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β, which diagonalize the Higgs mass matrices and which enter all Higgs observables. The

implications of various renormalization schemes in next-to-leading order corrections to the

sample processes H± → W±h/H and H → ZZ are investigated. Based on our findings,

we will present a renormalization scheme that is at the same time process independent,

gauge independent and numerically stable.
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1 Introduction

The discovery of a new scalar particle by the LHC experiments ATLAS [1] and CMS [2] in

2012 and its subsequent confirmation as being the Higgs boson [3–6] marked a milestone

for particle physics. At the same time, it triggered a change of paradigm. The Higgs

particle, which formerly was the object of experimental searches, has itself become a tool
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in the search for New Physics (NP). Although the Standard Model (SM) of particle physics

has been tested in previous and present experiments at the highest accuracy, there remain

many open questions that cannot be answered within this model. The SM is therefore

regarded as the low-energy description of some more fundamental theory that becomes

effective at higher energy scales. A plethora of NP models have been discussed, among

them e.g. supersymmetry (SUSY) as one of the most popular and most intensely studied

Beyond the SM (BSM) extensions. Supersymmetry requires the introduction of at least two

complex Higgs doublets. The Higgs sector of the Minimal Supersymmetric extension of the

SM (MSSM) [7–10] is a special case of the 2-Higgs-Doublet Model (2HDM) [7, 11, 12] type

II. While the parameters of the SUSY Higgs potential are restricted due to SUSY relations,

general 2HDMs allow for much more freedom in the choice of the parameters. They are

therefore an ideal framework to study the implications of an extended Higgs sector for Higgs

phenomenology at the LHC. This is reflected in the experimental analyses that interpret the

results in various benchmark models, among them the 2HDM. The precise investigation of

the Higgs sector aims at getting insights into the nature of electroweak symmetry breaking

(EWSB) and at clarifying the question whether it is based on weakly or strongly interacting

dynamics. Deviations in the properties of the discovered SM-like Higgs boson are hints

towards NP. In particular, the higher precision in the Higgs couplings measurements at the

LHC run 2 and in the high-luminosity option allows to search indirectly for BSM effects.

This becomes increasingly important in view of the null results of direct searches for NP

so far.1 The precise measurements on the experimental side, however, call for precise

predictions of parameters and observables from theory. Accurate theory predictions are

indispensable not only for the proper interpretation of the experimental data, but also for

the correct determination of the parameter space that is still allowed in the various models,

and, finally, for the distinction between different BSM extensions.

With this paper we contribute to the effort of providing precise predictions for parame-

ters and observables relevant for the phenomenology at the LHC and future e+e− colliders.

We investigate higher order corrections in the framework of the 2HDM. While 2HDMs are

interesting because they contain the MSSM Higgs sector as a special case, they also belong

to the simplest SM extensions respecting basic experimental and theoretical constraints

that are testable at the LHC. After EWSB they feature five physical Higgs bosons, two

neutral CP-even, one neutral CP-odd and two charged Higgs bosons. They represent an

ideal benchmark framework to investigate the various possible NP effects to be expected at

the LHC in multi-Higgs boson sectors. Finally, specific 2HDM versions also allow for a Dark

Matter (DM) candidate [15–21]. In the past, numerous papers have provided higher order

corrections to the 2HDM parameters, production cross sections and decay widths. Several

papers have dealt with the renormalization of the 2HDM (see e.g. [22–24]). In particular,

the renormalization of the mixing angles α and β is of interest. While α is introduced to

diagonalize the mass matrix of the neutral CP-even Higgs sector, the angle β appears in

the diagonalization of the CP-odd and the charged Higgs sector, respectively. These angles

1Recent hints like the diphoton excess at 750 GeV [13, 14] need further data for more conclusive inter-

pretations.
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define the Higgs couplings to the SM particles and thus enter all Higgs observables like

e.g. production cross sections and decay widths. For the MSSM it was stated in [25] that a

renormalization scheme for the only mixing angle taken as an independent parameter from

the scalar sector, β, cannot be simultaneously gauge independent, process independent and

numerically stable. In the 2HDM also α needs to be renormalized, which has important

consequences for the choice of the renormalization scheme. If the tadpoles are treated

in the usual way, which we call the standard approach (cf. 3.1.1), a process-independent

definition of the angular counterterms is prone to lead to gauge-dependent amplitudes and

consequently to gauge-dependent physical observables. This is the case e.g. in the scheme

presented in [23]. There are essentially two possibilities to circumvent the emergence of

this gauge dependence. Either one gives up the requirement of process independence and

fixes α and β in terms of a physical observable or one changes the treatment of the tad-

poles. As we will see, this will decouple the issue of gauge dependence from the definition

of δα and δβ and allow for process- and gauge-independent angular counterterms leading

to manifestly gauge-independent amplitudes.

In this paper we study in detail the renormalization of the 2HDM Higgs sector with

the main focus on the investigation of the gauge dependence of the renormalization of the

mixings angles α and β. We propose several schemes and compare them both to the ones

in the literature and amongst each other. In sample decay processes we investigate the nu-

merical differences and in particular the numerical stability of the various renormalization

prescriptions. Our results presented here will serve as basis for the further computation of

the one-loop electroweak corrections to all 2HDM Higgs boson decays.

The organization of the paper is as follows. In section 2 we introduce the model

and set up our notation. The following section 3 is devoted to the detailed presentation

and discussion of the various renormalization prescriptions that will be applied. Section 4

deals with the computation of the electroweak (EW) one-loop corrections to various decay

processes and the discussion of the gauge dependence of the angular counterterms. In

section 5 we present our numerical results. We finish with the conclusions in section 6.

The paper is accompanied by an extensive appendix to serve as starting point for further

investigations of the 2HDM renormalization.

2 Description of the model

We work in the framework of a general 2HDM with a global discrete Z2 symmetry that is

softly broken. The kinetic term of the two SU(2)L Higgs doublets Φ1 and Φ2 is given by

Lkin =
2∑
i=1

(DµΦi)
†(DµΦi) (2.1)

in terms of the covariant derivative

Dµ = ∂µ +
i

2
g

3∑
a=1

τaW a
µ +

i

2
g′Bµ , (2.2)

– 3 –
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where τa denote the Pauli matrices, W a
µ and Bµ the SU(2)L and U(1)Y gauge bosons,

respectively, and g and g′ the corresponding gauge couplings. The scalar potential that

can be built from the two SU(2)L Higgs doublets can be written as

V = m2
11|Φ1|2 +m2

22|Φ2|2 −m2
12(Φ†1Φ2 + h.c.) +

λ1

2
(Φ†1Φ1)2 +

λ2

2
(Φ†2Φ2)2

+λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1) +
λ5

2
[(Φ†1Φ2)2 + h.c.] . (2.3)

The discrete Z2 symmetry (Φ1 → −Φ1,Φ2 → Φ2) ensures the absence of tree-level Flavour

Changing Neutral Currents. Assuming CP conservation, the 2HDM potential depends

on eight real parameters, three mass parameters, m11, m22 and m12, and five coupling

parameters λ1-λ5. Through the term proportional to m2
12 the discrete Z2 symmetry is

softly broken. After EWSB the neutral components of the Higgs doublets develop vacuum

expectation values (VEVs), which are real in the CP-conserving case. Expanding about

the VEVs v1 and v2 and expressing each doublet Φi (i = 1, 2) in terms of the charged

complex field φ+
i and the real neutral CP-even and CP-odd fields ρi and ηi, respectively,

Φ1 =

 φ+
1

ρ1+iη1+v1√
2

 and Φ2 =

 φ+
2

ρ2+iη2+v2√
2

 , (2.4)

leads to the mass matrices, which are obtained from the terms bilinear in the Higgs fields

in the potential. Due to charge and CP conservation they decompose into 2 × 2 matrices

MS , MP and MC for the neutral CP-even, neutral CP-odd and charged Higgs sector.

They are diagonalized by the following orthogonal transformations(
ρ1

ρ2

)
= R(α)

(
H

h

)
, (2.5)

(
η1

η2

)
= R(β)

(
G0

A

)
, (2.6)

(
φ±1

φ±2

)
= R(β)

(
G±

H±

)
, (2.7)

leading to the physical Higgs states, a neutral light CP-even, h, a neutral heavy CP-even,

H, a neutral CP-odd, A, and two charged Higgs bosons, H±. The massless pseudo-Nambu-

Goldstone bosons G± and G0 are absorbed by the longitudinal components of the massive

gauge bosons, the charged W± and the Z boson, respectively. The rotation matrices in

terms of the mixing angles ϑ = α and β, respectively, read

R(ϑ) =

(
cosϑ − sinϑ

sinϑ cosϑ

)
. (2.8)

The mixing angle β is related to the two VEVs as

tanβ =
v2

v1
, (2.9)

– 4 –



J
H
E
P
0
9
(
2
0
1
6
)
1
4
3

with v2
1 + v2

2 = v2 ≈ (246 GeV)2, while the mixing angle α is expressed through

tan 2α =
2(MS)12

(MS)11 − (MS)22
, (2.10)

where (MS)ij (i, j = 1, 2) denote the matrix elements of the neutral CP-even scalar mass

matrix MS . With

M2 ≡ m2
12

sβcβ
(2.11)

we have [23]

tan 2α =
s2β(M2 − λ345v

2)

c2
β(M2 − λ1v2)− s2

β(M2 − λ2v2)
, (2.12)

where we have introduced the abbreviation

λ345 ≡ λ3 + λ4 + λ5 (2.13)

and used short-hand notation sx ≡ sinx etc.

The minimization conditions of the Higgs potential require the terms linear in the

Higgs fields to vanish in the vacuum, i.e.〈
∂V

∂Φ1

〉
=

〈
∂V

∂Φ2

〉
= 0 , (2.14)

where the brackets denote the vacuum. The corresponding coefficients, the tadpole pa-

rameters T1 and T2, therefore have to be zero. The tadpole conditions at lowest order are

given by 〈
∂V

∂Φ1

〉
≡ T1

v1
= m2

11 −m2
12

v2

v1
+
λ1v

2
1

2
+
λ345v

2
2

2
(2.15)〈

∂V

∂Φ2

〉
≡ T2

v2
= m2

22 −m2
12

v1

v2
+
λ2v

2
2

2
+
λ345v

2
1

2
. (2.16)

There are various possibilities to choose the set of independent parameters that

parametrizes the Higgs potential V . Thus, eqs. (2.15) and (2.16) can be used to replace m2
11

and m2
22 by the tadpole parameters T1 and T2. The VEV v can furthermore be expressed

in terms of the physical gauge boson masses MW and MZ and the electric charge e. In the

following, we will choose the set of independent parameters such that the parameters can

be related to as many physical quantities as possible. Our set is given by the Higgs boson

masses, the tadpole parameters, the two mixing angles, the soft breaking parameter, the

massive gauge boson masses and the electric charge. Additionally, we will need the fermion

masses mf for the Higgs decays into fermions which will be used for a process-dependent

definition of the angular counterterms.

Input parameters: mh, mH , mA, mH± , T1, T2, α, tanβ, m2
12, M

2
W , M

2
Z , e, mf .

(2.17)
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3 Renormalization

In this section we will present the various renormalization schemes that we will apply in

the renormalization of the 2HDM and that will be investigated with respect to their gauge

parameter dependence and their numerical stability. We will use these schemes in sample

processes given by the EW one-loop corrected decays of the charged Higgs boson into a

W± and a CP-even Higgs boson, H± → W±h/H, and of the heavy H into a Z boson

pair, H → ZZ. The computation of the EW one-loop corrections leads to ultraviolet

(UV) divergences. In the charged Higgs decay we will furthermore encounter infrared

(IR) divergences because of massless photons running in the loops. The UV divergences

in the virtual corrections are canceled by the renormalization of the parameters involved

in the EW corrections of the process, while the IR ones are subtracted by taking into

account the real corrections. The renormalization of the above decay processes requires

the renormalization of the electroweak sector and of the Higgs sector. We will also compute

the EW one-loop corrections to the decays of H and A into τ leptons, H/A → ττ . These

processes will be exploited for a process-dependent definition of the angular counterterms,

which will be presented as a possible renormalization scheme among others. The corrections

to the decays into τ leptons also require the renormalization of the fermion sector. Note,

that the renormalization of the CKM matrix, which we will assume to be real, will not play

a role in our renormalization procedure. We start by replacing the relevant parameters by

the renormalized ones and their corresponding counterterms:

Gauge sector: the massive gauge boson masses and the electric charge are replaced by

M2
W → M2

W + δM2
W (3.1)

M2
Z → M2

Z + δM2
Z (3.2)

e → (1 + δZe) e . (3.3)

Equally, the VEV v, which will be expressed in terms of these parameters, is replaced by

v → v + δv . (3.4)

The gauge boson fields are renormalized by their field renormalization constants δZ,

W± →
(

1 +
1

2
δZWW

)
W± (3.5)(

Z

γ

)
→
(

1 + 1
2δZZZ

1
2δZZγ

1
2δZγZ 1 + 1

2δZγγ

)(
Z

γ

)
. (3.6)

Fermion sector: the counterterms to the fermion masses mf are defined through

mf → mf + δmf . (3.7)

The bare left- and right-handed fermion fields

fL/R ≡ PL/Rf , with PL/R = (1∓ γ5)/2 , (3.8)

are replaced by their corresponding renormalized fields according to

fL/R →
(

1 +
1

2
δZ

L/R
f

)
fL/R . (3.9)

– 6 –
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Higgs sector: the renormalization is performed in the mass basis and the mass coun-

terterms are defined through

m2
h → m2

h + δm2
h (3.10)

m2
H → m2

H + δm2
H (3.11)

m2
A → m2

A + δm2
A (3.12)

m2
H± → m2

H± + δm2
H± . (3.13)

The fields are replaced by the renormalized ones and the field renormalization constants as(
H

h

)
→
(

1 + 1
2δZHH

1
2δZHh

1
2δZhH 1 + 1

2δZhh

)(
H

h

)
(3.14)

(
G0

A

)
→
(

1 + 1
2δZG0G0

1
2δZG0A

1
2δZAG0 1 + 1

2δZAA

)(
G0

A

)
(3.15)

(
G±

H±

)
→
(

1 + 1
2δZG±G±

1
2δZG±H±

1
2δZH±G± 1 + 1

2δZH±H±

)(
G±

H±

)
(3.16)

and the mixing angles by

α → α+ δα (3.17)

β → β + δβ . (3.18)

While the tadpoles vanish at leading order, the terms linear in the Higgs fields get loop

contributions at higher orders. Therefore, also the tadpole parameters T1 and T2 have

to be renormalized in order to fulfill the tadpole conditions eqs. (2.14). The tadpoles are

hence replaced as

T1 → T1 + δT1 and T2 → T2 + δT2 . (3.19)

3.1 Renormalization conditions

The finite parts of the counterterms are fixed by the renormalization conditions. Through-

out we will fix the renormalization constants for the masses and fields through on-shell (OS)

conditions. The renormalization schemes differ, however, in the treatment of the tadpoles

and of the mixing angles. We will describe two different approaches for the treatment of the

tadpoles. Both of them apply the same renormalization conditions for the tadpoles. They

differ, however, in the way the minimum conditions are applied when the mass countert-

erms are generated. As a consequence, the tadpole counterterms can either explicitly show

up in the mass counterterms or not. The latter case, that we will call ‘alternative tadpole’

or in short ‘tadpole’ scheme, has the virtue that the mass counterterms are manifestly

gauge independent, while in the former one, named ‘standard tadpole’ or simply ‘standard’

scheme, this is not the case. The authors of ref. [23] have combined the standard tadpole

scheme with the definition of the angular counterterms through off-diagonal wave function

renormalization constants. This ‘KOSY’ scheme, denoted by the initials of the authors,

– 7 –
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leads to manifestly gauge-dependent decay amplitudes, as we will show. In the alternative

tadpole scheme not only this problem does not occur, but in addition, the angular coun-

terterms are explicitly gauge independent. If the angular counterterms are defined in a

‘process-dependent’ scheme via a physical process, the decay amplitude is gauge indepen-

dent irrespective of the treatment of the tadpoles. The only difference lies in the gauge

independence of the angular counterterms in case the alternative tadpole scheme is adopted.

