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Abstract

The global agenda for malaria has, once again, embraced the possibility of eradication. As history has shown, there
will be no single magic bullet that can be applied to every epidemiological setting. Africa has a diverse malaria
ecology, lending itself to some of the highest disease burden areas of the world and a wide range of clinical
epidemiological patterns making control with our current tools challenging. This commentary highlights why the
epidemiology of Plasmodium falciparum malaria in Africa should not be forgotten when planning an eradication
strategy, and why forgetting Africa will, once again, be the single largest threat to any hope for global eradication.
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Background

Malaria is a mosquito borne disease which, in humans,
is caused by five protozoa: Plasmodium falciparum, P.
vivax, P. malariae, related sibling species of P. ovale,
and P. knowlesi. P. vivax is the most cosmopolitan of the
human malarias, reaching historical latitudinal extremes
of 64° north and 32° south [1]. The public health burden
posed by P. vivax is no longer regarded as benign, causing
severe morbidity and death [2]. Nevertheless, P. falciparum
remains the single most important threat to public health
at a global scale, accounting for more than 90% of the
world’s malaria mortality.

Forty thousand years on, P. falciparum remains en-
trenched in Africa, largely as a result of optimal environ-
mental conditions for the world’s most efficient Anopheline
mosquito vectors, amid sustained poverty. We remain
unacceptably ignorant of the full extent of the public
health burden posed by this parasite; however, it is clear
that, over time, the mortality effects of P. falciparum have
been significant, serving as a potent selective force on the
human genome to confer red cell and hemoglobin genetic
advantages against disease and death [3]. It is reasonable
to assume that Africa has contributed most to the global
malaria burden for millennia.
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Advances and challenges with malaria control

Incredible progress was made following the Second World
War, with the discoveries of DDT and chloroquine, shrink-
ing the global extents of both P. vivax and P. falciparum,
benefiting large parts of the Americas, Europe, and Asia.
However, the elimination ambition in sub-Saharan Africa
came to an abrupt end by the early 1960s when it was
recognized that interrupting transmission with indoor
residual house-spraying and/or mass drug administration
was almost impossible [4].

Revisiting this early literature has important implica-
tions for the control of malaria today. First, targeting adult
vectors and the parasite was far more successful than
targeting the vector alone [5]; second, despite not always
being able to interrupt the incidence of new infections,
the disease burden and mortality plummeted to very low
levels when there was complete intervention coverage;
finally when these ‘experiments’ came to an end, clinical
and fatal events returned quickly to pre-intervention levels
and in some cases with worsened consequences [6].

Malaria across Africa reached epidemic proportions in
the 1990s [7], leading to the launch of a new global strat-
egy in 2000 with Africa center stage. During the Global
Malaria Eradication campaign of the 1950s, building a
national understanding of the epidemiology of transmis-
sion, cartography of risk, endemicity, and vector species
distributions was vital. In addition, detailed pilot investi-
gations molded decisions on whether elimination was
feasible, what was required, and where within a country
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it might achieved. This level of epidemiological intel-
ligence was absent at the launch of the Roll Back
Malaria campaign in 2000.

Epidemiological intelligence

The clinical epidemiology of P. falciparum is complex
and interest in unraveling its mysteries goes back over
80 years. What we do know is that repeated parasite
exposure leads to the acquisition of a clinical immunity
that first protects against the severe consequences of
infection, immunity develops more slowly to the milder
forms of the disease and much more slowly by regulating
the intensity of blood stage infection. We do not know
how many new parasite exposures are required to invoke
a functional clinical immune response, but in areas where
multiple new infections are experienced quickly from
birth, immunity is acquired faster than in an area where
the intensity of parasite transmission is much lower. This
remains one of the fundamental conceptual frameworks
of malaria disease epidemiology that governs the age and
clinical patterns of health outcomes, rates of morbidity
and mortality, and the varying mixes of control options
available on an elimination pathway (Figure 1).

There is evidence [8-12] to suggest that despite a
changing pathogenesis and age pattern of disease, the
overall rate of severe, life-threatening disease in child-
hood remains stable for a large part of the transmission
curve (bold line in Figure 1) and only when conditions
within the mesoendemic range are reached do the rates
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of disease begin to significantly decline. As transmission
declines further, the risk of infection becomes more
directly related to the chances of becoming sick and
developing severe complications until a state is reached
where infection risks and disease outcomes are both
rare. Lacking functional immunity, the consequences of
any new infection for an individual become increasingly
severe. These unstable conditions become very suscep-
tible to even the smallest of perturbations in climate,
ecology, population movement, and intervention efficacy
(drug and insecticide resistance) or coverage.

Throughout the transmission spectrum, malaria adheres
to some basic infectious disease principles: some people
are more susceptible to a poor disease outcome than
others, some are bitten more frequently than others, and
some are more infectious than others [13]. This hetero-
geneity becomes increasingly relevant to control with
declining intensity of transmission to the point below 1%
PfPR ,_;, where foci of risks emerge. When elimination
plans are activated, these sinks of transmission become
the target of intervention.

After a decade of Roll Back Malaria in Africa, almost
184 million Africans still live under conditions of hyper-
holoendemic transmission [12], despite impressive coverage
of insecticide-treated nets (ITNs) since 2006. Mathematical
theory suggests that ITNs alone might not reduce parasite
exposure enough in the highest endemicity classes, even
when deployed to protect over 80% of the population and
used every night [14,15]. The same theory suggests that
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Figure 1 Conceptual framework of the clinical epidemiology of Plasmodium falciparum under declining parasite transmission intensity
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ITNs with similar coverage and use will transition commu-
nities from a natural mesoendemic range to the lower end
of the hypoendemic range within 5 to 8 years. There is an
increasing body of evidence to suggest we are witnessing
intractable disease risks across the intense transmission
belt of middle Africa; transmission drops moderately, age
patterns of disease re-align, but overall disease incidence
remains the same or rises [16-20].

What is imperative is that sick patients are diagnosed
properly and managed quickly and with the right drugs.
This is true across the entire transmission spectrum. The
vectors and the parasite are not going anywhere soon and
there is a school of thought that some of the greatest ben-
efits will come when Africa is lifted out of poverty.
Urbanization will have an impact on vector abundance
and species composition. Improved health systems will in-
crease access to therapeutics and prophylactics targeting
the parasite as well as the ability to track residual foci
of risk. All would benefit from a growing economy. It is
no coincidence that malaria was finally eliminated from
southern European countries and the United States at
times when economies were exponentially expanding.

Conclusions

As we pursue an agenda to shrink the world malaria
map, Africa remains the focus of greatest disease burden
and cannot be forgotten. Single approaches based on
human-vector contact might be inadequate in high
transmission areas. In the absence of a vaccine, how do
we tackle the intractable heartland of high transmission?
Where ITNs have been scaled up and communities have
transitioned to hypoendemic states, the remaining foci
will serve to catalyze epidemics if intervention coverage
is scaled down. How do we simultaneously target vectors
and parasites to maximize impact on transmission?
What cost effective interventions and how should these
be deployed in traditionally low, stable, and unstable
margins of Africa? Answers to these questions must be
guided by a better epidemiological framework and ample
data. Ignorance of the epidemiological diversity that
characterizes Africa and the challenges it poses to sus-
tained control and elimination will be the single largest
threat to the global eradication agenda.

Abbreviation
[TNs: Insecticide-treated nets.
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