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Deinococcus radiodurans possesses extreme resistance to ionizing radiation, and has been engineered for the remediation of toxic 
components in radioactive environments. We have previously shown that PprI (also named IrrE) and DrRRA are essential for the 
DNA protection and repair pathways that respond to ionizing radiation stress in this species. Here, we investigated the combined 
roles of PprI and DrRRA in resistance to gamma radiation (800 Gy). The double mutant, ∆drRRA ∆pprI, was more sensitive to 
gamma rays than either ∆drRRA or ∆pprI single mutants, and exhibited an elevated level of intracellular protein carbonylation, an 
extended delay in genome reconstitution and reduced transcriptional levels of certain DNA protection and repair proteins, such as 
kat, sod, recA and pprA. Interestingly, the induction of DrRRA by ionizing radiation was partially inhibited by the deletion of pprI. 
Taken together, these results suggest that DrRRA and PprI might have collaborative roles in the response of D. radiodurans to 
extreme ionizing radiation. 

Deinococcus, DNA repair, anti-oxidation, ionizing radiation 

 

Citation:  Wang L Y, Yin L F, Xu G Z, et al. Cooperation of PprI and DrRRA in response to extreme ionizing radiation in Deinococcus radiodurans. Chin Sci Bull, 
2012, 57: 98104, doi: 10.1007/s11434-011-4790-7 

 

 

 
Deinococcus radiodurans possesses an exceptional toler-
ance to the killing effects of highly stressful agents, such as 
ionizing radiation, ultraviolet (UV) light, hydrogen peroxide 
and desiccation. Exponentially growing D. radiodurans is 
able to survive a 15 kGy dose of acute ionizing radiation, 
which is approximately 50–100 times higher than the toler-
ance of Escherichia coli [1]. Biotechnologies have been 
developed based on this radiation-resistant bacterium to 
degrade pollutants in radioactive mixed waste environments 
[2–5]. 

Like other extreme microorganisms, D. radiodurans em-
ploys various strategies to overcome stress [6–12], and sev-
eral mechanisms for its extreme resistance to ionizing radia-
tion have been proposed [13–16]. A pool of distinctive 
genes involved in the stress response has been investigated 

to explain the extreme resistance of D. radiodurans [17–23]. 
Among them, two regulators are noteworthy. One is pprI 
(inducer of pleiotropic proteins promoting DNA repair, also 
named irrE), a general switch for downstream DNA repair 
and protection pathways [24,25]. Extensive biochemical and 
genetic research on pprI has generated a compelling picture 
of its in vivo function. Our recent research suggests that 
PprI participates in the regulation of several pathways, in-
cluding DNA repair, stress response, energy metabolism, 
transcriptional regulation, signal transduction, protein turn-
over and chaperoning [21]. Exogenous expression of pprI in 
E. coli promotes DNA repair and offers oxidative damage 
protection, thereby enhancing radioresistance [26]. Another 
stress response gene is drRRA (Deinococcus radiodurans 
response regulator A), a novel response regulator that mod-
ulates multiple pathways, including antioxidation and DNA 
repair [20]. Deletion of this gene renders the bacteria highly 
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sensitive to radiation, oxidative stress, and desiccation. Both 
pprI and drRRA play crucial roles in regulating downstream 
genes involved in DNA damage protection and repair path-
ways upon ionizing radiation stress. However, whether these 
two genes act cooperatively in vivo is not known.  

In this study, we constructed a double-knockout strain 
lacking the pprI and drRRA genes to investigate their com-
bined roles in cellular resistance. The functions of PprI and 
DrRRA upon exposure to extreme ionizing radiation were 
collaborative. 

1  Materials and methods 

1.1  Bacterial strains and growth conditions 

D. radiodurans (ATCC 13939) was grown at 30°C in TGY 
medium (0.5% Bacto tryptone, 0.1% glucose, 0.3% Bacto 
yeast extract) or on TGY plates supplemented with 1.5% 
Bacto-agar. When necessary, media were supplemented 
with 50 μg mL–1 kanamycin and 3.4 μg mL–1 chloramphen-
icol. D. radiodurans cells were transformed using the modi-
fied CaCl2 technique [4]. All strains and plasmids used in 
this work are listed in Table 1. 