In the following, the renormalization conditions of the various schemes will be introduced.

3.1.1 Standard tadpole scheme

We start by presenting the usual, i.e. ’standard’, approach in the renormalization of the

2HDM as also applied in [23, 24]. The gauge bosons are renormalized through OS condi-

tions, which implies the following counterterms for the masses,

δM2
W = Re ΣT

WW (M2
W ) and δM2

Z = Re ΣT
ZZ(M2

Z) , (3.20)

where the superscript T denotes the transverse part of the respective self-energy Σ. In

order to guarantee the correct OS properties the wave function renormalization constants

have to be introduced as

δZWW = −Re
∂ΣT

WW (p2)

∂p2

∣∣∣∣
p2=M2

W

(3.21)

(
δZZZ δZZγ

δZγZ δZγγ

)
=

−Re
∂ΣTZZ(p2)

∂p2

∣∣∣
p2=M2

Z

2
ΣTZγ(0)

M2
Z

−2Re
ΣTZγ(M2

Z)

M2
Z

− ∂ΣTγγ(p2)

∂p2

∣∣∣
p2=0

 . (3.22)

The electric charge is defined to be the full electron-positron photon coupling for OS ex-

ternal particles in the Thomson limit, implying that all corrections to this vertex vanish

OS and for zero momentum transfer. The counterterm for the electric charge in terms of

the transverse photon-photon and photon-Z self-energies reads [26]

δZα(0)
e =

1

2

∂ΣT
γγ(k2)

∂k2

∣∣∣∣∣
k2=0

+
sW
cW

ΣT
γZ(0)

M2
Z

, (3.23)

where sW /cW ≡ sin θW / cos θW and θW denotes the Weinberg angle. Note that the sign in

the second term of eq. (3.23) differs from the one in [26] due to our sign conventions in the

covariant derivative of eq. (2.2). In our computation, however, we will use the fine structure

constant at the Z boson mass α(M2
Z) as input, so that the results are independent of large

logarithms due to light fermions f 6= t. The counterterm δZe is therefore modified as [26]

δZ
α(M2

Z)
e = δZα(0)

e − 1

2
∆α(M2

Z) (3.24)

∆α(M2
Z) =

∂ΣT
γγ(k2)

∂k2

∣∣∣∣∣
k2=0

−
ΣT
γγ(M2

Z)

M2
Z

, (3.25)

where the transverse part of the photon self-energy ΣT
γγ in eq. (3.25) includes only the light

fermion contributions. For the computation of the EW one-loop corrected Higgs decay

– 8 –



J
H
E
P
0
9
(
2
0
1
6
)
1
4
3

widths we also need to renormalize the coupling g, which can be related to e and the gauge

boson masses as

g =
eMZ√

M2
Z −M2

W

, (3.26)

so that its counterterm can be expressed in terms of the gauge boson mass counterterms

through
δg

g
= δZe −

1

2(1−M2
Z/M

2
W )

(
δM2

W

M2
W

− δM2
Z

M2
Z

)
. (3.27)

Defining the following structure for the fermion self-energies

Σf (p2) = /pΣ
L
f (p2)PL + /pΣ

R
f (p2)PR +mfΣLs

f (p2)PL +mfΣRs
f (p2)PR (3.28)

the fermion mass counterterms applying OS conditions are given by

δmf

mf
=

1

2
Re
[
ΣL
f (m2

f ) + ΣR
f (m2

f ) + ΣLs
f (m2

f ) + ΣRs
f (m2

f )
]
. (3.29)

The fermion wave function renormalization constants are determined from

δZ
L/R
f = −ReΣ

L/R
f (m2

f ) (3.30)

−m2
f

∂

∂p2
Re
(

Σ
L/R
f (p2) + Σ

R/L
f (p2) + Σ

L/Rs
f (p2) + Σ

R/Ls
f (p2)

)∣∣∣
p2=m2

f

.

The OS conditions for the physical Higgs bosons yield the following Higgs mass countert-

erms

δm2
H = Re[ΣHH(m2

H)− δTHH ] , δm2
h = Re[Σhh(m2

h)− δThh] , (3.31)

δm2
A = Re[ΣAA(m2

A)− δTAA] , δm2
H± = Re[ΣH±H±(m2

H±)− δTH±H± ] . (3.32)

The appearance of the tadpole counterterms in eqs. (3.31) and (3.32) can be understood by

recalling that the parameters m2
11 and m2

22, which enter the mass matrices, can be replaced

by the tadpole coefficients T1 and T2. Applying the shifts eq. (3.19) and rotating into the

mass eigenbasis yield the above conditions in the OS scheme. The relations between the

tadpole counterterms in the mass basis and δT1,2 are given by

δTHH =
δT1

v1
cos2 ϑ+

δT2

v2
sin2 ϑ , (3.33)

δThh/AA/H±H± =
δT1

v1
sin2 ϑ+

δT2

v2
cos2 ϑ , (3.34)

with ϑ =

{
α for δTHH,hh

β for δTAA,H±H±
. (3.35)

The tadpoles are renormalized such that the correct vacuum is reproduced at one-loop

order, leading to the renormalization conditions

δT1 = T1 and δT2 = T2 . (3.36)
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The T1,2 stand for the contributions coming from the corresponding genuine Higgs boson

tadpole graphs in the gauge basis. For the wave function renormalization constants the OS

renormalization implies the following conditions

(
δZHH δZHh

δZhH δZhh

)
=

−Re ∂ΣHH(k2)
∂k2

∣∣∣
k2=m2

H

2
Re[ΣHh(m2

h)−δTHh]
m2
H−m

2
h

−2
Re[ΣHh(m2

H)−δTHh]
m2
H−m

2
h

−Re ∂Σhh(k2)
∂k2

∣∣∣
k2=m2

h

 (3.37)

(
δZG0G0 δZG0A

δZAG0 δZAA

)
=

−Re
∂ΣG0G0 (k2)

∂k2

∣∣∣
k2=0

−2
Re[ΣG0A(m2

A)−δTG0A]
m2
A

2
Re[ΣG0A(0)−δTG0A]

m2
A

−Re ∂ΣAA(k2)
∂k2

∣∣∣
k2=m2

A

 (3.38)

(
δZG±G± δZG±H±

δZH±G± δZH±H±

)
=

 −Re
∂ΣG±G± (k2)

∂k2

∣∣∣
k2=0

−2
Re

[
ΣG±H± (m2

H± )−δTG±H±
]

m2
H±

2
Re[ΣG±H± (0)−δTG±H± ]

m2
H±

−Re
∂ΣH±H± (k2)

∂k2

∣∣∣
k2=m2

H±

 . (3.39)

3.1.2 The KOSY scheme

We now turn to the renormalization conditions for the mixing angles. The renormalization

scheme chosen in [23], the ‘KOSY’ scheme, uses the standard tadpole scheme. For the

renormalization of the mixing angles it is based on the idea of making the counterterms δα

and δβ appear in the inverse propagator matrix and hence in the wave function renormal-

ization constants, in a way that is consistent with the internal relations of the 2HDM. This

can be achieved by renormalizing in the mass basis (f1, f2)T , but temporarily switching to

the gauge basis (γ1, γ2)T , and back again,(
f1

f2

)
= R(ϑ)T

(
γ1

γ2

)
→ R(ϑ+ δϑ)T

√
Zγ

(
γ1

γ2

)

= R(δϑ)TR(ϑ)T
√
ZγR(ϑ)︸ ︷︷ ︸

≡
√
Zf

R(ϑ)T

(
γ1

γ2

)
=
√
Zf

(
f1

f2

)
. (3.40)

The fields fi and γi (i = 1, 2) and the mixing angle ϑ stand here for any of the field pairs in

the mass and gauge basis, respectively, defined in eqs. (2.5)–(2.7), together with their cor-

responding mixing angle, i.e. (fi; γi;ϑ) = (H,h; ρi;α), (G0, A; ηi;β) and (G±, H±;φ±i ;β).

With the field renormalization matrix
√
Zγ in the gauge basis being a real symmetric ma-

trix the following parametrization of the field renormalization matrices in the mass basis

can be chosen [23, 24]

√
Zf = R(δϑ)T

(
1 + 1

2δZf1f1 δCf

δCf 1 + 1
2δZf2f2

)

=

(
1 + 1

2δZf1f1 δCf + δϑ

δCf − δϑ 1 + 1
2δZf2f2

)
+O(δ2) . (3.41)
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The off-diagonal elements are identified with the off-diagonal wave function renormalization

constants in the mass basis. For the CP-even scalar sector we obtain

1

2
δZOS

Hh = δCh + δα (3.42)

1

2
δZOS

hH = δCh − δα (3.43)

and hence

δα =
1

4
(δZOS

Hh − δZOS
hH) (3.44)

δCh =
1

4
(δZOS

Hh + δZOS
hH) . (3.45)

The superscript ‘OS’ indicates the OS renormalization scheme for the wave function con-

stants. The counterterm δCh will not be used again. While the mixing angle β diagonalizes

both the charged and the CP-odd mass matrices and we have altogether four off-diagonal

wave function constants in the charged and CP-odd Higgs sector, eq. (3.41) implies only

three free parameters to be fixed, namely δβ, δCA and δCH± . Consequently, one has to

choose three out of four possible conditions and not all scalar fields can be OS at the

same time. If we choose e.g. the OS renormalized δZOS
G0A, δZOS

G±H± and δZOS
H±G± to fix

the counterterms, we ensure H± to be OS. This scheme can hence be used in the process

H± →W±h/H, where we have an external charged Higgs boson.2 This yields the following

possible first set of counterterms,

δβ(1) =
1

4
(δZOS

G±H± − δZOS
H±G±) (3.46)

δC
(1)
H± =

1

4
(δZOS

H±G± + δZOS
G±H±) (3.47)

δC
(1)
A =

1

2
δZOS

AG0 + δβ(1) . (3.48)

Choosing on the other hand the set δZOS
G0A, δZOS

AG0 and δZOS
H±G± we get a second possible

set

δβ(2) =
1

4
(δZOS

G0A − δZOS
AG0) (3.49)

δC
(2)
H± =

1

2
δZOS

H±G± + δβ(2) (3.50)

δC
(2)
A =

1

4
(δZOS

AG0 + δZOS
G0A) . (3.51)

There are two more sets that can be chosen. However, we are not going to use

them and hence they will not be repeated here. Replacing the OS conditions given in

eqs. (3.37), (3.38) and (3.39) in eqs. (3.44), (3.46) and (3.49), respectively, yields the fol-

2Note that, aiming at OS renormalized fields, this scheme cannot be used in processes where both A

and H± are external fields without applying an additional finite rotation to render both fields OS.
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lowing counterterms for the mixing angles α and β

δα =
Re[ΣHh(m2

H) + ΣHh(m2
h)− 2δTHh]

2(m2
H −m2

h)
(3.52)

δβ(1) = −Re[ΣG±H±(0) + ΣG±H±(m2
H±)− 2δTG±H± ]

2m2
H±

or (3.53)

δβ(2) = −Re[ΣG0A(0) + ΣG0A(m2
A)− 2δTG0A]

2m2
A

. (3.54)

As already mentioned and as we will demonstrate later in detail for the example of the

charged Higgs boson decay, the application of this renormalization scheme not only makes

a gauge-independent definition of the counterterms impossible, but more seriously, leads

to unphysical gauge-dependent decay amplitudes. The computation of the loop-corrected

amplitude in the general Rξ gauge shows that after including all counterterms but the ones

for the angles, there remains a residual gauge dependence that is UV-divergent. The angu-

lar counterterms must therefore reveal exactly the same UV-divergent gauge dependence

but with opposite sign. The counterterm δα is found to have exactly this UV-divergent

ξ-dependent counterpart, needed to render the amplitude gauge independent. However,

in addition, δα and δβ contain ξ-dependent finite terms, which reintroduce a gauge de-

pendence into the amplitude. To get rid of these finite gauge-dependent terms in δβ, the

authors of ref. [24] suggest to drop the assumption that
√
Zf is symmetric, thereby yield-

ing additional renormalization conditions. These are then exploited to move the gauge

dependence of δβ into δCf .3 While this scheme would in principle allow to eliminate the

gauge dependence of δβ, it cannot be applied in processes that involve the renormalization

of α. The UV-divergent ξ-dependent counterterm δα is needed to cancel the UV-divergent

ξ-dependent counterpart in the loop-corrected amplitude, that is encountered in the stan-

dard renormalization scheme. In practice, however, this procedure cannot be applied,

as it lacks an unambiguous prescription on how to extract the truly gauge-independent

parts from the loop-corrected amplitude and from the counterterms. The extraction of the

gauge-independent part is not straightforward as the loop functions A0 and B0 [27, 28]

which appear in the angular counterterms, can be rewritten in terms of higher n-point

scalar integrals that contain the gauge parameter ξ besides additional gauge-independent

components.

3.1.3 Alternative tadpole scheme

We now present a renormalization scheme that fulfills the requirements for a possible

gauge-independent definition of the angular counterterms. It relies on the application of

the renormalization scheme worked out in ref. [29]. In appendix A we show in detail how

this scheme works and in particular we present its extension from the SM case [29] to the

2HDM. The generic diagrams contributing to the self-energies defined in this ‘alternative

tadpole’ scheme, called Σtad in the following, are shown in figure 1. Besides the generic

3More specifically it is moved into δCAG0 and δCG0A, that due to the non-symmetric
√
Zf are now two

independent counterterms. For details, we refer the reader to the original reference.
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h/H

Figure 1. Generic diagrams contributing to the self-energy Σtad.

one-particle irreducible (1PI) diagrams depicted by the first two topologies in figure 1,

they also contain the tadpole diagrams connected to the self-energies through the CP-even

Higgs bosons h and H that are represented by the third topology. The application of the

tadpole scheme alters the structure of the mass counterterms and of the off-diagonal wave

function renormalization constants4 such that now the loop-corrected amplitude including

all counterterms but those for the angles does not encounter a UV-divergent ξ dependence

any more. Hence, also the angular counterterms can and even have to be defined in a

gauge-independent way by applying appropriate renormalization conditions.

Besides the angular counterterms, also the mass counterterms, defined via OS con-

ditions become gauge independent in the tadpole scheme. This has been shown for the

electroweak sector in [30]. All counterterms of the electroweak sector have exactly the

same structure as in the standard scheme, but the self-energies Σ appearing in eqs. (3.20)–

(3.23) have to be replaced by the self-energies Σtad containing the tadpole contributions.

