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1 Introduction

The AdS/CFT duality between the N = 4 Supersymmetric Yang-Mills (SYM) theory in

four dimensions and type IIB superstring in the compactified AdS5 space [1] has been

the playground for research for more than fifteen years. Although finding exact matching

between string states and dual operators from both sides is a highly non-trivial problem,

studying classical string solutions in various AdS×S backgrounds have played an important

role along that direction. The anomalous dimensions of particular field theory operators

having large charges can be obtained in the string side simply by looking at the dispersion

relation among charges of classical strings. The fact that the dilatation operator of the

N = 4 SYM theory in one loop can be written as the hamiltonian of the integrable Heisen-

berg XXX1/2 spin chain [2] has been proved to be a key concept in connecting integrability,

spin chains and string theory in the context of classical solutions. This observation helped

cast the strong coupling problem of the SYM theory into solving the algebraic bethe ansatz

equations for the quantum spin chain [3]. Also, in the string theory side, the integrabil-

ity of the AdS5 × S5 string sigma model based on the supercoset PSU(2,2|4)
SO(4,1)×SO(5) has been

established as the equations of motion for the superstring from this sigma model can be

recast in the zero curvature form [4]. This ensures the existence of an infinite number of

conserved quantities associated to string motion in this background. To speak precisely,

the integrability associated with both sides of the duality has improved the understanding

of the equivalence between the Bethe equation for the spin chain and the corresponding re-

alization of worldsheet symmetries of the classical AdS5×S5 string sigma model [5, 6]. The

relevant Bethe equations are based on the knowledge of the S-matrix which focusses on the

scattering of world-sheet excitations of the gauge-fixed string sigma model, or equivalently,

the excitations of a certain spin chain in the dual gauge theory [7–11].

Over the years, a lot of studies have been done on the semiclassical rotating string

solutions arising from the AdS5×S5 string sigma model. This includes well known solutions

like giant magnons [12], spiky strings [13] and most importantly folded spinning string
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solutions [14]. However unlike their rotating counterparts, the pulsating string solutions [15]

are less explored even though the pulsating-rotating solutions offer better stability than the

pure rotating ones [16]. These solutions are time-dependent as opposed to the usual rigidly

rotating string solutions. They are expected to be dual to highly excited states in terms of

operators. For example the most general pulsating string in S5 charged under the isometry

group SO(6) will have a dual operator of the form Tr
(
XJ1Y J2ZJ3

)
. Here the X, Y and

Z are the chiral scalars and Ji’s are the R-charges from the SYM theory. Pulsating string

solutions have been thoroughly generalized in [17–22], and have been studied in a number

of backgrounds having varying degrees of supersymmetry [23–26]. Simultaneously rotating

and oscillating strings were presented in [27], and the generalisation of this was done with

extra angular momenta in [28]. The one loop corrections to pulsating string spectrum in

AdS have been discussed in [29]. Recently these type of strings have been used to probe

integrable deformations of AdS string models like the Lunin-Maldacena background [30]

and the one-parameter deformed AdS backgrounds [31, 32]. Also such pulsating solutions

in non-local geometries have been looked at in [33].

The other famous example of a holographic dual pair is that of string propagation in

AdS3 × S3 × T 4 background and the N= (4,4) superconformal field theory coming from

the D1−D5 brane system. This duality has also been well explored from both sides and

various semiclassical solutions in this background [34–43] has been studied in the context

of integrability.1 String theory in this background supported by NS-NS type flux can be

described in terms of a SL(2,R) WZW model. It has been suggested recently that in

AdS3 × S3 background supported by both NS-NS and RR type fluxes (H3 = dB2 and

F3 = dC2), the string theory is integrable [45, 46]. The integrable structure of this theory,

including the S-matrix, has been discussed at length in [47–53], and various semiclassical

string solutions have been studied in [50, 54–58]. The NS-NS flux in this background

depends on a parameter q with 0 ≤ q ≤ 1, while the RR flux will be dependent on a

parameter q̂ =
√

1− q2. This model then interpolates between a pure RR background, for

which one can find the spectrum using the integrability based approaches, and the pure NS-

NS case where the WZW approach suffices. But it has been clear that for a intermediate

value of q, none of the approaches will be suitable enough. Classical string solutions in this

mixed flux background might be helpful to bridge the two models together.

In the present note, we address the question of finding pulsating string solutions in

this ‘mixed-flux’ background. We solve the F-string equations of motion with NS-NS flux

and find the dispersion relations among various conserved quantities perturbatively upto

the O(q2), provided the flux turned on is small. To find the quantized spectrum of the

string, we will use a Bohr-Sommerfeld quantization. Since the motion of the string is

(quasi)periodic, we can use the oscillation number N =
∮
p dq and the Noether charges

to characterize its dynamics. The oscillation number is an adiabtic invariant quantity and

we find that in terms of elliptic functions, which leads to the energy of the string. We will

see that when the NS-NS flux is switched off, our results match exactly that of already

known ones in the literature. We also discuss the dynamics of such strings in pure NS-NS

background in both small and large energy regimes.

