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microRNA expression profiling of human breast cancer<p>Integrated analysis of miRNA expression and genomic changes in human breast tumors allows the classification of tumor subtypes.</p>

Abstract

Background: MicroRNAs (miRNAs), a class of short non-coding RNAs found in many plants and
animals, often act post-transcriptionally to inhibit gene expression.

Results: Here we report the analysis of miRNA expression in 93 primary human breast tumors,
using a bead-based flow cytometric miRNA expression profiling method. Of 309 human miRNAs
assayed, we identify 133 miRNAs expressed in human breast and breast tumors. We used mRNA
expression profiling to classify the breast tumors as luminal A, luminal B, basal-like, HER2+ and
normal-like. A number of miRNAs are differentially expressed between these molecular tumor
subtypes and individual miRNAs are associated with clinicopathological factors. Furthermore, we
find that miRNAs could classify basal versus luminal tumor subtypes in an independent data set. In
some cases, changes in miRNA expression correlate with genomic loss or gain; in others, changes
in miRNA expression are likely due to changes in primary transcription and or miRNA biogenesis.
Finally, the expression of DICER1 and AGO2 is correlated with tumor subtype and may explain some
of the changes in miRNA expression observed.

Conclusion: This study represents the first integrated analysis of miRNA expression, mRNA
expression and genomic changes in human breast cancer and may serve as a basis for functional
studies of the role of miRNAs in the etiology of breast cancer. Furthermore, we demonstrate that
bead-based flow cytometric miRNA expression profiling might be a suitable platform to classify
breast cancer into prognostic molecular subtypes.
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Background
MicroRNAs (miRNAs) were discovered in Caenorhabditis
elegans during studies of the control of developmental timing
[1-5]. miRNAs are approximately 22-nucleotide non-coding
RNAs that are thought to regulate gene expression through
sequence-specific base-pairing with target mRNAs [6]. To
date, thousands of miRNAs have been identified in organisms
as diverse as roundworms, flies, fish, frogs, mammals, flower-
ing plants, mosses, and even viruses, using genetics, molecu-
lar cloning and predictions from bioinformatics [7-16]. The
human genome encodes at least 474 miRNA genes [17,18].

miRNAs are transcribed as long RNA precursors (pri-miR-
NAs), which are processed in the nucleus by the RNase III
enzyme complex Drosha-Pasha/DGCR8 to form the approxi-
mately 70-base pre-miRNAs [19-23]. Pre-miRNAs are
exported from the nucleus by Exportin-5 [24], processed by
the RNase III enzyme Dicer, and incorporated into an Argo-
naute-containing RNA-induced silencing complex (RISC)
[25]. Within the silencing complex, miRNAs pair to the mes-
sages of protein-coding genes, usually through imperfect
base-pairing with the 3'-untranslated region (3'UTR), thereby
specifying the post-transcriptional repression of these target
mRNAs [6,26]. Binding of the silencing complex causes
translational repression [27-29] and/or mRNA destabiliza-
tion, which is sometimes through direct mRNA cleavage
[30,31] but usually through other mechanisms [32-36].

The function of human miRNAs is largely unknown. How-
ever, studies in roundworms, flies, fish and mice have demon-
strated important roles for miRNAs in animal development
[37]. miRNA target predictions suggest important roles for
miRNAs in humans. Because many mRNAs have been under
selective pressure to preserve pairing to a six nucleotide
sequence in the 5' region of the miRNA known as the miRNA
seed (nucleotides 2-7), targets of metazoan miRNAs can be
predicted by searching for conserved matches to the seed
region [38-42]. In humans, at least 10% of the protein-coding
mRNAs might be conserved targets of miRNAs [38,39,41-49].

Despite their recent discovery, strong links between miRNAs
and human cancer are emerging. Initial observations in
roundworms and flies suggested possible connections
between miRNAs and proliferation defects [50]. More
recently, it was shown that the human miRNAs miR-15a and
miR-16-1 map to a region on 13q14 that is often deleted in B-
cell chronic lymphocytic leukemias (CLL) and that miR-15a
and miR-16-1 are frequently deregulated in CLL patients [51].
A second study found that miR-143 and miR-145 expression
levels were reduced in adenomatous and cancer stages of
colorectal neoplasia [52]. Subsequently, a number of studies,
using a range of techniques, including miRNA cloning, quan-
titative PCR, microarrays and bead-based flow cytometric
miRNA expression profiling [53-56], demonstrated that
miRNA expression is deregulated in many human cancers.

A number of miRNAs were found to have oncogenic potential.
For example, the mir-17 miRNA cluster cooperates with the
oncogene Myc to induce tumors in a mouse model [57] and
miR-372 and miR-373 were found to cooperate with RAS in
an in vitro assay [58]. miRNAs might also act as tumor sup-
pressors. For example, deregulation of the oncogene RAS and
HMGA2 by loss of regulation through the let-7 family of miR-
NAs might contribute to human cancer [59-61]. It is unclear
how miRNAs might be deregulated in cancer; however, it has
been observed that many human miRNAs lie within cancer
associated genomic regions, that is, areas of loss, gain or rear-
rangement of the DNA in tumors [62]. However, transcrip-
tional or post-transcriptional regulation of miRNAs in cancer
has also been proposed [63,64].

The molecular classification of human tumors using mRNA
microarray profiling is an area of intense research. A number
of classifiers have been developed for human breast tumors,
including the use of expression signatures as prognostic tools
[65-75]. One of these classifiers can be used as a single sample
predictor (SSP) to assign individual samples to one of five
breast tumor subtypes: luminal A, luminal B, basal-like,
HER2+ and normal breast-like [65,69,70,76].

Two recent studies have shown that a number of miRNAs are
deregulated in human breast cancer [77,78]. A third study
found that a number of miRNAs were differentially expressed
in breast tumor biopsies and that miRNA expression corre-
lated with HER2 and estrogen receptor (ER) status [79].

This study represents the first integrated analysis of miRNA
expression, mRNA expression and genomic changes in
human breast cancer and may serve as a basis for functional
studies of the role of miRNAs in the etiology of breast cancer.
Furthermore, we demonstrate that bead-based flow cytomet-
ric miRNA expression profiling might be a suitable platform
to classify breast cancer into prognostic molecular subtypes.
This potential will need to be addressed in a prospective
study.

Results
There are 133 miRNAs expressed in normal human 
breast and primary human breast cancer
To generate a comprehensive set of miRNA expression pro-
files for primary human breast cancer we selected 99 primary
human tumors, 5 normal breast samples and 33 breast cancer
cell lines for miRNA expression profiling. Tumor samples
were fresh-frozen and collected from Nottingham City Hospi-
tal Tumor Bank and are representative with regard to tumor
subtypes and clinical parameters [80-82]. For miRNA profil-
ing we chose a bead-based flow-cytometric miRNA expres-
sion platform, which has recently been developed and was
found to have several advantages over glass-slide microarray
profiling, including increased specificity [56]. We developed
this platform further to include 333 probes for 309 unique
Genome Biology 2007, 8:R214
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human miRNAs based on the miRNA repository miRBase 8.1
[17,18]. miRNA labeling included RNA size selection using
native polyacrylamide gels, ensuring that only mature miR-
NAs were assayed.

Using this miRNA expression platform we analyzed a total of
137 samples in 168 assays. Assays for 119 of these 137 samples
(87%) passed our quality control, including 93 primary tumor
samples, 5 normal breast samples and 21 cell lines (Addi-
tional data file 1). We detected the expression of 137 miRNAs
in this sample set, 133 of which we detected in normal breast
or breast tumors. We included a number of replicate probes
and technical replicate samples and found that results were
reproducible (Additional data files 5 and 6). For a subset of
miRNAs and a subset of samples we also performed quantita-
tive RT-PCR to independently assess miRNA expression
(Additional data file 7). While there is generally good correla-
tion between miRNA expression on both platforms, we do
observe probe-specific differences. Sample quantity did not
permit validation of miRNA expression using northern blot-
ting; however, the bead-based flow-cytometric miRNA
expression platform had been validated using northern blot-
ting previously [56].

Unsupervised hierarchical clustering of miRNA expression
clearly separated cell lines from both normal breast and
tumor samples and suggested that miRNA expression in cell
lines is largely deregulated (Figure 1a). We did not observe a
perfect separation of normal and tumor samples, as has been
described before for primary human tumors [56]. However,
as our study was focused on tumor subtypes, we profiled only
a small number of normal breast samples. As we found major
differences in miRNA expression between primary human
tissue and cell lines, we excluded cell lines from subsequent
analyses. Unsupervised clustering of the tumor samples
revealed striking differences in miRNA expression between
ER- and ER+ tumors (Figure 1b).

MicroRNAs are differentially expressed between 
molecular breast tumor subtypes with clinical 
implications
Next we tested if miRNAs are differentially expressed among
breast cancer subtypes. To identify the molecular subtypes of
our tumor samples we used a single sample predictor (SSP),
which classifies breast tumors into five subtypes: luminal A,
luminal B, basal-like, HER2+ and normal-like [65,69,70,76].
In addition to differences in mRNA expression profiles, these

Unsupervised hierarchical clustering (Pearson correlation, average linkage) over 137 detected miRNAsFigure 1
Unsupervised hierarchical clustering (Pearson correlation, average linkage) over 137 detected miRNAs. Heatmap colors represent relative miRNA 
expression as indicated in the color key. (a) Clustering of 21 cell lines (orange), 5 normal breast samples (green) and 93 primary tumors (blue). (b) 
Clustering of 93 primary tumors with ER status as shown.

