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Abstract Over the last decade, small-animal PET imaging
has become a vital platform technology in cancer research.
With the development of molecularly targeted therapies and
drug combinations requiring evaluation of different schedules,
the number of animals to be imaged within a PET experiment
has increased. This paper describes experimental design
requirements to reach statistical significance, based on the
expected change in tracer uptake in treated animals as com-
pared to the control group, the number of groups that will be
imaged, and the expected intra-animal variability for a given
tracer. We also review how high-throughput studies can be
performed in dedicated small-animal PET, high-resolution
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clinical PET systems and planar positron imaging systems
by imaging more than one animal simultaneously. Custom-
ized beds designed to image more than one animal in large-
bore small-animal PET scanners are described. Physics issues
related to the presence of several rodents within the field of
view (i.e. deterioration of spatial resolution and sensitivity as
the radial and the axial offsets increase, respectively, as well as
a larger effect of attenuation and the number of scatter events),
which can be assessed by using the NEMA NU 4 image
quality phantom, are detailed.

Keywords High throughput - Sample size - Clinical PET/
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Why we will need to image many animals within a single
PET experiment

The number of animals that require to be imaged within a
single small-animal PET (SA-PET) experiment is driven by
the number of groups planned for the experiment, including
controls and treatment arms. As opposed to initial SA-PET
studies where the effect of conventional chemotherapy on
tracer uptake in tumours was tested at the maximum toler-
ated dose against a control group, the recent development of
molecularly targeted therapies can potentially lead to a
dramatic increase in the number of groups to be imaged.
This is driven by the concept of the optimal biological dose
(OBD) that, for such targeted therapies, may be well below
and more relevant than the maximum tolerated dose. OBD,
defined as the dose that achieves a target plasma concentra-
tion or reliably inhibits a drug target, might be established
based on pharmacokinetic endpoints and ideally on pharma-
codynamic assays by demonstrating directly the biological
effect on the target and its downstream molecules in normal
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or tumour tissues [1-3]. In case of the pharmacokinetic
endpoint, it has to be shown that the target concentration
chosen can inhibit the drug target in the tumour. This
requires accounting for plasma protein binding, which deter-
mines the amount of free drug available to interact with the
target, as well as interindividual variations in drug absorp-
tion and metabolism. When target modulation is chosen as
the endpoint, the drug targets as well as the required mag-
nitude of inhibition have to be known. An OBD should
inhibit the identified target in tumours, but most importantly
there should be evidence that modulating the target in
tumours consistently leads to growth inhibition. In some
cases this strategy may fail, as shown by Fuereder et al.
[4] who demonstrated that the in vivo sensitivity of gastric
cancer xenografts to BEZ235, a dual phosphoinositidine 3-
kinase (PI3K)/mTOR inhibitor, does not correlate with in
vitro antiproliferative activity or in vivo PI3K/mTOR target
inhibition by BEZ235. In contrast, '*F-FLT uptake was
significantly decreased, as compared to control, in a cell
line sensitive to BEZ235, suggesting that '*F-FLT PET
could be used as a surrogate marker in clinical trials evalu-
ating dual PI3K/mTOR inhibitors.

In the context of OBD definition, SA-PET imaging is
able to screen a large library of chemicals for their ability to
modulate the identified target without the requirement for
tissue sampling and to assess delivery and dose issues in
preclinical studies, thus helping in planning the develop-
ment of later phases [5]. Cejka et al. [6] have shown that
FDG uptake can be used as a surrogate marker for defining
the OBD of a molecularly targeted therapy. In their study,
Cejka et al. [6] showed that everolimus blood levels increase
in a dose-dependant manner but antitumour activity, as
assessed by '"F-FDG uptake, reaches a plateau at a defined
dose level. In the context of cancer research and preclinical
drug development, the number of animals to be imaged to
define such a dose-response curve is potentially high. The
challenge is increased when designing optimal combina-
tions of targeted therapy and standard chemotherapy, and
the most effective scheduling of drug administrations, for
example whether targeted therapy should be used concur-
rently, before or after the standard chemotherapy. An im-
provement in throughput in SA-PET imaging would allow
the evaluation within a single PET experiment of all the
criteria mentioned above and would affect the cost, logistics
and speed of preclinical studies.

