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1 Introduction

Dimensional reductions of string theory on compact manifolds produce the most promising

candidates for gravitational theories with UV completions in dimensions lower than ten.

While many such backgrounds are well understood at the classical level, a complete under-

standing of quantum string corrections remains a challenging task. Often, supersymmetry

provides a powerful tool for controlling these corrections, at least at the two-derivative

level.
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In this paper, we focus on a class of theories which, while exhibiting an N = 2 vac-

uum, admit further (spontaneously broken) supersymmetries. Since these provide non-

renormalization theorems for some of the quantities in the off-shell supersymmetric action,

they can help to constrain quantum corrections. Upon supersymmetry breaking, masses

generated by the super-Higgs mechanism give rise to additional quantum corrections. How-

ever, they also are constrained by the spontaneously broken supersymmetry.

G-structure manifolds which admit nowhere vanishing spinors (see e.g. [1–6]) are natu-

ral candidates for internal spaces on which to reduce the supergravity action to four dimen-

sions in a supersymmetric fashion.1 It has been argued in [9–11] that such reductions can

yield supersymmetric effective theories which do not necessarily possess supersymmetric

vacua.2 We want to illustrate in this work how such off-shell supersymmetries can help in

understanding quantum corrections.

In the following, our main focus will be on compactifications on Calabi-Yau three-

folds, an extensively studied class of backgrounds in string theory. These manifolds have

holonomy group SU(3) and hence permit a covariantly constant spinor η, as opposed to

a spinor which is merely nowhere vanishing. Compactifications of type II string theory

on Calabi-Yau threefolds give rise to N = 2 supergravity in four dimensions. The gen-

eral form of perturbative and worldsheet instanton corrections is completely known at the

two-derivative level. While the worldsheet instanton corrections are computed by Gromov-

Witten invariants [16], the only perturbative α′ correction arises at cubic order and cor-

rects the cubic holomorphic prepotential of the complexified Kähler structure B + iJ by

a constant proportional to the Euler number of the Calabi-Yau threefold. Similarly, the

hypermultiplet sector gets corrected at one loop string order by a contribution which is

also proportional to the Euler number [17, 18]. This means in particular that if the Euler

number vanishes, there are no perturbative corrections at the two-derivative level. The

vanishing of these corrections suggests the presence of an additional symmetry. Indeed, we

will argue that this additional symmetry is a consequence of the Hopf theorem. It states

that any manifold with vanishing Euler number admits a nowhere vanishing vector field

v̂ (and vice versa).3 Applied to Calabi-Yau threefolds, this implies that we can define a

second nowhere vanishing spinor (v̂mΓm)η that is everywhere linearly independent of η.

Therefore, Calabi-Yau threefolds of vanishing Euler number exhibit SU(2) structure, in

addition to SU(3) holonomy. One might therefore expect that compactification on such

distinguished Calabi-Yau manifolds yields a four-dimensional action admitting twice the

conventional number of supercharges, albeit off-shell.

SU(2) structures and reductions on SU(2) structure manifolds have been discussed

in [20–26]. In particular, it was shown that the dimensional reduction of the type II string

1A priori, a G-structure does not necessarily refer to the reduction of the structure group of the frame

bundle, but can be defined with regard to a larger bundle, such as the generalized tangent bundle, cf. [7, 8].
2For conditions for the existence of four-dimensional supersymmetric vacua, see [12–15].
3In fact, the nowhere vanishing vector is complex, as can be seen by using the non-degenerate complex

structure of the Calabi-Yau, see the discussion at the beginning of section 4.1. More generally, the vanishing

Euler number on any compact six-dimensional manifold is a necessary and sufficient condition for the

existence of a pair of vectors that are linearly independent at any point of the manifold [19].
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Figure 1. Compactifications on Calabi-Yau manifolds with vanishing Euler number yield N = 4

gauged supergravities with N = 2 vacua.

action on an SU(2) structure manifold gives rise to N = 4 gauged supergravity in four

dimensions. These reductions take subclasses of SU(2) structure manifolds as a starting

point, for which certain torsion classes are absent [21, 24, 25]. As we will explain below,

Calabi-Yau threefolds of vanishing Euler number always lie outside of these subclasses,

hence require a more general treatment of SU(2) structure backgrounds. In this work, we

will perform a reduction of the type IIA action on manifolds of general SU(2) structure.