(b)(a)

Cell lines
Normals
Tumours

ER−
ER+

-7.9 0 7.9 -5.9 0 5.9
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tumor subtypes also display distinct clinicopathological char-
acteristics, including different survival rates (Additional data
files 8 and 9). For example, the basal-like and HER2+ tumors
are less differentiated and more aggressive and the luminal A
and luminal B tumors are mostly ER+ with good and poor
clinical outcome, respectively. Based on Agilent and Illumina
mRNA expression data for 86 of our tumor samples [83]
(unpublished results) we were able to classify 51 of the 93
tumor samples as 16 basal-like, 15 luminal A, 9 luminal B, 5
HER2+ and 6 normal-like tumors (Additional data file 1).
miRNAs that were found to be differentially expressed in the
tumor subtypes are shown in Figure 2a,b. miRNAs that are
part of the same family show highly correlated expression.
For example, the nine miRNAs that were found to be differen-
tially expressed between luminal A and luminal B tumors rep-
resent seven miRNA families (Figure 2b).

Given the large number of miRNAs differentially expressed
between molecular subtypes, we investigated the predictive
potential of miRNAs in an independent test set. Using all 137
expressed miRNAs, we performed a model-based discrimi-
nant analysis [84] for the 16 basal-like and 15 luminal A
tumors, the two largest subtype groups in our study (Addi-

tional data file 1). As we aimed to distinguish between molec-
ular subtypes, we required a test set of samples with both
miRNA and mRNA expression data available. The bead-
based miRNA expression data in Lu et al. [56] included 11
breast tumor samples with corresponding Affymetrix gene
expression data published in [56,85]. To our knowledge, no
other studies with miRNA and mRNA data on breast tumor
samples have been published. Based on the gene expression
profiles and the SSP, six tumor samples could be assigned to
molecular subtypes, three of which were classified as basal-
like, two as luminal A and one as HER2+ (Additional data
files 1, 14 and 19). Using the discriminator derived from our
miRNA data, all three basal-like and two luminal A tumors in
the independent miRNA data set were classified in concord-
ance with their SSP molecular subtype classification.

A number of miRNAs are associated with 
clinicopathological factors
We next assessed associations between individual miRNAs,
molecular tumor subtypes and clinicopathological factors
(Figure 3 and Additional data file 18). We tested for statisti-
cally significant associations with tumor characteristics such
as molecular subtype, grade, stage, vascular invasion, ER sta-

Supervised hierarchical clustering over selected miRNAs (Pearson correlation, average linkage)Figure 2
Supervised hierarchical clustering over selected miRNAs (Pearson correlation, average linkage). Heatmap colors represent relative miRNA expression as 
indicated in the color key for each panel. Brackets in the right margin indicate members of the same miRNA family. (a) Clustering of 51 tumor samples 
that could be classified as basal-like (red), HER2+ (pink), luminal A (dark blue), luminal B (light blue) or normal-like (green) over 38 miRNAs with 
Benjamini-Hochberg adjusted Kruskal-Wallis p < 0.05. (b) Clustering of 24 tumor samples classified as luminal A (dark blue) or luminal B (light blue) over 
9 miRNAs with Benjamini-Hochberg adjusted Wilcoxon p < 0.05.
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tus, Nottingham Prognostic Index (NPI) as well as TP53
status as determined by mutation screening and HER2 status
assessed by immunohistochemistry (unpublished results).
Figure 3 summarizes data for those 31 miRNAs and clinical
factors for which there are significant associations at an
adjusted p value less than 0.01 (Materials and methods).
These 31 miRNAs represent 20 distinct miRNA families. Most
of these miRNAs are expressed in the less aggressive, grade 1,
ER+ samples. However, some miRNAs are expressed in the
more aggressive grade 3/ER- tumors. We did not find any
strong associations with stage, vascular invasion, NPI, TP53
or HER2 status.

Chromosomal loss or gain cannot explain the majority 
of changes in miRNA expression
Given the changes in miRNA expression we observed, it is
important to ask how these changes come about. We first
tested if the changes in miRNA expression are likely due to
chromosomal loss, gain or amplification as inferred from
array comparative genomic hybridization (CGH) data. For 82
of the 93 tumor samples we analyzed for miRNA expression,
we performed array CGH analysis based on gene centric oli-
gonucleotide microarrays [86,87]. For each miRNA locus that
was identified as altered in any of the samples, we performed
separate non-parametric Wilcoxon rank sum tests to assess
differences in expression between samples with loss, gain or
amplification compared to samples without changes.

We found that in many cases expression differences could not
be explained by any genome alterations detected by our array
CGH data (Figure 4). The expression of 17 out of 129 mature
miRNAs transcribed from genomic regions with an observed
aberration correlated with genomic changes at 15 distinct
chromosomal loci (p < 0.01). For miR-33 and miR-320, we
found strong associations between miRNA expression and
genomic alterations (p < 0.001), suggesting chromosomal
change is a possible mechanism for mis-expression of these
genes in primary human breast cancers. We also identified
miRNA clusters whose changes in expression were correlated
with copy number, for example, for miR-30b and miR-30d at
C8q24.22 (p < 0.001) and miR-15b and miR-16-2 at C3q26.1
(p < 0.05).

Expression of clustered miRNAs is coordinated
We noticed that miRNA clusters are often expressed coordi-
nately in our sample set. For example, miR-106b, miR-93 and
miR-25 situated on C7q22.1 are highly expressed in high-
grade tumors. To further examine this phenomenon, we cal-
culated the pairwise Pearson correlation of expression
between miRNAs on the same chromosome and strand. We
observed an abrupt drop in correlation of miRNA expression
for pairs of miRNAs that were more than 50 kb apart (Addi-
tional data file 12). These observations agree well with what
has been observed earlier in human tissue samples [88]. We
therefore used a distance of 50 kb as a cut-off to identify 56
intergenic or gene-resident spatial clusters, 44 of which are

Association of individual miRNAs and tumor subtype or clinicopathological factorsFigure 3
Association of individual miRNAs and tumor subtype or 
clinicopathological factors. Shown are 31 miRNAs and three factors with 
at least one association at adjusted p < 0.01. Differential expression was 
assessed by a non-parametric Wilcoxon rank sum test for comparison 
between two groups or a non-parametric Kruskal-Wallis test for 
comparison between multiple groups. To address the issue of multiple 
testing for the same factor, p values were adjusted by Benjamini and 
Hochberg's method [102]. Heatmap colors represent relative miRNA 
expression as shown in the color key. The expression values for a given 
sample group of interest were summarized by their mean. Brackets in the 
left margin indicate members of the same miRNA family. Significance levels 
are shown in the right margins: * adjusted p < 0.05; ** adjusted p < 0.01; 
*** adjusted p < 0.001. Abbreviations for subtype: B, basal-like; H, HER2+; 
LA, luminal A; LB, luminal B; N, normal-like.
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represented in the set of 137 miRNAs detected in our sample
set. Interestingly, 26 of 31 clusters for which expression data
from multiple stem-loop regions were available show corre-

lated expression with r > 0.4 (Figure 5 and Additional data file
13). For example, the miR-15 and miR-16 family are
expressed from two clusters at chromosomes 3q and 13q,

Association of miRNA expression and DNA copy numberFigure 4
Association of miRNA expression and DNA copy number. miRNAs mapping to regions of genomic aberration were plotted according to chromosome 
and genomic location. Heatmap colors represent relative miRNA expression as shown in the color key. Expression values for samples with genomic loss 
(L), unaltered samples (N), samples with genomic gain (G) and amplification (A) were summarized by their mean, respectively, with numbers of samples as 
indicated. miRNAs transcribed from multiple loci are indicated in blue. Adjacent miRNAs not separated by a black line are less than 50 kb apart. 
Significance levels correspond to unadjusted p values obtained by a non-parametric Wilcoxon rank sum test (* p < 0.05, ** p < 0.01, *** p < 0.001). Given 
the high dependence of the performed tests, p values were not adjusted for multiple testing.
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which are both highly correlated (r > 0.8). In many cases
these correlations are likely due to shared regulatory
elements or polycistronic expression of several miRNAs from
a single primary transcript [88].

A number of miRNA genes are co-regulated as part of 
larger domains
Since only 17 of the 137 miRNAs expressed in our samples
showed changes in their expression associated with detected
chromosomal abnormalities, changes in miRNA expression
may be due to changes in transcription of primary miRNA
transcripts. We showed above that miRNA clusters are
expressed coordinately. We therefore asked if expression lev-
els of miRNAs that are intronic are correlated with the
expression of their host gene, as this suggests changes in pri-
mary transcription rates. To test this hypothesis, we com-
pared miRNA expression data with Illumina mRNA
expression data for our tumor sample set (unpublished
results; Additional data file 13). We only detected correlations
for seven miRNA host gene pairs (r > 0.4), suggesting that
changes in miRNA expression in our tumor sample set are not
generally linked to host gene expression (Table 1). These
seven miRNA host gene pairs were miR-30e-5p/NFYC, miR-
149/GPC1, miR-25/93/106b/MCM7, miR-342/EVL and
miR-99a/C21orf34.

For miRNA genes that are intergenic, we performed a similar
comparison using the most proximal probes (within 50 kb)
from the Illumina platform as these probes might correspond
to primary miRNA transcripts (Additional data file 13). Only
23 out of 243 miRNA/proximal probe pairs at 11 distinct loci
correlated in expression (r > 0.4; Table 1). Some of these miR-
NAs have proximal probes that are very close and likely rep-
resent primary miRNA transcripts. For example, miR-205
expression is highly correlated with the proximal probe for
transcript NPC-A-5 (r > 0.75). One striking example of corre-
lated expression of miRNAs and proximal probes was miR-
10a, which is part of the HOXB cluster (C17q21.32), where
Illumina probe data suggest the co-regulation of a region
from HOXB2 to HOXB6 including miR-10a (Table 1).