1For a review of integrability in AdS3/CFT2 one can see [44] and references therein.
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The rest of the note is organized as follows. In section 2, we will discuss about the

strings pulsating near the centre of the sphere on the R×S3 with mixed flux. In section 3,

we will talk about this class of strings in AdS3 with a background mixed flux. We will also

sketch a generalisation of the solution with an angular momentum in S3 and comment on

the effect of its inclusion. In section 4 we conclude and present our outlook.

2 Pulsating string in R × S3 with mixed flux

In this section we will study the semiclassical quantization of a closed string which under-

goes pulsating motion in the R×S3 subsector of the total geometry. Let us start with the

metric and the NS-NS flux2 supporting the background,

ds2 = −dt2 + dθ2 + sin2 θdφ21 + cos2 θdφ22

bφ1φ2 = −q cos2 θ (2.1)

Since we are interested in F-string motion, the RR flux will not be relevant for us. In

what follows throughout the paper, we will take the value of q to be small and use it as a

perturbation parameter as in [54]. Now to study string solutions in this background, we

use the polyakov action

S = −
√
λ

4π

∫
dσdτ [

√
−γγαβgMN∂αX

M∂βX
N − εαβ∂αXM∂βX

NbMN ] , (2.2)

where
√
λ is the ’t Hooft coupling, γαβ is the worldsheet metric and εαβ is the antisymmetric

tensor defined as ετσ = −εστ = 1. Variation of the action with respect to XM gives us the

following equation of motion

2∂α(ηαβ∂βX
NgKN )− ηαβ∂αXM∂βX

N∂KgMN − 2∂α(εαβ∂βX
NbKN )

+ εαβ∂αX
M∂βX

N∂KbMN = 0 , (2.3)

and variation with respect to the metric gives the two Virasoro constraints,

gMN (∂τX
M∂τX

N + ∂σX
M∂σX

N ) = 0 , (2.4)

gMN (∂τX
M∂σX

N ) = 0 . (2.5)

We use the conformal gauge (i.e.
√
−γγαβ=ηαβ) with ηττ =−1, ησσ=1 and ητσ=ηστ =0)

to solve the equations of motion. Let us propose an ansatz for studying the pulsating string

in the form,

t = t(τ), θ = θ(τ), φ1 = mσ, φ2 = φ2(τ). (2.6)

2There is a gauge freedom in the choice of the two-form B-field for the Wess-Zumino term since the

supergravity equations of motion depend on the three-form field strength instead. In the presence of a

boundary one can incorporate a boundary term to parameterise this ambiguity. For details one can look

at [50] where the 2-form field is written as − q
2
(cos 2θ + c), with c as the ambiguity term. This c can be

fixed via natural physical requirements.
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With this embedding, the equations of motion of θ and φ2 give

θ̈ = − cos θ sin θ(m2 + φ̇2
2

+ 2mqφ̇2),

φ̈2 = 2 tan θθ̇(mq + φ̇2). (2.7)

While the t equation is satisfied simply by

t = κτ, (2.8)

with κ being a constant. One can check that the virasoro constraint (2.4) is given by

θ̇2 = ṫ2 −m2 sin2 θ − cos2 θφ̇2
2
, (2.9)

while the (2.5) is trivially satisfied. To check the consistency of the equation of motion

with the virasoro, we can integrate (2.7) to get

θ̇2 = −m2(1− q2) sin2 θ − C2
1

cos2 θ
+ C2,

φ̇2 =
C1

cos2 θ
−mq, (2.10)

where C1 and C2 are integration constants. It can be easily verified that the above equations

are consistent with (2.9) with the choice

C2 = κ2 −m2q2 + 2mqC1. (2.11)

Now, looking at the isometries of the background (2.1) we find the conserved Noether

charges are the energy and angular momentum of the string.

E =

√
λ

2π

∫
ṫdσ, J =

√
λ

2π

∫
(cos2 θφ̇2 + q cos2 θφ′1)dσ, (2.12)

The above can be rewritten as

E = ṫ, J = cos2 θφ̇2 +mq cos2 θ, (2.13)

since the integrands are not functions of σ we can perform the integration accordingly.

Also, we have used E = E√
λ

and J = J√
λ

as the ‘semiclassical’ values of the charges. It

is worth noting that due to the gauge freedom in choosing the B-field one could add a

constant term to the definition of the 2-form in (2.1). This would have made the charge J
ambiguous too with extra terms proportional to q appearing in the definition. We can avoid

this by choosing the boundary term accordingly so that the field exactly is given by (2.1).