The resulting gauged N = 4 supergravity will admit N = 2 Minkowski vacua, where half of

the supersymmetries are spontaneously broken. The effective action with eight unbroken

supercharges around such vacua yields the N = 2 supergravity of a standard Calabi-Yau

reduction in type IIA.

As N = 4 gauged supergravity does not permit perturbative corrections at the two-

derivative level, this would explain their absence for Calabi-Yau threefolds with vanishing

Euler number. Furthermore, even non-perturbative corrections at the two-derivative level

are restricted by N = 4 supersymmetry. One can thus expect simplifications even at the

non-perturbative level when compactifying on such Calabi-Yau manifolds, perhaps in the

form of relations among their Gromov-Witten invariants. In principle, all ten-dimensional

modes could be rewritten in terms of N = 4 massive multiplets in four dimensions. The

quantum corrections coming from these modes would then all have to fit into the framework

of N = 4 gauged supergravity, yielding further constraints on quantum corrections for

Calabi-Yau threefold backgrounds with vanishing Euler number.

This work is organized as follows. In section 2, we will review basic facts concerning

SU(2) structures. Section 3 contains the main work on the SU(2)-structure reduction of

the type IIA action to four dimensions, yielding an N = 4 gauged supergravity. Section 3.1

might be of particular interest, where we discuss the truncation ansatz. In section 3.5, we

identify the N = 4 gauged supergravity in terms of its gauging parameters, discuss the
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four-dimensional gauge group and identify supersymmetric vacua. Section 4 contains the

discussion of Calabi-Yau manifolds of Euler number zero. The corresponding spontaneous

breaking of supersymmetry to N = 2 is discussed in section 5. In section 6, we collect

and further discuss our results. Details of the reduction have been assembled in the rather

technical appendix A, and the derivation of the gravitino mass matrix is performed in

appendix B.

2 Basics on SU(2) structure manifolds

Let us start by introducing the concept of an SU(2) structure on a six-dimensional manifold

Y . This section is meant as a brief review of the basic properties of SU(2) structures. For

more information, see for instance [20–23].

A six-dimensional SU(2) structure manifold Y admits a pair of nowhere vanishing

spinors ηi, i = 1, 2, whose norm we fix by imposing

η̄iηj = δij . (2.1)

Based on these, one can introduce a SU(2) triple of real two-forms Ja, a = 1, 2, 3, and a

holomorphic one-form K, via

Ja =

√
3

2
i(σa)ij η̄

j
+γmnη+ idx

m ∧ dxn , K = −εij η̄− iγmη+ jdx
m . (2.2)

We have here introduced the notation

η+ i = ηi , η− i = ηci , (2.3)

where the superscript c indicates charge conjugation. The Fierz identities for these spinors

can now be parametrized as follows:

(Ψ+)ji ≡ η+ i ⊗ η̄j+ =
1

8

(
1 +

1

2
(K ∧ K̄)mnγ

mn

)(
δji (1− γ(4)) +

√
2

3
i(σa)

j
iJ

a
pqγ

pq

)
,

(Ψ−)ij ≡ ηi− ⊗ η̄− j =
1

8

(
1− 1

2
(K ∧ K̄)mnγ

mn

)(
δij(1− γ(4))−

√
2

3
i(σa)

i
jJ

a
pqγ

pq

)
,

(Ψ0)ij ≡ η+ i ⊗ η̄− j =
1

8
Kmγ

m

(
εij(1− γ(4)) +

√
2

3
i(σa)ijJ

a
pqγ

pq

)
,

(Ψ̄0)ij ≡ ηi− ⊗ η̄
j
+ =

1

8
K̄mγ

m

(
εij(1− γ(4))−

√
2

3
i(σa)

ijJapqγ
pq

)
,

(2.4)

where (σa)ij = (σa)
k
i εkj and γ(4) = vol4 pqrs γ

pqrs. Taking the products of these bilinears

and using (2.1) yields the relations

Ja ∧ Jb = δab vol4 (2.5)

and

K ·K = 0 , K̄ ·K = 2 , ιKJ
a = 0 . (2.6)
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Alternatively, one can define an SU(2)-structure with no reference to spinors, by specifying

an SU(2) triple of real two-forms Ja, a = 1, 2, 3, and a holomorphic one-form K which

satisfy the conditions (2.5) and (2.6).