The number of animals to be scanned to reach statistical-
ly significant differences can be computed. For that purpose,
one needs to choose an appropriate test and to know the
expected decrease in tracer uptake in the treated animals as
compared to the control animals, the number of groups that
will be imaged, and the expected intra-animal variability for
a given tracer. This work has already been done by
Eckelman et al. [7, 8]. However, these authors based their
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calculations on the imaging of only two groups (i.e. control
group and treated animals). Table 1 summarizes the required
number of animals in each group, for up to five groups. The
coefficient of variation (CV) for tracer uptake was set at 15 %
based on the results of studies by researchers at Stanford
University who imaged tumour-bearing mice twice on the
same day after injection and reinjection of '*F-FDG [9], '®F-
FLT [10] or '®F-labelled RGD [11] and determined the CV for
standardized uptake value and/or percent injected dose per
gram (%ID/g) as the ratio between standard deviation of the
two measurements and their mean. The mean CVs were
15.4 %, 14 % and 10.5 % for '*F-FDG [9], '*F-FLT [10]
and '®F-labelled RGD, respectively [11]. These authors
showed that the observed CVs were likely to have been due
to the sizes of the volumes of interest (VOI). Indeed, when
redrawing VOIs 2 months apart, it was shown that CVs for
%ID nean/g between the original and redrawn VOIs were 6.5+
4.7 % and 6.6+3.9 % for the '"®F-FLT study and the '®F-
labelled RGD study, respectively. In a second analysis in
which VOIs of the same size were used to assess VOI place-
ment, the CVs were much lower (2.3£1.5 % and 2.1+1.5 %
for the '®F-FLT study and the '®F-labelled RGD study, respec-
tively). These results suggest that the variability in the
%IDpean/g Was largely a result of the VOI size rather than
VOI placement. Other technical factors including the efficien-
cy of tail vein injection, volume of injected tracer and injected
activity had little or no influence on the observed CVs. For
'®F-labelled RGD, animal handling had no influence on the
CVs, while it was shown to have great importance in the '*F-
FDG and '®F-FLT studies, with the addition of the thymidine
kinase blood activity for '®F-FLT. The issue of animal han-
dling when imaging multiple mice is further discussed in
section entitled “Issues related to animal handling”. A hypoth-
eses tested included decreases in tracer uptake ranging from
25 % to 75 %, as molecularly targeted therapies can lead to
variable tumour responses [4, 12] and also the observed
response for a given treatment may be different for tracers
associated with different biological pathways such as '*F-
FDG and "F-FLT [13]. As shown in Table 1, as many as 45
mice would be needed for an experiment in which five groups
of mice are to be imaged and a 30 % decrease in tracer uptake
is expected.

Challenges in achieving high-throughput PET studies
Physics issues

An obvious means of increasing the throughput of SA-
PET studies is to image several animals simultaneously.
This can be achieved with high-resolution clinical PET,
large-bore dedicated SA-PET systems or large field-of-
view (FOV) planar positron imaging systems. However,
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Table 1 Number of animals per group required for imaging to reach
statistical significance in relation to the number of groups and the
percentage decrease in tumour uptake. Data were computed for a

two-tailed unpaired Student’s #-test (« risk 5 %, 1—f power 80 %),
assuming equality of variance and normal distributions, with Bonfer-
roni correction for multiple comparisons

Change in No. of groups

%ID/g (%)
2 3 4 5
No. of No. of possible No. of No. of possible No. of No. of possible No. of No. of possible
mice per  comparisons mice per  comparisons mice per  comparisons mice per  comparisons
group between groups®  group between groups®  group between groups®  group between groups®

25 7 1 9 3 11 6 12 10

30 6 1 7 3 6 10

50 3 1 4 3 6 10

75 3 1 3 3 6 10

#Between control and treatment groups and between treatment groups when different doses or schedules are evaluated.

this potentially leads to issues with the physics of
imaging. Indeed, scanning multiple animals simulta-
neously would be expected to reduce image quality for
the following reasons. First, spatial resolution and sen-
sitivity deteriorate as the radial and the axial offsets
increase, respectively. Second, the presence of more
than one source of radioactivity increases Poisson noise,
the effect of attenuation and the number of scatter
events. Although attenuation and scatter corrections are
available, a large attenuating mass within the FOV will
lower the total number of detected true coincidences per
mouse and it is unsure whether scatter correction algo-
rithms perform well in the case of multiple and non-
centred sources.

When evaluating a configuration where multiple animals
are to be imaged within the FOV of a PET scanner, the
physics issues mentioned above could be addressed with
the NEMA NU 4 image-quality phantom (Fig. 1). Briefly,
this phantom consists of the following three regions: a main
fillable uniform region chamber, a lid that attaches to the
main fillable region containing two smaller cold region
chambers one filled with nonradioactive water and the other
with air, and a solid acrylic glass region with five fillable
rods drilled through with diameters of 1, 2, 3, 4 and 5 mm.
Following a 20-min emission scan using 'F, image quality
is assessed as follows: (a) image noise is expressed as the
percentage standard deviation in a central, cylindrical VOI
drawn over the uniform region of the phantom, (b) recovery
coefficients (RCs) for the filled rods are expressed as the
ratio between the maximum activity concentration measured
in the rods divided by the mean activity concentration in the
uniform region of the phantom, and (c) the spillover
ratios are expressed as the ratios of the mean activity in
the water- and air-filled compartments divided by the
mean activity concentration in the uniform region of the
phantom.