Some changes in miRNA expression may be due to 
changes in miRNA biosynthesis
As genomic changes and transcriptional regulation of miRNA
expression do not explain the changes in miRNA expression

we observed in human breast cancers, post-transcriptional
regulation of miRNA expression has to be considered.
Indeed, recent studies suggested that primary miRNA
processing might be deregulated in human cancer [64,89,90].
Therefore, we tested whether genes required for miRNA bio-
genesis are differentially expressed in our breast cancer
samples. As we found many changes in miRNA expression
across the five clinical tumor subtypes we had defined above
(Figure 2), we asked whether DICER1, DROSHA, DGCR8,
AGO1, AGO2, AGO3 or AGO4 expression differs among these
subgroups. We found significant changes in the expression of
DICER1 (p < 0.001), which was low in the more aggressive
basal-like, HER2+ and luminal B type tumors, and AGO2,
which was high in basal-like, HER2+ and luminal B type
tumors (Figure 6). We did not find significant changes in the
expression of DROSHA, DGCR8, or any of the other AGO
genes (Figure 6 and Additional data file 10). We also observed
significant changes in AGO2, DICER1 and DROSHA expres-
sion in relation to ER status, with AGO2 and DROSHA being
higher and DICER1 lower in ER- tumor samples (Figure 6).

The observed deregulation of genes required for miRNA bio-
genesis may be expected to lead to global changes in miRNA
expression. To further investigate this possibility, we utilized
an alternative approach to between-sample normalization.
For the analyses described previously, sample median center-
ing proved advantageous in removing technical variation
between samples without changing trends in differential
expression (Additional data files 1 and 4). However, this
method necessarily removed any global changes in miRNA
expression. Using an alternative normalization based on
spike-in controls, similar to the method described in [56], we
detected small differences in mean miRNA levels according to
ER status with lower mean miRNA expression in ER- tumors
(Figure 6d).

Discussion
Using an innovative bead-based miRNA expression profiling
method we have determined the expression profile for 309
miRNAs in primary human breast cancer. We found that
miRNA expression classified molecular tumor subtypes. Fur-
thermore, a number of individual miRNAs were associated
with clinicopathological factors. Changes in miRNA
expression were complex and were likely due to genomic loss

Expression of clustered miRNAs is coordinatedFigure 5 (see following page)
Expression of clustered miRNAs is coordinated. Shown are pairwise scatter plots of expression values for mature miRNAs transcribed from genomic 
regions within 50 kb of each other. (a) miR-15a, miR-15b and miR-16 transcribed from two intronic clusters at C3q26.1 (SMC4L1) and C13q14.3 (DLEU2). 
(b) miR-25, miR-93 and miR-106b transcribed from an intronic cluster at C7q22.1 (MCM7). (c) miR-199a, miR-199a*, miR-199b and miR-214 transcribed 
from one intergenic cluster at C1q24.3 and two intergenic stem-loops at C9q34.11 and C19p13.2. Pearson correlation coefficients (r) and data points 
shown are based on samples with available array CGH data and no identified genomic loss or gain at the relevant locus (Additional data file 1). Genome 
plots are drawn to scale as shown in the legend (bottom right), except where missing regions are indicated by vertical bars. Positive and negative strands 
are depicted by the top and bottom plots, respectively. Gene loci and miRNA stem-loop regions are colored in blue and red, respectively. The location of 
exons is marked by greater line width.
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Figure 5 (see legend on previous page)
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or gain, transcriptional and post-transcriptional regulation
and changes in the expression of miRNA biogenesis enzymes.
This study forms the basis for developing miRNA expression
signatures as diagnostic tools for breast cancer and also fur-
thers our understanding of the role of miRNAs in
tumorigenesis.

Two previous studies of miRNA expression in human breast
cancer have focused on comparing normal tissues to tumor
samples. Here we focused on miRNA expression analysis of a
large set of primary human tumors to reveal signatures of
tumor subtype. Nevertheless, we also identified 7 out of 24
miRNAs that had previously been associated with breast can-
cers compared to normal tissues [78] (Additional data file 18).

In addition, we can confirm three of 26 miRNAs that were
reported in a separate study [77]. Notably, one miRNA, miR-
155, is differentially expressed in ER- versus ER+ tumors
(Figure 3), overexpressed in breast tumors compared to nor-
mal controls [77,78] and additionally other tumor types, sug-
gesting that this miRNA may have diagnostic potential
beyond breast cancer [54,91-93]. More recently, a quantita-
tive RT-PCR study of miRNA expression from breast cancer
biopsies revealed that miRNA expression classifies ER status
[79], which is in agreement with our observations (Figure 1b).
Surprisingly, we found little agreement among miRNAs we
identified as being associated with clinicopathological factors
and miRNAs identified in this context in a previous study
[77].

Table 1

MicroRNA/proximal probe correlations

Host gene Proximal probe

miRNA Chromosome 
position

Name Pearson
correlation

Name† Pearson
correlation

miRNA/probe
distance (kb)

miR-101 1p31.1 FLJ26232 0.4337 35.99

miR-30e-5p 1p34.2 NFYC 0.4950 17.02

miR-181a 1q31.3 Hs.497310 0.4106 19.61

miR-205 1q32.2 NPC-A-5 0.7936 0.00

miR-10b 2q31.1 HOXD10 0.4902 30.96

HOXD8 0.4472 18.53

miR-149 2q37.3 GPC1 0.6567 11.68

miR-30a-3p 6q13 BC040204 0.6406 16.17

miR-30a-5p 6q13 BC040204 0.7091 16.17

C6orf155 0.4995 11.12

miR-30c 6q13 BC040204 0.4566 10.30

miR-106b 7q22.1 MCM7 0.5157 1.02

miR-25 7q22.1 MCM7 0.4939 0.59

miR-93 7q22.1 MCM7 0.4988 0.79

miR-181a 9q33.3 NR6A1‡ R08260 0.5913 1.51

miR-181b 9q33.3 NR6A1‡ R08260 0.5634 2.78

miR-196a 12q13.13 HOXC10 0.4914 1.75

miR-342 14q32.2 EVL 0.7208 34.26

miR-10a 17q21.32 GI_30159691 0.8123 0.40

HOXB6 0.8085 16.10

HOXB5 0.7150 11.48

HOXB3 0.6908 29.79

HOXB2 0.7019 36.74

HOXB4 0.6856 2.90

HOXB8 0.5937 32.43

miR-199a* 19p13.2 DNM2‡ TMED1 0.4111 15.22

miR-99a 21q21.1 C21orf34 0.4766 67.87

miR-155 21q21.3 BIC 0.4688 0.73

let-7a 22q13.31 FLJ27365 0.5272 1.45

let-7b 22q13.31 FLJ27365 0.5732 2.38

†Gene symbol, accession number or Illumina probe identifier. ‡Gene lies on the opposite strand.
Genome Biology 2007, 8:R214
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We showed that a large number of miRNAs in our data set are
associated with molecular subtypes, and we explored the pre-
dictive potential of miRNAs in an independent test set. A
model-based discriminant analysis of our training set of 31
basal-like and luminal A samples resulted in the classification
of 5 samples from an independent study that was in accord-
ance with gene expression-based molecular subtype classifi-
cation. Although these results are promising, the test set is too
small to allow for a sensible performance assessment of the
classifier. However, there are currently no other breast tumor
data sets with both mRNA and miRNA expression data pub-
licly available that would allow further validation of miRNA-
based molecular subtype classification.

If miRNA expression profiles classify primary breast tumor
subtypes, they may prove useful as diagnostic tools in the
future and this could be assessed in a prospective study.
Bead-based array miRNA profiling may be particularly well
suited to assay miRNA expression in large-scale diagnostic
trials since it is a high-throughput and cost-effective method
[56,94]. If miRNAs prove useful for clinical breast cancer
diagnosis, they have the additional advantage that, in
contrast to most mRNAs, they are long-lived in vivo [35] and
very stable in vitro [95], which might be critical in a clinical
setting and allow analysis of paraffin-embedded samples.

We found that the differences in miRNA expression we
observed are likely not due to genomic loss or gain (Figure 4).
Therefore, we investigated the regulation of miRNA expres-
sion at the transcriptional and post-transcriptional level (Fig-
ure 5, Table 1). As previously described for normal human
tissues [88], we found that the majority of miRNA clusters are
co-regulated in human breast tumors. These data are also in
agreement with similar observations made in human leuke-
mia samples [96] and support the hypothesis that changes in
miRNA expression in human cancer may not be distinct from
normal tissue-specific miRNA expression in humans. In some
instances, miRNA expression also correlates with host gene
expression in the case of intronic miRNAs, or with the
expression of larger domains, such as the HOXB cluster

Figure 6
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Genes required for miRNA biogenesis are differentially expressed according to molecular subtype and ER statusFigure 6
Genes required for miRNA biogenesis are differentially expressed 
according to molecular subtype and ER status. Shown are boxplots of 
Illumina log2 intensities for (a) AGO2 (EIF2C2), (b) DICER1, (c) DROSHA 
(RNASEN). Data are based on 58 samples that could be classified according 
to molecular subtype (17 basal-like (red), 5 HER2+ (pink), 18 luminal A 
(dark blue), 8 luminal B (light blue), 10 normal-like (green)) and 99 samples 
with known ER status (31 ER- (blue), 68 ER+ (yellow)). (d) Boxplots of 
mean miRNA expression after control-based normalization. Data are 
based on 51 samples that could be classified according to molecular 
subtype (16 basal-like (red), 5 HER2+ (pink), 15 luminal A (dark blue), 9 
luminal B (light blue), 6 normal-like (green)) and 93 samples with known 
ER status (33 ER- (blue), 60 ER+ (yellow)). Black bars indicate the median; 
boxes interquartile range; whiskers most extreme data points not 
exceeding 1.5 times the interquartile range; points outliers. P values are 
based on non-parametric Kruskal-Wallis tests for subtype and Wilcoxon 
rank sum tests for ER status.
Genome Biology 2007, 8:R214



http://genomebiology.com/2007/8/10/R214 Genome Biology 2007,     Volume 8, Issue 10, Article R214       Blenkiron et al. R214.11
(Table 1 and Additional data file 13). In these instances,
miRNA expression appears to be mainly under transcrip-
tional control.