The existence of the one-form K permits the introduction of an almost product struc-

ture P : TY → TY on the manifold, defined locally via

Pm
n = KmK̄

n + K̄mK
n − δ n

m . (2.7)

The eigenspaces T2Y and T4Y of P to the eigenvalues +1 and −1 respectively yield a global

decomposition of the tangent space,

TY = T2Y ⊕ T4Y . (2.8)

The subbundle T2Y is trivial, spanned by K1 = ReK and K2 = ImK.

Let us now discuss the frame bundle over spacetime×Y. We choose a section (vielbein)4

eA = (eµ,Ki, eα) , (2.9)

where the eµ live in spacetime and depend only on spacetime coordinates. In contrast,

the Ki = kij(v
j + Gj) consist of a one-form vi in T ∗2 and two spacetime gauge fields Gi

(the Kaluza-Klein vectors) that parameterize the fibration of T ∗2 over spacetime, as well as

the coefficient kij , which is a spacetime scalar.5 Furthermore, the eα are one-forms on T ∗4
such that

Ja =
1

2
Iaαβe

α ∧ eβ , (2.10)

with constant coefficients Iaαβ that span the SU(2) algebra of complex structures on the

frame bundle, i.e.

(Ia)αγ (Ib)γβ = εabc(Ic)αβ − δabδαβ . (2.11)

The dual vielbein to (2.9) is

êA = (êµ, K̂i, êα) = (∂µ −Giµv̂i, (k−1)ji v̂j , êα) , (2.12)

where v̂i is the vector field dual to the vielbein component vi.

Next, we consider the Levi-Civita connection one-form Ω, which is the unique torsion-

free connection satisfying the Maurer-Cartan equation

De = de+ Ω ∧ e = 0 . (2.13)

The corresponding curvature two-form is defined by

R = dΩ + Ω ∧ Ω . (2.14)

4The first two equations in (2.6) imply that the Ki can be chosen as components of the vielbein.
5Due to the mixed spacetime/internal components of the ten-dimensional metric, the components Ki

of the vielbein are not purely internal. We will nevertheless retain the same nomenclature as in (2.2) for

simplicity.
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The Ricci tensor (in flat indices) is defined by contraction with the dual vielbein,

RicAB = RCA(êC , êB) , (2.15)

and the Ricci scalar as its trace

r10 = RicABδ
AB . (2.16)

Let us decompose the ten-dimensional connection under SO(1, 9) → SO(1, 3) × SO(2) ×
SO(4) as

45 = (6,1,1) ⊕ (4,1,4) ⊕ (4,2,1) ⊕ ((1,1,1)⊕ (1,2,4)⊕ (1,1,6)) ,

Ω = ω + [λ] + [γ] + Θ ,
(2.17)

where we have called the full SO(6) connection Θ. From the decomposition of the adjoint

representation of SO(6) under the breaking SO(6) → SO(2) × SO(4) ≡ SO(2) × (SU(2) ×
SU(2))/Z2, we find

so(6) = so(2) ⊕ su(2) ⊕ su(2)′ ⊕ (2,2,2) ,

Θ = [φ0] + θ + [φa] + [τ ] ,
(2.18)

where su(2) is the adjoint of the SU(2) structure group and su(2)′ is spanned by the Ia.

The so(2) is generated by the almost complex structure I0 on T ∗2 , given by (I0)ij = εij .

The component θ is the torsionful SU(2) connection. Its internal torsion on T2Y is given

by T i = dKi and the component on T4 is

Tα = deα + θαβ ∧ eβ = −(Ia)αβφ
a ∧ eβ − ταi ∧Ki . (2.19)

We can also decompose the Ricci tensor group-theoretically. In particular, we are interested

in the ‘symmetric’ representation S2T ∗Y , which decomposes as

S2T ∗Y = S2
0T
∗
2 Y ⊕ Rg(0)

2 ⊕ S
2
0T
∗
4 Y ⊕ Rg(0)

4 ⊕ (T ∗2 Y ⊗ T ∗4 Y )

= (2,1,1)⊕ (1,1,1)⊕ (1,3,3)⊕ (1,1,1)⊕ (2,2,2) .
(2.20)

Here, the (1,3,3) representation S2
0T
∗
4 is spanned by the products of generators of the two

su(2). In other words, since the elements of su(2) and su(2)′ commute, the representation

can be written as

S2
0T
∗
4 = {Iαγ Ĩ

γ
β |Ĩ ∈ su(2), I ∈ su(2)′} . (2.21)

The Maurer-Cartan equations (2.13) in components now read

deµ + ωµν ∧ eν + λµα ∧ eα + γµi ∧K
i = 0 ,

dKi + εijφ
0 ∧Kj + τ iα ∧ eα + γiµ ∧ eµ = 0 ,

deα + θαβ ∧ eβ + (Ia)αβφ
a ∧ eβ + ταi ∧Ki + λαµ ∧ eµ = 0 .