Examples of the imaging of multiple mice with different
systems are discussed below. Apart from the report of Aide
et al. [14] of dynamic studies with ®*Ga-EDTA in a group of
three mice imaged simultaneously, there are no published
data on non '®F positron emitters using multiple animals in
the FOV. It can be expected that for these positron emitters,
stronger photon attenuation (animals radially displaced next
to each other) and loss of sensitivity (animals placed behind
each other, displaced axially) occurs in the same way as for
'8E. Specific problems that have to be dealt with using
several of these positron emitters are (1) the longer positron
range than with '®F leading to a deterioration of spatial
resolution, and (2) additional single photons (especially
when present in the 511-keV energy window, such as with
'24T) that give rise to additional, not properly localized
events resulting in an additional, more or less uniform
background concentration that can affect both image quality
and quantitative accuracy [15, 16]. Accordingly, Disselhorst
et al. [15] imaged the NEMA NU 4-IQ phantom with 'SF,
68Ga, 24T and ngr, and found that radionuclides with large
positron ranges (°®Ga, '**I) had smaller RCs (for the
same rod diameter) than those with short ranges ('°F,
97r). However, single photons only slightly affected
%STDynir and SOR;, (that are mainly affected by scat-
tered and single photons), which were roughly the same
for all four radionuclides. SOR, 4, On the contrary, was
larger for ®®Ga and '**I, but as explained Disselhorst et
al. [15], this could be attributed to their longer positron range
that leads to positrons being emitted in the body part of the
phantom but annihilated in the cold water compartment.

As the activity in the FOV increases (as in imaging
multiple mice simultaneously), increasing numbers of ran-
dom coincidences will occur. A way of improving image
quality with nonstandard positron emitters is to optimize
acquisition settings [17] and to use advanced reconstruction
algorithms with positron range modelling [18, 19].
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Clinical PET/CT systems equipped with new reconstruction
algorithms

Tatsumi et al. [20] investigated the feasibility of imaging
rodents with a clinical PET scanner (a General Electric Dis-
covery LS tomograph with a 5 mm spatial resolution) using ex
vivo counting as the reference standard. They showed that
imaging tumours was feasible in rats and rabbits, but image
quality in mice was lower because of their smaller size. These
findings were later confirmed by Seemann et al. [21] who

@ Springer

Fig. 1 Diagram of the NEMA NU 4 image-quality (NEMA NU 4)
phantom (a, b) and illustration of the impact of radial displacement on
image quality parameters. Cross-sectional diagram of NU 4-1Q phan-
tom. Grey represents solid polymethylmethacrylate, and white repre-
sents hollow, fillable compartments (rods ranging in diameter from 1 to
5 mm, a uniform region that is filled with an '8F solution, and water- or
air-filled cylinders). Views are coronal (a) and transverse through the
rods (b). ¢, d Transaxial images of three regions of interest (%STD ¢
percent standard deviation in the uniform region; RC,,,; recovery
coefficients, ; SOR, 4 and SOR,;,. spillover ratios in water and air)
in the NU 4-IQ phantom imaged alone at the centre of the FOV (1C
position, ¢) or together with three additional scatter/attenuation sources
with a 20.3 mm radial displacement (4R position, d). Data were
acquired on an Inveon SA-PET scanner and reconstructed using
MAP. Larger values for SDy,ir, SORyaer and SOR,;, and smaller RC
values for the 1mm rod can be visually noted. e Cross-sectional
profiles through the nonradioactive compartments demonstrate the
difference in SOR . and SOR,;, imaging the phantom in either the
1C or 4R position. The images correspond to the central transaxial
planes through the regions. ¢, d and e have been adapted and reprinted
with permission (Siepel et al. [33])

compared quantitative data from tumour-bearing mice imaged
on a Siemens Biograph PET/CT scanner and on a SA-PET
scanner (Mosaic, Philips Medical Systems). They found that
tumours imaged by SA-PET had a 1.89 higher mean tumour/
background ratio than those imaged by PET/CT because of
significant partial volume effects related to the inferior spatial
resolution of the clinical PET/CT scanner.

The impact of the use of scanner characteristics in the
process of iterative image reconstruction in order to image
small animals on a clinical PET scanner was first described
by Brix et al. [22]. These authors showed that the spatial
resolution at the centre of the FOV could be improved from
6.5 mm with standard ordered subsets expectation maximiza-
tion to 3.9 mm with an iterative reconstruction method incor-
porating the spatially variant point spread function (PSF) of the
scanner. In two more recent studies [14, 23] a commercially-
available PET/CT device equipped with PSF reconstruction
was used to image several mice simultaneously. The spatial
resolution of this system measured according to NEMA NU-
2001 standards is 2.09 mm at the centre of the FOV [14]. In
these studies in which mice were imaged in groups of three or
four after injection of '*F-FDG, '"*F-FLT or ®®*Ga-EDTA, it was
shown that PSF PET/CT can provide good quality images and
accurate quantification of the radioactivity within the imaged
lesions of mice bearing tumours and has the capacity to simul-
taneously image multiple mice in static or dynamic mode.
Pooled data from these two studies are shown in Fig. 2.