Using the above we can write the Virasoro constraint in the following suggestive form,

θ̇2 = E2 −m2 sin2 θ − J 2

cos2 θ
−m2q2 cos2 θ + 2mJ q. (2.14)

It can be seen that as θ varies between 0 to π
2 , the θ̇2 varies between E2 − (J −mq)2 to

infinity. This looks like the equation of motion of a particle moving in an effective potential
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V (θ), where θ rotates between a minimal and a maximal value. Note that the θ equation

can be written in the form,

ẍ = m2(1− q2)
[
−(R+ +R−)x+ 2x3

]
, (2.15)

where x = sin θ. The R± are roots of the polynomial

f(z) = (E2 −m2q2 + 2mqJ )(1− z)−m2z(1− z)(1− q2)− J 2, (2.16)

with z = x2. This can be written as

ẋ2 = m2(1− q2)(x2 −R−)(x2 −R+), (2.17)

With arbitrary coefficients, the above equation of motion would represent a undamped

Duffing oscillator. But with proper scaling of the variables, we can write the solution

of (2.17) in terms of standard Jacobi elliptic function3 provided the initial condition

x(0) = 0:

sin θ(τ) =
√
R− sn

(
m
√

1− q2
√
R+τ |

R−
R+

)
. (2.18)

Using the property of Jacobi functions that sn(z|m) = sn(z+4K(m)|m) and as usual taking

only the real period, we can find that the condition for time-periodic solution for θ is,

R−
R+

< 1. (2.19)

This translates to the following inequality

(E2 −m2)2 + 4J 2m2 + 4Jmq(E2 −m2) > 0, (2.20)

which gives a constraint on the conserved charges so that the string has a pulsating motion.

Since the above quantity is the discriminant of R±, this guarantees that the roots are real

and not equal. It is also important to mention that for a periodic solution both R± have

to be positive, which leads to the following,

E2 − (J −mq)2 > 0. (2.21)

This is in tune with our observation earlier about the limits of oscillation in the θ̇ equation.

We can also find the dynamics of the string along the φ2 direction by integrating dφ2
dθ

from (2.10) which has the form

dφ2
dθ

=
J −mq cos2 θ

m
√

1− q2 cos θ
√

(sin2 θ −R−)(sin2 θ −R+)
. (2.22)

This can be integrated to find φ2 in terms of standard elliptic integrals,

φ2(τ) =
1

m
√

1− q2

[
J√
R+

Π

(
R−, sin

−1
(

1√
R−

sin θ(τ)

)
,
R−
R+

)

− mq√
R+

F
(

sin−1
(

1√
R−

sin θ(τ)

)
,
R−
R+

)]
(2.23)

3In the notation we follow sn(z|m) is the solution of w′(z)2 = (1− w2(z))(1−mw2(z)).
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(a) (b)

Figure 1. Pulsating ‘short’ circular strings in R × S3 as introduced in (2.24) evolving in the

(X0, X1, X2) plane. Both the strings have m = 2, E = J = 0.2 with a) q = 0.25 and b) q = 0.99.

The vertical direction coincides with the worldsheet time τ .

Now since the solutions we are looking for is that of a circular string, we can parame-

terise the worldsheet in a simplified way using the variables

X0 = τ,

X1 = sin θ(τ) cos(mσ),

X2 = sin θ(τ) sin(mσ),

X3 = cos θ(τ) cosφ2(τ),

X4 = cos θ(τ) sinφ2(τ), σ ∈ [0, 2π]. (2.24)

These are just some naive representations of the hypersurface traced out by the string as

it moves forward in τ (in analogy with the flat space pulsating solutions obtained in [15]),

the actual worldsheet in a curved background can be very complex. The string solutions

in (X0, X1, X2) plane are plotted in for various values of the parameters in figure 1. The

motion along (X0, X3, X4) plane has been visualised in figure 2 to demonstrate how the

φ2 coordinate evolves with time.

Now we will use Bohr-Sommerfeld like quantization procedure for the pulsating strings

in this background. The oscillation number (the adiabatic invariant associated to θ) can

– 6 –
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Figure 2. Plot of temporal evolution of φ2(τ) as described by eq. (2.23) in the (X0, X3, X4) plane.