Note however, that there are no tadpole contributions for ΣT
γZ so that

Σtad,T
γZ = ΣT

γZ . (3.55)

Furthermore, due to the fact that the tadpoles are independent of the external momentum

the derivatives of the self-energies do not change,

∂Σtad,T
xy

∂k2
=
∂ΣT

xy

∂k2
for xy = WW,ZZ, γγ,HH, hh,G0G0, G±G±, H±H± . (3.56)

The Higgs mass counterterms become

δm2
H = Re[Σtad

HH(m2
H)] , δm2

h = Re[Σtad
hh (m2

h)] , (3.57)

δm2
A = Re[Σtad

AA(m2
A)] , δm2

H± = Re[Σtad
H±H±(m2

H±)] . (3.58)

4Note, that the application of the tadpole scheme also requires a change of all those vertices, where

tadpole contributions now have to be taken into account, namely wherever it is possible to add a neutral

scalar. This will be discussed later in the computation of the loop-corrected decay widths.
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And for the Higgs wave function renormalization constants we obtain

(
δZHH δZHh

δZhH δZhh

)
=

−Re
∂Σtad

HH(k2)

∂k2

∣∣∣
k2=m2

H

2
Re[Σtad

Hh(m2
h)]

m2
H−m

2
h

−2
Re[Σtad

Hh(m2
H)]

m2
H−m

2
h

−Re
∂Σtad

hh (k2)

∂k2

∣∣∣
k2=m2

h

 (3.59)

(
δZG0G0 δZG0A

δZAG0 δZAA

)
=


−Re

∂Σtad
G0G0 (k2)

∂k2

∣∣∣∣
k2=0

−2
Re

[
Σtad
G0A

(m2
A)

]
m2
A

2
Re

[
Σtad
G0A

(0)
]

m2
A

−Re
∂Σtad

AA(k2)

∂k2

∣∣∣
k2=m2

A

 (3.60)

(
δZG±G± δZG±H±

δZH±G± δZH±H±

)
=


−Re

∂Σtad
G±G± (k2)

∂k2

∣∣∣∣
k2=0

−2
Re

[
Σtad
G±H± (m2

H± )
]

m2
H±

2
Re

[
Σtad
G±H± (0)

]
m2
H±

−Re
∂Σtad

H±H± (k2)

∂k2

∣∣∣∣
k2=m2

H±

 (3.61)

keeping in mind that eq. (3.56) holds. Applying the same procedure for the definition of

the angular counterterms as in the standard scheme, but with the different treatment of

the tadpoles, the angular counterterms in the tadpole scheme read

δα =
Re
[
Σtad
Hh(m2

H) + Σtad
Hh(m2

h)
]

2(m2
H −m2

h)
(3.62)

δβ(1) = −Re
[
Σtad
G±H±(0) + Σtad

G±H±(m2
H±)

]
2m2

H±
(3.63)

δβ(2) = −Re
[
Σtad
G0A(0) + Σtad

G0A(m2
A)
]

2m2
A

. (3.64)

Compared to the standard scheme, the self-energies are replaced by the Σtad and no tadpole

counterterms appear any more.

The application of the tadpole scheme not only allows for a gauge-independent defini-

tion of the angular counterterms but also requires it in order to ensure a gauge-independent

physical decay amplitude. Note that the counterterms (3.62)–(3.64) still contain a ξ de-

pendence and hence, a ξ-independent definition has yet to be found. In the MSSM, several

schemes for the renormalization of tan β have been proposed and used, see e.g. [25, 31–38].

The renormalization prescriptions have been discussed in detail in [25] with respect to their

gauge dependence, process independence and numerical stability (see also [39]). Renormal-

ization prescriptions making use of physical quantities like Higgs boson masses or physical

processes clearly lead to a gauge-independent prescription. However, they were found to be

numerically unstable in the former case, while the latter case may be viewed as unsatisfac-

tory, as the definition via a specific process makes tan β a non-universal, flavour-dependent

quantity [25]. Finally, DR prescriptions lead in the Rξ gauge to gauge independence of

δ tanβ in the MSSM at one-loop level, but not at two-loop level [25, 40]. We now present

a renormalization scheme that leads to ξ-independent δα and δβ and also addresses the

problem of extracting the gauge-independent part unambiguously.
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On-shell tadpole-pinched scheme. The scheme we propose here combines the virtues

of the tadpole scheme with the unambiguous extraction of the truly gauge-independent

parts of the angular counterterms. It is based on the renormalization schemes presented

in [38] and in [41, 42].5 The former defines the angular counterterms in a physical way as

residues of poles appearing in one-loop corrections, while in [41, 42] the pinch technique

(PT) [44–50] is used to extract the truly gauge-independent parts of the angular countert-

erms. Both methods lead to the same gauge-independent definitions of the counterterms.

Over the years the virtues of the PT have been discussed [51–56] and many times

compared to the background field method (BFM). In refs. [57–64] the BFM was advocated

in order to obtain gauge-invariant definitions of the counterterms, which, however, also has

its own drawbacks (see e.g. [50, 65]). In this work we apply the PT only in the definition

of the angular counterterms at one-loop level and not for the complete one-loop process, so

that we do not run into possible problems with regard to the PT. Also, note that for specific

examples it has been shown that the PT is connected to the BFM in case the Feynman

gauge is chosen for the background fields [66]. In fact, the one-loop PT Green’s functions

are identical to the conventional Green’s functions when calculated in the BFM with ξ = 1.

One should emphasize that there is an important advantage from the field-theoretical

point of view to use the PT. While the BFM provides n-point functions that are manifestly

gauge invariant (i.e. they fulfill tree-level-like Ward identities), they are still gauge depen-

dent, since the n-point functions contain an explicit dependence on the background-field

gauge-fixing parameter (GFP). In contrast, the PT introduces no GFP-dependent poles

into the n-point functions and therefore contains no unphysical thresholds. This is impor-

tant when constructing resonant transition amplitudes as it leads to a correct treatment

of resonances. As shown in [53] an off-shell one-particle irreducible effective two-point

function obtained via the PT satisfies a number of field-theoretical requirements needed in

order to attribute physical meaning to the resummed propagator.

With the help of the PT it is possible to define the pinched self-energies Σ. The

self-energies are related to the tadpole self-energies evaluated in the Feynman gauge as

Σ(p2) = Σtad(p2)
∣∣∣
ξ=1

+ Σadd(p2) , (3.65)

where ξ stands for the gauge fixing parameters ξZ , ξW and ξγ of the Rξ gauge. Note,

that in order to apply the PT the tadpole scheme has to be used.6 For better readability

we omitted the superscript ‘tad’ in Σ. The self-energy Σadd in eq. (3.65) is an additional

contribution that is explicitly independent of the gauge fixing parameter ξ. Applying [42]

5The renormalization of the mixing matrix in the scalar sector of a theory with an arbitrary number of

scalars was first discussed in ref. [43].
6In ref. [67] the renormalization of the singlet extended SM was investigated for the sample process H →

hh. Treating the tadpoles in the standard scheme the authors are left with a gauge-dependent mixed mass

counterterm δm2
hH . The remainder of the loop-corrected decay amplitude, i.e. the NLO amplitude without

the counterterm δm2
hH , is gauge independent in this model, which is simpler compared to the 2HDM. In

their ‘improved on-shell scheme’ the authors suggest to adopt the Feynman gauge and a specific scale choice

to get rid of this gauge parameter dependence. The identification of the truly gauge-independent part would

require, however, the application of the pinch technique which relies on the application of the tadpole scheme.
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we arrive at the following counterterms

δα =
Re
([

Σtad
Hh(m2

H) + Σtad
Hh(m2

h)
]
ξ=1

+ Σadd
Hh (m2

H) + Σadd
Hh (m2

h)
)

2(m2
H −m2

h)
(3.66)

δβ(1) = −
Re
([

Σtad
G±H±(0)+Σtad

G±H±(m2
H±)

]
ξ=1

+Σadd
G±H±(0)+Σadd

G±H±(m2
H±)

)
2m2

H±
(3.67)

δβ(2) = −
Re
([

Σtad
G0A(0) + Σtad

G0A(m2
A)
]
ξ=1

+ Σadd
G0A(0) + Σadd

G0A(m2
A)
)

2m2
A

. (3.68)

These angular counterterms are different from the ones obtained in the KOSY scheme, so

that the classification as an independent renormalization scheme is justified. The additional

contribution Σadd
Hh has been given in [42] for the MSSM. We have derived the remaining

two contributions Σadd
G0A and Σadd

G±H± . Altogether we have

Σadd
Hh (p2) =

g2sβ−αcβ−α
32π2c2

W

(
p2 − m2

H +m2
h

2

){
B0(p2;m2

Z ,m
2
A)−B0(p2;m2

Z ,m
2
Z)

+2c2
W

[
B0(p2;m2

W ,m
2
H±)−B0(p2;m2

W ,m
2
W )
] }

(3.69)

Σadd
G0A(p2) =

g2sβ−αcβ−α
32π2c2

W

(
p2 − m2

A

2

)[
B0(p2;m2

Z ,m
2
H)−B0(p2;m2

Z ,m
2
h)
]

(3.70)

Σadd
G±H±(p2) =

g2sβ−αcβ−α
16π2

(
p2−m

2
H±

2

)[
B0(p2;m2

W ,m
2
H)−B0(p2;m2

W ,m
2
h)
]
, (3.71)

where B0 is the scalar two-point function [27, 28].

p? tadpole-pinched scheme. As indicated by the name, this scheme differs from the

OS tadpole-pinched scheme solely in the scale at which the self-energies, appearing in the

definition of the angular counterterms, are evaluated. The self-energies are evaluated at

the average of the particle momenta squared [68],

p2
? =

m2
φ1

+m2
φ2

2
, (3.72)

with (φ1, φ2) = (H,h), (G±, H±) and (G0, A), respectively, and we will henceforth refer to

this scheme as the p?-scheme. When the self-energies are evaluated at p2
? the additional

self-energies Σadd vanish, as can easily be seen from eqs. (3.69)–(3.71), and the pinched

self-energies are given by the tadpole self-energies Σtad computed in the Feynman gauge, i.e.

Σ(p2
?) = Σtad(p2

?)
∣∣∣
ξ=1

. (3.73)
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The angular counterterms then read

δα =
Re
[
ΣHh

(
m2
h+m2

H
2

)]
m2
H −m2

h

(3.74)

δβ(1) = −
Re

[
ΣG±H±

(
m2
H±
2

)]
m2
H±

(3.75)

δβ(2) = −
Re
[
ΣG0A

(
m2
A

2

)]
m2
A

. (3.76)

3.1.4 Process-dependent scheme

We will also investigate the renormalization of the mixing angles through a physical pro-

cess. Provided the alternative tadpole scheme is applied, this leads to a manifestly gauge-

independent definition of the mixing angle counterterms. In order to fix the respective

angular counterterm we will require the next-to-leading order (NLO) Higgs decay width,

in which the angle appears, to be equal to the leading order (LO) one, i.e.

Γvirt + Γc.t. = 0 , (3.77)

where Γvirt denotes the contribution of all virtual one-loop corrections to the decay width

and Γc.t. the counterterm contributions. This implies (for NLO processes that do not

encounter real corrections, see below)

ΓNLO = ΓLO (3.78)

and allows to fix the angular counterterm via the decay process. This scheme has some

drawbacks, however, cf. [25]. Conceptually, it is not satisfying as the definition of the

mixing angles becomes non-universal and flavour dependent. From a calculational point of

view, it is involved as it requires the computation of loop-corrected three-particle vertices.

Another problem is related to the choice of the process that defines the counterterm. The

definition through a process receiving QED corrections that cannot be separated from

the rest of the EW corrections would entail real radiative corrections in the counterterm.

This is precluded, however, as this counterterm would inevitably depend on some detector

sensitivity ∆E via the photon phase space cut and thereby introduce a dependence on the

experimental setting. This forbids e.g. the definition of the angular counterterms appearing

in the loop corrected decay H± → W±h through the process H± → W±H. Finally, care

has to be taken to choose a process that is phenomenologically accessible. This eliminates

e.g. the choice of H → ZZ. With the 125 GeV Higgs boson being very SM-like and hence

coupling with full SM strength to the Z bosons, sum rules lead to a tiny coupling of the

heavy Higgs boson to massive gauge bosons and hence a very small H → ZZ decay width.

In this paper we choose, as proposed in [25], the decays H → ττ and A → ττ in order to

define δβ via the latter and δα via the former. In both decays the QED corrections form

a UV-finite subset of the full EW one-loop corrections.
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4 One-loop EW corrected decay widths

In this section we present the EW one-loop corrections to the processes7

H± → W±h and W±H , (4.1)

H → ZZ , (4.2)

H → ττ and A→ ττ . (4.3)

The charged Higgs decays (4.1) will serve us to discuss in detail the renormalization of

the mixing angles α and β in view of a gauge-independent definition. In this context,

the fermionic decays (4.3) will be used for a process-dependent definition of the angular

counterterms. Note that we could have equally well chosen h → ττ instead of H → ττ .

The numerical implications of the different renormalization schemes shall be investigated

in the subsequent section. This will be done not only for the charged Higgs decays, but

also for another sample process, the heavy Higgs decay into a Z boson pair (4.2).

4.1 Electroweak one-loop corrections to H± → W±h/H

The decays of the charged Higgs boson into the charged W± boson and a CP-even Higgs

boson φ = h or H,

H± →W±φ , (4.4)

depend through the couplings on the mixing angle combinations

gH±W±φ =

{
− cos(β − α) for φ = h

sin(β − α) for φ = H
, (4.5)

and the LO decay width is given by

ΓLO(H± →W±φ) =
GF g

2
H±W±φ

8
√

2πm3
H±

λ3(m2
H± ,M

2
W ,m

2
φ) , (4.6)

with

λ(x, y, z) ≡ (x2 + y2 + z2 − 2xy − 2xz − 2yz)
1
2 . (4.7)

The NLO decay width can be written as

ΓNLO = ΓLO + Γ(1) . (4.8)

The one-loop correction Γ(1) consists of the virtual corrections, the counterterm contribu-

tions and the real corrections. The counterterms cancel the UV divergences and the real

corrections the IR divergences encountered in the virtual corrections. The diagrams con-

tributing to the latter are depicted in figure 2 and show the pure vertex corrections (a) and

the corrections (b)-(e) to the external legs. The counterterm diagram is shown in (f). The

vertex corrections comprise the 1PI diagrams given by the triangle diagrams with scalars,

fermions and gauge bosons in the loops, as shown in the first two rows of figure 3, and the
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(a)

H+

W+

h/H

(b)

H+ G+

W+

h/H

(c)

H+

W+

φ

h/H

(d)

H+ W+

W+

h/H

(e)

H+
G+

W+

h/H

(f)

H+

W+

h/H

Figure 2. Generic diagrams contributing to the virtual corrections of the decays H± →W±h/H:

vertex corrections (a) and corrections to the external legs (b)-(e). Diagram (f) displays the coun-

terterm.

diagrams involving four-particle vertices (last four diagrams of figure 3). The corrections

to the external legs in figure 2 (b) and (c) vanish due to the OS renormalization of the

scalars, while the vanishing of the mixing contribution (d) is ensured by a Slavnov-Taylor

identity [70]8 and the one of (e) by the Ward identity for an OS W± boson. The vertex

contributions with a photon in the loop lead to IR divergences that need to be canceled by

the real corrections. These are computed from the diagrams displayed in figure 4. They

consist of the proper bremsstrahlung contributions (a)-(c), where a photon is radiated from

the charged initial and final state particles, and the diagram (d) involving a four-particle

vertex with a photon. Note, that this last diagram leads to an IR-finite contribution. The

NLO contributions factorize from the LO amplitude, so that the one-loop corrected decay

width can be cast into the form

ΓNLO(H± →W±φ) = ΓLO
[
1 + ∆virt + ∆ct + ∆real

]
. (4.9)

The counterterm contribution ∆ct is given in terms of the wave function renormalization

constants, the coupling and angle counterterms. For φ ≡ h it reads

∆ct = δZWW +δZH±H± +δZhh+
sβ−α
cβ−α

(δZG±H± − δZHh)+2
δg

g
−2tβ−α (δβ−δα) , (4.10)

7The top quark loop corrections to H± →W±h have been calculated in [69].
8This requires the formulation of the gauge fixing Lagrangian in terms of already renormalized fields

when adding it to the bare 2HDM Lagrangian so that it need not be renormalized, cf. refs. [71, 72]. See

also [22] for details.
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F = {νl, l, q}

H+

W+

h/H

F

F

F

S = {h,H,A,G0, H±, G±}

H+

W+

h/H

S

S

S

S, V = {h,H,A,H±, G±}, {Z,W±}

H+

W+

h/H

S

S

V

S, V = {h,H,A,H±, G±}, {Z,W±}

H+

W+

h/H

S

V

S

S, V = {h,H,H±, G±}, {Z,W±, γ}

H+

W+

h/H

V

S

S

S, V = {h,H}, {W±}

H+

W+

h/H

S

V

V

S, V = {A,H±}, {Z,W±, γ}

H+

W+

h/H

V

S

V

S, V = {h,H,H±}, {Z,W±, γ}

H+

W+

h/H

S

V

S = {h,H,G0, H±, G±}

H+

W+

h/H

S

S

V = {Z,W±, γ}

H+

W+

h/H

V

V

S, V = {A,H±}, {Z,W±}

H+

W+

h/H

S

V

Figure 3. Generic diagrams contributing to the vertex corrections in H± →W±h/H.