PSF PET imaging of mice can be further improved by
“super-resolution”, a technique using stepped images that are
postprocessed with iterative deconvolution, as shown by DiFi-
lippo et al. [24]. These authors used an apparatus equipped
with three motorized stages and an animal bed on a Siemens
mCT system, whose physical performances have been de-
scribed in details elsewhere [25]. DiFilippo et al. [24] per-
formed 16-min acquisitions by stepping the NEMA NU 4
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Fig. 2 High-resolution clinical PET/CT images of tumour-bearing
mice imaged in a group of three. a, b Representative PET coronal
slices in mice bearing subcutaneous tumours (a) or ovarian tumours (b)
displaying heterogeneous '*F-FDG uptake are shown. ¢, d
Corresponding CT coronal slices. e Linear regression between PET

phantom or animals at 1-min intervals in the three orthogonal
directions. They showed an improvement in organ delineation
and RCs for the 2-mm rod of the NEMA NU 4 phantom of
0.21 and 0.39 for PSF images and PSF super-resolution
images, respectively. This can be compared to RC values of
0.48, 0.58 and 0.38 for the Siemens Inveon scanner [26], the
Bioscan/Mediso Nano PET/CT scanner [27] and the GE
FLEX Triumph scanner [28], respectively.

Revheim et al. [29] imaged ten mice simultaneously, and
demonstrated the feasibility of a clinical PET/CT scanner for
monitoring the effects of molecularly targeted therapies on
gastrointestinal stromal tumour xenografts.

Although clinical PET/CT may be used in centres where a
dedicated SA-PET is not available and where experiments re-
quire a high throughput, one should note that the main drawback
of using a clinical PET/CT device for the imaging of mice is its
sensitivity, which is much lower than that of a dedicated SA-
PET scanner. Indeed, dedicated SA-PET scanners have much
larger aspect ratios (axial length/detector ring diameter), leading
to higher sensitivity. Although the aspect ratio of the clinical
Siemens PET device used by Aide et al. [14, 23] is 0.26 due to
its extended axial FOVof21.6 cm (clinical PET scanners usually
have an aspect ratio in the order of 0.2), it is still much lower
than aspect ratio of dedicated SA-PET scanners which have
aspect ratios up to 0.8 (Siemens Inveon [26, 30]).

Large-bore SA-PET systems

SA-PET devices with large axial and transaxial FOVs theoret-
ically allow several animals to be imaged simultaneously. The
bed provided by manufacturers is generally suitable for scan-
ning two mice simultaneously, one behind the other
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quantitative data (pooled data from Aide et al. [14, 23], including 33
organs and 22 tumours) and ex vivo counting shows an excellent
correlation with a slope almost equal to unity. The PET data were
reconstructed with an iterative algorithm that models the PSF of the
PET system

(depending on the axial FOV of the SA-PET scanner) or side
by side, as previously reported by Paproski et al. [31] who
imaged mice bearing tumours with 'SF-FLT on a Siemens
microPET R4 scanner. However, imaging more than two mice
simultaneously requires a customized bed to be designed. In
this regard, Aide et al. [32] and Siepel et al. [33] simulated
experiments with multiple mice by using the NEMA NU 4
image quality phantom at different positions within the FOV
and adding up to three “mouse phantoms”, i.e. vials containing
the same activity concentration as used in the NEMA NU 4
phantom and mimicking attenuation and scatter events. In both
studies, a Siemens Inveon SA-PET scanner was used. This
device has axial and transaxial FOVs of 126 and 110 mm,
respectively.

Siepel et al. [33] imaged the NEMA NU 4 phantom along
with three mouse phantoms with all phantoms displaced radi-
ally (20.3 mm displacement) or in a combination of radial
displacement (22.6 mm) and axial displacement (22.4 mm).
They demonstrated that for scanning four mice, combined
axial and radial displacement is preferable to just radial dis-
placement, as the latter leads to higher noise and spillover
ratios and lower RCs. Figure 1 shows the extent to which
NEMA NEMA NU 4 image quality parameters worsen when
imaging the NU 4-1Q phantom together with three additional
scatter/attenuation sources with radial displacement. In their
study in which phantoms and mice were displaced radially
(22 mm) only, Aide et al. [32] also found that radial displace-
ment led to a decrease in RCs and an increase in spillover
ratios as compared to a single phantom acquisition. They also
imaged mice bearing pertinent-sized tumours (22 tumours,
median volume 150 mm®) and, using ex vivo counting as
the reference standard, obtained accurate quantitative values

@ Springer
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(#*=0.91, P<0.0001). They also found no difference in accu-
racy of quantitative values for external tumours (i.e. those
located close to the edge of the FOV, where the loss in spatial
resolution would be expected to be more pronounced) and
those located closer to the centre of the FOV.