Both the trajectories have m = 2, E = 0.2, J = 0.5. Blue one corresponds to q = 0.02 and Red

one corresponds to q = 0.95. The trajectories zig-zag along as the strings evolve. The vertical axis

represents the worldsheet time τ .

be written using the canonical momenta conjugate to θ as follows,

N =
√
λN =

√
λ

2π

∮
dθ Πθ

=

√
λ

2π

∮
dθ

√
E2 −m2 sin2 θ − J 2

cos2 θ
−m2q2 cos2 θ + 2mJ q. (2.25)

Again, taking sin θ = x we can choose the proper limits and transform the above integral to

N =
2m
√

1− q2
π

∫ √R−
0

dx

(1− x2)
√

(x2 −R+)(x2 −R−). (2.26)

We can directly compute the integral to find,

N =
2m
√

1− q2
π
√
R+ −R−

[
(R+ −R−)E

(
−R−

R+ −R−

)
+ (R− − 1)K

(
−R−

R+ −R−

)

− (R+ − 1)Π

(
R−

R− − 1
,
−R−

R+ −R−

)]
. (2.27)
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Instead of working with this, we can make the expressions a little simpler by taking the

partial derivative of (2.26) with respect to m leading to

∂N
∂m

= I1 − I2. (2.28)

The integrals I1 and I2 are given by

I1 =
2q(J −mq)
πm
√

1− q2

∫ √R−
0

dx√
(x2 −R+)(x2 −R−)

,

I2 =
2
√

1− q2
π

∫ √R−
0

x2 dx√
(x2 −R+)(x2 −R−)

. (2.29)

The integrals evaluate to complete elliptic functions of the first and second kind, and gives

the expression

∂N
∂m

=
2
√
R+

√
1− q2

π

[
E
(
R−
R+

)
−K

(
R−
R+

)]
+

2q(J −mq)
πm
√

1− q2
√
R+

K
(
R−
R+

)
. (2.30)

In short string limit, i.e. when both energy and angular momentum of the string are small,

we can expand the above expression keeping upto O(q2) correction terms. After expanding,

we can integrate to get the series for N as,

N =

[
− mq2

2
+

(
− 1

2m
+

3q2

8m

)
J 2 − 3qJ 3

4m2
+

(
5

16m3
− 225q2

128m3

)
J 4 +O(J 5)

]

+

[(
1

2m
+

q2

8m

)
+

qJ
4m2

+

(
− 3

8m3
+

27q2

64m3

)
J 2 − 45qJ 3

32m4

+

(
105

128m5
− 2625q2

512m6

)
J 4 +O(J 5)

]
E2 +O(E4). (2.31)

We can now invert the series to find the expression for the string energy in terms of the

conserved quantities

E =
√

2mL A1(J )
[
1 + B1(J )L+O(L2)

]
, (2.32)

where

L = N +
mq2

2
+

(
1

2m
− 3q2

8m

)
J 2 +

3qJ 3

4m2
−
(

5

16m3
− 225q2

128m3

)
J 4 +O(J 5),

A1(J ) =

[(
1 +

q2

4

)
+
qJ
2m
−
(

3

4m2
− 27q2

32m2

)
J 2

− 45qJ 3

16m3
+

(
105

64m4
− 2625q2

256m4

)
J 4 +O(J 5)

]−1/2
,

B1(J ) =

(
− 1

8m
+

q2

64m

)
− 5qJ

32m2
+

(
33

64m3
− 195q2

256m3

)
J 2

+
327qJ 3

128m4
−
(

933

512m5
− 102963q2

8192m5

)
J 4 +O(J 5).
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As expected this expression is perfectly regular. One can explicitly check that for q = 0,

i.e. without any flux the leading orders of string energy (2.32) reduces to that presented

in [28]. Also with J = 0 the expression reduces to the result obtained in [29] for pulsating

strings in R× S2, which reads

ER×S2 =
√

2mN
[
1− N

8m
+O(N 2)

]
. (2.33)

The case of q = 1: pure NS-NS flux. As is obvious, the description of pulsating

strings we just presented will not be applicable to the case where q = 1, i.e. there is only

NS-NS flux present. We have to start from the level of equations of motion and modify

the dynamics accordingly.

A simple calculation gives the equation of motion for θ for this case,

θ̇2 = E2 −m2 − J 2

cos2 θ
+ 2mJ . (2.34)

With sin θ = x, the above equation can be transformed into

ẋ2 = p2(r2 − x2), (2.35)

where p =
√
E2 −m2 + 2mJ and r =

√
E2−(J−m)2

p2
. The solution of the equation can be

written as

x(τ) = ±r sin(pτ) (2.36)

This is a simple pulsating string solution in the regime where p is real which cannot be

true for a short string (small energy) with large m. So, a short string pulsating in R× S3

must have small (O(1)) number of windings to keep its motion intact. Such a solution has

been visualised in figure 3. It is worth noting that the reality condition of p follows directly

from (2.20) if we simply put q = 1 and this in turn guarantees the reality of r since the

numerator under root is nothing but (2.21) with q = 1. Now, the oscillation number for

such a solution can be written as

N =
2

π

∫ r

0

dx

1− x2
√
p2(1− x2)− J 2. (2.37)

With a transformation of the variable x→ rx, we can write this as

N =
2

π
r2p

∫ 1

0

dx

1− r2x2
√

1− x2 = (p− J ) . (2.38)

This leads the a simplified expression for string energy

E =

√
m2 − 2mJ + (N + J )2. (2.39)

Expanding this in the short string limit, we get,

E = (m− J ) +

(
J
m

+
J 2

m2
+O(J 3)

)
N +

(
1

2m
+
J

2m2
+O(J 3)

)
N 2 +O(N 3). (2.40)
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Figure 3. String pulsating in R × S3 supported by pure NS-NS flux as described by eq. (2.36).