(2.22)
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3 Dimensional reduction

In this section, we will reduce the ten-dimensional type IIA action

SIIA =
1

2

∫
10

e−2Φ((∗101)r10 + 4dΦ ∧ ∗10dΦ)− 1

2
e−2ΦH3 ∧ ∗10H3

− 1

4

∫
10
F̃4 ∧ ∗10F̃4 + F2 ∧ ∗10F2 + F4 ∧ F4 ∧B2

(3.1)

to four dimensions. Here, H3 = dB2 is the form field strength of B2, Fp+1 = dCp and

F̃4 = F4 − C1 ∧ H3. The scalar Φ is the ten-dimensional dilaton. We will discuss the

truncation ansatz for manifolds of SU(2)-structure that we will use in section 3.1. We next

study the reduction of the metric sector and of the form fields in sections 3.2 and 3.3. To

obtain the four-dimensional action in standard form, various field dualizations must be

performed. We discuss these in section 3.4.

3.1 The reduction ansatz

We now discuss the reduction ansatz which is to yield N = 4 gauged supergravity in four

dimensions. We will perform the reduction at the level of the action. Any reduction ansatz

parametrizes a subset in the space of ten-dimensional fields. A ten-dimensional solution

lying in this subset will necessarily be the lift of a solution of the reduced four-dimensional

action. By contrast, a field configuration which is the lift of a four-dimensional solution

yields a minimum of the action on this subset, but the evaluation of the action might

decrease further as we move off of the subset. A reduction ansatz which excludes this

possibility is called a consistent truncation. Under such happy circumstances, all four-

dimensional solutions lift. If we imagine deriving four-dimensional equations of motion

for all modes of the theory, dividing these into Φkeep and Φdiscard (and the corresponding

internal modes into Ωkeep and Ωdiscard), the subscript indicating their future fate, the

requirement of a consistent truncation translates into the vanishing of all source terms for

the fields belonging to Φdiscard, once the fields themselves are set to zero. We must hence

exclude that linear terms in Φdiscard occur in the action. As a first requirement, let us

demand that Ωkeep be closed under wedge product, and choose Ωdiscard in an orthogonal

complement to Ωkeep. Mixed terms between Φkeep and Φdiscard in the action that are linear

in Φdiscard will then be traceable to the action of d and ∗.6 In such terms, integration

by parts or ∗ being proportional to its adjoint operator will allow us to restrict attention

to the action of these operators on Ωkeep. Requiring that Ωkeep be closed under d and ∗
therefore insures the vanishing of these terms, and the consistency of the truncation. In the

following, in contrast to the reduction ansatz in conventional Calabi-Yau compactifications,

we will hence choose to reduce in a set of forms that close under the three operations of

exterior derivative d, wedge product ∧, and Hodge star ∗.
It has been extensively discussed in [23] how the ten-dimensional fields decompose into

representations of the SU(2) structure group and then automatically assemble into four-

dimensional N = 4 multiplets over each point of the internal manifold. The components of

6For non-linear terms, we would also have to study the behavior of Ωdiscard under wedge product.
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the type IIA fields in ten-dimensions that are singlets under SU(2) assemble into the grav-

ity multiplet and three vector multiplets. Similarly, the SU(2) triplet representation gives

exactly one (triplet of) vector multiplet(s). This triplet representation forms a non-trivial

bundle over Y from which we will choose a finite number (n−3) of sections in our reduction

ansatz. The remaining degrees of freedom all sit in SU(2) doublet representations. These

modes assemble into two (doublets of) N = 4 gravitino multiplets. As we do not expect

to be able to preserve more than sixteen supercharges in the reduction of the action, all of

these gravitino multiplets should correspond to towers of only massive modes in four di-

mensions. This means that these multiplets cannot contribute on the N = 4 massless level.