1.2  Construction of the ΔpprI ΔdrRRA double-knockout 
strain 

∆pprI and ∆drRRA single mutant strains were constructed 
using the deletion mutagenesis technique with a kanamycin 
cassette as described previously [20,27]. To obtain a dou-
ble-knockout mutant with different antibiotic-resistance 
genes, we replaced the kanamycin cassette in ∆drRRA with 
a chloramphenicol cassette (Figure 1(a)). Briefly, primers 
P1 (5′-GGGTCATGCAGAAGAACTCGG-3′) and P4 (5′- 
TGGCTCGCACTCCAGACAAT-3′) were used to amplify 
the fragment containing the sequences flanking the kana-
mycin cassette from genomic ∆drRRA DNA. This fragment 
was ligated into the pMD18-T Simple vector lacking the 

multiple cloning sites (TaKaRa, Japan) to generate pTMRK. 
This plasmid was then digested with BamH I and Hind III to 
remove the kanamycin cassette, and the chloramphenicol 
cassette from pKATcat [28] was ligated in its place to gen-
erate pTMRC. Primers P1 and P4 were used to amplify a 
fragment containing the chloramphenicol cassette and the 
upstream and downstream drRRA fragments. This fragment 
was then transformed into competent, exponential-phase 
∆pprI single mutant cells. Candidate double-mutants resistant 
to both kanamycin and chloramphenicol were selected on 
TGY plates with antibiotics, and verified by PCR, DNA se-
quencing and Western blotting (Figure 1(b) and (c)). 

1.3  Western blotting analysis 

D. radiodurans cells, either irradiated or non-irradiated, 
were harvested and disrupted. Supernatants were separated 
by SDS-PAGE, transferred to nitrocellulose, and detected 
with antisera against DrRRA or PprI (rabbit IgG, laboratory 
stock) [20,27]. As a control, D. radiodurans GroEL was 
detected with E. coli GroEL antiserum (Sigma, USA).  

1.4  D. radiodurans survival assay 

The gamma radiation survival assay was performed as de-
scribed previously [20]. Briefly, aliquots of cells were irra-
diated at room temperature for 1 h with 60Co gamma rays at 
doses from 100 to 6000 Gy. After treatment, cells were 
plated on TGY plates and incubated at 30°C for 3 d before 
enumeration of colonies. 

1.5  Measurement of intracellular protein carbonyla-
tion levels 

Intracellular protein carbonylation was measured as    
described previously with some modifications [29]. Briefly, 
cells grown to A600 = 1.0 were harvested and gamma-irradi- 
ated with 800 Gy. Freshly treated cells were lysed by  

Table 1  Strains and plasmids used in this study 

Strains Description Source or reference 

D. radiodurans R1  ATCC 13939 Lab stock 

DH5α host strain  For plasmid construction Invitrogen, US 

∆pprI D. radiodurans R1 pprI deletion mutant harboring kanamycin cassette [27] 

∆drRRA D. radiodurans R1 drRRA deletion mutant harboring kanamycin cassette [20] 

∆pprI ∆drRRA D. radiodurans R1 pprI and drRRA double deletion mutant harboring kanamycin and chloramphenicol 
cassettes 

This study 

Plasmids Description Source or reference 

pMD18-T Simple  TA-cloning vector TaKaRa, Japan 

pKATcat pUC19 vector with BamHI-HindIII fragment which contains a cat gene [28] 

pTMRK pMD18-T Simple derivative carrying kanamycin cassette with flanking upstream and downstream 
fragments of drRRA 

This study 

pTMRC pMD18-T Simple derivative carrying chloramphenicol cassette with flanking upstream and down-
stream fragments of drRRA 