(a)

H+

W+

h/H

γ

H+

(b)

H+

W+

γ

h/H

G+

(c)

H+

W+

γ

h/H

W+

(d)

H+

W+

γ

h/H

Figure 4. Feynman diagrams contributing to the real corrections.

and for φ ≡ H,

∆ct = δZWW + δZH±H± + δZHH −
cβ−α
sβ−α

(δZG±H± + δZhH) + 2
δg

g
+

2(δβ − δα)

tβ−α
. (4.11)

As the expressions for the counterterm ∆ct and the virtual and real contributions ∆virt

and ∆real in terms of scalar one-, two- and three-point functions are rather lengthy, we do

not display them explicitly here.
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type I II lepton-specific flipped

ghττ cα/sβ −sα/cβ −sα/cβ cα/sβ

gHττ sα/sβ cα/cβ cα/cβ sα/sβ

gAττ −1/tβ tβ tβ −1/tβ

Table 1. Neutral Higgs boson couplings to τ leptons in different realizations of the 2HDM.

(a)

H

τ

τ

(b)

H φ

τ

τ

(c)

H A/G0

τ

τ

(d)

H

τ

τ

τ

(e)

H
τ

τ

τ

(f)

H γ/Z

τ

τ

(g)

H

τ

τ

Figure 5. Generic diagrams contributing to the virtual corrections of H → ττ : vertex correc-

tions (a) and corrections to the external legs (b)-(f) where φ ≡ h/H. Diagram (g) displays the

counterterm.

4.2 Electroweak one-loop corrections to H → ττ and A → ττ

The LO decay width for the process H → ττ reads

ΓLO(H → ττ) =
GF g

2
HττmHm

2
τ

4
√

2π

(
1− 4m2

τ

m2
H

) 3
2

, (4.12)

with the coupling modification factor gHττ in the 2HDM, which depends on the 2HDM

type. We give in table 1 the coupling factors for all neutral Higgs bosons to τ leptons in

the different realizations of the 2HDM. For the decay A→ ττ the LO decay width is

ΓLO(A→ ττ) =
GF g

2
AττmAm

2
τ

4
√

2π

√
1− 4m2

τ

m2
A

, (4.13)

with gAττ given in table 1. These two processes can hence be used to define the counterterms

for α and β.

The EW NLO corrections to H → ττ consist of the virtual corrections, the coun-

terterms and the real corrections. The generic contributions to the virtual corrections are

depicted in figure 5. The 1PI diagrams of the vertex corrections are shown in figure 6 and
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F, S = {τ}, {h,H,A,G0}

H

τ

τ

F

F

S

F, S = {τ, ντ}, {h,H,A,G0, H±, G±}

H

τ

τ

S

S

F

F, V = {τ}, {γ, Z}

H

τ

τ

F

F

V

S, F, V = {A,G0, H±, G±}, {τ, ντ}, {Z,W±}

H

τ

τ

S

V

F

S, F, V = {A,G0, H±, G±}, {τ, ντ}, {Z,W±}

H

τ

τ

V

S

F

F, V = {τ, ντ}, {Z,W±}

H

τ

τ

V

V

F

Figure 6. Generic diagrams contributing to the vertex corrections in H → ττ .

consist of the triangle diagrams with scalars, fermions, massive gauge bosons and photons

in the loop. The corrections to the external legs in figure 5 (b), (d) and (e) vanish be-

cause of the OS renormalized H and τ , respectively. Diagram (c) is zero because of CP

conservation. Diagram (f) finally vanishes because of a Slavnov-Taylor identity. The real

corrections consist of the diagrams where a photon is radiated off either of the final state

τ leptons. We explicitly checked that all NLO corrections factorize from the LO width so

that the NLO decay width can be cast into the form

ΓNLO(H → ττ) = ΓLO
[
1 + ∆virt + ∆ct + ∆real

]
. (4.14)

For ∆ct we have

∆ct = δZHH +
ghττ
gHττ

δZhH + δZLττ + δZRττ + 2
δg

g
+ 2

δmτ

mτ
− δM2

W

M2
W

+
2ghττ
gHττ

δα+ 2gAττ δβ . (4.15)

Note, that the pure QED contributions in ∆virt and ∆ct can be separated from the weak

contributions in a gauge-invariant way and form a UV-finite subset by themselves. This

is important as it allows to define the angular counterterm via this process through the

purely weak NLO contributions, see also the discussion in section 3.1.4. Requiring the

following renormalization condition for the process-dependent definition of δα,

ΓLO(H → ττ)
!

= ΓNLO
weak(H → ττ) , (4.16)
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(a)

A

τ

τ

(b)

A A/G0

τ

τ

(c)

A φ

τ

τ

(d)

A

τ

τ

τ

(e)

A
τ

τ

τ

(f)

A γ/Z

τ

τ

(g)

A

τ

τ

Figure 7. Generic diagrams contributing to the virtual corrections of A → ττ : vertex correc-

tions (a) and corrections to the external legs (b)-(f), where φ ≡ h/H. Diagram (g) displays the

counterterm.

and imposing this condition only on the weak part of the decay width we arrive at the

process-dependent counterterm definition

δαH→ττ = − gHττ
2ghττ

[
δZHH +

ghττ
gHττ

δZhH + δZL,weak
ττ + δZR,weak

ττ + 2
δg

g
+ 2

δmweak
τ

mτ
− δM2

W

M2
W

+ 2gAττ δβ + ∆virt,weak
H→ττ

]
. (4.17)

The superscript ‘weak’ indicates that in the respective counterterms and in the virtual

correction only the purely weak contributions are taken into account. For example for

∆virt,weak
H→ττ this means that corrections stemming from diagrams in figure 6 that involve

photons are dropped.

The counterterm δ tanβ or δβ, respectively, which is necessary in (4.17), can be defined

in a process-dependent scheme via the NLO decay A → ττ as outlined in the following.

Again the NLO contributions consist of virtual, counterterm and real diagrams. The

generic ones for the former two are shown in figure 7 and the 1PI diagrams of the vertex

corrections are summarized in figure 8. The loops contain scalars, fermions, massive gauge

bosons and photons. The loops with photons induce IR divergences that are canceled by

the real corrections. The corrections to the external legs in figure 7 (b), (d) and (e) vanish

due to OS renormalization conditions, those in (c) because of CP invariance and those in (f)

because of a Slavnov-Taylor identity. Also in this process the pure QED corrections can be

separated from the remainder in a gauge-invariant way and form a UV-finite subset so that

the NLO decay width can be used for the process-dependent definition of the counterterm

δβ through the requirement

ΓLO(A→ ττ)
!

= ΓNLO
weak(A→ ττ) . (4.18)
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F, S = {τ}, {h,H,A,G0}

A

τ

τ

F

F

S

S, F, V = {h,H,H±}, {τ, ντ}, {Z,W±}

A

τ

τ

V

S

F

F, V = {τ}, {γ, Z}

A

τ

τ

F

F

V

S, F, V = {h,H,H±}, {τ, ντ}, {Z,W±}

A

τ

τ

S

V

F

F, S = {τ, ντ}, {h,H,A,G0, H±, G±}

A

τ

τ

S

S

F

Figure 8. Generic diagrams contributing to the vertex corrections in A→ ττ .

With the factorization

ΓNLO(A→ ττ) = ΓLO
[
1 + ∆virt + ∆ct + ∆real

]
(4.19)

and the counterterm

∆ct = δZAA −
1

gAττ
δZG0A + δZLττ + δZRττ + 2

δg

g
+ 2

δmτ

mτ
− δM2

W

M2
W

+
2(1 + g2

Aττ )

gAττ
δβ (4.20)

we arrive by imposing the condition (4.18) at

δβA→ττ =
−gAττ

2(1 + g2
Aττ )

[
δZAA −

1

gAττ
δZG0A + δZL,weak

ττ + δZR,weak
ττ + 2

δg

g
+ 2

δmweak
τ

mτ

−δM
2
W

M2
W

+ ∆virt,weak
A→ττ

]
. (4.21)

Again the superscript ‘weak’ denotes the purely weak contributions to the respective coun-

terterms and to the virtual corrections. Thus, ∆virt,weak
A→ττ is given by the purely weak virtual

corrections to A→ ττ at NLO which are computed from the diagrams in figure 8 discarding

those with photons in the loop.

4.3 The gauge (in)dependence of the angular counterterms

The question of gauge dependence in the standard scheme. In order to investigate

the question whether the angular counterterms can be defined in a gauge-independent way,
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we have calculated the one-loop corrected decay width for the charged Higgs decays in

the general Rξ gauge. When we apply the standard scheme, the computation of the NLO

amplitude MH±→W±h including all counterterms but the one for the angles - i.e. δcβ−α is

set to zero - yields an amplitude that depends on the gauge parameters as follows,

MH±→W±h|standard
NLO, ξ, δcβ−α=0 = −

gΛ5cβ−αs
2
β−α p1 · ε∗(p3)

32π2(m2
H −m2

h)

[
2M2

W (1− ξW )αW

+M2
Z(1− ξZ)αZ

]
, (4.22)

where we have introduced the abbreviation (V ≡W,Z)

αV =
1

(1− ξV )m2
V

[
A0(m2

V )−A0(ξVm
2
V )
]

(4.23)

in terms of the scalar one-point function A0 [27, 28]. With p1 we denote the incoming

four-momentum of H± and with ε∗(p3) the polarization vector of the outgoing W± boson

with four-momentum p3 and

Λ5 ≡
2m2

12

v2sβcβ
. (4.24)

Note that αV is UV-divergent. This result shows explicitly what we have already stated

before: in the standard renormalization scheme, the NLO decay amplitude without the

angular counterterms has a residual UV-divergent gauge dependence. This can only be

canceled by the angular counterterms. Therefore, the counterterms cannot be defined in

a gauge-independent way. This gauge dependence is independent of the renormalization

scheme chosen for the angular counterterms. It is purely due to the treatment of the

tadpoles. Let us investigate what happens if we apply the KOSY scheme, which yields the

renormalization conditions eq. (3.52) and eq. (3.53) or eq. (3.54), respectively. Introducing

the UV-finite integral

βV j(p
2) =

1

(1− ξV )m2
V

[
B0(p2;m2

V ,m
2
j )−B0(p2; ξVm

2
V ,m

2
j )
]

(4.25)

in terms of the scalar two-point function B0, we find the following gauge-dependent results

for the angular counterterms,

δα = δα|ξ=1 (4.26)

− Λ5cβ−αsβ−α
32π2(m2

H −m2
h)

[
2M2

W (1− ξW )αW +M2
Z(1− ξZ)αZ

]
+(1− ξZ)

g2cβ−αsβ−α
256π2c2

W

{
2m2

A

[
βZA(m2

H)− βZA(m2
h)
]

+m2
H

[
βZξZ(m2

H)− 2βZA(m2
H)
]
−m2

h

[
βZξZ(m2

h)− 2βZA(m2
h)
]}

+(1− ξW )
g2cβ−αsβ−α

128π2

{
2m2

H±

[
βWH±(m2

H)− βWH±(m2
h)
]

+m2
H

[
βWξW (m2

H)− 2βWH±(m2
H)
]
−m2

h

[
βWξW (m2

h)− 2βWH±(m2
h)
]}
,
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and

δβ(1) = δβ(1)
∣∣∣
ξ=1

+ (1− ξW )
g2cβ−αsβ−α

128π2

{
m2
h

[
βWh(m2

H±)− βWh(0)
]

+m2
H+

[
βWH(m2

H±)− βWh(m2
H±)

]
+m2

H

[
βWH(0)− βWH(m2

H±)
]}

.

(4.27)

Here the symbol
∣∣
ξ=1

represents the counterterm result obtained for ξ = ξW = ξZ = 1.

The result for δβ(2) looks similar with the appropriate mass replacements and ξW → ξZ .

The second line in eq. (4.26) has the appropriate structure to cancel the remaining UV-

divergent gauge dependence in the amplitude (4.22). However, the additional finite terms

in (4.26) and (4.27) proportional to the β-integrals defined above, reintroduce a gauge

dependence into the amplitude. In [24] it was argued that the gauge dependence of δβ can

be moved into the unphysical counterterm δCf , see eq. (3.41). Yet, lacking a method to

define uniquely the gauge-dependent parts in the standard scheme, where the PT cannot

be applied, it remains unclear, how this could be accomplished. The situation is even worse

for δα, where we necessarily have to retain the gauge-dependent part proportional to the

UV-divergent A0 functions, but must move the rest into δCf . To summarize, this result

shows that not only is it impossible to arrive at a gauge-independent definition of δα in

the standard scheme, but it also explicitly demonstrates that the KOSY scheme leads to

an unphysical gauge dependence of the decay amplitude, which cannot be disposed of in

a straightforward way. This is not only true for the charged Higgs bosons decays we are

discussing. In fact, the investigation of the origin of this gauge dependence shows, that

the standard tadpole scheme inevitably leads to gauge-dependent decay widths in case the

KOSY scheme is applied for the mixing angles.

If we define the angular counterterms via a physical process, however, namely through

the decay widths H → ττ and A → ττ , compute the contribution of the counterterm

δcβ−α, and extract the ξ-dependent parts we obtain the following,

MH±→W±h|standard
ct, ξ, δcβ−α only =

gΛ5cβ−αs
2
β−α p1 · ε∗(p3)

32π2(m2
H −m2

h)

[
2M2

W (1− ξW )αW

+M2
Z(1− ξZ)αZ

]
. (4.28)

It is exactly the same as eq. (4.22) but with opposite sign, so that altogether the EW one-

loop corrected decay width is gauge independent and UV-finite as required. The standard

treatment of the tadpoles combined with a process-dependent definition hence leads to a

gauge-independent physical result, as it should. The counterterms, however, necessarily

contain a gauge dependence.