Figures 3 and 4 illustrate the use of customized beds in a
large-bore SA-PET system (Siemens Inveon) with either
radial displacement or a combination of axial and radial
displacement. The PET systems illustrated in these figures
use either external sources or CT for attenuation correction.
CT-based attenuation correction has the advantage of being
faster and inducing less noise than external sources in the

final reconstructed images [34], and also provides anatomic
referencing, as shown in Fig. 3. For subcutaneous xenograft
models, it also offers the advantage of providing more accurate
tumour volume evaluation than measurement with callipers
[35]. However, CT can deliver high radiation doses causing
significant DNA damage and therefore potentially confound-
ing experimental outcome. In that setting, Kersemans et al.
[36] showed that by reducing x-ray voltage, flux and duration,
it is possible to significantly reduce radiation burden to the
animal while maintaining image quality.

Figure 5 shows the impact of the use of long-range
positron emitters on image quality when imaging four mice

Fig. 3 A customized bed designed to image four mice simultaneously
with radial displacement. a Animals are placed in cylinders (inner
diameter 35 mm, leading to a 20-mm radial displacement) that deliver
isoflurane for anaesthesia. b Fused '*F-FDG PET/CT MIP view of four
mice bearing abdominal tumours that received an intraperitoneal

@ Springer

injection of iodinated contrast medium plus an intravenous injection
of Fenestra VC, a long-lasting contrast medium. ¢, d Representative
coronal slices from contrast-enhanced CT and PET scans at the level of
an abdominal tumour (arrows)
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Fig. 4 A customized bed
designed to image four mice
simultaneously with a
combination of radial and axial
displacement. a Animals are
placed on a customized bed that
delivers isoflurane for
anaesthesia and is attached to
the manufacturer’s bed. Mice
are imaged with an axial
displacement of 40.1 mm and a
radial displacement of

22.5 mm. b Coronal '*F-FLT
PET image of four mice bearing
subcutaneous tumours (arrows)

with a combination of radial and axial displacement in a
Phillips Mosaic system [37].

Overall, image quality and quantitative accuracy depend on
the size of the scanner's FOV, the size and number of animals
imaged and their position within the FOV, and the performance
of reconstruction and correction algorithms. Regarding posi-
tioning of the animals within the FOV, customized beds should
be designed so that regions of interest are imaged as close as

possible to the centre of the FOV. Table 2 summarizes results in
terms of spatial resolutions and sensitivities at the centre of the
FOV with 2- and 3-cm radial offsets for three commercially
available large-bore SA-PET devices [26-28, 30, 38]. For
instance, when imaging mice with a combination of 3 cm
radial and 3 cm axial displacement, one would expect a dete-
rioration of radial full-width at half-maximum (FWHM) due to
radial displacement ranging from 24 % to 46 % for filtered

Fig. 5 Imaging of multiple mice with a positron emitter other than '*F.
Four mice with implanted A247 tumours (small axis ranging from
4.6 mm to 12 mm) transfected to overexpress SSTR subclass 2 recep-
tors (cells courtesy of Buck Rogers, Washington University, MI) were
imaged 24 h apart on a Mosaic SA-PET system 1.5 h after injection of
"8F_FDG (mean activity per mouse 8+0.1 MBq) and **Ga-DOTATATE
(mean activity per mouse 13.2+0.2 MBq). The animals were scanned

with a combination of radial (18 mm) and axial (57 mm) displacement.
a MIP views for '*F-FDG. b Given the lack of anatomical landmarks
on **Ga-DOTATATE SA-PET images, mice were scanned on a clinical
CT scanner and surface images extracted from the CT images. ¢ Fused
SA-PET/CT MIP **Ga-DOTATATE images (SA-PET images are cour-
tesy of David Binns and Carleen Cullinane, Peter MacCallum Cancer
Centre, Melbourne, Australia)

@ Springer
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Table 2 Impact of radial offset on spatial resolution and of axial offset on sensitivity of commercially available scanners

Scanner Reference Reconstruction FWHM (mm)?* Sensitivity (%)*
algorithm
Centre of FOV 2 cm radial offset 3 cm radial offset Centre of 2cm 3 cm
FOV axial axial
Tangential Radial Axial Tangential Radial Axial Tangential Radial Axial offset ~offset
Triumph LabPET-8 [38] FBP? 1.8 1.7 2.4 1.7 2.3 2.5 1.7 2.7 2.7 1.3 0.9 0.5
MLEM® 1.0 0.8 1.6 1.2 1.1 1.5 1.3 1.2 1.5
Inveon [26,30] FBP* 1.5 1.6 2.0 1.5 2.1 2.4 1.6 2.1 2.4 10.1 6.9 5.3
OSEM/MAP® 1.6 1.6 1.7 1.6 1.7 1.6 1.7 1.8 1.6
NanoPET/CT [27] FBP* 1.15 1.38 147 1.64 2.04 1.6 1.81 2.54 1.89 7.7 4.8 3.1
3-D OSEM* 0.59 072 0.60 0.71 090 0.66 0.78 1.06  0.65

FBP filtered back-projection, MLEM maximum likelihood expectation maximization, OSEM ordered subsets expectation maximization, MAP

maximum a posteriori.

