 and β = 0.117. The state and control constraint sets are X = {x ∈ R

2 : x1 ∈
[0, 1], x2 ∈ [0, 1]}. The set R of virtual references is R = [0.01, 0.99]. For each
r ∈ R, the equilibrium pair is
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Fig. 4 Phase plane: Nonlinear Control Algorithm for N = 10 (solid), standardMPC for N = 110 (dashed)
and locus of xr (dotted)

x1r = 1/
[
1 + θk exp(−M/r)

]
, x2r = r

ur = (1/θ)
[
(x f + 1 − r − x1r )/(βu(r − xc))

]

in which x j denotes the j th coordinate of the vector x . The controller horizon is
N = 10 corresponding to 10 seconds since the sampling period is 1 second. The stage
cost is �(x, r, u) = |x − xr |2Q + |u − ur |2 with Q = diag{1, 100}. The algorithm
parameter c1 is 0.001. The control is required to steer the output y to the reference
r∗ = 0.4. The initial value of a feasible virtual reference was obtained by solving an
optimization problem P

2
N (x(0), r). The optimization packages described in [23,24]

were employed for all our simulations. Figure 3 shows how the plant output y = x2
converges to r∗ and also shows the convergence of the virtual reference r to r∗. Figure
4 shows the locus of r ∈ R, the convergence of x from x0 to xr∗ for the Nonlinear
Control Algorithm with N = 10 and the convergence of x to xr∗ for standard model
predictive control with N = 110; the desired state xr∗ is infeasible for standard model
predictive control if the horizon N = 10 is employed; standard MPC requires, in this
example, a value of the horizon N that is larger than 100.

4 Conclusions

The main objective of this note is to present a simple procedure for increasing the
region of attraction of an equilibrium state whenmodel predictive control is employed.
Simplicity is important in the process industries, the main application area for model
predictive control, mainly to increase ease of commissioning, operation and mainte-
nance of controlled processes. It is for this reason that commercial software for model
predictive control usually eschews provision for handling hard state constraints. In
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many applications, the output of a controlled process is required to converge to any
reference r lying in a given setR; for such applications, a reasonable objective is the
determination of a suitably large region of attraction XN (R) such that every state in
XN (R) can be steered to any equilibrium state xr∗ , r∗ ∈ R. This note addresses the
problem of regulation to any state in {xr : r ∈ R} and, hence, differs from several
contributions in the literature where the concern is to increase the region of attraction
for one equilibrium state, usually the origin. Because the initial state x does not neces-
sarily lie in XN (r∗), it is necessary for the control algorithm to include amechanism for
adjusting both the current state x and a virtual reference r ; the reference r is adjusted
from an initial value that is feasible for the initial state until the desired reference r∗ is
feasible for the current state. This adjustment can cause the cost VN (·) to increase, a
feature that causes difficulty in single-mode algorithms. Hence, we employ, as in [17],
a dual-mode algorithm inwhich the initial objective is adjustment of a virtual reference
r while maintaining feasibility of the current state until r∗ is reached. However, this
feature of the algorithm depends on the ability of the algorithm to decrease |xr∗ − xr |
at each iteration and this in turn requires the absence of local minima in the function
r �→ |xr∗ − xr |, necessitating the rather strong Assumption 1 that is difficult to verify.
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Appendix

Following the procedure in [21, page 414], express X′ in the form X
′ := {x : ai x ≤

bi (r) i = 1, . . . J } := {x ∈ X, K (x − Mxr) + Mur ∈ U}. We assume X
′ is

bounded and has a nonempty interior. Problem P̄N (x, r) defined in Sect. 2.1 may then
be expressed as P̂N (x) defined by:

min
s∈R,c>0

|s − r∗|2
(x − Mxs)′P(x − Mxs) ≤ c
c1/2|P−1/2a′

i | + ai Mxs ≤ bi (s) i = 1, . . . J

(11)

The optimization problem P̂N (x) has quadratic and conic constraints and can be refor-
mulated using linear matrix inequalities. Firstly, the constraints in (11) for a given i
can be rewritten in a quadratic form as follows

(x − Mxs)
′ P(x − Mxs) ≤ (bi (s) − ai Mxs)

2σ 2 (12)
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where σ := 1/|P−1/2a′
i | is a constant and bi (s) depends affinely on s. Defining

L(s) := P1/2(x−Mxs) it is possible to rewrite the inequality (12) as follows (see [21]):

[
σ(bi (s) − ai Mxs)In L(s)
L(s)′ σ (bi (s) − ai Mxs)

]
≥ 0 (13)

Note that the condition (bi (s) − ai Mxs) ≥ 0 requires that the steady state xs satisfies
the constraint xs ∈ X

′. Then the optimization problem P̂N (x) may be reformulated as

min
s∈R,c>0

|s − r∗|2
Subject to[
σ(bi (s) − ai Mxs)In L(s)
L(s)′ σ(bi (s) − ai Mxs)

]
≥ 0 i = 1, . . . J

(14)

With s := r +λ(r∗ −r), problem P̂N (x) is seen to be equivalent to problem P̄N (x, r).
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