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positive solutions for a class of singular

boundary value problems on time scales. The results significantly extend and improve many
known results for both the continuous case and more general time scales. We illustrate our results
by one example.
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1. Introduction

Recently, there have been many papers working on the existence of positive solutions to
boundary value problems for differential equations on time scales; see, for example, [1–
22]. This has been mainly due to its unification of the theory of differential and difference
equations. An introduction to this unification is given in [10, 14, 23, 24]. Now, this study
is still a new area of fairly theoretical exploration in mathematics. However, it has led to
several important applications, for example, in the study of insect population models, neural
networks, heat transfer, and epidemic models; see, for example, [9, 10].

Motivated by works mentioned previously, we intend in this paper to establish
sufficient and necessary conditions to guarantee the existence of positive solutions for the
singular dynamic equation on time scales:

xΔ∇ + f(t, x) = 0, t ∈ (0, 1)
T
, (1.1)
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subject to one of the following boundary conditions:

x(0) = x(1) = 0, (1.2)

or

x(0) = xΔ(1) = 0, (1.3)

where T is a time scale, (0, 1)
T

= (0, 1) ∩ T, where 0 is right dense and 1 is left dense.
and (H) f : (0, 1)

T
× [0,+∞) → [0,+∞) is continuous. Suppose further that f(t, x) is

nonincreasing with respect to x, and there exists a function g(k) : [0, 1] → [1,∞) such that

f(t, kx) ≤ g(k)f(t, x), ∀(t, x) ∈ (0, 1)
T
× [0,+∞). (1.4)

A necessary and sufficient condition for the existence of Cld[0, 1]T as well as CΔ
ld[0, 1]T

positive solutions is given by constructing upper and lower solutions and with the maximum
principle. The nonlinearity f(t, x) may be singular at t = 0 and/or t = 1. By singularity we
mean that the functions f in (1.1) is allowed to be unbounded at the points t = 0 and/or t = 1.
A function x(t) ∈ Cld[0, 1]T ∩ CΔ∇

ld (0, 1)
T
is called a Cld[0, 1]T (positive) solution of (1.1) if it

satisfies (1.1) (x(t) > 0, for t ∈ (0, 1)
T
); if even xΔ(0+), xΔ(1−) exist, we call it is a CΔ

ld
[0, 1]

T

solution.
To the best of our knowledge, there is very few literature giving sufficient and

necessary conditions to guarantee the existence of positive solutions for singular boundary
value problem on time scales. So it is interesting and important to discuss these problems.
Many difficulties occur when we deal with them. For example, basic tools from calculus
such as Fermat’s theorem, Rolle’s theorem, and the intermediate value theorem may not
necessarily hold. So we need to introduce some new tools and methods to investigate the
existence of positive solutions for problem (1.1) with one of the above boundary conditions.

The time scale related notations adopted in this paper can be found, if not explained
specifically, in almost all literature related to time scales. The readers who are unfamiliar with
this area can consult, for example, [6, 11–13, 25, 26] for details.

The organization of this paper is as follows. In Section 2, we provide some necessary
background. In Section 3, the main results of problem (1.1)-(1.2) will be stated and proved.
In Section 4, the main results of problem (1.1)–(1.3)will be investigated. Finally, in Section 5,
one example is also included to illustrate the main results.

2. Preliminaries

In this section we will introduce several definitions on time scales and give some lemmas
which are useful in proving our main results.

Definition 2.1. A time scale T is a nonempty closed subset of R.



Advances in Difference Equations 3

Definition 2.2. Define the forward (backward) jump operator σ(t) at t for t < supT(ρ(t) at t
for t > infT) by

σ(t) = inf{τ > t : τ ∈ T}(ρ(t) = sup{τ < t : τ ∈ T}) (2.1)

for all t ∈ T. We assume throughout that T has the topology that it inherits from the standard
topology on R and say t is right scattered, left scattered, right dense and left dense if σ(t) >
t, ρ(t) < t, σ(t) = t, and ρ(t) = t, respectively. Finally, we introduce the sets T

k and Tk which
are derived from the time scale T as follows. If T has a left-scattered maximum t1, then T

k =
T − t1, otherwise T

k = T. If T has a right-scattered minimum t2, then Tk = T − t2, otherwise
Tk = T.