Data for the Triumph LabPET-8 and the Inveon systems were interpolated from Prasad et al. [38] and Visser et al. [30], respectively, and data for the

NanoPET/CT system were calculated for the purposes of this paper.
Data obtained as per NEMA protocol.

® Ten iterations.

€18 iterations/16 subsets, uniformity constraint set to “resolution”, smoothing parameter 3=0.5; all MAP reconstructions were preceded by two 3-

D OSEM iterations.

920 iterations/1 subset, no postfiltering.

back-projection (FBP) and from 11 % to 33 % for advanced
reconstruction algorithms. An expected loss of sensitivity due
to axial displacement would also be observed, ranging from
48 % to 61 %.

The results shown in Table 2 are measures of detector
performance and are not necessarily indicative of final im-
age quality after postprocessing. They are therefore not
meant to be used as a comparison between the three scan-
ners. FWHM are given as determined from FBP as per
NEMA NU-A standards. While this algorithm is rarely used
in routine practice for rodent imaging, it allows the evalua-
tion of the effect of radial offset on spatial resolution be-
cause of hardware issues, i.e. oblique penetration of photons
at the edge at the FOV causing parallax error. As shown in
Table 2, iterative reconstruction methods provide better
FWHM at the centre of the FOV, and also 3-D maximum
a posteriori (MAP), which models the PSF of the system
[39, 40], is less sensitive to radial offset displacement.
However, ideally, the impact of such algorithms in the
imaging of multiple mice as well as their optimization
should be evaluated with the NEMA NU 4 image quality
phantom [41]. For example, increasing the number of itera-
tion will increase the spatial resolution (assessed by RC
measurements) but will increase the image noise (as
assessed by %STD).

When imaging four mice simultaneously in a combina-
tion of radial and axial displacement, whole-body scanning
will not always be feasible because of practical issues relat-
ed to the size of the animals and of anaesthesia devices.
Moreover, the useful FOVs of the PET device may be
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reduced by the CT component. For the Inveon SA-PET/CT
scanner, the axial and transaxial FOVs are both reduced to
85.7 mm, as compared to 126 and 110 mm, respectively, for
the stand-alone SA-PET scanner. If whole-body scanning is
required, for instance for biodistribution studies, the config-
uration in which all mice are displaced radially would be
preferred.

When designing a customized bed, the choice of
materials should take into account how difficult they
are to manufacture and their attenuating properties, espe-
cially if the SA-PET scanner is not equipped with an
external transmission source or with a docked microCT
scanner for attenuation correction purposes.

Planar positron imaging and partial ring SA-PET systems

Low-cost planar positron imaging systems have been devel-
oped by several groups [42, 43]. These devices have two
planar detectors placed facing each other, and are kept station-
ary during the acquisitions. Because of the limited angle to-
mography, coronal images obtained with the planar positron
imaging systems first developed were similar to projection
images created by summing all radioactivities along a depth
direction of an object. Therefore, when measuring tumour
activity in a subcutaneous lesion, the radioactivity in nontu-
mour tissues that surround the actual tumour has to be sub-
tracted from the gross activity to obtain the net activity in the
tumour. A potential disadvantage of these devices is that they
do not include attenuation or scatter corrections. More recently,
PETbox [44], a planar positron imaging system equipped with



Eur J Nucl Med Mol Imaging (2012) 39:1497-1509

1505

an iterative reconstruction method with the incorporation of a
system probability matrix has been developed to reconstruct 3-
D images from the limited angle projection data.

Efforts to improve system sensitivity and to aid animal
handling (with regard to anaesthesia, temperature control and
reproducible optimal positioning of the mice in the FOV) are
being made and could be considered as alternative mecha-
nisms to enhance throughput. Moreover, some systems have a
sensitive area that is large enough to be suitable for the
imaging of two mice simultaneously. Also available is a
VrPET/CT scanner [45], a multimodality scanner with copla-
nar geometry and a 86.6-mm transaxial FOV that would also
be suitable for imaging two mice simultaneously. The PET
component of this system consists of four detectors arranged
in two V-shaped blocks, and the PET and CT components are
assembled on a rotating gantry in such a way that there is no