Here E = 0.6, J = 0.5 and m = 1. The vertical axis represents τ .

3 Pulsating string in AdS3 with mixed flux

In the current section, we will concentrate on a string which pulsates in AdS3 with mixed

flux. The string contracts to a point in ρ = 0 and then expands up to reach a maximal size

ρ = ρmax to contract again and so on. Later we will also include an angular momentum

from the sphere in the solution. We will study the semiclassical quantization of the classes

of strings which rotates near the centre of AdS and also long objects that go up to the

boundary. One can also do a Hamiltonian analysis of this system by reducing it to one-

dimensional dynamical system. For a simple sketch of this point of view, refer to the

appendix. Let us start with the metric and NS-NS flux of the relevant background.

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdφ2,

btφ = q sinh2 ρ. (3.1)

We chose the pulsating string ansatz for this configuration as

t = t(τ), ρ = ρ(τ), φ = mσ. (3.2)

The polyakov action for the given background is given by

S =

√
λ

4π

∫
dτdσ

[
− cosh2 ρṫ2 + ρ̇2 −m2 sinh2 ρ+ 2ṫmq sinh2 ρ

]
. (3.3)

Equation of motion for t and ρ are given by

2 cosh ρ sinh ρρ̇ṫ+ cosh2 ρẗ− 2mq cosh ρ sinh ρρ̇ = 0,

ρ̈+ cosh ρ sinh ρ
(
ṫ2 +m2 − 2ṫmq

)
= 0. (3.4)

– 10 –
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Also from the Virasoro constraints we get

m2 sinh2 ρ− cosh2 ρṫ2 + ρ̇2 = 0. (3.5)

Now, as in the previous section we can integrate the equations of motion to get

ṫ =
C3

cosh2 ρ
+mq,

ρ̇2 = −m2(1− q2) sinh2 ρ+
C2
3

cosh2 ρ
+ C4, (3.6)

where C3 and C4 are integration constants. We can use the above expression and the (3.5)

to show that the equations of motion and the Virasoro are completely self-consistent with

the choice,

C4 = 2C3mq +m2q2. (3.7)

The energy of the oscillating string is given by the conserved charge

E = cosh2 ρṫ−mq sinh2 ρ. (3.8)

And the canonical momentum conjugate to ρ is

Πρ = ρ̇. (3.9)

Using the equations (3.6) and (3.8), we can write the ρ equation in the form

ρ̇2 =
(E +mq sinh2 ρ)2

cosh2 ρ
−m2 sinh2 ρ. (3.10)

The above may be interpreted as an equation for a particle moving in an effective potential

which grows to infinity at ρ → ∞. The coordinate ρ(τ) thus oscillates between 0 and a

maximal ρ value (ρmax). The equation of motion for the string can easily be recast using

sinh ρ = x as

ẋ2 = m2(1− q2)(x2 −R−)(R+ − x2), (3.11)

where R± are the roots of the polynomial

g(z) = (E −mq)2 −m2(1− q2)z(1 + z) +mq(2E −mq)(1 + z). (3.12)

The solution can again be written in terms of the Jacobi elliptic function4

sinh ρ(τ) =

√
−R+R−
R+ −R−

sd

(
m
√

1− q2
√
R+ −R−τ |

R+

R+ −R−

)
. (3.13)

As in the previous section, to have a time-periodic pulsating solution we must have

R+

R+ −R−
< 1. (3.14)

4In the notation we follow, sd(z|m) is the solution to w′′(z) + w(z)(2m(1−m)w2(z)− 2m+ 1) = 0.
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The above condition translates to the following inequality,

− (m− 2qE)−
√
m2 − 4mqE + 4E2 < 0, (3.15)

which gives the constraint on the solution to have a pulsating nature. Notice that this also

takes into account the condition on the roots that R− < 0. Again we can parameterise a

circular string motion in terms of,

X0 = τ,

X1 = sinh ρ(τ) cos(mσ),

X2 = sinh ρ(τ) sin(mσ), σ ∈ [0, 2π]. (3.16)

We plot the solution for large value of E and different values of q to explore the qualitative

behaviour of the string dynamics in figure 4. It can be seen here that with large values of

E and q → 1, the pulsating motion of the string is lost, as it progresses towards violating

the inequality (3.15). To be clear, it can be shown that in the limit E → ∞ and q → 1, we

can write
R+

R+ −R−
= 1 +

q − 1

2
+O

(
1

E

)
, (3.17)

which justifies the claim that in this limit the string solutions lose the pulsating motion.