Definition 2.3. Fix t ∈ T and let y : T → R. Define yΔ(t) to be the number (if it exists) with
the property that given ε > 0 there is a neighborhood U of twith

∣∣∣
[
y(σ(t)) − y(s)

] − yΔ(t)[σ(t) − s]
∣∣∣ < ε|σ(t) − s| (2.2)

for all s ∈ U, where yΔ denotes the (delta) derivative of y with respect to the first variable,
then

g(t) : =
∫ t

a

ω(t, τ)Δτ (2.3)

implies

gΔ(t) =
∫ t

a

ωΔ(t, τ)Δτ +ω(σ(t), τ). (2.4)

Definition 2.4. Fix t ∈ T and let y : T → R. Define y∇(t) to be the number (if it exists) with
the property that given ε > 0 there is a neighborhood U of twith

∣∣∣
[
y
(
ρ(t)

) − y(s)
] − y∇(t)

[
ρ(t) − s

]∣∣∣ < ε
∣∣ρ(t) − s

∣∣ (2.5)

for all s ∈ U. Call y∇(t) the (nabla) derivative of y(t) at the point t.
If T = R then fΔ(t) = f∇(t) = f ′(t). If T = Z then fΔ(t) = f(t + 1) − f(t) is the forward

difference operator while f∇(t) = f(t) − f(t − 1) is the backward difference operator.

Definition 2.5. A function f : T → R is called rd-continuous provided that it is continuous at
all right-dense points of T and its left-sided limit exists (finite) at left-dense points of T. We
let C0

rd(T) denote the set of rd-continuous functions f : T → R.

Definition 2.6. A function f : T → R is called ld-continuous provided that it is continuous at
all left-dense points of T and its right-sided limit exists (finite) at right-dense points of T. We
let Cld(T) denote the set of ld-continuous functions f : T → R.
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Definition 2.7. A function F : Tk → R is called a delta-antiderivative of f : Tk → R provided
that FΔ(t) = f(t) holds for all t ∈ T

k. In this case we define the delta integral of f by

∫ t

a

f(s)Δs = F(t) − F(a), (2.6)

for all a, t ∈ T.

Definition 2.8. A functionΦ : Tk → R is called a nabla-antiderivative of f : Tk → R provided
that Φ∇(t) = f(t) holds for all t ∈ Tk. In this case we define the delta integral of f by

∫ t

a

f(s)∇s = Φ(t) −Φ(a) (2.7)

for all a, t ∈ T.

Throughout this paper, we assume that T is a closed subset of Rwith 0, 1 ∈ T.
Let E = Cld[0, 1]T, equipped with the norm

‖x‖ := sup
t∈[0,1]

T

|x(t)|. (2.8)

It is clear that E is a real Banach space with the norm.

Lemma 2.9 (Maximum Principle). Let a, b ∈ [0, 1]
T
and a < b. If x ∈ Cld[0, 1]T ∩ CΔ∇

ld
(0, 1)

T
,

x(a) ≥ 0, x(b) ≥ 0, and xΔ∇(t) ≤ 0, t ∈ (a, b)
T
. Then x(t) ≥ 0, t ∈ [a, b]

T
.

3. Existence of Positive Solution to (1.1)-(1.2)

In this section, by constructing upper and lower solutions and with the maximum principle
Lemma 2.9, we impose the growth conditions on f which allow us to establish necessary and
sufficient condition for the existence of (1.1)-(1.2).

We know that

G(t, s) =

⎧
⎨

⎩

s(1 − t), if 0 ≤ s ≤ t ≤ 1,

t(1 − s), if 0 ≤ t ≤ s ≤ 1
(3.1)

is the Green’s function of corresponding homogeneous BVP of (1.1)-(1.2).
We can prove that G(t, s) has the following properties.

Proposition 3.1. For (t, s) ∈ [0, 1]
T
× [0, 1]

T
, one has

G(t, s) ≥ 0,

e(t)e(s) ≤ G(t, s) ≤ G(t, t) = t(1 − t) = e(t).
(3.2)
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To obtain positive solutions of problem (1.1)-(1.2), the following results of Lemma 3.2
are fundamental.