However, in many cases we observe that miRNA expression is
not correlated with host genes or primary miRNA transcripts,
suggesting post-transcriptional regulation of miRNA expres-
sion. Regulation of miRNA expression at the level of DRO-
SHA has previously been proposed for human cancer [64,90].
We found that DICER1 expression is significantly downregu-
lated in the more aggressive basal-like, HER2+ and luminal B
type tumors. Interestingly, a recent study showed that down-
regulating DICER1 expression promotes tumorgenesis in
vitro and in a mouse lung cancer model [97]. Together, these
data suggest that DICER1 deregulation might be involved in
the etiology of human breast cancer. In addition, we find that
the deregulation of genes in the miRNA biogenesis pathway
that we observed is in agreement with a number of independ-
ent data sets [98] (Additional data file 11).

Although both mRNA and miRNA expression profiles were
found to be informative with regard to tumor subtype, their
functional relationship remains unclear. In particular, we
were interested to discover if changes in miRNA expression
may correlate with changes in mRNA levels of direct targets
(Additional data file 1). We considered miRNA families with
identical seed (nucleotides 2-7) and mRNAs with conserved
seed complementarity in their 3'UTR (Targetscan 3.1) [38]. A
number of miRNA families showed differential expression
between subtypes for their mean expression profile. We could
detect only a few instances of enrichment for down- or up-
regulation of predicted target mRNAs consistent with
changes in miRNA expression, although previous studies of
normal human tissue did observe such an enrichment
[45,99]. However, these data are consistent with the hypo-
thesis that many miRNAs act at the level of translation rather
than mRNA stability.

Conclusion
To date, many studies of miRNA expression in human cancer
have focused only on the deregulation of miRNA expression.
Here we integrated the analysis of miRNA expression, mRNA
expression and DNA copy number in human breast cancer.
Based on a combined analysis of miRNA and mRNA expres-
sion data we have identified a number of miRNAs that are dif-
ferentially expressed between molecular tumor subtypes. In
addition, we identified candidate miRNAs that are regulated
at the genomic, transcriptional and likely post-transcriptional
levels in breast cancer using miRNA, mRNA and array CGH
data. Using mRNA expression data, we also found that the
expression of genes in the miRNA biogenesis pathway is
deregulated in breast cancer. We suggest that further analysis
of integrated data sets might help to unravel miRNA-depend-
ent pathways in human breast cancer.

Materials and methods
Sample collection
Primary breast tumor specimens were obtained with appro-
priate ethical approval from the Nottingham Tenovus Pri-
mary Breast Cancer Series (Nottingham City Hospital Tumor
Bank, Nottingham, UK). All cases were primary operable
invasive breast carcinomas collected from 1990 to 1996. Clin-
ical information, including therapy, has been published pre-
viously [80-83,87].

RNA extraction and labeling
RNA was extracted from primary tumors and cell lines using
a standard Trizol (Invitrogen, Carlsbad, CA, USA) protocol,
modified by washing the final RNA pellet with 80% EtOH.
Frozen tumors were sectioned on a cryostat prior to
homogenization in Trizol. RNA quantity and quality were
assessed by Nanodrop (Nanodrop Technologies, Wilmington,
DE, USA) and Agilent 2100 bioanalyzer (Agilent Technolo-
gies, Santa Clara, CA, USA), respectively.

miRNAs were extracted from 5 μg of sample total RNA using
denaturing PAGE. Briefly, samples were spiked with three
synthetic pre-labeling control RNAs (5'-pCAGUCAGUCAGU-
CAGUCAGUCAG-3', 5'-pGACCUCCAUGUAAACGUACAA-3',
5'-pUUGCAGAUAACUGGUACAAG-3'; Dharmacon, Lafay-
ette, CO, USA) to control for target preparation efficiency, at
3 fmoles/sample. After purification of 18-26 bp RNAs, adap-
tors were ligated at the 3' and 5' ends using T4 RNA ligase
(Fermentas, Burlington, OT, CA), a RNA-DNA hybrid 5'-
pUUUaaccgcgaattccagt-idT-3' (Dharmacon; X = RNA, x =
DNA, p = phosphate, idT = inverted [3'-3' bond] deoxythymi-
dine) was ligated to the 3' end and 5'-acggaattcctcactAAA-3'
(Dharmacon) was ligated to the 5' end using T4 RNA ligase.
These bi-ligated products underwent reverse transcription
using an adaptor specific primer (M37, 5'-pTACTGGAAT-
TCGCGGTTA-3') and then amplified and labeled using PCR
(M37 and M33, 5'-biotin-CAACGGAATTCCTCACTAAA-3').
Amplification was performed on an Eppendorf thermal cycler
at 95°C for 30 s, 50°C for 30 s and 72°C for 40 s for 18 cycles.
PCR products were precipitated without glycogen and redis-
solved in 66 μl 1 × TE buffer containing 1 μl of three bioti-
nylated post labeling controls (100 fmols each, FVR506,
PTG20210, MRC677).

Bead coupling and hybridization
Oligonucleotide probes were coupled to color-coded polysty-
rene beads, allowing the simultaneous detection of about 90
different target oligonucleotides. To obtain expression pro-
files for 309 miRNAs, we created four distinct sets of bead-
coupled miRNA probes. Each sample was hybridized to the
four bead sets to generate a complete miRNA profile. Oligos
were 5'-amino modified with a 6-carbon linker and
conjugated to carboxylated xMAP beads (Luminex, Austin,
TX, USA) in 96-well formats following the standard manufac-
turer's protocol. To generate bead set pools, 3 μl of each oligo-
bead conjugate was mixed into 1 ml 1.5× TMAC buffer (4.5 M
Genome Biology 2007, 8:R214



http://genomebiology.com/2007/8/10/R214 Genome Biology 2007,     Volume 8, Issue 10, Article R214       Blenkiron et al. R214.12
tetramethylammonium chloride, 0.15% sarkosyl, 75 mM Tris-
HCl pH 8.0, 6 mM EDTA). Samples were hybridized in a 96-
well format with two water-only blanks and at least three
bead blanks containing water instead of the labeled sample
for use as a background control. We included replicate probes
and technical replicate samples across bead sets and sample
plates, respectively, to aid quality control and data preproc-
essing. Hybridization was carried out overnight at 50°C with
33 μl of the bead pool and 15 μl of labeled sample.

Unbound sample was removed from beads by washing with 1
× TE and re-suspending in 1× TMAC buffer. SAPE, streptavi-
din-phycoerythrin, premium grade (Invitrogen) was added to
the beads (1:100 dilution) and incubated for 10 minutes at
50°C to bind to biotin moieties on the cDNA. Samples were
processed on a Luminex 100 machine and median fluores-
cence intensity values acquired using the StarStation software
(ACS, Sheffield, UK).

Computational analysis
Preprocessing
Median fluorescence intensity values smaller than a thresh-
old of 1 were set equal to 1, and all values were transformed by
taking logs (base 2). Samples with low mean expression were
excluded from further analyses (Additional data files 1 and 3).
To reduce noise due to absent probes, each probe was
required to exceed a log2 median fluorescence intensity value
of 6 in at least one sample. Systematic probe effects were
median-corrected (Additional data files 1 and 2). Replicate
probes were summarized by their mean profile and samples
were centered to have zero median. Technical replicate sam-
ples were summarized by their mean profile. For a more
detailed description of preprocessing please see Additional
data file 1.

Genomic annotation
miRNA probe sequences were matched against stem-loop
sequences in miRBase (release 8.1). Genomic miRNA clusters
were identified by requiring any two stem-loops on the same
chromosome and strand within 50 kb to belong to the same
clusters (Additional data file 16). A miRNA was defined as
gene-resident if its stem-loop is completely contained in the
locus of a gene transcript on the same chromosomal strand as
annotated in the Known Genes and RefSeq Genes tables
obtained from the UCSC Genome Browser (hg18) [100]
(Additional data file 17).

Illumina gene expression data
Illumina gene expression data were processed and summa-
rized in the Illumina BeadStudio software. Analyses of the
probe level data were performed using the beadarray Bio-
conductor package [101]. After quality control, between-array
qspline normalization was performed for 112 arrays for 99
samples. Replicate arrays were averaged and expression val-
ues were transformed by taking logs (base 2).

Subtype classification
Each array in the preprocessed Illumina and Agilent [83]
gene expression data set was normalized to have zero mean
and standard deviation one, and each probe was centered to
have zero median. An SSP annotation for Agilent probes was
provided in [76]. Detailed information on the SSP annotation
for Illumina probes can be found in Additional data files 1 and
15. Multiple probes for the same UniGene cluster ID in either
data set were summarized by their median profile. Samples
were then assigned to the nearest subtype centroid as deter-
mined by Spearman correlation, requiring a minimum corre-
lation of 0.3. Samples that could be assigned to subtypes
based on both Agilent and Illumina expression profiles were
classified according to the Illumina assignment (Additional
data file 1).