We will talk about it more in a later subsection where we discuss the case with pure

NS-NS flux.

We can now define the oscillation number associated with string motion along ρ direc-

tion as,

N =
√
λ N =

√
λ

2π

∮
dρ Πρ

=
2
√
λ

π

∫ ρmax

0
dρ

√
(E +mq sinh2 ρ)2

cosh2 ρ
−m2 sinh2 ρ . (3.18)

Changing the variable to x = sinh ρ as before we integrate the above to get

N =
2m
√

1− q2
π

∫ √R+

0

dx

1 + x2

√
(R+ − x2)(x2 −R−) (3.19)

=
2m
√

1− q2
π

1√
−R−

[
R−E

(
R+

R−

)
+(1+R+)

[
K
(
R+

R−

)
− (1+R−)Π

(
−R+,

R+

R−

)]]
.

In the short string limit, the string moves near the centre of AdS, where E and N are small.

Remember since the oscillation number is counterpart of the oscillator number (NL +NR)

in flat space, these short strings are not highly excited. In this case we get by expanding

in E and keeping upto O(q2) terms in the coefficients,

N =
E2

2m
+
qE3

2m2
+

5(−1 + 3q2)E4

16m3
− 21qE5

16m4
+

21(6− 55q2)E6

256m5
+O(E7). (3.20)

Inverting the series we get the expression for the string energy,

E =
√

2mN − qN − 5(−1 + q2)N
3
2

4
√

2m
+

3qN 2

2m
+

7(−11 + 24q2)N
5
2

64
√

2m
3
2

+O(N 3). (3.21)
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(a) (b)

Figure 4. Circular ‘Long’ strings in AdS3 plotted according to eq. (3.13). Both of these have

m = 2 and E = 2 × 104. While a)corresponds to q = 0.1 and shows perfect pulsating motion,

b)corresponds to q = 0.9999 and does not oscillate, giving unphysical structure as the (3.15) is

alsmost saturated.

In the long string limit, the strings are highly excited and can reach the boundary of AdS.

In this case E will be large. For this regime, we can expand the oscillation number in E
and collect the coefficients order by order.

N =
E
2

+ C1(q)
√
m
√
E − mq

2
+ C2(q)

m
3
2

√
E

+O(E−
3
2 ) (3.22)

Where Ci(q)’s have complicated expressions involving elliptic functions of q. Keeping in

tune with rest of the paper we can write each of the coefficients as series in powers of q,

C1(q) = −0.38138 + 0.41731q + 0.14302q2 + . . .

C2(q) = 0.069552 + 0.143017q − 0.13041q2 + . . . (3.23)

Inverting the series, the long string energy is obtained as,

E = 2N + C̃1(q)
√
mN + C̃2(q)m+ C̃3(q)

m
3
2

√
N

+O(N−
3
2 ). (3.24)

Again here we can expand and write the coeffiecients as,

C̃1(q) = 1.07871− 1.18034q − 0.404514q2 + . . .

C̃2(q) = 0.29090− 1.63662q + 0.13013q2 + . . .

C̃3(q) = −0.05914− 0.600694q + 0.57628q2 + . . . (3.25)

– 13 –



J
H
E
P
1
1
(
2
0
1
5
)
1
3
3

We now have eq. (3.24) as the the semiclassical energy expressions for pulsating string

configuration in AdS3 supported by mixed flux. As usual, we have taken the amount of

NS-NS flux turned on to be small and kept upto only O(q2) terms in the expressions we

have considered. To avoid any confusion we must note that in the above results all the

coeffiecients have been found exactly and then the values were numerically written down

by expanding them in q. For example C̃1(0) = 4
√
2

π [E(−1) − K(−1)] ≈ 1.07871. It also

streses on the issue that after substituting q = 0, we can get back the exact results found

in [27] and [29].

Pulsating string in (AdS3 × S1) with mixed flux. Similarly as before we would

start with the metric of AdS3 with an added S1 ⊂ S3 and the NS-NS flux

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdφ2 + dψ2

btφ = q sinh2 ρ. (3.26)

We chose the embedding ansatz for the pulsating string configuration as

t = t(τ), ρ = ρ(τ), φ = mσ, ψ = ψ(τ). (3.27)

The polyakov action for the given configuration is given by

S =

√
λ

4π

∫
dτdσ

[
− cosh2 ρṫ2 + ρ̇2 −m2 sinh2 ρ+ ψ̇2 + 2ṫmq sinh2 ρ

]
. (3.28)

The energy and angular momentum of the oscillating string are given by

E = cosh2 ρṫ−mq sinh2 ρ, J = ψ̇ (3.29)

Using the equations of motion and the Virasoro constraints, we can get

ρ̇2 − (E +mq sinh2 ρ)2

cosh2 ρ
+m2 sinh2 ρ+ J 2 = 0, (3.30)

which solves the same form of function as in (3.13). The qualitative difference between

the solution in (3.13) and the one with inclusion of angular momentum can be discussed

accordingly from the solution and the constraints on pulsating solution can be found. We

note here that due to the inclusion of the extra angular momentum the condition (3.15)

changes to.