Lemma 3.2. Assume that (H) holds. If
∫ t0
0 ∇s

∫s
0 f(s, u)Δt and

∫ t0
0 Δt

∫ t0
t f(s, u)∇s exist and are finite,

then one has

∫ t0

0
∇s

∫s

0
f(s, u)Δt =

∫ t0

0
Δt

∫ t0

t

f(s, u)∇s. (3.3)

Proof. Without loss of generality, we suppose that there is only one right-scattered point t1 ∈
[0, 1]

T
. Then we have

∫ t0

0
∇s

∫ s

0
f(s, u)Δt =

∫ t1

0
∇s

∫ s

0
f(s, u)Δt +

∫ t0

σ(t1)
∇s

∫s

0
f(s, u)Δt +

∫σ(t1)

t1

∇s

∫ s

0
f(s, u)Δt

=
∫ t1

0
Δt

∫ t1

t

f(s, u)∇s +
∫σ(t1)

0
Δt

∫ t0

σ(t1)
f(s, u)∇s

+
∫ t0

σ(t1)
Δt

∫ t0

t

f(s, u)∇s + μ(t1)f(σ(t1), u)σ(t1)

=
∫ t1

0
Δt

∫ t1

t

f(s, u)∇s +
∫ t0

σ(t1)
Δt

∫ t0

t

f(s, u)∇s + σ(t1)
∫ t0

σ(t1)
f(s, u)∇s

+ μ(t1)f(σ(t1), u)σ(t1),

∫ t0

0
Δt

∫s

0
f(s, u)∇s =

∫ t1

0
Δt

∫ t0

t

f(s, u)∇s +
∫σ(t1)

t1

Δt

∫ t0

t

f(s, u)∇s +
∫ t0

σ(t1)
Δt

∫ t0

t

f(s, u)∇s

=
∫ t1

0
Δt

∫ t1

t

f(s, u)∇s +
∫ t1

0
Δt

∫ t0

t1

f(s, u)∇s + μ(t1)
∫ t0

t1

f(s, u)∇s

+
∫ t0

σ(t1)
Δt

∫ t0

t

f(s, u)∇s

=
∫ t1

0
Δt

∫ t1

t

f(s, u)∇s +
(
t1 + μ(t1)

)
∫ t0

t1

f(s, u)∇s +
∫ t0

σ(t1)
Δt

∫ t0

t

f(s, u)∇s

=
∫ t1

0
Δt

∫ t1

t

f(s, u)∇s +
∫ t0

σ(t1)
Δt

∫ t0

t

f(s, u)∇s

+ σ(t1)

[∫σ(t1)

t1

f(s, u)∇s +
∫ t0

σ(t1)
f(s, u)∇s

]

=
∫ t1

0
Δt

∫ t1

t

f(s, u)∇s +
∫ t0

σ(t1)
Δt

∫ t0

t

f(s, u)∇s + σ(t1)
∫ t0

σ(t1)
f(s, u)∇s

+ μ(t1)f(σ(t1), u)σ(t1),
(3.4)
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that is,

∫ t0

0
Δt

∫ s

0
f(s, u)∇s =

∫ t0

0
Δt

∫ s

0
f(s, u)∇s. (3.5)

Similarly, we can prove

∫1

σ(t0)
∇s

∫1

s

f(s, u)Δt =
∫1

σ(t0)
Δt

∫ t

σ(t0)
f(s, u)∇s. (3.6)

The proof is complete.

Theorem 3.3. Suppose that (H) holds. Then problem (1.1)-(1.2) has a Cld[0, 1]T positive solution if
and only if the following integral condition holds:

0 <

∫1

0
e(s)f(s, 1)∇s < +∞. (3.7)

Proof. (1) Necessity

By (H), there exists g(k) : [0, 1] → [1,∞) such that f(t, kx) ≤ g(k)f(t, x). Without loss of
generality, we assume that g(k) is nonincreasing on [0, 1] with g(1) ≥ 1.

Suppose that u is a positive solution of problem (1.1)-(1.2), then

uΔ∇(t) = −f(t, u(t)) ≤ 0, (3.8)

which implies that u is concave on [0, 1]
T
. Combining this with the boundary conditions, we

have uΔ(0) > 0, uΔ(1) < 0. Therefore uΔ(0)uΔ(1) < 0. So by [10, Theorem 1.115], there exists
t0 ∈ (0, 1)

T
satisfying uΔ(t0) = 0 or uΔ(t0)uΔ(σ(t0)) ≤ 0. And uΔ(t) > 0 for t ∈ (0, t0), uΔ(t) < 0,

for t ∈ (σ(t0), 1). Denote u = max{u(t0), u(σ(t0))}, then u = maxt∈[0,1]
T
u(t).

First we prove 0 <
∫1
0e(s)f(s, 1)∇s.