Hierarchical clustering
Prior to hierarchical clustering, miRNA profiles were stand-
ardized to have mean zero and standard deviation one. Clus-
tering was performed with average linkage and Pearson
correlation.

Supervised analyses
Differential expression was assessed by a non-parametric
Wilcoxon rank sum test for comparison between two groups
or a non-parametric Kruskal-Wallis test for comparison
between multiple groups. To address the issue of multiple
testing for the same contrast, adjusted p values were obtained
by Benjamini and Hochberg's method [102].

Copy-number-driven expression
For each miRNA stem-loop identified as gained, lost or
amplified in any of the samples, separate non-parametric
Wilcoxon rank sum tests were performed to assess differ-
ences in expression between samples with genomic changes
and unaltered samples [103]. P values were not adjusted for
multiple testing due to the high level of dependence between
the performed tests.

Coexpression of proximal miRNAs and Illumina probes
For a given chromosome and strand, pairwise Pearson corre-
lation coefficients were calculated for all miRNA probes and
those Illumina probes mapping to a host gene or within 50 kb
of a miRNA stem-loop. To account for coexpression caused by
DNA copy number changes, correlation coefficients for probe
pairs were calculated using only those samples with available
array CGH data showing no evidence for aberration at either
locus (Additional data file 1).

All analyses were performed in the statistical programming
environment R [104] using customized functions and func-
tions available from Bioconductor [105,106] and the
MCLUST package [107]. All miRNA expression data have
been submitted to the Gene Expression Omnibus (GEO) with
accession number GSE7842.
Genome Biology 2007, 8:R214
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Additional data files
The following additional data are available with the online
version of this paper. A detailed description of the computa-
tional analysis carried out is given in additional data file 1 and
a layout of the experimental design is shown in additional
data file 2. Additional data on miRNA expression analysis can
be found in additional data file 3 (pre-processing), additional
data file 4 (normalization), additional data file 5 (replicate
probes), additional data file 6 (replicate samples) and addi-
tional data file 7 (qRT-PCR validation). Additional data file 8
contains a mRNA expression heatmap for 82 classified sam-
ples and 75 intrinsic genes, and additional data file 9 contains
a pairwise comparison of Kaplan-Meier survival curves for 74
classified samples with available follow up data. Additional
data on differential expression of miRNA processing genes
can be found in additional data file 10 (this data set) and addi-
tional data file 11 (other data sets). Additional data file 12
shows the correlation of proximal miRNA probes and addi-
tional data file 13 shows correlations between miRNA probes
and Illumina probes. Additional data file 14 shows a model-
based discriminant analysis for Basal-like and Luminal A
tumors. Additional data file 15 contains annotation for the
intrinsic gene probe set (single sample predictor). Additional
data file 16 lists spatial miRNA clusters, additional data file 17
lists host gene coordinates of intragenic miRNAs and
additional data file 18 associations between individual miR-
NAs, molecular tumor subtypes and clinicopathological fac-
tors. Additional data file 19 contains the intrinsic gene probe
sets used for the model-based discriminant analysis.
Additional data file 1Supplementary NotesThis file contains a detailed description of the computational analyis.Click here for fileAdditional data file 2Layout of the experimental designA. Data matrix of miRNA expression values (schematic). The 333 rows and 168 columns correspond to probes and samples respec-tively. Expression values for each sample were obtained from hybridizations to four distinct bead sets (with approximately 90 probes each), carried out in separate wells of 96-well plates. Hybridizations were performed on eight plates, using two plates for each bead set. The allocation of samples between the two plates for a given bead set was kept consistent for all four bead sets. Thus both probes and samples could be ordered according to the plate of ori-gin, partitioning the data matrix into eight blocks corresponding to measurements from distinct plates. Expression values for a repre-sentative well on plate 1 for beadset 1 are indicated in grey. B. Heat-map of unnormalized log2 MFI values for all miRNA probes and all samples. Probes were median centred prior to plotting. C. Heatmap of differences between the probe median for the randomized sam-ples on a given plate and the probe median for all samples on both plates.Click here for fileAdditional data file 3Preprocessing of miRNA expression dataA. Histograms of log2 MFI values obtained from wells containing sample material (white) and blank control wells (blue). B. The number of detected probes after filtering was plotted against a range of cutoff values. Probes were removed (filtered) if they did not exceed the chosen cutoff (red) in at least one sample. C, D. Sam-ple quality control. Pearson correlation coefficients for technical replicate samples were plotted against the smaller of the two sam-ple means for (C) cell line technical replicate samples and (D) nor-mal and tumor technical replicate samples. The cutoff used for quality control is indicated by a vertical line. Colours correspond-ing to sample status are explained in the colour key. E. Technical sample effects. Pairwise differences between the medians of techni-cal replicate samples were plotted for unnormalized data (black), data normalized based on spike-in controls (blue) and data nor-malized by sample median centering (red). Dashed lines indicate the maximum difference between the medians of any two samples for unnormalized data (black) and for data normalized using spike-in controls (blue).Click here for fileAdditional data file 4Between-sample normalizationBetween-sample normalization. A. Shown are data normalized based on spike-in controls for the same miRNAs and factors as in Figure 3 in the main text. B. miRNAs and factors with at least one association at adjusted p < 0.01 based on data normalized using spike-in controls. All miRNAs thus identified were also identified after sample median centering with the exception of miR-152, which was found to be associated with all three factors at p < 0.05 (Additional data file 18). Heatmap colours reflect relative miRNA expression. The expression values for a given sample group of interest were summarized by their mean. Brackets in the left mar-gin indicate members of the same miRNA family. Significance lev-els are indicated in the right margins: * adjusted p < 0.05, ** adjusted p < 0.01, *** adjusted p < 0.001. Abbreviations for sub-type: B = Basal-like, H = HER2+, LA = Luminal A, LB = Luminal B, N = Normal-like.Click here for fileAdditional data file 5Replicate probesPairwise scatter plots of replicate probes after sample quality con-trol, probe filtering and within-plate probe correction (none of the replicated probes were removed due to probe filtering). Scatter plots for one failed probe (miR-224-4) are marked in red.Click here for fileAdditional data file 6Technical replicate samplesPairwise scatter plots of technical replicate samples after sample quality control, probe filtering, within-plate probe correction and summarizing replicate probes.Click here for fileAdditional data file 7qRT-PCR validationNormalized log2 MFI values were plotted against log2-transformed and median-corrected measurements obtained by qRT-PCRClick here for fileAdditional data file 8Gene expression heatmap for 82 classified samples and 75 of the 80 intrinsic genesExpression values are based on Illumina data when available, and Agilent data otherwise. The two data sets were normalized as described. Missing values in the Agilent data are indicated in white. Samples were ordered according to molecular subtype (see colour key). The heatmap does not present a hierarchical clustering but merely illustrates differences in gene expression. A. Luminal/ER+ gene cluster. B. ERBB2 and GRB7-containing cluster. C. Inter-feron-regulated cluster including STAT1. D. Basal epithelial clus-ter. E. Proliferation cluster.Click here for fileAdditional data file 9Pairwise comparison of Kaplan-Meier survival curvesPairwise comparison of Kaplan-Meier survival curves for 74 classi-fied samples with available follow up data (21 Basal-like, 7 HER2+, 25 Luminal A, 10 Luminal B, 11 Normal-like). A non-parametric log rank test was used to assess differences in clinical outcome.Click here for fileAdditional data file 10miRNA processing genes show differential expression according to subtype, and ER statusShown are boxplots of log2 expression for DGCR8, DICER1, DRO-SHA (RNASEN), AGO1 (EIF2C1), AGO2 (EIF2C2), AGO3 (EIF2C3) and AGO4 (EIF2C4). The data were obtained for 58 samples classi-fied according to subtype (17 Basal-like, 5 HER2+, 18 Luminal A, 8 Luminal B, 10 Normal-like) and 99 samples with known ER status (31 ER-, 68 ER+). We only included Illumina probes not mapping to introns and which could be detected at log2 expression 6 in at least one sample. Differential expression was assessed using a non-parametric Kruskal-Wallis test (subtype) and Wilcoxon rank sum test (ER status).Click here for fileAdditional data file 11miRNA processing genes show differential expression according to ER status in publicly available data setsShown are boxplots of normalized gene expression units for each candidate gene that showed differential expression (Student's t-test p < 0.001). Data were obtained from the cancer microarray database ONCOMINE [98], and differential expression was assessed using Student's t-test. Each row of plots corresponds to a unique gene; data obtained from different studies are separated by a solid vertical black line. For each data set the number of ER neg-ative (blue) and ER positive (yellow) samples is included in the lower figure margin. The first authors of the relevant publications are included in the plot title.Click here for fileAdditional data file 12Correlation of proximal miRNAsPearson correlation coefficients for mature miRNAs mapping to the same chromosome and strand were plotted against decreasing ranks of pairwise distances. Diamonds represent a moving average over five correlation coefficients. The absolute distance is plotted in blue and indicated on the right y-axis. Distance 50 kb is indicated by a vertical red line.Click here for fileAdditional data file 13Correlation of miRNA and Illumina probesHeatmap of Pearson correlation coefficients (accounting for DNA copy number changes as described) between miRNA probes and selected Illumina probes on the same chromosome and strand. Blank entries are due to missing DNA copy number information. Probes are arranged in genomic order. Black boxes indicate clus-ters of adjacent probes less than 50 kb apart. Green boxes indicate clusters of probes mapping to the same host gene. Mature miRNAs included in multiple stem-loops are indicated in blue. Relative genomic probe positions are marked as white bars on the chromo-somal plot below each heatmap.Click here for fileAdditional data file 14Model-based discriminant analysis for Basal-like and Luminal A tumorsSSP molecular subtype classification based on the Affymetrix gene expression data for normal breast and breast tumor samples in [56,85]. Spearman correlations with the five subtype centroids are shown for all 14 samples. The solid horizontal black line indicates the minimum correlation required for subtype assignment. If the minimal correlation with a subtype centroid was achieved, the clas-sification was made using the centroid with highest Spearman cor-relation. B. Shown are class posterior probabilities for 16 Basal-like and 15 Luminal A tumors in the training set (using all detected 138 miRNAs); and three Basal-like and two Luminal A tumors in the test set (using the 77 detected miRNAs in common with the training set). Red and blue indicate the posterior probability of belonging to the Basal-like and Luminal A subtype respectively. Plotting charac-ters indicate the gene expression based subtype classification with squares and triangles representing Basal-like and Luminal A sam-ples respectively. Samples were assigned to the class with posterior probability greater than 0.5 (solid horizontal black line).Click here for fileAdditional data file 15Intrinsic genes, probe sets (single sample predictor)Intrinsic genes, probe sets (single sample predictor)Click here for fileAdditional data file 16Spatial miRNA clustersSpatial miRNA clustersClick here for fileAdditional data file 17Host gene coordinates of intragenic miRNAsHost gene coordinates of intragenic miRNAsClick here for fileAdditional data file 18Associations between individual miRNAs, molecular tumor sub-types and clinicopathological factorsAssociations between individual miRNAs, molecular tumor sub-types and clinicopathological factorsClick here for fileAdditional data file 19Intrinsic genes, probe sets (model-based discriminant analysis)Intrinsic genes, probe sets (model-based discriminant analysis)Click here for file

