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Abstract
Substances cross the blood-brain barrier (BBB) by a variety of mechanisms. These include
transmembrane diffusion, saturable transporters, adsorptive endocytosis, and the extracellular
pathways. Here, we focus on the chief characteristics of two mechanisms especially important in
drug delivery: transmembrane diffusion and transporters. Transmembrane diffusion is non-
saturable and depends, on first analysis, on the physicochemical characteristics of the substance.
However, brain-to-blood efflux systems, enzymatic activity, plasma protein binding, and cerebral
blood flow can greatly alter the amount of the substance crossing the BBB. Transport systems
increase uptake of ligands by roughly 10-fold and are modified by physiological events and disease
states. Most drugs in clinical use to date are small, lipid soluble molecules that cross the BBB by
transmembrane diffusion. However, many drug delivery strategies in development target peptides,
regulatory proteins, oligonucleotides, glycoproteins, and enzymes for which transporters have
been described in recent years. We discuss two examples of drug delivery for newly discovered
transporters: that for phosphorothioate oligonucleotides and for enzymes.

Introduction
The blood-brain barrier (BBB) represents a major obstacle
to the delivery of drugs to the central nervous system
(CNS). The BBB consists of several barriers in parallel,
with the two that are best described being the vascular
BBB, consisting primarily of the capillary bed, and the
blood-cerebrospinal fluid (blood-CSF) barrier, consisting
primarily of the choroid plexus [1]. Although drug deliv-
ery tends to focus on the vascular BBB, the blood-CSF bar-
rier also presents special opportunities [2]. At both sites,
the BBB is formed by a monolayer of cells that are
cemented together by tight junctions and have other
mechanisms that control or retard leakage of plasma into
the CNS (Figure 1). Barrier function at the BBB often

depends on more than physical considerations and can be
bolstered by enzymatic and brain-to-blood transporter
functions [3].

The BBB serves roles other than that of blocking circulat-
ing substances from entering the CNS. It also facilitates
and regulates the entry of many substances that are critical
to CNS function and secretes substances into the blood
and CNS. These extra-barrier functions allow the BBB to
influence the homeostatic, nutritive, and immune envi-
ronments of the CNS and to regulate the exchange of
informational molecules between the CNS and blood [4].
An understanding of the barrier and extra-barrier aspects
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of BBB physiology is critical to developing drugs that can
access the CNS [5].

General characteristics of the blood-brain 
barrier
Three major modifications to the capillary bed of the
brain prevent the formation of a plasma ultrafiltrate in the
CNS (Figure 1): tight junctions that cement together brain
endothelial cells that are in apposition, a greatly reduced
rate of pinocytosis, and a lack of intracellular fenestrations
[6]. These modifications prevent the unregulated leakage
of serum proteins into the CNS under normal conditions.
Substances are still able to cross the vascular BBB by a vari-

ety of mechanisms. These mechanisms include transmem-
brane diffusion, saturable transport, adsorptive
endocytosis, and the extracellular pathways. Below, we
discuss transmembrane diffusion and saturable transport-
ers. Reviews on adsorptive endocytosis and the extracellu-
lar pathways can be found elsewhere [7,8].

Transmembrane diffusion
Most drugs cross the BBB by transmembrane diffusion [9].
This is a non-saturable mechanism that depends on the
drug melding into the cell membrane. A low molecular
weight and high degree of lipid solubility favor crossing
by this mechanism. However, a drug taken up by the
membranes that form the BBB must then partition into
the aqueous environment of the brain's interstitial fluid to
exert an effect. As a result, a substance that is too lipid sol-
uble can be sequestered by the capillary bed and not reach
the cells behind the BBB. Lipid solubility also favors
uptake by the peripheral tissues; this, in turn, lowers the
concentration of the drug in blood. Thus, while lipid sol-
ubility can increase transport rate across the BBB, it can
also lower the amount of the drug presented to the BBB.
The percent of administered drug entering the brain is
determined by both the rate of transport across the BBB
and the amount of drug presented to the brain [5]. Use of
lipid solubility to improve drug delivery to the brain must
thus find the balance between increased permeation of
the BBB and decreased concentrations in blood.

Factors in addition to lipid solubility affect the ability of a
drug to partition from blood into the BBB. These include
charge, tertiary structure and degree of protein binding.
Chief among these secondary factors, however, is molecu-
lar weight. The best approximation of the influence of size
on BBB penetration is that it is inversely related to the
square route of molecular weight. Reviews often quote an
absolute cut-off of 400 to 600 Da for penetration of the
BBB, but these arise from a misreading of the literature.
The 'Rule of 5' of Lipinski found that from a library of
drugs selected for gastrointestinal absorption, few sub-
stances were over 500 Da [10]. Some reviewers have
uncritically applied the Rule of 5, including this one, to
the BBB. A study of 27 substances by Levin [11] found that
the four drugs in this groups with molecular weights over
400 Da had no measurable brain uptake. However, it is
now known that these substances are all substrates for P-
glycoprotein, a major brain-to-blood, or efflux, pump
located at the BBB that prevents or greatly retards a large
number of small, lipid soluble molecules from entering
the CNS [12,13]. Peptides and proteins with molecular
weights in excess of 600 Da are known to cross the BBB in
amounts sufficient to affect CNS function. Early examples
include delta sleep-inducing peptide and enkephalin ana-
logs. The largest substance found to date to cross the BBB
by the mechanism of transmembrane diffusion is