−J 2−m2+2mqE−
√
J 4+2J 2m (−m+2mq2−2qE)+m2 (m2−4mqE+4E2) < 0. (3.31)

For this case, oscillation number then becomes

N =
2m
√

1−q2
π

1√
−R̃−

[
R̃−E

(
R̃+

R̃−

)
+(1+R̃+)

[
K

(
R̃+

R̃−

)
−(1+R̃−)Π

(
−R̃+,

R̃+

R̃−

)]]
.

Where the R̃± are roots of the polynomial

h(z) = (E −mq)2 −m2(1− q2)z(1 + z) + (2Emq −m2q2 − J 2)(1 + z). (3.32)

It is obvious here that the condition (3.31) actually comes from R̃+

R̃+−R̃−
< 1.

– 14 –



J
H
E
P
1
1
(
2
0
1
5
)
1
3
3

Similarly as before, we can expand the oscillation number in different limits. For the

‘long’ string limit, where E � J , we can write the oscillation number and invert it to get

the string energy. It would include corrections to (3.24) in the powers of J . We do not

present the detailed expressions here for brevity. As an example let us write the pulsating

string energy for ‘long’ strings in this background

E = 2N + C̃1(q)
√
mN + C̃2(q)m+

[
C̃3(q) + C̃4(q)

J 2

m2

]
m

3
2

√
N

+O(N−
3
2 ). (3.33)

Where all other terms are same as in the previous subsection and the first correction of

order J 2 is given by the power series in q as,

C̃4(q) = 0.29509 + 0.06742q + 0.03688q2 + . . . (3.34)

It is worth mentioning that at the O( 1√
N ) there are no corrections in higher powers of J .

They start to appear in the following order and are negligible in the large N regime.

String solutions with q = 1. Let us start with the pulsating string in AdS3 supported

by pure NS-NS flux. The equation of motion for ρ takes the following form in this case

ρ̇2 − (E −m)2

cosh2 ρ
+ 2Em−m2 = 0. (3.35)

This combined with x = sinh ρ leads to the equation of motion

ẋ2 = E2 + (2Em−m2)x2. (3.36)

The solution now depends on the value of d2 = (2Em −m2). For d2 > 0 (as for example

with E � m or, the long string limit) it can be written using the initial condition x(0) = 0,

sinh ρ(τ) = ±
[
edτ

2d2
− E

2

2
e−dτ

]
(3.37)

which does not give rise to pulsation. On the other hand d2 < 0 clearly gives an oscillatory

solution of the form

sinh ρ(τ) = ±E
d̃

sin d̃τ , d̃ = id. (3.38)

We can note here that if we put q = 1 in (3.15), the condition reduces to (2E −m) < 0,

which is the same constraint on pulsating motion we have just found. Now, our problem

is that a string with large E (long) and small m will not show pulsating behaviour. This

problem can be solved, for example, by making large number of windings of the string. So

for pure NS-NS background, only the large winding strings with high energy can become

a ‘long’ string. In a related case, the string solution in AdS3 × S1 with q = 1 solves the

equation

ẋ2 = E2 + (2Em−m2 − J 2)x2. (3.39)

For the long string, inclusion of a large angular momentum will again lead to an oscillatory

pulsating solution. The trade-off however is, with larger angular momentum attached to
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(a) (b)

Figure 5. Circular string solutions in AdS3 with pure NS-NS flux as described by eq. (3.36)

and (3.39). Both solutions have m = 1 and E = 2 × 103. While a) has J = 0 and does not show

desired behaviour, b) has J = 64 and re-gains pulsating motion due to the inclusion of angular

momenta, however the pulsating strings are significantly smaller in size.

the string, it will try to collapse onto itself, thereby reducing the effective size of the string.

However, the NS flux will continue trying to expand the string [34], still resulting in finitely

smaller size. This idea is illustrated in figure 5, but it requires a deeper understanding to

be commented on conclusively. The oscillation number for the small strings in AdS3 reads

N =
2

π

∫ r

0

dx

1 + x2

√
E2 + (2Em−m2)x2. (3.40)

Here r =
√

E2
m2−2Em is only real for small energies. With a change of variable x → rx, we

can write this as

N =
2

π
r2d

∫ 1

0

dx

1 + r2x2

√
1− x2 = −E +m−

√
m2 − 2Em. (3.41)

Which has a small E expansion

N =
E2

2m
+
E3

2m2
+

5E4

8m3
+O(E5). (3.42)

And gives the exact relation for short string energy

E =
√

2mN −N . (3.43)