Fig. 6 Planar and V-shaped a

positron imaging systems. a, b SamicIa
PETbox system [44]: schematic

illustration in a bench top con-

figuration (a) and photograph mouse top

of the gantry with the two de- chamber detector
tector heads assembled (b). The ~a

two detectors are placed facing

each other at a spacing of 5 cm = m—| |
and are kept st.ationary during bed guide
the scan, forming a dual-head
geometry optimized for imag-
ing mice. ¢ VIPET/CT system
[45], a multimodality scanner
with coplanar geometry. The
PET component consists of four
detectors arranged in two V-
shaped blocks, and the PET and
CT components are assembled
on a rotating gantry in such a
way that there is no axial dis-
placement between the geomet-
ric centres of the two
modalities. The small red circle
indicates a NEMA mouse-sized
(25 mm diameter) cylinder and
the larger red circle indicates
the transaxial FOV of the scan-
ner (86.6 mm) that is suitable
for imaging multiple mice. Also
visible are the flat panel x-ray
detector (blue arrow), the x-ray
tube (red arrow) and the V-
shaped PET detectors (green
arrows). a and b reprinted with
permission from Zhang et al.
[44] and ¢ courtesy of

Dr. Eduardo Lage, Hospital
General Universitario Gregorio
Maranon, Madrid, Spain

bottom

detector

X, y: coronal (in-plane)
z: anterior-posterior

axial displacement between the geometric centres of the two
modalities. With 2-D FBP (as per NEMA NU 4 standards), the
spatial resolution of this system is 1.48 mm at the centre of the
FOV, and 1.81 mm and 2.14 mm at 2 cm and 3 cm radial
offsets, respectively. [llustrations of the PETbox and VIPET/
CT systems are presented in Fig. 6.

Perspectives related to technological evolution

High-throughput imaging of rodents will benefit from on-
going hardware evolution such as new detectors capable of
achieving submillimetre spatial resolution and higher sensi-
tivity [46] and advanced reconstruction algorithms model-
ling the PSF of the system or including both PSF and
positron range modelling [19]. An example of an advanced
reconstruction algorithm is shown in Fig. 7.

temperature
&

anesthesia
control box top
detector

5
O

~ camera bottom

detector
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Fig. 7 Technological
improvements that could
benefit high-throughput PET ’ '
imaging. a A tumour-bearing

mouse imaged in a group of
four animals in the customized
bed shown in Fig. 3. Animals
received intravenous and intra-
peritoneal injections of iodinat-
ed contrast medium. Images
were reconstructed with FBP
and MAP reconstruction, an al-
gorithm that models the PSF of
the system. Images are scaled to
the same maximum. Note the
artefacts near the bladder on the
FBP images, which hamper the
detection of a necrotic tumour
also located near the bladder.
These artefacts are not present
on the MAP images. b Mice
imaged using ®'Cu-PTSM.
Relative to that obtained with
FBP, improved image resolu-
tion was achieved by the use of
MAP reconstruction with PSF
and positron range modelling
(MAPR). With MAPR, the re-
nal cortex can be resolved
clearly in the kidney. b reprin-
ted with permission of the So-
ciety of Nuclear Medicine from
de Kemp et al. [19]

microCT

Issues related to animal handling

A potential issue when developing high-throughput SA-PET
strategies relates to animal handling and anaesthesia as well as
efficient coordination of tracer injection. Anaesthesia is gen-
erally obtained using isoflurane inhalation, and devices allow-
ing up to six mice to be kept under anaesthesia are
commercially available. Ideally, customized beds should in-
clude heated covers, body temperature probes and respiratory
pads, as long periods of anaesthesia can lead to a significant
decrease in body temperature, which can in turn induce mor-
bidity and modifications of tracer uptake, as shown for '*F-
FDG [9] and "®F-FLT [10], presumably because of decreased
blood flow and decreased body functions at the lower temper-
ature. Ketamine/xylazine anaesthesia should be avoided as it
has been shown to induce marked hyperglycaemia in mice
[47]. Extreme hyperglycaemia (>500 mg/dl) has been shown
by Wahl et al. [48] to reduce significantly '*F-FDG uptake in
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rat xenografts, which suggests competition between glucose
and '"F-FDG. It is noteworthy that isoflurane may also affect
glucose blood levels, but conflicting results have been
reported with either a variable decrease or a slight increase
[47] in glucose blood levels. In their study comparing the
impact of isoflurane and sevoflurane on blood glucose levels
in various mouse strains and implanted tumours, Flores et al.
[49] showed that sevoflurane may be preferred to isoflurane in
mice undergoing small-animal imaging, as blood glucose
levels were more stable under sevoflurane than under isoflur-
ane, especially in nude mice. Sevoflurane also has advantages
such as fewer hepatotoxic metabolites and a more rapid in-
duction and recovery profile, which could be useful, particu-
larly in fragile mouse models.