Acknowledgements
This work was funded by grants from Cancer Research UK to CC, ST and
EAM. CB was supported by the UK National Translation Cancer Research
Network (NTRAC) and LDG was supported by an EPSRC fellowship. ST is
a Royal Society-Wolfson Research Merit Award holder. We would like to
thank the Tissue Bank, City Hospital, Nottingham, UK for human breast
samples. We thank Sarah Hyland for her work on the TP53 mutation
screen and John Marioni for useful discussions on the analysis. We would

like to thank the reviewers for exceptionally helpful comments on the
manuscript.

References
1. Ambros V, Horvitz HR: Heterochronic mutants of the nema-

tode Caenorhabditis elegans.  Science 1984, 226:409-416.
2. Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic

gene lin-4 encodes small RNAs with antisense complementa-
rity to lin-14.  Cell 1993, 75:843-854.

3. Wightman B, Ha I, Ruvkun G: Posttranscriptional regulation of
the heterochronic gene lin-14 by lin-4 mediates temporal
pattern formation in C. elegans.  Cell 1993, 75:855-862.

4. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie
AE, Horvitz HR, Ruvkun G: The 21-nucleotide let-7 RNA regu-
lates developmental timing in Caenorhabditis elegans.  Nature
2000, 403:901-906.

5. Chalfie M, Horvitz HR, Sulston JE: Mutations that lead to reiter-
ations in the cell lineages of C. elegans.  Cell 1981, 24:59-69.

6. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism,
and function.  Cell 2004, 116:281-297.

7. Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe
DC: Cloning and characterization of micro-RNAs from moss.
Plant J 2005, 43:837-848.

8. Axtell MJ, Bartel DP: Antiquity of microRNAs and their targets
in land plants.  Plant Cell 2005, 17:1658-1673.

9. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T: Identification
of novel genes coding for small expressed RNAs.  Science 2001,
294:853-858.

10. Lau NC, Lim LP, Weinstein EG, Bartel DP: An abundant class of
tiny RNAs with probable regulatory roles in Caenorhabditis
elegans.  Science 2001, 294:858-862.

11. Lee RC, Ambros V: An extensive class of small RNAs in
Caenorhabditis elegans.  Science 2001, 294:862-864.

12. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP: Vertebrate
microRNA genes.  Science 2003, 299:1540.

13. Llave C, Kasschau KD, Rector MA, Carrington JC: Endogenous and
silencing-associated small RNAs in plants.  Plant Cell 2002,
14:1605-1619.

14. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP: Micro-
RNAs in plants.  Genes Dev 2002, 16:1616-1626.

15. Watanabe T, Takeda A, Mise K, Okuno T, Suzuki T, Minami N, Imai
H: Stage-specific expression of microRNAs during Xenopus
development.  FEBS Lett 2005, 579:318-324.

16. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B,
Enright AJ, Marks D, Sander C, Tuschl T: Identification of virus-
encoded microRNAs.  Science 2004, 304:734-736.

17. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ:
miRBase: microRNA sequences, targets and gene
nomenclature.  Nucleic Acids Res 2006, 34:D140-144.

18. Griffiths-Jones S: The microRNA Registry.  Nucleic Acids Res 2004,
32:D109-111.

19. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ: Processing
of primary microRNAs by the Microprocessor complex.
Nature 2004, 432:231-235.

20. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B,
Cooch N, Shiekhattar R: The Microprocessor complex medi-
ates the genesis of microRNAs.  Nature 2004, 432:235-240.

21. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN: The Drosha-
DGCR8 complex in primary microRNA processing.  Genes
Dev 2004, 18:3016-3027.

22. Landthaler M, Yalcin A, Tuschl T: The human DiGeorge syn-
drome critical region gene 8 and its D. melanogaster homolog
are required for miRNA biogenesis.  Curr Biol 2004,
14:2162-2167.

23. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark
O, Kim S, Kim VN: The nuclear RNase III Drosha initiates
microRNA processing.  Nature 2003, 425:415-419.

24. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U: Nuclear
export of microRNA precursors.  Science 2004, 303:95-98.

25. Du T, Zamore PD: microPrimer: the biogenesis and function of
microRNA.  Development 2005, 132:4645-4652.

26. Pillai RS: MicroRNA function: multiple mechanisms for a tiny
RNA?  Rna 2005, 11:1753-1761.

27. Olsen PH, Ambros V: The lin-4 regulatory RNA controls devel-
opmental timing in Caenorhabditis elegans by blocking LIN-
Genome Biology 2007, 8:R214

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6494891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8252621
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8252622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10706289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7237544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14744438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14744438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16146523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15849273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15849273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11679670
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11679670
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11679671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11679672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12624257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12624257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12119378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12119378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12101121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12101121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15642338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15642338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15118162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15118162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681370
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15531879
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15531879
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15531877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15531877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15574589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15574589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15589161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15589161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14508493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14508493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14631048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14631048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16224044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16224044
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16314451
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16314451
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10642801


http://genomebiology.com/2007/8/10/R214 Genome Biology 2007,     Volume 8, Issue 10, Article R214       Blenkiron et al. R214.14
14 protein synthesis after the initiation of translation.  Dev Biol
1999, 216:671-680.

28. Petersen CP, Bordeleau ME, Pelletier J, Sharp PA: Short RNAs
repress translation after initiation in mammalian cells.  Mol
Cell 2006, 21:533-542.

29. Seggerson K, Tang L, Moss EG: Two genetic circuits repress the
Caenorhabditis elegans heterochronic gene lin-28 after trans-
lation initiation.  Dev Biol 2002, 243:215-225.

30. Yekta S, Shih IH, Bartel DP: MicroRNA-directed cleavage of
HOXB8 mRNA.  Science 2004, 304:594-596.

31. Mansfield JH, Harfe BD, Nissen R, Obenauer J, Srineel J, Chaudhuri A,
Farzan-Kashani R, Zuker M, Pasquinelli AE, Ruvkun G, et al.: Micro-
RNA-responsive 'sensor' transgenes uncover Hox-like and
other developmentally regulated patterns of vertebrate
microRNA expression.  Nat Genet 2004, 36:1079-1083.

32. Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli
AE: Regulation by let-7 and lin-4 miRNAs results in target
mRNA gegradation.  Cell 2005, 122:553-563.

33. Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J, Di Padova
F, Lin SC, Gram H, Han J: Involvement of microRNA in AU-rich
element-mediated mRNA instability.  Cell 2005, 120:623-634.

34. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K,
Enright AJ, Schier AF: Zebrafish MiR-430 promotes deadenyla-
tion and clearance of maternal mRNAs.  Science 2006,
312:75-79.

35. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J,
Bartel DP, Linsley PS, Johnson JM: Microarray analysis shows that
some microRNAs downregulate large numbers of target
mRNAs.  Nature 2005, 433:769-773.

36. Wu L, Fan J, Belasco JG: MicroRNAs direct rapid deadenylation
of mRNA.  Proc Natl Acad Sci USA 2006, 103:4034-4039.

37. Alvarez-Garcia I, Miska EA: MicroRNA functions in animal devel-
opment and human disease.  Development 2005, 132:4653-4662.

38. Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often
flanked by adenosines, indicates that thousands of human
genes are microRNA targets.  Cell 2005, 120:15-20.

39. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB: Predic-
tion of mammalian microRNA targets.  Cell 2003, 115:787-798.

40. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMe-
namin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N: Combi-
natorial microRNA target predictions.  Nat Genet 2005,
37:495-500.

41. Brennecke J, Stark A, Russell RB, Cohen SM: Principles of micro-
RNA-target recognition.  PLoS Biol 2005, 3:e85.

42. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K,
Lander ES, Kellis M: Systematic discovery of regulatory motifs
in human promoters and 3' UTRs by comparison of several
mammals.  Nature 2005, 434:338-345.

43. Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM: Animal
microRNAs confer robustness to gene expression and have
a significant impact on 3'UTR evolution.  Cell 2005,
123:1133-1146.