Gauge-independent angular counterterms. For the angular counterterms to be

gauge-independent the loop-corrected amplitude including all counterterms but the angular

ones must be independent of ξ. This can be achieved by treating the tadpoles according to

ref. [29], cf. the discussion in section 3.1.3. It means that in the counterterms eq. (4.10) and
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eq. (4.11), respectively, the self-energies Σ and the tadpole counterterms δT , contained in

the wave function constants, the scalar mass counterterms and the angular counterterms,

have to be replaced by Σtad and δT = 0. Note, that the change to this tadpole scheme in

principle implies new vertices arising from constant tadpole contributions to the respective

original vertices, cf. appendix A. In the 2HDM, however, there is no quartic vertex between

two scalars, a charged Higgs and a charged gauge boson, h/H−h/H−H±−W∓, where one

of the external h/H legs would carry the additional tadpole contribution. Therefore, the

process H± → W±h/H does not receive additional tadpole diagrams. The counterterms

δα, δβ, δZhH , δZHh δZG0A and δZG±H± change however. With these modifications the

gauge-dependent part of the amplitude with the angular counterterms set to zero, becomes

MH±→W±h|tad
NLO, ξ, δcβ−α=0 = 0 . (4.29)

The amplitude without the mixing angle counterterm is itself gauge independent, so that it

is possible to provide a gauge-independent renormalization of the angular counterterms.

a) Gauge-independent tadpole-pinched scheme. The pinch technique allows to ex-

tract from the Green’s functions the truly gauge-independent part. Combined with the

tadpole scheme this leads to manifestly gauge-independent angular counterterms. Choos-

ing the OS scale, they are given by eqs. (3.66)–(3.71). In the p? scheme the formulae

simplify to (3.74)–(3.76). In the numerical analysis we will apply both choices.

b) Gauge-independent process-dependent definition of the angular countert-

erms. Another possibility to arrive at a truly gauge-independent definition of the angu-

lar counterterms is the definition via the physical processes H/A→ ττ , provided of course

that the framework of the tadpole scheme is applied.

In the processes H/A → ττ no new diagrams are introduced when switching to the

tadpole scheme, while the counterterms do change. In the tadpole scheme the process-

dependent definition of δα and δβ through the requirement eq. (4.16) and eq. (4.18),

respectively, then indeed leads to gauge independence of both counterterms and hence also

of δcβ−α, i.e.

(δcβ−α)tad, proc-dep
ξ = 0 . (4.30)

We have seen in eq. (4.28) that the treatment of the tadpoles in the standard scheme

cannot lead to gauge-independent angular counterterms, although they are defined through

a physical process. In detail, this gauge parameter dependence stems from δα, whereas δβ

is gauge independent in the process-dependent definition also without applying the tadpole

scheme. Thus we have

δβproc-dep
ξ = δβtad, proc-dep

ξ = 0 (4.31)

δαtad, proc-dep
ξ = 0 (4.32)

δαproc-dep
ξ = − Λ5cβ−αsβ−α

32π2(m2
H −m2

h)

[
2M2

W (1− ξW )αW +M2
Z(1− ξZ)αZ

]
. (4.33)

This result shows two important things: first, the process-dependent definition of the

angular counterterms leads to gauge-independent counterterms only if the tadpole scheme
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(a)

H

Z

Z

(b)

H φ

Z

Z

(c)

H

Z

A/G0

Z

(d)

H
A/G0

Z

Z

(e)

H

Z

Z

Figure 9. Generic diagrams contributing to the virtual corrections of the decay H → ZZ: vertex

corrections (a) and corrections to the external legs (b)-(d) where φ ≡ h,H. Diagram (e) displays

the counterterm.

is applied. Second, eqs. (4.31)–(4.33) demonstrate, that in a process-dependent definition

of the counterterms the difference between the application of the tadpole and the standard

scheme is a gauge-dependent expression that solely depends on A0 functions, which are

UV-divergent. As the 2HDM is renormalizable this implies that also in the amplitude

the difference in the application of the two schemes must be UV-divergent and must have

the same structure, since the divergences have to cancel. In conclusion, this means: the

definition of the angular counterterms via any physical process leads for any NLO decay

process to a gauge-independent result, independently of the treatment of the tadpoles.

In the following numerical analysis in section 5 we will apply all three types of renor-

malization schemes, the standard, the tadpole-pinched and the process-dependent scheme,

and compare them to each other. We will do this for the sample processes H± →W±h/H

and H → ZZ. In order to describe also for this latter process the implications of the

tadpole scheme, required for a gauge-independent definition of the angular counterterms,

we briefly repeat the ingredients of the EW one-loop corrections to H → ZZ.

4.4 Electroweak one-loop corrections to H → ZZ

The LO decay width for the process

H → ZZ (4.34)

is given by

ΓLO(H → ZZ) =
GF g

2
HZZ

32
√

2πmH

(m4
H − 4m2

Hm
2
Z + 12m4

Z)

√
1− 4M2

Z

m2
H

(4.35)
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Figure 10. Generic diagrams contributing to the vertex corrections in H → ZZ. The ghost

particles are denoted by U .

and depends on the mixing angles through the coupling factor

gHZZ = cβ−α . (4.36)

The NLO decay width consists of virtual corrections and the counterterm contributions

to cancel the UV divergences. There are neither IR divergences nor real corrections. The

generic diagrams for the virtual corrections and the counterterm are depicted in figure 9.

The 1PI diagrams contributing to the vertex corrections are given by the triangle diagrams

with scalars, fermions, massive gauge bosons and ghost particles in the loops, as shown in

the first three rows of figure 10, and by the diagrams involving four-particle vertices (last

four diagrams of figure 10). The corrections to the external leg in figure 9 (b) vanish due

to the OS renormalization of the H. The mixing contributions (c) and (d) vanish because
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Figure 11. Additional vertex diagrams in the tadpole scheme contributing to the decay H → ZZ.

of the Ward identity for the OS Z boson. The counterterm amplitude is given by

Mct
H→ZZ =

ecβ−αMW

c2
W sW

ε∗(p3) · ε∗(p4) (4.37)

×
[
δg

g
+
δcβ−α
cβ−α

+
δM2

Z

M2
Z

− δM2
W

2M2
W

+
sβ−α
cβ−α

δZhH
2

+
δZHH

2
+ δZZZ

]
,

where the εµ∗ denote the polarization vectors of the outgoing Z bosons with four-momentum

p3 and p4, respectively. If the tadpole scheme is applied, the HZZ vertex is modified by

additional tadpole contributions, which lead to further diagrams, that have to be taken

into account in the computation of the decay width. They are shown in figure 11. As the

formula for the vertex corrections and counterterms in terms of the scalar one-, two- and

three-point functions are quite lengthy, we do not display them explicitly here.

5 Numerical analysis

For the computation of the NLO EW corrections to the Higgs decay widths described

in the previous section we have performed two independent calculations. Both of them

employed the Mathematica package FeynArts 3.9 [73, 74] to generate the amplitudes at

LO and NLO in the general Rξ gauge. To this end, the model file for a CP-conserving

2HDM was used, which is already implemented in the package. Additionally, all tadpole

and self-energy amplitudes, needed for the definition of the counterterms and wave function

renormalization constants, have been generated in the general Rξ gauge. The contraction

of the Dirac matrices and formulation of the results in terms of scalar loop integrals has

been done with FeynCalc 8.2.0 [75, 76] in one calculation and with FormCalc [77] in the

other. The dimensionally regularized [78, 79] integrals have been evaluated numerically

with the help of the C++ library LoopTools 2.12 [77].

For one of the two calculations the Python progam 2HDMCalc was developed that links

FeynArts, generates the needed counterterms dynamically from the 2HDM Lagrangian

by calling a Mathematica script and combines the LO, NLO and counterterms calculated

by FeynCalc into the full partial decay widths. These are then evaluated numerically by

linking LoopTools. Finally, the LO and NLO partial decay widths are written out for

all renormalization schemes of the mixing angles introduced above. The outcome of this
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program was compared to the results of the second independent computation. All results

agree within numerical errors.

In the following we specify the input parameters that we used for the numerical evalu-

ation. As explained in section 3 we use the fine structure constant α at the Z boson mass

scale, given by [80]

α(M2
Z) =

1

128.962
. (5.1)

The massive gauge boson masses are set to [80, 81]

MW = 80.385 GeV and MZ = 91.1876 GeV . (5.2)

For the lepton masses we choose [80, 81]

me = 0.510998928 MeV , mµ = 105.6583715 MeV , mτ = 1.77682 GeV . (5.3)

These and the light quark masses, which we set [82]

mu = 100 MeV , md = 100 MeV , ms = 100 MeV , (5.4)

have only a small influence on our results. In order to be consistent with the ATLAS and

CMS analyses, we follow the recommendation of the LHC Higgs Cross section Working

Group (HXSWG) [81, 83] and use the following OS value for the top quark mass

mt = 172.5 GeV . (5.5)

The charm and bottom quark OS masses are set to

mc = 1.51 GeV and mb = 4.92 GeV , (5.6)

as recommended by [81]. Omitting CP violation we consider the CKM matrix to be real,

with the CKM matrix elements given by [80]

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =


0.97427 0.22536 0.00355

−0.22522 0.97343 0.0414

0.00886 −0.0405 0.99914

 . (5.7)

The SM-like Higgs mass value, denoted by mHSM
, has been set to [84]

mHSM = 125.09 GeV . (5.8)

Note, that in the 2HDM, depending on the chosen parameter set, it is possible that either

the lighter or the heavier of the two CP-even neutral Higgs bosons can be the SM-like

Higgs boson.

The IR divergences in the computation of the NLO corrections to the process H± →
W±H/h require the inclusion of the real corrections to regularize the decay width. This in-

troduces a dependence on the detector sensitivity ∆E for the resolution of the soft photons
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from the real corrections. We showed that this dependence is small [85]. For our analysis

we fixed the value to

∆E = 10 GeV . (5.9)

In the subsequently presented plots we only used 2HDM parameter sets that are not

yet excluded by experiment and that fulfill certain theoretical constraints. These data sets

have been generated with the tool ScannerS [86].9 The applied theoretical constraints

require that the chosen CP-conserving vacuum is the global minimum [87], that the 2HDM

potential is bounded from below [88] and that tree-level unitarity holds [89, 90]. For consis-

tency with experimental data the following conditions have been imposed. The electroweak

precision constraints [91–97] have to be satisfied, i.e. the S, T, U variables [91] predicted

by the model are within the 95% ellipsoid centered on the best fit point to the EW data.

Indirect experimental constraints are due to loop processes involving charged Higgs bosons,

that depend on tan β via the charged Higgs coupling to the fermions. They are mainly

due to B physics observables [98–100] and the measurement of Rb [101–104]. We have in-

cluded the most recent bound of mH± & 480 GeV for the type II and flipped 2HDM [105].

The results from LEP [106] and the recent ones from the LHC [107, 108]10 constrain the

charged Higgs mass to be above O(100 GeV) depending on the model type. In order to

check the compatibility with the LHC Higgs data ScannerS is interfaced with SusHi [110]

which computes the Higgs production cross sections through gluon fusion and b-quark fu-

sion at NNLO QCD. All other production cross sections are taken at NLO QCD [82]. The

2HDM decays were obtained from HDECAY [111, 112]. Note that in the computation of

these processes all EW corrections were consistently neglected, as they are not available

for the 2HDM. The exclusion limits were checked by using HiggsBounds [113–115] and

the compatibility with the observed signal for the 125 GeV Higgs boson was tested with

HiggsSignals [116]. For further details we refer to [117].

In our numerical analysis we investigate the applicability of the various proposed renor-

malization schemes. The goal is to find a renormalization scheme for the 2HDM, that is

process independent, gauge independent and numerically stable. All results that we show

are for the 2HDM type II.

5.1 Gauge dependence of the KOSY scheme

We start by analyzing the gauge dependence of the partial decay width, introduced through

the renormalization of the mixing angles α and β in the KOSY scheme. As an example

we choose the charged Higgs boson decay into the W boson and the light CP-even scalar

h corresponding to HSM, H± → W±h. For the renormalization of β we use the charged

sector and call the renormalization scheme accordingly KOSYc. The corresponding angular

counterterm δβ(1) is defined in eqs. (3.53), while δα is given by eq. (3.52). The size of the

9We thank Marco Sampaio, one of the authors of ScannerS, who kindly provided us with the necessary

data sets.
10The results reported in the recent ATLAS paper [109] have not been translated into bounds so far.
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gauge dependence will be quantified by

∆Γξ ≡
ΓNLO
ξ − ΓNLO

ξ=1

ΓNLO
ξ=1

. (5.10)

It parametrizes the deviation of the NLO partial decay width for an arbitrarily chosen

gauge parameter ξ in the Rξ gauge from the reference decay width chosen to be the NLO

width in the Feynman gauge, normalized to the reference value. For simplicity we only vary

the gauge parameter ξW and set ξZ = 1. The 2HDM scenario Scen1 that we investigate is

defined by the input parameters

Scen1: mH± = 780 GeV , mH = 742.84 GeV , mA = 700.13 GeV ,

tanβ = 1.46 , α = −0.57 , m2
12 = 2.076 · 105 GeV2 .

(5.11)

Figure 12 shows the ξW dependence of our process, ∆H±W±h
ξW

, as a function of ξW . The

kinks in the figure are due to threshold effects in the B0 functions entering the counterterms.

In detail, the kinks are given by the following parameter configurations and counterterms

Kink ξW Kinematic point Origin

1 0.2137 mH± ≈ mH +
√
ξWmW δβ(1)

2 0.60539 mh ≈
√
ξWmW +

√
ξWmW δα

3 21.3491 mH ≈
√
ξWmW +

√
ξWmW δα

4 66.3763 mH± ≈ mh +
√
ξWmW δβ(1)

With a relative variation of the NLO width of up to 20% due to the change of the gauge

parameter, the figure clearly demonstrates the gauge dependence of the NLO decay width

in the KOSY scheme. The explicit calculation shows that for large values of ξW the partial

decay width drops as −(m2
H−m2

h) ln(ξW ). This explicit gauge dependence makes a practical

use of the KOSY scheme impossible as it leads to non-physical gauge dependences in the

decay widths.

5.2 The processes Γ(H± → W±h/H) at NLO

We move on to the investigation of the size of the NLO corrections to the processes

H± → W±h/H and their dependence on the renormalization scheme. In our scenarios

h corresponds to the SM-like Higgs bosons. We define the quantity

∆Γ ≡ ΓNLO − ΓLO

ΓLO
, (5.12)

which measures the relative size of the NLO corrections compared to the LO decay width.

For the discussion of the H± →W±h decay we chose among the generated valid scenarios

again the one given by Scen1, but this time vary the charged Higgs boson mass. For

distinction, we call it Scen2 and it is given by

Scen2: mH± =(654 . . . 804) GeV , mH =742.84 GeV , mA=700.13 GeV ,

tanβ=1.46 , α=−0.57 , m2
12 =2.076 · 105 GeV2 .

(5.13)
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Figure 12. Gauge dependence of the decay H± → W±h within the KOSYc scheme. The 2HDM

parameters are given by Scen1 defined in eq. (5.11).

For H± →W±H we chose Scen3 where the mass mA is varied,

Scen3: mH± = 745.54 GeV , mH = 594.55 GeV , mA = (704 . . . 735) GeV ,

tanβ = 1.944 , α = −0.458 , m2
12 = 1.941 · 105 GeV2 .

(5.14)

In figure 13 we show the relative NLO corrections for H± →W±h, ∆ΓH
±W±h, as a function

of the charged Higgs boson mass for various renormalization schemes. We denote them as

proc : process-dependent

pc,o? : p? tadpole-pinched, δβ(1) (’c’) or δβ(2) (’o’)

pOSc,o : on-shell tadpole-pinched, δβ(1) or δβ(2)

KOSYc,o : gauge-dependent scheme, δβ(1) or δβ(2) .