As expected, the oscillation number for long strings becomes imaginary in this case.
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4 Conclusion

In this note, we have discussed pulsating string solutions in subsectors of AdS3 × S3 with

mixed flux and presented their dispersion relations. As expected, we could show the usual

dispersion relation in terms of the oscillation number and other conserved quantities re-

ceives corrections due to the NS flux in the background. We have found out these cor-

rections upto a certain order in the the parameter governing the strength of the NS-NS

flux for both large and short string behaviour of the pulsating string. For a complete un-

derstanding into these string solutions, one would look for extract the dual gauge theory

operators for such strings in mixed flux background. Unfortunately, the dual gauge theory

of such a string background is not properly understood yet. The circular pulsating string

solutions in AdS5 and the anomalous dimensions calculated from it played a significant

part in understanding relevant sectors of the dual SYM theory. We hope our solutions can

be useful in that regard also.

The straightforward extension of our work would be to find (p, q) string solutions in

this mixed flux background which will be affected by both RR and NS-NS fluxes. This

probe brane dynamics should be interesting. The other way would be to verify our solutions

by properly reducing the oscillating string sigma model to that of a Neumann-Rosochatius

integrable system [57, 58] using a pulsating type ansatz. Also, the q = 1 pulsating solutions

should be obtainable from a WZW model perspective. We hope to report on some of these

issues in near future.
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A Hamiltonian dynamics and pulsating strings

We want to observe the phase space of the pulsating string moving on the AdS3 background

supported by NS-NS flux. We will sketch an outline of this discussion here but will not

talk about details. The lagrangian of such a pulsating string would be given by

L = −1

2

[
− cosh2 ρṫ2 + ρ̇2 +m2 sinh2 ρ− 2ṫmq sinh2 ρ

]
, (A.1)

with proper choice of units. The corresponding hamiltonian can be written in terms of the

conjugate momenta as following,

H =
1

2

[
P 2
ρ +m2 sinh2 ρ+

(E +mq sinh2 ρ)

cosh2 ρ
(3E −mq sinh2 ρ)

]
. (A.2)

The hamiltonian equation of motion for ρ can then be written as,

ρ̈ =
mqE

cosh ρ
−m2 cosh ρ sinh ρ+

1

cosh3 ρ

[
(m2q2 + 3E2) sinh ρ− 2mqE

]
. (A.3)

The phase portraits corresponding to the above hamiltonian has been given in figure 6 and 7

for various value of the parameters. We also have dscussed their behaviour qualitatively.

As a comparison, remember the equation of motion for this pulsating string could be cast
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(c) (d)

Figure 6. Phase portraits (Pρ − ρ) for the short string from (A.2). a) is characterized by E = 0.4,

m = 1 and q = 0.05 and shows nearly harmonic oscillator behaviour. As we increase the energy

to 0.75 in b) the classical symmetry breaks and the additional equilibria occur. The original

equilibrium is regained in c) as we take the winding number to m = 20. This equilibrium is

maintained throughout even as we make the q = 0.999 in d) as only the expansive nature of the

NS-NS flux is not enough to disturb it.

into that of a non-linear oscillator as we have already seen in section 3. The system has a

form of

z̈ = αz + βz3. (A.4)

In general this equation is that of undamped Duffing type oscillator (for α < 0) without any

external forcing. With pulsating string ansatz, the coefficients α and β turn out to be of

useful form so that the solution can be written explicitly in terms of Jacobi elliptic functions

as we got in our detailed discussion. Depending on the values of the parameters m, q and

the energy E , the nature of the potential term changes, and so does the phase portraits

when we talk in terms of point particles. For sufficiently small β the potential remains in

the linear response regime and gives slightly deformed harmonic oscillator phase portraits.
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(c)

Figure 7. Phase portraits (Pρ−ρ) for the long string from (A.2). a) is characterized by E=200,

m = 1 and q = 0.05 and shows highly deformed oscillator-like behaviour around the two minima.

As we increase the winding number to m = 500 in b) the original equilibrium is regained, how-

ever in a highly distorted form. This equilibrium is maintained throughout even as we make the

q = 0.999 in c).

Now looking at the potential, we can always say that z = 0 is a equilibrium point,

but when αβ < 0, the classical symmetry of the system is broken and two stable equilibria

occur at z = ±
√
−α
β . The stability analysis of these equilibria can be done using the

usual eigenvalue method. From a string point of view we can see that as the pulsating

string attains more and more energy, the motion prefers the new minima of the potential.

However if we increase the winding number suitably, the original equilibrium is regained

as the state becomes ‘heavy’. If we increase the NS-NS flux, it tries to expand the string,

but is prohibited by the large tension. A remarkable fact here is that there is no forcing

term, which guarantees that the chaotic attractor type situation does not occur here for

any value of the parameters.
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