By (H), for any fixed u, v > 0, we have

f(t, u) = f
(
t,
u

v
v
)
≤ g

(u
v

)
f(t, v), u ≤ v. (3.9)

It follows that

f(t, u) ≤ g

(
2u

u + v + |u − v|
)
f(t, v) ∀u, v ∈ R+ = [0,+∞). (3.10)
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If f(t, 1) ≡ 0, then we have by (3.10)

0 ≤ f(t, u) ≤ g

(
2u

u + 1 + |u − 1|
)
f(t, 1) ∀t ∈ (0, 1)

T
. (3.11)

This means f(t, u(t)) ≡ 0, then u(t) ≡ 0, which is a contradiction with u(t) being positive
solution. Thus f(t, 1)/≡ 0, then 0 <

∫1
0e(s)f(s, 1)∇s.

Second, we prove
∫1
0e(s)f(s, 1)∇s < +∞.

If uΔ(t0) = 0, then

∫ t0

t

f(s, u(s))∇s = −
∫ t0

t

uΔ∇(s)∇s = −uΔ(t0) + uΔ(t) = uΔ(t) for t ∈ (0, t0)

∫ t

t0

f(s, u(s))∇s = −
∫ t

t0
uΔ∇(s)∇s = −uΔ(t) + uΔ(t0) = −uΔ(t) for t ∈ (t0, 1).

(3.12)

If uΔ(t0)uΔ(σ(t0)) < 0, then uΔ(t0) > 0, uΔ(σ(t0)) < 0, and

∫ t0

t

f(s, u(s))∇s = −
∫ t0

t

uΔ∇(s)∇s = −uΔ(t0) + uΔ(t) ≤ uΔ(t) for t ∈ (0, t0)

∫ t

σ(t0)
f(s, u(s))∇s = −

∫ t

σ(t0)
uΔ∇(s)∇s = −uΔ(t) + uΔ(σ(t0)) ≤ −uΔ(t) for t ∈ (σ(t0), 1).

(3.13)

It follows that

∫ t0

t

f(s, u)∇s ≤
∫ t0

t

f(s, u(s))∇s ≤ uΔ(t) for t ∈ (0, t0)

∫ t

σ(t0)
f(s, u)∇s ≤

∫ t

σ(t0)
f(s, u(s))∇s ≤ −uΔ(t) for t ∈ (σ(t0), 1).

(3.14)
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By (3.14) we have

∫ t0

0
sf(s, u)∇s =

∫ t0

0
∇s

∫ s

0
f(s, u)Δt

=
∫ t0

0
Δt

∫ t0

t

f(s, u)∇s

≤
∫ t0

0
uΔ(t)Δt

= u(t0) − u(0)

= u(t0) < +∞,

(3.15)

∫1

σ(t0)
(1 − s)f(s, u)∇s =

∫1

σ(t0)
∇s

∫1

s

f(s, u)Δt

=
∫1

σ(t0)
Δt

∫ t

σ(t0)
f(s, u)∇s

≤ −
∫1

σ(t0)
uΔ(t)Δt

= u(σ(t0)) − u(1)

= u(σ(t0)) < +∞.

(3.16)

Combining this with (3.10) we obtain

∫ t0

0
sf(s, 1)∇s ≤

∫ t0

0
sg

(
2

1 + u + |1 − u|
)
f(s, u)∇s

= g

(
2

1 + u + |1 − u|
)∫ t0

0
sf(s, u)∇s < +∞.

(3.17)

Similarly

∫1

σ(t0)
(1 − s)f(s, 1)∇s < +∞. (3.18)

Then we can obtain

0 <

∫1

0
e(s)f(s, 1)∇s < +∞. (3.19)
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(2) Sufficiency

Let

a(t) =
∫1

0
G(t, s)f(s, 1)∇s, b(t) =

∫1

0
G(t, s)f(s, e(s))∇s. (3.20)

Then

e(t)
∫1

0
e(s)f(s, 1)∇s ≤ a(t) ≤ b(t) ≤

∫1

0
e(s)f(s, e(s))∇s,

aΔ∇(t) = −f(t, 1), bΔ∇(t) = −f(t, e(t)).
(3.21)

Let

k1 =
∫1

0
e(s)f(s, 1)∇s, l = min

{
1, k−1

1

}
, L = max

{
1, k−1

1

}
, k2 =

∫1

0
e(s)f(s, e(s))∇s,

(3.22)

then l ≤ 1, L ≥ 1.
Let H(t) = la(t), Q(t) = Lb(t), then

la(t) ≤ l

∫1

0
e(s)f(s, 1)∇s ≤ 1, Lk1e(t) ≤ Lb(t) ≤ Lk2 � ρ. (3.23)