(5.15)

The process-dependent renormalization refers to the renormalization of α via the process

H → ττ and of β via A → ττ . The process-dependent renormalization can be performed

by applying either the standard or the alternative tadpole scheme. The investigation of the

decay widths shows, however, that all decays discussed in this analysis, i.e. H± →W±h/H

and H → ZZ, are invariant with respect to a change of the tadpole scheme in the process-

dependent scheme.11 In the process-independent schemes we can choose to renormalize

β either through the charged sector, with the counterterm given by δβ(1), or through the

CP-odd sector, with the counterterm given by δβ(2). For the shown mH± range the LO

decay width varies from ΓLO = 0.0750 GeV at mH± = 654 GeV to ΓLO = 0.1474 GeV at

mH± = 804 GeV.

11For details on the cancellation of the contributions when changing from the standard to the alternative

tadpole scheme between the various building blocks of the NLO decay widths, we refer the reader to [118].
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Figure 13. Relative NLO corrections to H± → W±h for various renormalization schemes as

defined in eq. (5.15), with the 2HDM parameters given by Scen2, eq. (5.13); left: with, right:

without the process-dependent renormalization.

In figure 13 (left) we show results for the process-dependent renormalization and for

some representatives of the process-independent schemes, the pOSo, the pc? and for compar-

ison also the KOSYc scheme. As can be inferred from the left plot, the process-dependent

renormalization leads to much larger NLO corrections than the other schemes. The NLO

corrections can increase the LO width by more than a factor of three. For the process-

independent renormalization schemes on the other hand, the NLO corrections are much

milder and vary between about −11 to 20% depending on the renormalization scheme and

the charged Higgs mass value (and discarding the unphysical KOSY scheme). This can

be inferred from figure 13 (right) which displays the results for the process-independent

schemes, where the β renormalization is performed both through the charged and through

the CP-odd sector.12 Provided that the same choice for the β renormalization is made, the

OS tadpole-pinched scheme, pOS, leads to results closer to the KOSY scheme than the p?
tadpole-pinched scheme. This is due to the fact that the KOSY and the pOS scheme use

the scale of the OS masses for the evaluation of the self-energies. Also note that the schemes

which rely on the CP-odd sector for the renormalization of β, show a slightly weaker de-

pendence on the mass of the charged Higgs boson, as the latter enters the counterterm

δβ(2) only through a few diagrams (namely the tadpole contributions). An important con-

clusion, which can be drawn from the plots, is that the process-dependent renormalization

scheme is not advisable due to the induced unnaturally large NLO corrections compared

to the results in the other renormalization schemes.

Discarding the numerically unstable process-dependent scheme and the unphysical

KOSY scheme, we can use the comparison of the results for pc? and po? and the comparison

of those for pOSc and pOSo to estimate the remaining theoretical uncertainty due to missing

higher order corrections, based on a change of the renormalization scheme for β. In the

same way we can estimate the uncertainty based on a variation of the renormalization

12In all plots we show the gauge-dependent results of the KOSY scheme, however, only for β renormalized

via δβ(1) in order to keep a clear presentation of the plots.
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Figure 14. Scatter plots for all parameter points passing the theoretical and experimental con-

straints. Left: the relative NLO corrections to H± → W±h as a function of the LO width. Right:

the NLO width compared to the LO width. Shown for various renormalization schemes: process-

dependent (blue), pOS tadpole-pinched (green), p? tadpole-pinched (red), KOSYc (black).

scale by comparing the results for pOSo and po? or the results for pOSc and pc?. In the

investigated mH± range from the lower to the upper end, the remaining uncertainty varies

between 1% and 11%, when estimated from the scale change, and from close to 0 to 18%,

when estimated from the change of the β renormalization scheme. Note also that the

results in the tadpole-pinched scheme, when evaluated at the OS scale, are less affected by

a change of the renormalization scheme for δβ than in the p? scheme. The renormalization

of β through the charged sector is less sensitive to the scale choice than δβ(2), which uses

the CP-odd sector, as can be inferred by comparing pc? with pOSc on the one hand, and po?
and pOSo on the other hand. Taking these as indicators for theoretical uncertainties, one

might draw the conclusion that the pOSc scheme would be the best choice here. Finally,

we note that the kinks, which are independent of the renormalization scheme, are due to

the thresholds in the following counterterms and parameter configurations

Kink Kinematic point Origin

1 mH±(662.46 GeV) = mH(742.84 GeV)−MW δZH±H∓ , δZG±H∓

2 mH±(780.51 GeV) = mA(700.13 GeV) +MW δZH±H∓ , δZG±H∓

In figure 14 we show the relative NLO corrections for H± → W±h as a function

of the LO width for all generated scenarios compatible with the applied theoretical and

experimental constraints, on which we imposed the additional constraint that the NLO

width remains positive. We thus discarded all scenarios in which the relative negative

corrections in one of the renormalization schemes exceed 100%, a constraint which we

also imposed on the relative positive corrections. The colours indicate the results for

the process-dependent scheme, the p? tadpole-pinched schemes, the OS tadpole-pinched

schemes and the KOSYc scheme. The plot clearly demonstrates that for most of the

parameter points the process-dependent renormalization leads to relative NLO corrections
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Figure 15. Relative NLO corrections to H± → W±H for various renormalization schemes, with

the 2HDM parameters given by Scen3, eq. (5.14); left: with, right: without the process-dependent

renormalization. In the right plot the lines for KOSYc and pOSc lie on top of each other.

that are one order of magnitude above those obtained in the other schemes, and even

more for the points not shown in the plot yielding relative corrections beyond ±100%.

Apart from the problem of a negative width at NLO in the case of negative corrections,

relative higher order corrections of 100% and beyond immediately call for the inclusion

or resummation of corrections beyond NLO. The tadpole-pinched (and also the KOSY)

schemes induce corrections of typically a few percent up to 50%. In figure 14 (left) we

excluded scenarios where the decays become almost loop-induced. This happens when the

tree-level width becomes small as the limit cβ−α → 0 is approached, while the NLO width

is non-zero. Although in this limit also the NLO width tends towards zero, as can be seen

from the right plot in figure 14, the relative corrections cf. eq. (5.12) can become extremely

large. This is due to the fact that the LO width is proportional to c2
β−α while the NLO

width contains terms, which are linear in cβ−α and hence approach zero more slowly than

the LO width. From figure 14 (right) it is apparent that the process-independent schemes,

however, are well behaved and numerically stable. In the process-dependent scheme the

NLO corrections are unnaturally enhanced as compared to the NLO results in the tadpole-

pinched schemes so that the use of this scheme is not advisable.

In figure 15 we show the relative NLO corrections for the process H± →W±H with the

parameters given by Scen3, eq. (5.14). In the plotted mA range the LO decay width, which

does not depend on mA, is given by ΓLO = 4.0568 GeV. In the left plot we have included

the results for the process-dependent renormalization, for pOSo, pc? and KOSYc. The right

plot includes all renormalization schemes but the process-dependent one. The relative cor-

rections lie between about −7.70 to −7.97% in the investigated mass range.13 Altogether

the results for all schemes lie very close to each other, with the process-dependent scheme

deviating the most from the remaining schemes, although the difference in ∆Γ is of max-

imally 0.16% only. This behaviour can be understood by looking at the counterterm for

13The small mA mass range is due to the fact that all other parameter points for this scenario are

excluded.
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Figure 16. Relative NLO corrections to H → ZZ for various renormalization schemes, with the

2HDM parameters given by Scen4, eq. (5.16); left: with, right: without the process-dependent

renormalization.

the NLO process, eq. (4.11). The contributions from the angular counterterms δα and δβ

come with the factor 1/tβ−α, which is numerically very small in the SM-like limit h ≡ HSM.

Therefore any difference in the renormalization schemes for the angles will barely manifest

itself in the total NLO corrections. The zoomed in region in figure 15 (right) again shows

that the KOSY scheme is closer to pOS than to the other schemes and that the usage of

the OS scale in δβ is less sensitive to a change of the renormalization scheme, while the

renormalization of β via the charged sector is less sensitive to a scale change than the one

through the CP-odd sector.

5.3 The process Γ(H → ZZ) at NLO

We now turn to the discussion of the NLO corrections to the heavy Higgs boson decay into

a pair of Z bosons, H → ZZ. The scenario we have chosen is given by

Scen4: mH± =659.16 GeV , mH =(690 . . . 809) GeV , mA=705.44 GeV ,

tanβ=1.24 , α=−0.61 , m2
12 =2.045 · 105 GeV2 .

(5.16)

In figure 16 we show the relative NLO corrections ∆ΓH→ZZ for the decay H → ZZ as

a function of the heavier CP-even Higgs mass mH for different renormalization schemes.

The LO width ranges from 0.2314 GeV to 0.3845 GeV in the plotted mH range. The kinks

are due to

Kink Kinematic point Origin

1 mH(739.55 GeV) = mH±(659.16 GeV) +MW δZHH , δZhH

2 mH(796.63 GeV) = mA(705.44 GeV) +MZ δZHH , δZhH

In the left plot the process-dependent renormalization is included. Additionally we show

representatives for process-independent schemes, the pOSo, the pc? and the KOSYc scheme.
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Figure 17. Scatter plots for the relative NLO corrections to H → ZZ for all parameter points

passing the theoretical and experimental constraints as a function of the LO width; shown for var-

ious renormalization schemes: process-dependent (blue), pOS tadpole-pinched (green), p? tadpole-

pinched (red), KOSY (black).

Again the counterterm definition via tauonic heavy Higgs decays leads to much larger cor-

rections than the other schemes. In the investigated mass range it can increase the LO

decay width by more than a factor of two. The observed coincidence of the results for the

process-independent and process-dependent renormalization schemes at mH = 690 GeV is

accidental. The relative corrections in the process-dependent renormalization start to in-

crease quickly again for different mH values. The NLO increase in the process-independent

schemes, on the other hand, ranges from about -3 to 17% in the investigated parameter

range. The right plot shows the same behaviour we have seen previously. The results in

the KOSY and in the pOS scheme are closer to each other than to the p? scheme. Further-

more, the change of the β renormalization scheme affects the pOS scheme less than the p?
scheme and the β renormalization through the charged sector is less sensitive to a change

in the renormalization scale than the one through the CP-odd sector. Overall, in the in-

vestigated mass range, the theoretical uncertainty due to missing higher order corrections

can be estimated to be of less than a percent to around 6% based on a scale change, and

it ranges from the permille level to about 4% when estimated from the change of the β

renormalization scheme, discarding the numerically unstable process-dependent scheme.

Figure 17 shows the relative NLO corrections ∆ΓH→ZZ for H → ZZ as a function

of the LO width for all generated scenarios compatible with the applied theoretical

and experimental constraints. Again we excluded scenarios where the relative negative

corrections exceed 100%, a constraint which we also imposed on the relative positive

corrections. Furthermore, we discarded scenarios where the width becomes loop-induced,

i.e. where the LO width vanishes as compared to the NLO width. The colours indicate

the results for the various renormalization schemes. The plot clearly demonstrates the
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numerical instability of the process-dependent renormalization, which exceeds the relative

corrections in the other schemes by one and even up to two orders of magnitude when

including the scenarios with corrections beyond ±100%. For the process-independent

schemes the relative corrections are typically of the order of a few percent to 40%,

discarding the region with loop-induced widths.

Altogether we conclude, that the choice of the KOSY scheme for the renormaliza-

tion of the angular counterterms is precluded due to its manifest gauge dependence. The

choice of the process-dependent scheme is not advisable, as it leads to very large relative

NLO corrections.14 The process-independent tadpole-pinched schemes lead to results that

are manifestly gauge-independent and numerically stable. Among these schemes the OS

tadpole-pinched scheme turns out to be more stable when changing the β renormalization

scheme than the p? scheme for our investigated scenarios.

6 Conclusions and outlook

We have investigated the renormalization of the 2HDM with special focus on the mixing

angles α and β which diagonalize the Higgs mass matrices. These angles are highly relevant

for the phenomenology of the Higgs bosons as they enter the Higgs boson couplings and

therefore all Higgs observables. We have shown that if the tadpoles are treated in the more

usual approach, which we called ‘standard tadpole’, a process-independent definition of

the angular counterterms leads to gauge-dependent decay amplitudes and thus to gauge-

dependent physical observables. Therefore, the counterterms δα and δβ either have to be

defined through a physical process, or the treatment of the tadpoles has to be changed.

Following the ‘alternative tadpole’ scheme as proposed in [29] allows for a manifestly gauge-

independent definition of the masses and in particular of the mixing angles.

In this work we presented several distinct renormalization schemes and investigated

their implications by applying them to the NLO EW corrections in the decays H± →W±h,

H± → W±H and H → ZZ. It was explicitly shown that the scheme presented in [23]

leads to gauge-dependent decay widths. This scheme applies the standard tadpole scheme

and relates the angular counterterms to the off-diagonal wave function renormalization

constants. By using the alternative tadpole scheme together with the modified Higgs self-

energies obtained from the application of the pinch technique we introduced the ‘tadpole-

pinched’ scheme as a manifestly gauge-independent scheme for the angular counterterms.

We furthermore investigated the process-dependent definition of δα and δβ through the

decays H → ττ and A → ττ , respectively. In this scheme the angular counterterms are

gauge dependent when the standard tadpole scheme is applied, they are gauge independent

in case the alternative tadpole scheme is used. For the investigated decay processes and

scenarios, the process-dependent scheme turned out to lead to unnaturally large relative

NLO corrections. Based on the investigated parameter sets and decay widths this leads us

to the conclusion to propose the tadpole-pinched scheme as the renormalization scheme for

14This statement of course only holds for scenarios where the contributions from the angular counterterms

are not parametrically suppressed, in which case the NLO corrections obviously hardly depend on the

angular renormalization scheme.
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the mixing angles that is at the same time process independent, gauge independent and

numerically stable.

In order to complete the renormalization of the 2HDM, also the renormalization of

the soft-breaking parameter m2
12 has to be investigated. This parameter appears in the

couplings of the Higgs self-interactions and hence impacts the Higgs-to-Higgs decay widths.

The renormalization of m2
12 and the phenomenological investigation of the implications of

the higher order corrections for Higgs phenomenology will be the subject of a follow-up

paper.

Acknowledgments

The authors acknowledge financial support from the DAAD project “PPP Portugal 2015”

(ID: 57128671). Hanna Ziesche acknowledges financial support from the Graduiertenkolleg

“GRK 1694: Elementarteilchenphysik bei höchster Energie und höchster Präzision”. We
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A The tadpole scheme in the 2HDM

In this section we will explain in detail the tadpole scheme, by applying it to the 2HDM, and

show how to derive the relations for the mass counterterms and the wave function renor-

malization constants. We will furthermore derive which additional vertices have to be con-

sidered when performing explicit calculations in this scheme. At the end of this appendix,

in A.2, we will give the complete list of rules for the application of the tadpole scheme.

A.1 Derivation of the tadpole scheme

We start by setting the notation and by presenting the standard scheme before we move

on to the derivation of the tadpole scheme in the 2HDM.