Although no guidelines on SA-PET imaging in cancer
research have been published so far, EANM guidelines on
PET tumour imaging [50] provide insights into issues relat-
ed to imaging of multiple mice. For therapy monitoring in
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oncology, EANM guidelines recommend that the delay be-
tween tracer injection and image acquisition is the same (+ 5
min) between longitudinal studies. Obviously, a similar
approach should be used for animal imaging. In our experi-
ence, injecting four mice within 5 min is feasible for two
well-trained researchers working side by side. When per-
formed by experienced researchers, variability in the effi-
ciency of tail vein injection does not affect %ID/g:
extravasation of tracer at the site of injection has been
shown to occur quite rarely (in 4 of 23 scans [11] and in 4
of 34 scans [10]), has never exceeded 10 % of the injected
dose, and correction of %ID/g by subtracting the tail vein
activity from the injected dose has been shown to induce
only a slight increase in %ID/g [10, 11]. Another option is to
determine when the plateau phase is reached for a specific
animal model and a given tracer. This can be ascertained
from dynamic scans. If imaged after this time, variations in
the delay between tracer injection and imaging will mini-
mally affect tumour tracer uptake.

Also feasible is intraperitoneal (IP) injection of the PET
probe, which is a more convenient and rapid technique for
animal handlers than is gaining intravenous (IV) access.
This technique has been shown to lead to similar radioac-
tivity concentrations in liver and tumour in mice bearing
glioma implanted subcutaneously 60 min following '*F-
FDG injection compared to IV administration [47]. These
findings were later confirmed by Wong et al., who showed
that IV and IP injections provide equivalent pharmacokinet-
ic parameters and comparable 'SF-FDG biodistribution
60 min after injection [51]. This injection route was also
used by Revheim et al. [29] for imaging ten mice simulta-
neously on a clinical PET/CT system. A potential drawback
of IP injection is that the initial distribution of IP-injected
"F-FDG in various organs has been reported to be slower
than that following IV injection because '*F-FDG diffuses
via the peritoneal membrane and is subsequently absorbed
via the portal system, thus indicating that IP injection is not
suitable for tracers eliminated primarily by the liver [51].

What throughput could be achieved and what would
be the consequences on the use of PET by the nuclear
medicine and oncology communities?

The gain in throughput in a working day is likely to be
higher for large-bore dedicated SA-PET systems, as com-
pared to high-resolution clinical PET/CT systems on which
preclinical research would usually be performed on an after-
hours basis, and planar positron imaging systems. Indeed,
taking the example of the customized bed illustrated in
Fig. 2, four mice can be imaged in 25 min (15 min for the
emission and 10 min for the CT acquisition) as opposed to
approximately 120 min if the animals had been imaged

singly (taking into account induction of anaesthesia and
positioning of the animals in the SA-PET system). This
4.8-fold gain in throughput would help researchers to meet
the statistical requirements of experiments requiring a large
number of animals to be imaged, or in biodistribution stud-
ies, especially with short-lived positron emitters, since mul-
tiple experiments could be performed using a single
synthesis, thus dramatically improving the cost-
effectiveness of SA-PET imaging. More importantly, high-
throughput SA-PET imaging, performed within the frame-
work of translational research (i.e. together with a full range
of molecular biology techniques) is likely to significantly
enhance the use of PET Imaging in phase 1 trials.

Tseng et al. [52] recently reported a strategy based on the
use of DNA microarray analysis and SA-PET imaging as
complementary technologies in drug development. These
authors proposed a stepwise approach to selecting a suitable
imaging tracer for tumour evaluation. Gene expression anal-
ysis is first performed on tumour cells treated with drugs in
vitro either by means of DNA microarray or with quantita-
tive polymerase chain reaction interrogating a panel of key
genes representing biological pathways relevant to imaging.
Pathways that are most affected by treatment suggest PET
probes that may subsequently be used in tracer accumula-
tion studies in cell culture and SA-PET studies in mice
bearing human xenografted tumours. Tseng et al. [52] val-
idated their stepwise approach in melanoma cells treated
with RAF265, a novel B-B-Raf/VEGFR-2 inhibitor, which
causes a decrease in '*F-FDG uptake as early as 1 day after
treatment initiation, thus supporting the use of '*F-FDG
PET in phase 1 clinical trials using RAF265. In the case of
molecularly targeted therapies for which the OBD or opti-
mal scheduling are not known, the stepwise approach de-
scribed by Tseng et al. [52], together with high-throughput
SA-PET imaging using appropriate probes, would optimize
the use of PET technology in cancer research from bench to
bedside by reducing costs and saving time. The relevance of
these approaches has recently been demonstrated by the
demonstration of a marked early reduction in '®F-FDG
uptake in BRAF mutant melanoma using the novel BRAF
inhibitor, vemurafenib [53].

Conclusion

There are many potential benefits to be derived from high-
throughput SA-PET imaging. Further, technical and design
innovations offer the potential to ensure that the process of
evaluation of new therapies is more efficient. This will
reduce the time and cost of using molecular imaging in drug
development and provide greater impetus for the integration
of PET into early phase human trials of novel targeted
therapies.
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