A generic brain barrierFigure 1
A generic brain barrier. Adult mammalian brain barriers 
reduce uncontrolled leakage by constituting a monolayer of 
cells characterized by intercellular tight junctions, decreased 
macropinocytosis, and decreased fenetrae. Variations on this 
theme are seen at the vascular brain barrier, blood-CSF bar-
rier, and the specialty CNS barriers such as the blood-retinal 
barrier. Most brain barriers have a combination of the other 
features shown. Pores are saturable transporters that can be 
energy dependent (as exemplified by P-glycoprotein) or 
energy independent (GLUT-1), located at the luminal or 
abluminal membrane, and transport bidirectionally or unidi-
rectionally into or out of the cytoplasm. Saturable transport 
can also be vesicular based and brain barriers likely have 
many types of vesicular systems (for example, receptor-
mediated transcytosis, clathrin-dependent transport, podocy-
tosis, and caveolae). Scaffolding (for example, actin) is likely 
highly dynamic and involved in tight junction function and 
vesicular trafficking. Barrier cells contain receptors (binding 
sites coupled to intracellular machinery) as well as transport-
ers (binding sites coupled to machinery involved in transloca-
tion of the ligand). Brain barriers are enzymatically active and 
this activity can act as another layer of barrier, and they can 
secrete substances such as cytokines, nitric oxide, and pros-
taglandins from either their CNS or peripheral side.

TJ Vesicular TransportReceptor
Pore MacropinocytosisSecretions
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cytokine-induced neutrophil chemoattractant-1 (CINC-
1) at 7,800 Da [14].

Lipophilic substances of low molecular weight tend to be
substrates for P-glycoprotein [12]. Brain-to-blood efflux
by P-glycoprotein can greatly limit the rate of uptake by
the BBB and is a major obstacle in drug development. The
pharmacogenomics of P-glycoprotein show that about
30% of the population overexpress it and so are less sen-
sitive to the CNS effects of its ligands, while about 25% of
the population underexpress it [15]. Such individual vari-
ation has been linked to sensitivity to drugs for the treat-
ment of AIDS and epilepsy [15,16].

Saturable transport systems
Some drugs or substances used for drug-like effects cross
the BBB by use of saturable transport systems. L-DOPA
and caffeine are examples as are vitamins such as B12 and
B6 [17]. The uptake rate across the BBB for an endogenous
ligand of a transporter is roughly about 10 times higher
than would be expected if it crossed by transmembrane
diffusion [18]. Additionally, many of the transporters for
regulatory molecules, such as peptides and regulatory pro-
teins, are taken up selectively by specific brain regions
[19,20]. Thus, exploitation of transporters offer the drug
development field not only high uptake rates for large,
water soluble compounds but targeting to specific regions
of the CNS.

Efflux transporters have the opposite effect to influx trans-
porters in that they decrease the uptake rate of potential
drugs [13]. P-glycoprotein has been discussed above, but
the BBB possesses many other efflux transporters. As dis-
cussed below, peptide transport system-6 (PTS-6) retards
the accumulation from blood by brain of the 27 amino
acid form of pituitary adenylate cyclase activating
polypeptide (PACAP27) [21].

The rate at which saturable systems transport their ligands
across the BBB is often regulated. For flow-dependent sub-
stances such as glucose, transport rate is a function of cer-
ebral blood flow [5]. For substances that are more slowly
transported, a variety of agents have been found to alter
transport. For example, leucine regulates the transport rate
of peptide transport system-1 (PTS-1) [22] and epine-
phrine and triglycerides affect leptin, ghrelin, and insulin
transport [23-25].

Under physiological conditions, the BBB transporters
adapt to serve the needs of the CNS. Uncoupling between
BBB functions and CNS needs is accompanied by disease
states [26]. For example, decreased leptin transport is
associated with peripheral leptin resistance in obesity [27]
and decreased efflux of amyloid beta protein is associated
with Alzheimer's disease [28].

General strategies for drug transport
A great deal of current effort towards drug development is
directed towards in silico analysis and high-throughput
screening. Such efforts limit drug discovery to substances
crossing the BBB by transmembrane diffusion. They also
limit discovery to the main parameters in the library used
as the basis of computation. In silico methods are likely
less efficient in the search for CNS drug candidates than in
the search for those absorbed by the gastrointestinal tract
because of a number of parameters that can modify or
override transmembrane diffusion: cerebral blood flow,
influx and efflux transporters, protein binding in the
blood, clearance from blood, sequestration by BBB tis-
sues, and enzymatic activity by peripheral tissues, blood,
the CNS and at the BBB [5].