44. Stark A, Brennecke J, Russell RB, Cohen SM: Identification of Dro-
sophila microRNA targets.  PLoS Biol 2003, 1:e60.

45. Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge
CB, Bartel DP: The widespread impact of mammalian MicroR-
NAs on mRNA repression and evolution.  Science 2005,
310:1817-1821.

46. Rajewsky N, Socci ND: Computational identification of micro-
RNA targets.  Dev Biol 2004, 267:529-535.

47. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS: Human
microRNA targets.  PLoS Biol 2004, 2:e363.

48. Lall S, Grun D, Krek A, Chen K, Wang YL, Dewey CN, Sood P,
Colombo T, Bray N, Macmenamin P, et al.: A genome-wide map of
conserved microRNA targets in C. elegans.  Curr Biol 2006,
16:460-471.

49. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim
B, Rigoutsos I: A pattern-based method for the identification
of MicroRNA binding sites and their corresponding
heteroduplexes.  Cell 2006, 126:1203-1217.

50. Miska EA: How microRNAs control cell division, differentia-
tion and death.  Curr Opin Genet Dev 2005, 15:563-568.

51. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler
H, Rattan S, Keating M, Rai K, et al.: Frequent deletions and down-
regulation of micro-RNA genes miR15 and miR16 at 13q14
in chronic lymphocytic leukemia.  Proc Natl Acad Sci USA 2002,
99:15524-15529.

52. Michael MZ, O'Conner SM, van Holst Pellekaan NG, Young GP, James

RJ: Reduced accumulation of specific microRNAs in colorec-
tal neoplasia.  Mol Cancer Res 2003, 1:882-891.

53. Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T,
Shimotohno K: Comprehensive analysis of microRNA expres-
sion patterns in hepatocellular carcinoma and non-tumor-
ous tissues.  Oncogene 2006, 25:2537-2545.

54. Jiang J, Lee EJ, Gusev Y, Schmittgen TD: Real-time expression pro-
filing of microRNA precursors in human cancer cell lines.
Nucleic Acids Res 2005, 33:5394-5403.

55. Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz LA Jr, Sjoblom T, Barad
O, Bentwich Z, Szafranska AE, Labourier E, et al.: The colorectal
microRNAome.  Proc Natl Acad Sci USA 2006, 103:3687-3692.

56. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-
Cordero A, Ebert BL, Mak RH, Ferrando AA, et al.: MicroRNA
expression profiles classify human cancers.  Nature 2005,
435:834-838.

57. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Good-
son S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond
SM: A microRNA polycistron as a potential human oncogene.
Nature 2005, 435:828-833.

58. Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu
YP, van Duijse J, Drost J, Griekspoor A, et al.: A genetic screen
implicates miRNA-372 and miRNA-373 as oncogenes in tes-
ticular germ cell tumors.  Cell 2006, 124:1169-1181.

59. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A,
Labourier E, Reinert KL, Brown D, Slack FJ: RAS is regulated by
the let-7 microRNA family.  Cell 2005, 120:635-647.

60. Mayr C, Hemann MT, Bartel DP: Disrupting the pairing between
let-7 and Hmga2 enhances oncogenic transformation.  Science
2007, 315:1576-1579.

61. Lee YS, Dutta A: The tumor suppressor microRNA let-7
represses the HMGA2 oncogene.  Genes Dev 2007,
21:1025-1030.

62. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S,
Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM: Human
microRNA genes are frequently located at fragile sites and
genomic regions involved in cancers.  Proc Natl Acad Sci USA
2004, 101:2999-3004.

63. Lamy P, Andersen CL, Dyrskjot L, Torring N, Orntoft T, Wiuf C: Are
microRNAs located in genomic regions associated with
cancer?  Br J Cancer 2006, 95:1415-1418.

64. Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T,
Hammond SM: Extensive post-transcriptional regulation of
microRNAs and its implications for cancer.  Genes Dev 2006,
20:2202-2207.

65. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pol-
lack JR, Ross DT, Johnsen H, Akslen LA, et al.: Molecular portraits
of human breast tumors.  Nature 2000, 406:747-752.

66. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M,
Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, et al.: Gene
expression profiling predicts clinical outcome of breast
cancer.  Nature 2002, 415:530-536.

67. van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW,
Schreiber GJ, Peterse JL, Roberts C, Marton MJ, et al.: A gene-
expression signature as a predictor of survival in breast
cancer.  N Engl J Med 2002, 347:1999-2009.

68. Sotiriou C, Powles TJ, Dowsett M, Jazaeri AA, Feldman AL, Asser-
sohn L, Gadisetti C, Libutti SK, Liu ET: Gene expression profiles
derived from fine needle aspiration correlate with response
to systemic chemotherapy in breast cancer.  Breast Cancer Res
2002, 4:R3.

69. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S,
Johnsen H, Pesich R, Geisler S, et al.: Repeated observation of
breast tumor subtypes in independent gene expression data
sets.  Proc Natl Acad Sci USA 2003, 100:8418-8423.

70. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie
T, Eisen MB, van de Rijn M, Jeffrey SS, et al.: Gene expression pat-
terns of breast carcinomas distinguish tumor subclasses with
clinical implications.  Proc Natl Acad Sci USA 2001, 98:10869-10874.

71. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker
MG, Watson D, Park T, et al.: A multigene assay to predict
recurrence of tamoxifen-treated, node-negative breast
cancer.  N Engl J Med 2004, 351:2817-2826.

72. Bertucci F, Finetti P, Rougemont J, Charafe-Jauffret E, Cervera N,
Tarpin C, Nguyen C, Xerri L, Houlgatte R, Jacquemier J, et al.: Gene
expression profiling identifies molecular subtypes of inflam-
matory breast cancer.  Cancer Res 2005, 65:2170-2178.

73. Zhao H, Langerod A, Ji Y, Nowels KW, Nesland JM, Tibshirani R,
Genome Biology 2007, 8:R214

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10642801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16483934
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16483934
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11884032
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11884032
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15105502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15105502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15361871
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15361871
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15361871
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16122423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16122423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15766526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15766526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16484454
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16484454
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15685193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15685193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15685193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16495412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16495412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16224045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16224045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15652477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15652477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15652477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14697198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14697198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15806104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15806104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15723116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15723116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15735639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15735639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15735639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16337999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16337999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16337999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14691535
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16308420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16308420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15013811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15013811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15502875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15502875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16458514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16990141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16990141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16990141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16099643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16099643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12434020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12434020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12434020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14573789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14573789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16331254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16331254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16331254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16192569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16192569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16505370
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16505370
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15944708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15944708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15944707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16564011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16564011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16564011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15766527
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15766527
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17322030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17322030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17437991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17437991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14973191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14973191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14973191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17003783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17003783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17003783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16882971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16882971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10963602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10963602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12052255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12052255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12052255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12829800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12829800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12829800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11553815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11553815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11553815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15591335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15591335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15591335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15781628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15781628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15781628


http://genomebiology.com/2007/8/10/R214 Genome Biology 2007,     Volume 8, Issue 10, Article R214       Blenkiron et al. R214.15
Bukholm IK, Karesen R, Botstein D, Borresen-Dale AL, Jeffrey SS:
Different gene expression patterns in invasive lobular and
ductal carcinomas of the breast.  Mol Biol Cell 2004,
15:2523-2536.

74. Huang E, Cheng SH, Dressman H, Pittman J, Tsou MH, Horng CF, Bild
A, Iversen ES, Liao M, Chen CM, et al.: Gene expression predic-
tors of breast cancer outcomes.  Lancet 2003, 361:1590-1596.

75. Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A, Muir B,
Mohapatra G, Salunga R, Tuggle JT, et al.: A two-gene expression
ratio predicts clinical outcome in breast cancer patients
treated with tamoxifen.  Cancer Cell 2004, 5:607-616.

76. Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, Livasy C, Carey LA,
Reynolds E, Dressler L, et al.: The molecular portraits of breast
tumors are conserved across microarray platforms.  BMC
Genomics 2006, 7:96.

77. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri
E, Pedriali M, Fabbri M, Campiglio M, et al.: MicroRNA gene
expression deregulation in human breast cancer.  Cancer Res
2005, 65:7065-7070.

78. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone
R, Iorio M, Roldo C, Ferracin M, et al.: A microRNA expression
signature of human solid tumors defines cancer gene
targets.  Proc Natl Acad Sci USA 2006, 103:2257-2261.

79. Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK, Fed-
ele V, Ginzinger D, Getts R, Haqq C: Optimized high-throughput
microRNA expression profiling provides novel biomarker
assessment of clinical prostate and breast cancer biopsies.
Mol Cancer 2006, 5:24.

80. Callagy GM, Pharoah PD, Pinder SE, Hsu FD, Nielsen TO, Ragaz J, Ellis
IO, Huntsman D, Caldas C: Bcl-2 is a prognostic marker in
breast cancer independently of the Nottingham Prognostic
Index.  Clin Cancer Res 2006, 12:2468-2475.

81. Chin SF, Wang Y, Thorne NP, Teschendorff AE, Pinder SE, Vias M,
Naderi A, Roberts I, Barbosa-Morais NL, Garcia MJ, et al.: Using
array-comparative genomic hybridization to define molecu-
lar portraits of primary breast cancers.  Oncogene 2007,
26:1959-1970.

82. Garcia MJ, Pole JC, Chin SF, Teschendorff A, Naderi A, Ozdag H, Vias
M, Kranjac T, Subkhankulova T, Paish C, et al.: A 1 Mb minimal
amplicon at 8p11-12 in breast cancer identifies new candi-
date oncogenes.  Oncogene 2005, 24:5235-5245.

83. Naderi A, Teschendorff AE, Barbosa-Morais NL, Pinder SE, Green
AR, Powe DG, Robertson JF, Aparicio S, Ellis IO, Brenton JD, Caldas
C: A gene-expression signature to predict survival in breast
cancer across independent data sets.  Oncogene 2007,
26:1507-1516.