A.1.1 Setting of the notation and tadpole renormalization

The expansion of the two Higgs doublets Φ1 and Φ2 about the VEVs, cf. eq. (2.4), leads to

the mass matrices that are obtained from the terms bilinear in the Higgs fields in the 2HDM

potential. Due to CP- and charge conservation they decompose into 2× 2 matrices for the

neutral CP-even, neutral CP-odd and charged Higgs sector, respectively. As we have seen in

section 2 the minimum conditions of the potential require the tree-level tadpole parameters

T1 and T2 to vanish. At lowest order they are given by eqs. (2.15) and (2.16). These tadpole

conditions can be exploited to eliminate m11 and m22. Higher order corrections, however,

lead to non-vanishing tadpole contributions that have to be taken into account. Applying
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eqs. (2.15) and (2.16) we arrive at the following mass matrices

M2
ρ =

(
m2

12
v2
v1

+ λ1v
2
1 −m2

12 + λ345v1v2

−m2
12 + λ345v1v2 m2

12
v1
v2

+ λ2v
2
2

)
+

(
T1
v1

0

0 T2
v2

)
(A.1)

M2
η =

(
m2

12

v1v2
− λ5

)(
v2

2 −v1v2

−v1v2 v2
1

)
+

(
T1
v1

0

0 T2
v2

)
(A.2)

M2
φ± =

(
m2

12

v1v2
− λ4 + λ5

2

)(
v2

2 −v1v2

−v1v2 v2
1

)
+

(
T1
v1

0

0 T2
v2

)
. (A.3)

Here we have explicitly kept the tadpole parameters although they vanish at tree level. This

helps us to keep track of their non-vanishing contributions at higher orders when performing

the renormalization program. The mass matrices are diagonalized by the rotation matrices

R rotating the scalar fields from the gauge basis into the mass basis, cf. eqs. (2.5)–(2.7),

D2
ρ = R(α)TM2

ρR(α) (A.4)

D2
η = R(β)TM2

ηR(β) (A.5)

D2
φ± = R(β)TM2

φ±R(β) . (A.6)

The scalar mass eigenstates with the same quantum numbers, grouped into the doublets

(H,h), (G0, A) and (G±, H±), mix at higher orders. The wave function renormaliza-

tion constants for the three doublets, introduced in eqs. (3.14)–(3.16), also develop non-

vanishing mixing contributions and form 2× 2 matrices with off-diagonal elements. In the

following we will use a generic notation and denote with φ1 and φ2 the two scalars of the

same doublet. With this notation we then have for eqs. (3.14)–(3.16)(
φ1

φ2

)
→
√
Zφ

(
φ1

φ2

)
≈
(
12×2 +

δZφ
2

)(
φ1

φ2

)
, (A.7)

with

δZφ
2
≡
( δZφ1φ1

2

δZφ1φ2
2

δZφ2φ1
2

δZφ2φ2
2

)
. (A.8)

For the diagonal mass matrices, from now on generically denoted by D2
φ, we introduce the

counterterm matrix δD2
φ, which is a symmetric 2 × 2 matrix whose specific form will be

determined below. With these definitions the renormalized self-energy Σ̂φ becomes

Σ̂φ(p2) ≡
(

Σ̂φ1φ1(p2) Σ̂φ1φ2(p2)

Σ̂φ2φ1(p2) Σ̂φ2φ2(p2)

)

= Σφ(p2)− δD2
φ +

δZ†φ
2

(
p2
12×2 −D2

φ

)
+
(
p2
12×2 −D2

φ

) δZφ
2

.

(A.9)

The self-energy Σφ is a symmetric 2 × 2 matrix containing the 1PI self-energies of the

scalar doublet (φ1, φ2). We require OS renormalization conditions for the scalar Higgs
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(a)

iT1/2

−

iδT1/2

= 0 ⇐⇒

(b)

iTH/h

−

iδTH/h

= 0

Figure 18. Renormalization condition for the tadpoles: (a) in the gauge basis, (b) in the mass

basis.

fields, yielding the following conditions for the counterterm δD2
φ and the wave function

renormalization constants δZφ, (i = 1, 2)

Re
[
δD2

φiφi

]
= Re

[
Σφiφi(m

2
φi

)
]

(A.10)

δZφiφi = −Re

[
∂Zφiφi(p2)

∂p2

]
p2=m2

φi

(A.11)

δZφiφj =
2

m2
φi
−m2

φj

Re
[
Σφiφj (m

2
φj

)− δD2
φiφj

]
, i 6= j . (A.12)

So far we have not specified δD2
φ. Its exact form depends on the treatment of the tadpoles

in the renormalization procedure and will be elaborated below. In order to guarantee the

correct minimization conditions for the Higgs potential also at one-loop order, the tadpoles

are renormalized as

T̂i = Ti − δTi = 0 , i = 1, 2 , (A.13)

where T1 and T2 are the sum of all one-loop tadpole contributions to the fields ρ1 and ρ2,

respectively, in the gauge basis. Applying the renormalization conditions we have for the

tadpole counterterms the conditions

δTi = Ti , i = 1, 2 . (A.14)

In the mass basis we have(
δT1

δT2

)
= R(α)

(
δTH

δTh

)
=

(
cαδTH − sαTh
sαδTH + cαTh

)
, (A.15)

and

δTH = TH and δTh = Th . (A.16)

The renormalization conditions for the tadpoles are shown pictorially in figure 18.

A.1.2 Mass counterterms and wave function renormalization constants in the

standard scheme

Regarding the renormalization of the masses, the bare mass of each particle in the 2HDM

is split into a physical mass and a counterterm as specified in section 3. The VEVs v1
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and v2 or v, respectively, are fixed at one-loop level such that their values in the tree-level

mass relations for the scalars, derived by calculating explicitly eqs. (A.4)–(A.6), lead to the

OS physical masses at one-loop level. The shift from the bare parameter to the physical

one-loop value is hence fully contained in the mass counterterms. In generic notation the

diagonalized bare mass matrices read

D2
φ,0 =

(
m2
φ1,0

0

0 m2
φ2,0

)
+RTϕ

(
T1,0
v1

0

0
T2,0
v2

)
Rϕ , (A.17)

where the subscript 0 denotes the bare quantities and ϕ = α for the CP-even and ϕ =

β for the CP-odd and charged doublets, respectively. We have explicitly kept the bare

tadpole parameters to keep track of their renormalization. Taking the renormalization of

the tadpole parameters into account, as they are given in eq. (A.14), we arrive at the NLO

counterterm for the mass matrix

δD2
φ ≈

(
δm2

φ1
0

0 δm2
φ2

)
+RTϕ

(
δT1
v1

0

0 δT2
v2

)
Rϕ ≡

(
δm2

φ1
0

0 δm2
φ2

)
+

(
δTφ1φ1 δTφ1φ2

δTφ1φ2 δTφ2φ2

)
,

(A.18)

where we have consistently neglected all terms beyond NLO. The explicit form of the Tφiφj
is found by using eq. (A.15) and applying the rotation to the mass basis,

δTHH =
c3
αsβ + s3

αcβ
vsβcβ

δTH −
s2αsβ−α
vs2β

δTh , (A.19)

δTHh = −s2αsβ−α
vs2β

δTH +
s2αcβ−α
vs2β

δTh , (A.20)

δThh =
s2αcβ−α
vs2β

δTH −
s3
αsβ − c3

αcβ
vsβcβ

δTh , (A.21)

δTG0G0 =
cβ−α
v

δTH +
sβ−α
v

δTh , (A.22)

δTG0A = −sβ−α
v

δTH +
cβ−α
v

δTh , (A.23)

δTAA =
cαs

3
β + sαc

3
β

vsβcβ
δTH −

sαs
3
β − cαc3

β

vsβcβ
δTh , (A.24)

δTG+G+ =
cβ−α
v

δTH +
sβ−α
v

δTh , (A.25)

δTG+H+ = −sβ−α
v

δTH +
cβ−α
v

δTh , (A.26)

δTH+H+ =
cαs

3
β + sαc

3
β

vsβcβ
δTH −

sαs
3
β − cαc3

β

vsβcβ
δTh . (A.27)
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By inserting eq. (A.18) into the renormalization conditions (A.10)–(A.12) we get the follow-

ing field strength renormalization constants and mass counterterms in the standard scheme

δm2
φi

= Re
[
Σφiφi(m

2
φi

)− δTφiφi
]

(A.28)

δZφiφi = −Re

[
∂Σφiφi(p

2)

∂p2

]
p2=m2

φi

(A.29)

δZφiφj =
2

m2
φi
−m2

φj

Re
[
Σφiφj (m

2
φj

)− δTφiφj
]
, i 6= j . (A.30)

These formulae can easily be generalized to the fermion and gauge boson sector. There,

however, no tadpole counterterms will be involved, as they are not part of the tree-level

mass relations. Still, tadpole terms have to be included in the calculations of fermion

and gauge boson self-energies. The counterterms introduced in eqs. (A.28)–(A.30) are in

general gauge dependent, which is not a problem, as long as all gauge dependences cancel

in physical observables. Since the renormalized masses must be gauge independent, the

bare masses must be gauge dependent as well.

A.1.3 Mass counterterms and wave function renormalization constants in the

tadpole scheme

We have seen that in the standard tadpole scheme the correct vacuum is reproduced by

renormalizing the VEVs accordingly at higher orders. Derived from the gauge-dependent

loop-corrected potential, the VEVs themselves are gauge dependent. As the physical OS

masses are gauge independent, the counterterms and the bare masses, which are given in

terms of the VEVs, therefore become gauge dependent. In the tadpole scheme [29] the same

renormalization conditions as given in eq. (A.14) and eq. (A.16), respectively, are used. The

crucial point, however, is the inclusion of the minimization conditions of the potential such

that the mass and coupling counterterms can be defined in a gauge-independent way. This

is achieved in the following way: in the alternative tadpole scheme the bare masses are

expressed in terms of the tree-level VEVs. As the tree-level VEVs are gauge independent,

the bare masses do not depend on the gauge choice either. In order to still reproduce the

correct minimum at higher orders, the VEVs acquire a shift. This shift now affects the

counterterms and not the bare masses, as the latter are expressed in terms of the tree-level

VEVs. The gauge dependences related to the VEV shifts cancel those of the counterterms,

so that the counterterms become gauge independent themselves. Together with the gauge-

independent bare masses the OS renormalized masses are gauge independent as they should

be. The VEVs are hence shifted when going from LO to NLO as

v1 → v1 + δv1 and v2 → v2 + δv2 . (A.31)

We emphasize that v1,2 represent the tree-level values of the VEVs. The shifts δv1,2 are

fixed by the minimization, that is, by the tadpole conditions. The tadpole parameters

are given in terms of the VEVs, cf. eqs. (2.15) and (2.16), so that a shift in the VEVs

corresponds to a shift in the tadpole parameters. Note that we apply the term ‘shift’
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here in order to describe the changes of the parameters due to the VEV shifts, and to

distinguish these from the counterterms for the chosen set of independent parameters.

The shifts in the VEVs are propagated into all parameters that depend on the VEVs.

These shifts are determined as follows: (i) Express the parameters in terms of v1 and

v2. (ii) Perform the shifts eq. (A.31) of the VEVs. (iii) Apply the tree-level relations

between the VEVs and the various parameters to remove the redundant parameters m2
11,

m2
22 and/or to simplify the expressions as convenient.

Thus, by shifting and subsequently applying the tadpole conditions eqs. (2.15)

and (2.16) we obtain

T1 → T1 +

(
m2

12

v2

v1
+ λ1v

2
1

)
δv1 +

(
−m2

12 + λ345v1v2

)
δv2 ≡ T1 + δT1 (A.32)

T2 → T2 +

(
−m2

12 + λ345v1v2

)
δv1 +

(
m2

12

v1

v2
+ λ2v

2
2

)
δv2 ≡ T2 + δT2 . (A.33)

Since the VEVs are determined order by order by applying the VEV shifts such that

the tadpole conditions (2.15) and (2.16) hold we identify on the right-hand side of both

equations the shift of the tadpole parameters induced by the shift of the VEVs with the

counterterms δT1 and δT2. By comparing the coefficients of δv1,2 in eqs. (A.32) and (A.33)

with the elements of the CP-even mass matrix given in eq. (A.1), the following relation

between the VEV shifts and the tadpole counterterms, that determine δv1,2 can be derived(
δT1

δT2

)
= M2

ρ

∣∣
Ti=0

(
δv1

δv2

)
. (A.34)

Rotation to the mass basis yields

(
δvH

δvh

)
=


δTH
m2
H

δTh
m2
h

 . (A.35)

By applying the renormalization condition depicted diagrammatically in figure 18, the shift

can be interpreted as a connected tadpole diagram, containing the Higgs tadpole and its

propagator at zero momentum transfer,

δvhi =
−i
m2
hi

iδThi =
−i
m2
hi


hi

 =

 hi

 , (A.36)

where hi ∈ {H,h} stands for the physical Higgs particles. For the consistent application

of the tadpole scheme the VEV shifts have to be applied wherever the VEVs appear

explicitly. As the calculation of the tadpole diagrams is usually performed in the mass
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basis, but the VEV shifts are introduced most conveniently in the gauge basis, we give the

relation between the two bases,


δv1

δv2

 =


δTH
m2
H
cα − δTh

m2
h
sα

δTH
m2
H
sα + δTh

m2
h
cα

 . (A.37)

For the illustration of the implications of the tadpole scheme we consider a specific example,

namely the NLO effects of the VEV shifts on the CP-odd mass matrix given in eq. (A.2).

The application of the shifts requires the replacement of the tadpoles by Ti + δTi, with the

δTi given in eqs. (A.32) and (A.33), and the replacement of all occurring VEVs by vi + δvi
so that we have

M2
η → M2

η +

(
δT1
v1

0

0 δT2
v2

)
+

(
m2

12

v1v2
− λ5

)(
2v2δv2 −v1δv2 − v2δv1

−v1δv2 − v2δv1 2v1δv1

)

− m2
12

v1v2

(
δv1

v1
+
δv2

v2

)(
v2

2 −v1v2

−v1v2 v2
1

)
+

−T1δv1v21
0

0 −T2δv2
v22

 .

(A.38)

Having applied the shifts, we can now use the tree-level relations again to eliminate the

last matrix in eq. (A.38), as the tadpole parameters vanish at tree-level. The rotation to

the mass basis is performed by applying the rotation matrix R(β) which is defined as the

matrix diagonalizing the tree-level mass matrix M2
η . We get

Dη → Dη +

(
δTG0G0 δTG0A

δTG0A δTAA

)
− Λ5v

s2β
(sβδv1 + cβδv2)

(
0 0

0 1

)

+
m2
A

v

(
0 sβδv1 − cβδv2

sβδv1 − cβδv2 2 (cβδv1 + sβδv2)

)

≡ Dη +

(
∆DG0G0 ∆DG0A

∆DG0A ∆DAA

)
,

(A.39)

where we applied the definition of Λ5 eq. (4.24) and the tree-level relation for the mass of

the pseudoscalar [12, 23]

m2
A = v2

(
m2

12

v1v2
− λ5

)
. (A.40)

We furthermore applied the definition of the tadpole matrix in the mass basis, eq. (A.18).

In the last line we defined the terms ∆DG0G0 , ∆DG0A and ∆DAA that contain all effects

of the VEV shifts on the physical mass matrix Dη. These shifts can be further evaluated.
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In order to do so, we introduce the coupling constants for the trilinear Higgs couplings [23]

gHG0G0 =
−cβ−αm2

H

v
(A.41)

ghG0G0 =
−sβ−αm2

h

v
(A.42)

gHAA =
−1

v

(
cβ−α(2m2

A −m2
H) +

sα+β

s2β
(2m2

H − v2Λ5)

)
(A.43)

ghAA =
−1

v

(
sβ−α(2m2

A −m2
h) +

cα+β

s2β
(2m2

h − v2Λ5)

)
(A.44)

gHAG0 =
−sβ−α
v

(m2
A −m2

H) (A.45)

ghAG0 =
cβ−α
v

(m2
A −m2

h) . (A.46)

By using the explicit form of the tadpole counterterm δTG0G0 given in eq. (A.22) the

vanishing Goldstone boson mass receives the shift contribution ∆DG0G0

∆DG0G0 = δTG0G0 = i
−icβ−α

v
m2
H

−i
m2
H

iδTH + i
−isβ−α

v
m2
h

−i
m2
h

iδTh

= i (igHG0G0)

( −i
m2
H

)
(iδTH) + i (ighG0G0)

( −i
m2
H

)
(iδTh)

= i


G0 G0H

+ i


G0 G0h

 .