So, we have

HΔ∇(t) + f(t,H(t)) = f(t, la(t)) − lf(t, 1)

≥ f(t, 1) − lf(t, 1) ≥ 0,

QΔ∇(t) + f(t, Q(t)) = f(t, Lb(t)) − Lf(t, e(t))

≤ f(t, Lk1e(t)) − Lf(t, e(t))

≤ f(t, e(t)) − Lf(t, e(t)) ≤ 0,

(3.24)

and H(0) = H(1) = Q(0) = Q(1) = 0. Hence H(t), Q(t) are lower and upper solutions of
problem (1.1)-(1.2), respectively. Obviously H(t) > 0 for t ∈ (0, 1)

T
.

Now we prove that problem (1.1)-(1.2) has a positive solution x∗ ∈ Cld[0, 1]T with
0 < H(t) ≤ x∗ ≤ Q(t).

Define a function

F(t, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(t,H(t)), x < H(t),

f(t, x), H(t) ≤ x ≤ Q(t),

f(t, Q(t)), x > Q(t).

(3.25)
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Then F : (0, 1)
T
× R+ → R+ is continuous. Consider BVP

−xΔ∇(t) = F(t, x),

x(0) = x(1) = 0.
(3.26)

Define mapping A : E → E by

Ax(t) =
∫1

0
G(t, s)F(s, x(s))∇s. (3.27)

Then problem (1.1)-(1.2) has a positive solution if and only if A has a fixed point x∗ ∈
Cld[0, 1]T with 0 < H(t) ≤ x∗ ≤ Q(t).

Obviously A is continuous. LetD = {x | ‖x‖ ≤ ρ∗, x ∈ E, ρ∗ ∈ R+}. By (3.7) and (3.16),
for all x ∈ D, we have

∫1

0
G(t, s)F(s, x(s))∇s ≤

∫1

0
G(t, s)f(s,H(s))∇s

≤
∫1

0
G(t, s)f(s, 0)∇s

≤ g(0)
∫1

0
G(t, s)f(t, 1)∇s

≤ g(0)
∫1

0
e(s)f(t, 1)∇s < +∞.

(3.28)

Then A(D) is bounded. By the continuity of G(t, s) we can easily found that {Au(t) | u(t) ∈
D} are equicontinuous. Thus A is completely continuous. By Schauder fixed point theorem
we found that A has at least one fixed point x∗ ∈ D.

We prove 0 < H(t) ≤ x∗ ≤ Q(t). If there exists t∗ ∈ (0, 1)
T
such that

x∗(t∗) > Q(t∗). (3.29)

Let z(t) = Q(t) − x∗, c = inf{t1 | 0 ≤ t1 < t∗, z(t) < 0, ∀t ∈ (t1, t∗]}, d = sup{t2 | t∗ < t2 ≤ 1, z(t) <
0, ∀t ∈ (t∗, t2]} thenQ(t) < x∗ for t ∈ (c, d)T. Thus F(t, x

∗) = f(t, Q(t)), t ∈ (c, d)T. By (3.24)we
know that −zΔ∇(t) = QΔ∇(t)−xΔ∇(t) ≤ 0.And z(c) = Q(c)−x∗(c) ≥ 0, z(d) = Q(d)−x∗(d) ≥ 0.
By Lemma 2.9 we have z(t) ≥ 0, t ∈ [c, d]

T
, which is a contradiction. Then x∗ ≤ Q(t). Similarly

we can prove H(t) ≤ x∗. The proof is complete.

Theorem 3.4. Suppose that (H) holds. Then problem (1.1)-(1.2) has a CΔ
ld
[0, 1]

T
positive solution if

and only if the following integral condition holds:

0 <

∫1

0
f(s, e(s))∇s < +∞. (3.30)
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Proof. (1) Necessity

Let u(t) ∈ CΔ
ld
[0, 1]T be a positive solution of problem (1.1)-(1.2). Then uΔ(t) is decreasing on

[0, 1]T. Hence uΔ∇(t) is integrable and

∫1

0
f(t, u(t))∇t = −

∫1

0
uΔ∇(t)∇t < +∞. (3.31)

By simple computation and using [10, Theorem 1.119], we obtain limt→ 0+(u(t)/e(t)) >
0, limt→ 1−(u(t)/e(t)) > 0. So there exist M > 1 > m > 0 such that me(t) ≤ u(t) ≤ Me(t).
By (H) we obtain

g
(
M−1

)−1
f(t, e(t)) ≤ f(t,Me(t)) ≤ f(t, u(t)),

∫1

0
f(t, e(t))∇t ≤ g

(
M−1

)∫1

0
f(t, u(t))∇t < ∞.