This study 
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Figure 1  Construction and verification of the ∆pprI ∆drRRA double mutant. (a) A simple and convenient method for antibiotic-resistance cassette substitu-
tion. A fragment containing the kanamycin cassette and flanking drRRA sequences was amplified and ligated into the pMD18-T Simple vector to generate 
pTMRK. The kanamycin cassette was then digested and replaced by the chloramphenicol cassette, with the upstream and downstream fragments unchanged. 
Primers P1 and P4 were used for amplifying the tripartite ligation products. (b) Verification of the double mutant ∆pprI ∆drRRA by PCR. Lanes M, DNA 
molecular weight marker; Lanes 1 and 2, PCR products from D. radiodurans R1 and the double mutant with the upstream and downstream sequences of  
pprI; Lanes 3 and 4, PCR products from D. radiodurans R1 and the double mutant with the upstream and downstream sequences of drRRA. (c) Verification 
of the double mutant ∆pprI ∆drRRA by Western blotting. R1, wild type; ∆pprI, ppr1-deficient; ∆drRRA, drRRA-deficient; ∆pprI ∆drRRA, the double mutant. 
Total protein (100 g) from cell extracts was loaded in each lane. Anti-GroEL antibody was used as the loading control. 

sonication in phosphate-buffered saline (PBS) containing  
1 mmol L–1 phenylmethanesulfonyl fluoride (PMSF) and 
0.5 mmol L–1 ethylene diamine tetraacetic acid (EDTA). 
The protein concentration of the supernatant was deter-
mined using a Bradford Protein Assay Kit (Beyotime, Chi-
na). Cell-free extracts containing 10 mg mL–1 of total pro-
tein were incubated with 400 μL of 10 mmol L–1 
2,4-dinitro- phenyl hydrazine (DNPH, dissolved in 2 mol L–1 
HCl) for 1 h in the dark, and the mixture was vortexed once 
every 10 min. Protein was precipitated with ice-cold 20% 
(w/v) trichloroacetic acid (TCA), washed with ethyl acetate 
in ethanol (V:V=1:1) to remove the excess DNPH, and dis-
solved in 1.25 mL of guanidine hydrochloride (6 mol L–1). 
The absorbance of the supernatant was determined at 370 
nm. Protein carbonyl content was expressed as µmol mg–1 
protein after subtracting the values obtained from unirradi-
ated controls. 

1.6  Pulsed-field gel electrophoresis (PFGE) 

Sample preparation and PFGE analysis were performed 
essentially as described previously [20,30]. Briefly, bacteria 
(A600 = 0.4) were exposed to 800 Gy gamma radiation and 
incubated in fresh TGY broth. After 0, 90, 180 and 360 min 
of irradiation, cells were added to agarose plugs for sequen-
tial digestion with lysozyme in 0.05 mol L–1 EDTA, and 

proteinase K in 0.5 mol L–1 EDTA. The plugs were washed 
extensively with Tris-EDTA (TE) buffer, digested with  
Not I and subjected to PFGE. 

1.7  RNA isolation and quantitative real-time PCR 

Bacteria grown to A600 = 0.4 were irradiated with 800 Gy, 
incubated at 30°C for 30 min, and harvested. Total RNA 
was extracted using a Trizol kit (Invitrogen, USA), and 
treated with RNase-free DNase I (Promega, USA). RNA 
quality and quantity were evaluated using a NanoDrop 
Spectrophotometer (NanoDrop, USA). First-strand cDNA 
synthesis was carried out in 20 μL reactions with 1 μg puri-
fied RNA, and 3 μg random hexamers. The Quant SYBR 
Green PCR Kit (Tiangen, China) was used according to the 
manufacturer’s instructions, and the constitutively ex-
pressed housekeeping gene DR0089 was used as a normali-
zation factor. mRNA levels of 8 antioxidant and DNA re-
pair-related genes were measured. 