(A.47)

In the second line we have used eqs. (A.41) and (A.42). The last line is the diagrammatic

representation of ∆TG0G0 . It is given by two tadpole contributions from the CP-even Higgs

bosons to the neutral Goldstone boson self-energy. Analogously, we find for ∆DAA by using

eqs. (A.24), (A.37), (A.43) and (A.44),

∆DAA = δTAA −
Λ5v

s2β
(sβδv1 + cβv2) +

2m2
A0

v
(cβδv1 + sβδv2)

= i
−i
v

(
cβ−α

(
2m2

A −m2
H

)
+
sα+β

s2β

(
2m2

H − v2Λ5

)) −i
m2
H

iδTH

+ i
−i
v

(
sβ−α

(
2m2

A −m2
h

)
+
cα+β

s2β

(
2m2

h − v2Λ5

)) −i
m2
h

iδTh

= i (igHAA)

( −i
m2
H

)
(iδTH) + i (ighAA)

( −i
m2
h

)
(iδTh)

= i


A A

H

+ i


A A

h

 .

(A.48)

The last line again reproduces the diagrammatic representation of the shift. The

shift is hence given by two CP-even tadpole contributions to the A boson self-

energy. The off-diagonal shift ∆DG0A finally can be cast into the form by applying
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eqs. (A.23), (A.37), (A.45) and (A.46),

∆DG0A = δTG0A +
m2
A

v
(sβδv1 − cβδv2)

= i
−isβ−α

v

(
m2
A −m2

H

) −i
m2
H

iδTH + i
icβ−α
v

(
m2
A −m2

h

) −i
m2
h

iδTh

= i (igHAG0)

( −i
m2
H

)
(iδTH) + i (ighAG0)

( −i
m2
h

)
(iδTh)

= i


G0 A

H

+ i


G0 A

h

 .

(A.49)

The diagrammatic representation in the last line reveals that the shift ∆DG0A consists of

two CP-even tadpole contributions to the off-diagonal G0A self-energy. It is straightforward

to derive the remaining shifts for the whole scalar sector. The total shift of the mass

matrices, which is given by the shifts ∆D, induced by the NLO shifts of the VEVs and by

the mass counterterms, then reads

δD2
φ =

(
δm2

φ1
0

0 δm2
φ2

)
+

(
∆Dφ1φ1 ∆Dφ1φ2

∆Dφ1φ2 ∆Dφ2φ2

)
, (A.50)

with the explicit form of the additional mass shifts (i = 1, 2)

∆Dφiφj = i

 φi φj
H

+ i

 φi φj
h

 , (A.51)

where (φ1, φ2) refers to the pairs (H,h), (G0, A) and (G±, H±), respectively. Equa-

tion (A.50) makes evident that in the tadpole scheme the tadpole counterterms δT1 and

δT2, induced through the VEV shifts in eqs. (A.32) and (A.33), have become part of the

shift parameters ∆Dφiφj of the physical mass matrices of the scalar sector. They do not

appear explicitly as counterterms, in contrast to the standard scheme where δT1 and δT2

were considered as counterterms being explicitly part of δD2
φ, cf. eq. (A.18). Therefore,

in the tadpole scheme, the tadpole counterterms eqs. (A.19)–(A.27) do not belong to the

definition of the mass counterterms and wave function renormalization constants. With

the redefinition of the 1PI self-energy as

iΣtad
φiφj

(p2) ≡ iΣφiφj (p
2)− i∆Dφiφj (A.52)

we obtain by inserting eq. (A.50) in eq. (A.9) the following form of the renormalized self-

energy,

Σ̂φ(p2) ≡ Σtad
φ (p2)−

(
δm2

φ1
0

0 δm2
φ2

)
+
δZ†φ

2

(
p2
12×2 −D2

φ

)
+
(
p2
12×2 −D2

φ

) δZφ
2
. (A.53)
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iΣtad(p2) := + +

Figure 19. Modified self-energy iΣtad(p2) in the tadpole scheme, consisting of all 1PI self-energy

diagrams together with the one-loop tadpole diagrams, indicated by a gray blob.

And finally the counterterms and wave function renormalization constants in the tadpole

scheme read

δm2
φi

= Re
[
Σtad
φiφi

(m2
φi

)
]

(A.54)

δZφiφi = −Re

[
∂Σtad

φiφi
(p2)

∂p2

]
p2=m2

φi

(A.55)

δZφiφj =
2

m2
φi
−m2

φj

Re
[
Σtad
φiφj

(m2
φj

)
]
, i 6= j . (A.56)

These results can be generalized to the gauge boson and fermion sectors. The application

of the tadpole scheme hence requires a redefinition of the self-energies as depicted dia-

grammatically in figure 19. In the gauge and fermion sectors this implies that the tadpole

diagrams of the scalar Higgs bosons that couple to the gauge boson and fermion, respec-

tively, have to be included in their self-energy. Furthermore, in the scalar sector the tadpole

counterterms drop out of the definition of the wave function renormalization constants and

mass counterterms.15

The VEV shifts introduced in eq. (A.31) also have implications for the coupling con-

stants of the vertices. Let us consider the example of the Higgs H coupling to a pair of

ZµZν bosons. Defining the needed coupling constants through the Feynman rules

HZµZν : igHZZg
µν (A.57)

HHZµZν : igHHZZg
µν , (A.58)

we have

gHZZ =
g2vcβ−α

2c2
W

=
g2

2c2
W

(cαv1 + sαv2) (A.59)

gHHZZ =
g2

2c2
W

. (A.60)

The shifts eq. (A.31) introduce a shift in the coupling constants. In order to perform this

shift consistently, the coupling constants must be expressed in terms of the VEVs v1 and

v2. When doing so, care has to be taken, to differentiate between the angles α and β in

the sense of mixing angles and β in the sense of the ratio of the VEVs, cf. eq. (2.9), and

15In the gauge and fermion sectors they do not appear anyway as the mass matrices do not depend on

m2
11 and m2

22 that are traded for the tadpoles.
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α in the sense of the ratio of the 2HDM parameters16 given in eq. (2.12). The VEV shifts

only affect the latter two.

The quartic coupling obviously does not receive any shift, while gHZZ contains β as

ratio of the VEVs so that it receives a shift. The angle α is a mixing angle here. At NLO

we therefore have to make the replacement

igHZZ → igHZZ +
ig2

2c2
W

(cαδv1 + sαδv2)

= igHZZ +
ig2

2c2
W

[
(c2
α + s2

α)
δTH
m2
H

+ (sαcα − sαcα)
δTh
m2
h

]
= igHZZ + igHHZZ

( −i
m2
H

)
iδTH

= igHZZ +

 H

Z

Z

H


trunc

≡ igtad
HZZ .

(A.61)

The subscript ‘trunc’ means that all Lorentz structure of the vector bosons as well as the

Lorentz structure of the coupling has been suppressed here for simplicity. In the derivation

of this equation we have used eq. (A.37) and the explicit form of the quartic coupling

constant, eq. (A.60). The Feynman rule for the HZZ vertex in the tadpole scheme is then

given by

igtad
HZZ g

µν . (A.62)

The above result can be generalized to the whole 2HDM. In the tadpole scheme ad-

ditional virtual vertex corrections have to be taken into account that manifest themselves

in form of tadpdole vertex diagrams. The rule to be applied here is, that all those 2HDM

trilinear vertices receive corrections, for which the resulting quartic coupling constant, con-

necting the original trilinear vertex to the CP-even Higgs from the tadpole, exists. In the

case above the vertex gHHZZ exists, so that the vertex acquires a tadpole contribution with

H, but not with h, as the vertex ghHZZ does not exist.

As a last example we look at the coupling between W±µ , H±(p′) and h(p), where p′(p)

denotes the outgoing (incoming) momentum of H± (h). The Feynman rule for the coupling

is given by

W±µ H
±h : ∓i gW±H±h (p+ p′)µ , (A.63)

with the coupling constant

gW±H±h =
gcβ−α

2
. (A.64)

Both angles in this coupling are true mixing angles, so that no VEV shift has to be applied.

Therefore, this vertex does not change in the tadpole scheme. This is in accordance with

the rule given above: there exists no vertex gW±H±hh nor gW±H±hH that could connect a

tadpole with h or H to the trilinear vertex.

16Note that in all couplings but the trilinear and quartic Higgs self-couplings α has the role of a mixing an-

gle. Only in the Higgs self-couplings α partly appears in the sense of the ratio of 2HDM potential parameters.
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A.2 Rules for the tadpole scheme in the 2HDM

In this appendix we summarize all rules of the tadpole scheme for the 2HDM at NLO. The

general rules are:

Self-energies: the self-energies in the wave function renormalization constants and

counterterms change such that they contain additional tadpole contributions: Σ(p2) →
Σtad(p2).

Tadpole counterterms: the tadpole counterterms in the scalar sector vanish: δTφiφj →
0 (i, j = 1, 2).

Vertex corrections: in the virtual vertex corrections additional tadpole contributions

have to be taken into account if the resulting coupling exists in the 2HDM.

Explicitly, this means that the following counterterms are the same in the standard

and the alternative tadpole scheme:

Counterterms independent of the choice of the tadpole scheme:

Tadpoles: δTH , δTh

Gauge sector: δZe, δg, δZWW , δZZZ , δZZγ , δZγZ

Fermion sector: δZLFF , δZ
R
FF

Scalar sector: δZφiφi

Vertices: λFFS , λFFV , λSSV , λSUU , λUUV , λV V V , λV V V V

(A.65)

for all possible combinations of fermions F , gauge bosons V , ghosts U , scalars S and

φi,j ≡ H,h,G0, A,G±, H± within the 2HDM.

The following counterterms and wave function renormalization constants depend on

the choice of the tadpole scheme. We give the relations between the standard tadpole

scheme, denoted by the superscript ’stand’, and the alternative tadpole scheme, denoted

by the superscript ’tad’. The subscript ‘trunc’ means, that all spinors, all Lorentz structure

of the vector bosons and the Lorentz structure of the coupling has been suppressed where

applicable.

Tadpole-scheme-dependent counterterms: gauge sector:

(δm2
W )tad =(δm2

W )stand + i


W± W±H


trunc

+ i


W± W±h


trunc

(A.66)

(δm2
Z)tad =(δm2

Z)stand + i

 Z ZH


trunc

+ i

 Z Zh


trunc

(A.67)
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Fermion sector:

(δmF )tad = (δmF )stand − i

 F FH


trunc

− i

 F Fh


trunc
(A.68)

Scalar sector:

(δmφi)
tad =(δmφi)

stand + δTφiφi − i


φi φi

H


trunc

−i


φi φi

h


trunc

(A.69)

for all possible combinations of φi,j ≡ H,h,A,H±.

(δZφiφj )
tad = (δZφiφj )

stand (A.70)

+
2

m2
φi
−m2

φj

δTφiφj−i


φi φj
H


trunc

−i


φi φj

h


trunc

 ,
where φi 6= φj .

We encounter additional contributions to the vertices when changing from the standard

to the tadpole scheme. Below, the g denote the coupling constants, i.e. we have suppressed

the Lorentz structure of the vertex where applicable.

Triple scalar vertices:

igφiφjφk → igφiφjφk +

 φi

φj

φk

H


trunc

+

 φi

φj

φk

h


trunc

(A.71)

for all scalars φi,j,k ≡ H,h,G0, A,G±, H±, wherever the resulting quartic couplings λφiφjφkh
and λφiφjφkH exist in the 2HDM.

Scalar-vector-vector vertices:

igφiVjVk → igφiVjVk +

 φi

Vj

Vk

H


trunc

+

 φi

Vj

Vk

h


trunc

(A.72)

for all scalars φi,j,k ≡ H,h,G0, A,G±, H±, and gauge bosons Vj,k ≡ γ, Z,W±, wherever

the resulting quartic couplings λφiVjVkh and λφiVjVkH exist in the 2HDM.
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[112] R. Harlander, M. Mühlleitner, J. Rathsman, M. Spira and O. St̊al, Interim

recommendations for the evaluation of Higgs production cross sections and branching ratios

at the LHC in the two-Higgs-doublet model, arXiv:1312.5571 [INSPIRE].

[113] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds:

confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron,

Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].

[114] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0:

confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP

and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].

[115] P. Bechtle et al., HiggsBounds-4: improved tests of extended Higgs sectors against exclusion

bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693

[arXiv:1311.0055] [INSPIRE].

[116] P. Bechtle, S. Heinemeyer, O. St̊al, T. Stefaniak and G. Weiglein, HiggsSignals: confronting

arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C

74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].

[117] P.M. Ferreira, R. Guedes, M.O.P. Sampaio and R. Santos, Wrong sign and symmetric limits

and non-decoupling in 2HDMs, JHEP 12 (2014) 067 [arXiv:1409.6723] [INSPIRE].

[118] M. Krause, On the renormalization of the two-Higgs-doublet model, Master Thesis,

Karlsruhe Institute of Technology, Germany (2016).

– 60 –

http://dx.doi.org/10.1007/JHEP03(2016)127
http://arxiv.org/abs/1512.03704
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.03704
http://dx.doi.org/10.1016/j.cpc.2013.02.006
http://arxiv.org/abs/1212.3249
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.3249
http://dx.doi.org/10.1016/S0010-4655(97)00123-9
http://arxiv.org/abs/hep-ph/9704448
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9704448
http://arxiv.org/abs/1312.5571
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5571
http://dx.doi.org/10.1016/j.cpc.2009.09.003
http://arxiv.org/abs/0811.4169
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.4169
http://dx.doi.org/10.1016/j.cpc.2011.07.015
http://arxiv.org/abs/1102.1898
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.1898
http://dx.doi.org/10.1140/epjc/s10052-013-2693-2
http://arxiv.org/abs/1311.0055
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.0055
http://dx.doi.org/10.1140/epjc/s10052-013-2711-4
http://dx.doi.org/10.1140/epjc/s10052-013-2711-4
http://arxiv.org/abs/1305.1933
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1933
http://dx.doi.org/10.1007/JHEP12(2014)067
http://arxiv.org/abs/1409.6723
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.6723

	Introduction
	Description of the model 
	Renormalization 
	Renormalization conditions
	Standard tadpole scheme 
	The KOSY scheme
	Alternative tadpole scheme 
	Process-dependent scheme 


	One-loop EW corrected decay widths 
	Electroweak one-loop corrections to H**pm -> W**pm h/H
	Electroweak one-loop corrections to H -> tau tau and A -> tau tau
	The gauge (in)dependence of the angular counterterms 
	Electroweak one-loop corrections to H -> ZZ

	Numerical analysis 
	Gauge dependence of the KOSY scheme
	The processes Gamma (H**pm -> W**pm h/H) at NLO
	The process Gamma (H -> ZZ) at NLO

	Conclusions and outlook
	The tadpole scheme in the 2HDM 
	Derivation of the tadpole scheme 
	Setting of the notation and tadpole renormalization
	Mass counterterms and wave function renormalization constants in the standard scheme
	Mass counterterms and wave function renormalization constants in the tadpole scheme

	Rules for the tadpole scheme in the 2HDM 