(3.32)

By

e(t)f(t, 1) ≤ f(t, e(t)) ≤ g(e(t))f(t, 1), (3.33)

we have0 <
∫1
0e(t)f(t, 1)∇t ≤ ∫1

0f(t, e(t))∇t < ∞.

(2) Sufficiency

Let r(t) =
∫1
0G(t, s)f(s, e(s))∇s, then

e(t)
∫1

0
G(s, s)f(s, e(s))∇s ≤ r(t) ≤

∫1

0
f(s, e(s))∇s. (3.34)

Similar to Theorem 3.3, let l′ = min{1, k−1
2 }, L′ = max{1, k−1

2 },H(t) = l′a(t), Q(t) = L′r(t), there
exists ω∗(t) satisfying H(t) ≤ ω∗(t) ≤ Q(t), and

f(t, ω∗(t)) ≤ f(t,H(t)) ≤ f
(
t, l′k2e(t)

) ≤ g
(
l′k2

)
f(t, e(t)), (3.35)

then ω∗Δ∇(t) is integral and ω∗Δ(1−), ω∗Δ(0+) exist, hence ω∗(t) is a positive solution in
CΔ

ld
[0, 1]T. The proof is complete.
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4. Existence of Positive Solution to (1.1)–(1.3)

Now we deal with problem (1.1)–(1.3). The method is just similar to what we have done in
Section 3, so we omit the proof of main result of this section.

Let

G1(t, s) =

⎧
⎨

⎩

s if 0 ≤ s ≤ t ≤ 1,

t if 0 ≤ t ≤ s ≤ 1.
(4.1)

be the Green’s function of corresponding homogeneous BVP of (1.1)–(1.3).
We can prove that G1(t, s) has the following properties.
Similar to (3.2), we have

G1(t, s) ≥ 0, (t, s) ∈ [0, 1]
T
× [0, 1]

T
,

e1(t)e1(s) ≤ G1(t, s) ≤ G1(t, t) = t = e1(t), (t, s) ∈ [0, 1]
T
× [0, 1]

T
.

(4.2)

Theorem 4.1. Suppose that (H) holds, then problem (1.1)–(1.3) has a Cld[0, 1]T positive solution if
and only if the following integral condition holds:

0 <

∫1

0
e1(s)f(s, 1)∇s < +∞. (4.3)

Theorem 4.2. Suppose that (H) holds, then problem (1.1)–(1.3) has a CΔ
ld
[0, 1]

T
positive solution if

and only if the following integral condition holds:

0 <

∫1

0
f(s, e1(s))∇s < +∞. (4.4)

5. Example

To illustrate how our main results can be used in practice we present an example.

Example 5.1. We have

−xΔ∇(t) = t−1/2e−x, t ∈ (0, 1)
T
,

x(0) = x(1) = 0,
(5.1)
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where f(t, x) = t−(1/2)e
−x
,T = [0, 1/2) ∪ {1/2, 2/3, 3/4, . . . , n/(n + 1), . . . , 1}. Select g(k) =

e(2 − k), k ∈ [0, 1], then we have f(t, kx) ≤ g(k)f(t, x), ∀(t, x) ∈ (0, 1)
T
× [0,+∞). Moreover,

we have

0 <

∫1

0
s(1 − s)s−1/2e−1∇s = e−1

[
2
3

(
1
2

)3/2

+
2
5

(
1
2

)5/2

+
∞∑

n=1

1

(n + 1)(7/2)n(1/2)

]

≤ e−1
[ ∞∑

n=1

1
n4

+
2
3

(
1
2

)3/2

+
2
5

(
1
2

)5/2
]

< +∞.

(5.2)

By Theorem 3.3, problem (5.1) has a positive solution in Cld[0, 1]T.

Remark 5.2. Example 5.1 implies that there is a large number of functions that satisfy the
conditions of Theorem 3.3. In addition, the conditions of Theorem 3.3 are also easy to check.
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