2  Results 

2.1  The double mutant showed increased sensitivity to 
gamma-radiation 

Using the simple and convenient antibiotic-resistance sub-
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stitution method described above, we engineered the ∆pprI 
∆drRRA double mutant harboring kanamycin and chloram-
phenicol resistance gene cassettes. Simultaneous disruption 
of pprI and drRRA resulted in higher sensitivity to gamma 
radiation compared with either of the single deletion mu-
tants (Figure 2(a)). The survival fraction of the ∆pprI 
∆drRRA strain was approximately 10% after 250 Gy of 
acute irradiation, while both single mutants were only 
slightly affected at this dosage. The survival fraction de-
creased with increasing irradiation dose. When the dosage 
was increased to 800 Gy, the survival of ∆pprI ∆drRRA 
decreased to about 0.3%. By comparison, the ∆drRRA sin-
gle mutant showed 20% survival, while the ∆ppr1 single 
mutant showed 3% survival. At dosages higher than 2 kGy, 
the double mutant still displayed a higher sensitivity, though 
all the response curves began to flatten. 

2.2  Level of protein carbonylation was elevated in the 
double mutant 

Carbonylation levels of proteins in gamma-irradiated cells 
(800 Gy) were analyzed. As indicated in Figure 2(b), both 
single mutants exhibited higher levels of protein carbonyla-
tion compared with the wild-type R1 after gamma irradia-
tion. The protein carbonyl content measured in wild-type 
R1, and in the ∆pprI and ∆drRRA mutants in response to 

gamma radiation was (6.43±0.26), (13.95±1.82) and (8.43± 
1.11) μmol mg–1, respectively, while it rose markedly in the 
double mutant, reaching 20.59±1.34 μmol mg–1. This result 
suggests that the mutant lacking both PprI and DrRRA is 
more sensitive to protein oxidative damage than either of 
the single mutants. 

2.3  Increased delay of genome reconstitution following 
gamma irradiation in the double mutant 

We compared the genome reconstitution process in 
wild-type R1 and in the three mutants under low dosage 
gamma irradiation (800 Gy). The reconstitution rate of the 
∆drRRA single mutant was close to that of the wild type, 
while the ∆pprI single mutant recovered more slowly (Fig-
ure S1). As illustrated in Figure 2(c), an intact genome was 
formed 180 min after radiation exposure in ∆pprI cells. 
However, the recovery process was extended to 360 min in 
the double-knockout cells. Therefore, the simultaneous de-
letion of pprI and drRRA resulted in delayed genome recon-
stitution of D. radiodurans. 

2.4  Induction of radiation-response genes was attenu-
ated in the double mutant 

Transcriptional levels of essential anti-oxidation and DNA   

 

 

Figure 2  Combined effect of pprI and drRRA in the double mutant. (a) Survival curves for D. radiodurans following exposure to gamma radiation. 
Squares, wild-type R1; circles, ∆drRRA single mutant; upright triangles, ∆pprI single mutant; inverted triangles, ∆pprI ∆drRRA, double mutant. Values are 
the mean ± standard deviation of four independent experiments. (b) Comparison of intracellular protein carbonylation levels in wild-type and mutant strains 
after 800 Gy gamma radiation. After subtraction of the untreated background, values are the mean ± standard deviation of three independent experiments. (c) 
Genome recovery of ∆pprI and ∆pprI ∆drRRA following gamma radiation (800 Gy). The ∆pprI ∆drRRA double mutant showed a delay in intact genomic 
DNA restoration compared with the ∆pprI mutant after irradiation. M, Lambda ladder PFG marker (NEB); lanes 1 and 6, unirradiated ∆pprI and ∆pprI 
∆drRRA, respectively; lanes 2–5, ∆pprI 0, 90, 180 and 360 min post-irradiation; lanes 7–10, ∆pprI ∆drRRA 0, 90, 180 and 360 min post-irradiation. 
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repair genes were evaluated in the double mutant. As shown 
in Table 2, the levels of certain antioxidation-related genes, 
such as sod (superoxide dismutase) (DR1279 and DR1546) 
and kat (catalase) (DR1998) were clearly decreased in the 
double mutant relative to the single mutants and the wild 
type. Transcript levels of the DNA repair-related genes, 
recA (recombinase A) and pprA (pleiotropic protein pro-
moting DNA repair), displayed a similar pattern: both genes 
were transcribed less in the double mutant compared with 
either of the single mutants, although transcript levels were 
not obviously reduced in the ∆drRRA single mutant after 
low dose gamma irradiation. To exclude the possibility of 
artifactual changes causing lethality, transcript levels of 
certain genes in the ∆pprI ∆drRRA double mutant were 
compared with those in a ∆recA mutant, which is extremely 
sensitive to gamma rays [31] (Table S1). PprA and recA are 
two essential elements located in diverse pathways in D. 
radiodurans. Both are greatly induced in response to gam-
ma radiation [32]. PprA was significantly down-regulated in 
the double mutant, while it was dramatically up-regulated in 
the ∆recA mutant after gamma radiation. This suggested 
that the fold change in the double mutant was indeed related 
to gene regulation by PprI and DrRRA, and not due to de-
creased cellular survival. 