Many approaches to drug development have attempted to
harness transporters. The usual approach is a version of
the 'Trojan horse' strategy [29]. Here, a substance that
does not cross the BBB is coupled to a substance that does.
Such coupling can have the added benefit of improving
peripheral pharmacokinetics. Unfortunately, the resulting
hybrid compound is often not recognized by the original
transporter or the transporter/hybrid compound is routed
to lysosomes for destruction. Hybrids coupled to other
substances may use other vesicular pathways across the
BBB. Unfortunately, the cell biology of BBB vesicular sys-
tems is poorly understood and this impairs exploitation
of promising leads.

Development of analogs of transported ligands has been
slow. Many endogenous substances that could be the
basis of CNS drugs, such as the feeding hormones and
cytokines, are transported across the BBB [30]. However,
the endogenous compounds have poor peripheral phar-
macokinetics and this limits their usefulness [3]. Analogs
would have to retain their affinity for both the BBB trans-
porter and for the CNS receptor while becoming less favo-
rable for peripheral enzymes and clearance mechanisms.

When disease states affect the BBB or the BBB is itself
impaired, then it becomes a therapeutic target in its own
right [26]. A classic example is multiple sclerosis in which
the BBB becomes leaky and allows the entry of immune
cells into the CNS. However, the passage of immune cells
across the BBB is a highly regulated process [31] and the
leakage is likely a byproduct of immune cell trafficking
and not the other way round [32]. Obviously, the luminal
surface of the capillary bed does not require passage across
the BBB and, hence, drug strategies used to target periph-
eral tissues are applicable to this half of the BBB. Luminal
receptors that induce brain endothelial cells to secrete into
the CNS substances such as prostaglandins, cytokines, and
nitric oxide are also readily targetable. This suggests that
the BBB itself could be used as the source of CNS 'drugs'.
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'Bypassing' the BBB can also be an effective strategy, espe-
cially for selected cases or situations. For example, intrath-
ecal administration for delivery of drug to the brain is
ineffectual for small, lipid soluble drugs [33]. However,
this route may be an option for large regulatory proteins
with negligible brain-to-blood efflux [34]. Intranasal
delivery of drugs, including peptides [35], shows a great
deal of promise [36]. Nasal delivery of insulin, for exam-
ple, has had positive effects in treating Alzheimer's disease
[37,38].

Examples and special cases
The various strategies used to develop drugs towards the
CNS are meeting with varied levels of success. Those that
consider the special features of the BBB rather than 'black
boxing' it, attempt to understand the underlying mecha-
nisms of promising leads, and consider the peripheral
pharmacokinetics of the candidate drug should have
advantages. However, there is a great deal that is unknown
about the BBB that would be of great use to CNS drug
development. For example, there are likely a great many
BBB transporters yet to be discovered. Below, we consider
two newly discovered transporters and their early applica-
tions to drug development.

Antisense molecules have been assumed to be incapable
of crossing the BBB. The rapid clearance of any mRNA
material in the circulation would certainly justify this
assumption. However, enzymatically resistant analogs
such as peptide nucleic acids and phosphorothioate oligo-
nucleotides (PONs) can cross the BBB in sufficient
amounts to affect CNS function [39,40]. The PONs are
transported across the BBB by a saturable transport sys-
tem. This transporter has been used to deliver an antisense
molecule directed against amyloid precursor protein,
which effectively reverses the cognitive deficit in an ani-
mal model of Alzheimer's disease. PONs have also been
directed at the efflux transporter of PACAP27 [41]. The
PONs reduce expression of the transporter, increase
PACAP27 retention by brain after its peripheral adminis-
tration, and improve outcomes in animal models of
stroke and Alzheimer's disease. These results show that
targeting efflux systems at the BBB with antisense mole-
cules can improve drug delivery to the brain.

Mucopolysaccharidoses consist of a number of diseases in
which missing enzymes lead to the accumulation of gly-
cosaminoglycans in brain and peripheral tissues. Enzyme
replacement clears the glycosaminoglycans from the
peripheral tissues, but not from the CNS as the enzymes
do not cross the BBB. However, it was recently discovered
that the mannose-6 phosphate receptor acts as a saturable
transporter at the neonatal BBB [42,43]. As a result,
enzyme given to the neonate is effective in clearance of
glycosaminoglycans from the CNS [44-46]. Unfortu-

nately, this transport function is lost with development.
Recent work has shown that transporter function can be
re-induced in the adult with epinephrine [47]. How
epinephrine invokes this re-induction of activity is
unclear, but it may be a useful strategy for delivery of
enzyme to the CNS.

Conclusion
The BBB is a complex regulatory interface that possesses
barrier, secretory, enzymatic, and transporter activities.
Transmembrane diffusion, harnessing of transporters,
adsorptive endocytosis, and extracellular pathways are
some of the mechanisms being exploited for drug deliv-
ery. Unfortunately, our understanding of the BBB in many
areas, especially those of saturable transport systems and
vesicular pathways, is limited. Future successes in CNS
drug discovery will likely result from an interplay of
exploratory research and rational drug development.

List of abbreviations used
BBB: blood-brain barrier; CNS: central nervous system;
CSF: cerebrospinal fluid; PACAP: pituitary adenylate
cyclase activating polypeptide; PON: phosphorothioate
oligonucleotide.
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