84. Fraley C, Raftery AE: Model-based clustering, discriminant
analysis, and density estimation.  J Am Stat Assoc 2002,
97:611-631.

85. Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo
M, Ladd C, Reich M, Latulippe E, Mesirov JP, et al.: Multiclass cancer
diagnosis using tumor gene expression signatures.  Proc Natl
Acad Sci USA 2001, 98:15149-15154.

86. van den Ijssel P, Tijssen M, Chin SF, Eijk P, Carvalho B, Hopmans E,
Holstege H, Bangarusamy DK, Jonkers J, Meijer GA, et al.: Human
and mouse oligonucleotide-based array CGH.  Nucleic Acids Res
2005, 33:e192.

87. Chin SF, Teschendorff AE, Marioni JC, Wang Y, Barbosa-Morais NL,
Thorne NP, Pinder SE, van de Wiel M, Ellis IO, Porter PL, et al.: High-
resolution genomic profiling identifies a novel genomic sub-
type of ER negative breast cancer.  Genome Biol 2007, 8:R215.

88. Baskerville S, Bartel DP: Microarray profiling of microRNAs
reveals frequent coexpression with neighboring miRNAs and
host genes.  Rna 2005, 11:241-247.

89. Obernosterer G, Leuschner PJ, Alenius M, Martinez J: Post-tran-
scriptional regulation of microRNA expression.  Rna 2006,
12:1161-1167.

90. Muralidhar B, Goldstein L, Ng G, Winder D, Palmer R, Gooding E,
Barbosa-Morais N, Mukherjee G, Thorne N, Roberts I, et al.: Global
microRNA profiles in cervical squamous cell carcinoma
depend on Drosha expression levels.  J Pathol 2007,
212:368-377.

91. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg
JE: Accumulation of miR-155 and BIC RNA in human B cell
lymphomas.  Proc Natl Acad Sci USA 2005, 102:3627-3632.

92. Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S,
Kroesen BJ, van den Berg A: BIC and miR-155 are highly
expressed in Hodgkin, primary mediastinal and diffuse large

B cell lymphomas.  J Pathol 2005, 207:243-249.
93. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY: miR-21-mediated tumor

growth.  Oncogene 2006, 26:2799-2803.
94. Peck D, Crawford ED, Ross KN, Stegmaier K, Golub TR, Lamb J: A

method for high-throughput gene expression signature
analysis.  Genome Biol 2006, 7:R61.

95. Tang F, Hajkova P, Barton SC, Lao K, Surani MA: MicroRNA
expression profiling of single whole embryonic stem cells.
Nucleic Acids Res 2006, 34:e9.

96. Yu J, Wang F, Yang GH, Wang FL, Ma YN, Du ZW, Zhang JW:
Human microRNA clusters: genomic organization and
expression profile in leukemia cell lines.  Biochem Biophys Res
Commun 2006, 349:59-68.

97. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T: Impaired micro-
RNA processing enhances cellular transformation and
tumorigenesis.  Nat Genet 2007, 39:673-677.

98. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D,
Barrette T, Pandey A, Chinnaiyan AM: ONCOMINE: a cancer
microarray database and integrated data-mining platform.
Neoplasia 2004, 6:1-6.

99. Neilson JR, Zheng GX, Burge CB, Sharp PA: Dynamic regulation
of miRNA expression in ordered stages of cellular
development.  Genes Dev 2007, 21:578-589.

100. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Church
DM, DiCuccio M, Edgar R, Federhen S, Helmberg W, et al.: Database
resources of the National Center for Biotechnology
Information.  Nucleic Acids Res 2005, 33:D39-45.

101. Dunning MJ, Thorne NP, Camiler ML, Smith S, Tavaré S: Quality
control and low-level statistical analysis of Illumina
beadarrays.  Revstat 2006, 4:1-30.

102. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a
practical and powerful approach to multiple testing.  J Roy Stat
Soc B 1995, 57:289-300.

103. van Wieringen WN, Belien JA, Vosse SJ, Achame EM, Ylstra B: ACE-
it: a tool for genome-wide integration of gene dosage and
RNA expression data.  Bioinformatics 2006, 22:1919-1920.

104. R Development Core Team: A Language and Environment for Statistical
Computing Vienna: R Foundation for Statistical Computing; 2003. 

105. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S,
Ellis B, Gautier L, Ge Y, Gentry J, et al.: Bioconductor: open soft-
ware development for computational biology and
bioinformatics.  Genome Biol 2004, 5:R80.

106. Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S: Bioinformat-
ics and Computational Biology Solutions Using R and Bioconductor New
York: Springer; 2005. 

107. Fraley C, Raftery AE: MCLUST Version 3 for R: Normal Mixture Modeling
and Model-based Clustering Department of Statistics, University of
Washington; 2006. 

108. Banfield JD, Raftery AE: Model-based Gaussian and non-Gaus-
sian clustering.  Biometrics 1993, 49:803-821.

109. Fraley C, Raftery AE: MCLUST: Software for model-based clus-
ter analysis.  J Classification 1999, 16:297-306.

110. Fraley C, Raftery AE: Enhanced Software for model-based clus-
tering, discriminant analysis, and density estimation:
MCLUST.  J Classification 2003, 20:263-286.

111. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov
D, Timmermans M, Meijer-van Gelder ME, Yu J, et al.: Gene-expres-
sion profiles to predict distant metastasis of lymph-node-
negative primary breast cancer.  Lancet 2005, 365:671-679.

112. Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A,
Liao X, Iglehart JD, Livingston DM, Ganesan S: X chromosomal
abnormalities in basal-like human breast cancer.  Cancer Cell
2006, 9:121-132.

113. Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, Pawitan
Y, Hall P, Klaar S, Liu ET, Bergh J: An expression signature for p53
status in human breast cancer predicts mutation status,
transcriptional effects, and patient survival.  Proc Natl Acad Sci
USA 2005, 102:13550-13555.

114. Gruvberger S, Ringner M, Chen Y, Panavally S, Saal LH, Borg A, Ferno
M, Peterson C, Meltzer PS: Estrogen receptor status in breast
cancer is associated with remarkably distinct gene expres-
sion patterns.  Cancer Res 2001, 61:5979-5984.

115. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL,
Lapuk A, Neve RM, Qian Z, Ryder T, et al.: Genomic and
transcriptional aberrations linked to breast cancer
pathophysiologies.  Cancer Cell 2006, 10:529-541.

116. Ivshina AV, George J, Senko O, Mow B, Putti TC, Smeds J, Lindahl T,
Pawitan Y, Hall P, Nordgren H, et al.: Genetic reclassification of
Genome Biology 2007, 8:R214

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12747878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12747878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15193263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15193263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15193263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16643655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16643655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16103053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16103053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16461460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16461460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16461460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16784538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16784538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16638854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16638854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16638854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17001317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17001317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17001317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15897872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15897872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15897872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16936776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16936776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11742071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11742071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16361265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16361265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17925008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17925008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17925008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15701730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15701730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15701730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16738409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16738409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17471471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17471471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17471471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15738415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15738415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16041695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16041695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16041695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17072344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17072344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16859521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16859521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16859521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16434699
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16434699
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16934749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16934749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16934749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17401365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17401365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17401365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15068665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15068665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17344418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17344418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17344418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608222
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608222
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608222
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16731696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16731696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16731696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15721472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15721472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15721472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16473279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16473279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16141321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16141321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16141321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11507038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11507038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11507038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17157792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17157792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17157792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17079448


http://genomebiology.com/2007/8/10/R214 Genome Biology 2007,     Volume 8, Issue 10, Article R214       Blenkiron et al. R214.16
histologic grade delineates new clinical subtypes of breast
cancer.  Cancer Res 2006, 66:10292-10301.

117. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A,
Olshen AB, Gerald WL, Massague J: Genes that mediate breast
cancer metastasis to lung.  Nature 2005, 436:518-524.

118. Hess KR, Anderson K, Symmans WF, Valero V, Ibrahim N, Mejia JA,
Booser D, Theriault RL, Buzdar AU, Dempsey PJ, et al.: Pharmacog-
enomic predictor of sensitivity to preoperative chemother-
apy with paclitaxel and fluorouracil, doxorubicin, and
cyclophosphamide in breast cancer.  J Clin Oncol 2006,
24:4236-4244.

119. Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu YT,
Roskin KM, Schwartz M, Sugnet CW, Thomas DJ, et al.: The UCSC
Genome Browser Database.  Nucleic Acids Res 2003, 31:51-54.
Genome Biology 2007, 8:R214

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17079448
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17079448
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16049480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16049480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16896004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16896004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16896004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519945

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	There are 133 miRNAs expressed in normal human breast and primary human breast cancer
	MicroRNAs are differentially expressed between molecular breast tumor subtypes with clinical implications
	A number of miRNAs are associated with clinicopathological factors
	Chromosomal loss or gain cannot explain the majority of changes in miRNA expression
	Expression of clustered miRNAs is coordinated
	A number of miRNA genes are co-regulated as part of larger domains
	Some changes in miRNA expression may be due to changes in miRNA biosynthesis

	Discussion
	Conclusion
	Materials and methods
	Sample collection
	RNA extraction and labeling
	Bead coupling and hybridization
	Computational analysis
	Preprocessing
	Genomic annotation
	Illumina gene expression data

	Subtype classification
	Hierarchical clustering
	Supervised analyses
	Copy-number-driven expression
	Coexpression of proximal miRNAs and Illumina probes



	Abbreviations
	Authors' contributions
	Additional data files
	Acknowledgements
	References