2.5  Effect of PprI on DrRRA expression 

The above results indicate that PprI and DrRRA collaborate 
in mediating cellular resistance to stress. In addition, sub-
sequent investigation showed that PprI imposes an effect on 
DrRRA. As shown in Figure 3, DrRRA is moderately in-
duced by gamma radiation in wild-type R1. However, the 
induction of DrRRA in the ∆pprI mutant was only half that 
of the wild type at 1 hour post-irradiation. In contrast, the 
levels of PprI in the ∆drRRA mutant remained unchanged, 
both after gamma radiation and under normal conditions. 
Thus, PprI might partially affect the expression of DrRRA 
in response to gamma radiation, indicating roles in a com-
mon pathway in addition to the non-overlapping functions 
described above. 

3  Discussion 

Previous studies have shown that anti-oxidative metabolism 
is a process critical to extreme radioresistance [14]. As an 
important type of oxidative modification, protein carbonyla-
tion could severely impair the integrity of both the genome 
and proteome, resulting in altered radioresistance [33].  

Table 2  Real-time PCR of DNA repair and anti-oxidation-related genes in the mutants relative to wild-type R1 after gamma radiation (800 Gy) 

Locus Annotationa) 
Fold change (±SD) 

∆drRRA (+γ)/R1(+γ) ∆pprI (+γ)/R1(+γ) ∆pprI ∆drRRA (+γ)/R1(+γ) 

DR1279 Superoxide dismutase Mn (SodA) –2.78 (±0.14) –2.77 (±0.19) –5.16 (±0.18) 

DRA0202 Superoxide dismutase CU-ZN (SodC) –5.02 (±0.79) –2.74 (±0.21) –3.82 (±0.82) 

DR1546 Copper/zinc-superoxide dismutase (SodC) –3.89 (±0.19) –2.77 (±0.08) –8.38 (±0.15) 

DR0146 Catalase (KatA) –1.29 (±0.01) –1.67 (±0.15) –3.01 (±0.20) 

DRA0259 Catalase with C-terminal domain similar to FABB domain (KatE) –3.40 (±0.26) –3.69 (±0.22) –4.45 (±0.11) 

DR1998 Catalase (KatE) –5.18 (±0.18) –2.47 (±0.19) –10.07 (±0.06) 

DR2340 Recombinase (RecA) –1.65 (±0.20) –11.16 (±0.14) –23.98 (±0.11) 

DRA0346 predicted protein (PprA) –1.58 (±0.21) –9.85 (±0.30) –13.23 (±0.21) 

a) Functional annotation is based on KEGG (http://www.genome.jp/kegg/). 

 

 

Figure 3  Western blot analysis of DrRRA (a) and PprI (b) levels in wild type and mutants. R1, wild type; ∆pprI, ppr1-deficient; ∆drRRA, drRRA-deficient. 
Minus γ (–γ), non-irradiated; plus γ (+γ), post-gamma radiation. Total protein (100 μg) from cell extracts was loaded in each lane. Anti-GroEL antibody was 
used as the loading control. 
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Recently, it has been shown that the extraordinary robust-
ness of D. radiodurans depends on efficient proteome pro-
tection [34]. In our study, intracellular protein carbonylation 
levels in the double mutant were significantly higher com-
pared with the single mutants after treatment with gamma 
radiation, suggesting a combined effect of PprI and DrRRA 
on inhibition of in vivo protein carbonylation. In particular, 
KAT and SOD are regarded as major ROS-scavenging pro-
teins that prevent DNA damage caused by hydrogen perox-
ide and superoxide anion radicals, thus contributing to the 
extreme radioresistance of D. radiodurans [32]. Here, tran-
scriptional levels of the two superoxide dismutases and of 
one catalase were further reduced in the double mutant 
compared with the single mutants, demonstrating that PprI 
and DrRRA might operate additively in the defense of in 
vivo oxidation through common downstream elements.  

Extreme ionizing radiation causes numerous double- and 
single-strand breaks, as well as damage to the nucleotide 
bases. These lesions are lethal to most organisms [8,35]. 
Strikingly, D. radiodurans is able to efficiently reconstitute 
hundreds of short fragments shattered by gamma ray bom-
bardment into a functional genome with high fidelity. 
However, if essential genes in this process are disrupted, the 
ability of DNA repair might be reduced, delaying the resto-
ration of the completed genome [20,21,30,36,37]. In this 
work, an extended delay was apparent in the double-mutant 
cells relative to the ∆pprI and ∆drRRA single mutants fol-
lowing gamma irradiation. Specifically, induction of two 
essential DNA repair and protection genes, recA and pprA, 
were dramatically down-regulated in the double mutant 
after gamma irradiation, compared with transcript levels in 
the single mutants. This down-regulation might contribute 
to the delayed genome reconstitution and reduced radiore-
sistance of the double knockout cells, because sufficient 
levels of recA and pprA are necessary for DNA double- 
strand break repair in D. radiodurans [36,38,39]. We pro-
pose that PprI and DrRRA coordinate common anti-    
oxidation protection/repair related elements to cope with 
extreme gamma radiation. 

In addition, our results reveal that deletion of pprI in the 
wild type leads to a reduced accumulation of DrRRA pro-
tein following gamma radiation. Therefore, the production 
of pprI might influence the expression of drRRA when this 
bacterium suffers DNA damage and oxidation stress. The 
newly discovered D. radiodurans cold-shock protein, PprM 
(modulator of the PprI-dependent DNA damage response), 
is also involved in the response to radiation, mediated by 
PprI [22]. We hypothesize that PprI might be a general 
DNA damage response regulator, governing a group of 
sub-regulators to finely tune the complicated cellular pro-
cesses induced upon stress so as to survive the extreme 
gamma radiation.  

This study shows a close cooperation between DrRRA 
and PprI. We postulate that PprI and DrRRA belong to dif-
ferent pathways, but that they also produce additive effects 

on certain common elements, so as to collaborate in the 
response to extreme gamma-irradiation. When DNA dam-
age occurs, PprI might be activated, resulting in induced 
expression of a series of DNA repair and protection genes, 
such as recA and pprA. DrRRA might also affect the above 
elements and other targets involved in DNA repair and anti- 
oxidation. Meanwhile, PprI may partially influence the ex-
pression of DrRRA in vivo. Thus, PprI and DrRRA act in 
concert through common and specific cellular components 
to ensure the extreme radioresistance of D. radiodurans. 
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Supporting Information 

Figure S1  Genome recovery of wild type R1, the mutants ∆drRRA and ∆pprI following gamma-radiation (800 Gy). The mutant ∆drRRA showed no delay 
in intact genomic DNA restoration compared with wild type R1 after gamma-radiation. However, the mutant ∆pprI showed a 45-min-delay relative to wild 
type R1. λ-ladder was the PFGE molecular marker (NEB). Lane C, unirradiated cells; lanes 1–6, post-irradiation time 0, 45, 90, 180, 270 and 360 min. 

Table S1  Real-time PCR of some anti-oxidation and DNA repair related genes in the double mutant relative to the mutant ∆recA after gamma-radiation 
(800 Gy) 
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