We will hence exclude SU(2) doublet representations from our ansatz. This restriction

has important consequences when considering reductions on Calabi-Yau manifolds with

vanishing Euler number. We will discuss these consequences in sections 4 and 5.

The almost product structure (2.7) on Y will play a central role in the choice of our

reduction ansatz. T2 has trivial structure group and is therefore parallelizable. We hence

introduce a basis of two global one-forms vi, i = 1, 2, on this subbundle, yielding two

one-forms and a two-form (their wedge product) as expansion forms. On T4, as discussed

above, our ansatz is to only contain SU(2) singlets and triplets. It is easily checked that

SU(2) doublets exactly correspond to odd forms on T4. Therefore, the ansatz will consist

of two-forms ωI , I = 1, . . . , n, that all square to the same volume form vol
(0)
4 on T4, i.e.

ωI ∧ ωJ = ηIJ vol
(0)
4 , (3.2)

where η is a metric with signature (3, n − 3), reflecting the number of singlet and triplet

representations as discussed above. Furthermore, we include all wedge products of ωI and

vi in the reduction ansatz. For instance, we expand the forms Ja and K of (2.2) that

specify the SU(2) structure in the set of modes ωI , I = 1, . . . , n, and vi, i = 1, 2, i.e.

Ja = eρ4/2ζaI ω
I , K = (k1

i + i k2
i )(v

i +Gi) , (3.3)

where − i kiε
ij k̄j = 2 det(k) > 0 with ki = k1

i + i k2
I and k = (kji ). Equivalently, by using

the parameterization

k = eρ2/2(Im τ)−1/2 (1 , τ) , (3.4)

with Im τ > 0 and such that det(k) = eρ2 , we obtain

K = eρ2/2(Im τ)−1/2((v1 +G1) + τ(v2 +G2)) . (3.5)

Note that the presence of internal one-forms in our ansatz gives rise to Kaluza-Klein vectors

Gi, i.e. mixed spacetime and internal components of the ten-dimensional metric. The

expansion coefficients ζaI , ρ4, ρ2 and τ depend on the spacetime coordinates and give rise

to scalar fields in four dimensions. Furthermore, (2.5) yields the relations

ζaI η
IJζbJ = δab , (3.6)

and

vol4 = eρ4 vol
(0)
4 . (3.7)

– 8 –
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The four-dimensional fields ρ2/4 describe the volume moduli of T2/4 while the ζaI describe

the SU(2)-structure geometry.

The form fields B2, C1 and C3 of type IIA supergravity must be expanded in the same

set of forms, giving

B2 = B +Bi(v
i +Gi) + b12(v1 +G1) ∧ (v2 +G2) + bIω

I ,

C1 = A+ ai(v
i +Gi) ,

C3 = (C −A ∧B) + (Ci −A ∧Bi) ∧ (vi +Gi) + (CI − bIA) ∧ ωI

+ (C12 − b12A) ∧ (v1 +G1) ∧ (v2 +G2) + ciI(v
i +Gi) ∧ ωI ,

(3.8)

where we have shifted the components of C3 = C̃3 − A ∧ B2 by some combination of the

components of B2 and C1 for later convenience.

The Hodge star splits into a purely space-time component and two components ∗2 and

∗4, defined with regard to the respective component of the tangent space (2.8). Both are

completely determined by the SU(2) structure via7

∗2 Ki = εijK
j , ∗21 = K1 ∧K2 = eρ2(v1 +G1) ∧ (v2 +G2) , (3.9)

and by the requirement that the Ja are self-dual under ∗4, which implies for the ansatz (3.3)

that

∗4 ωI = (2ζa IζaJ − δIJ)ωJ = HI
Jω

J , ∗41 = vol4 = eρ4 vol
(0)
4 . (3.10)

In the following reduction, we will assume that the internal volume is normalized,∫
6
v1 ∧ v2 ∧ vol

(0)
4 = 1 . (3.11)

To perform the reduction, we must next specify the differentials of the expansion forms

{vi, ωI}. As remarked above, we will require that the differential algebra of modes they

span closes, i.e.
dvi = tiv1 ∧ v2 + tiIω

I ,

dωI = T IiJv
i ∧ ωJ .

(3.12)

Note in particular that we exclude any terms on the right hand side of the above equations

involving SU(2) doublets.

The ti, tiI and T IiJ specify the torsion classes of Y . We choose them and hence the

torsion classes of Y constant. These constants are constrained by the fact that the exterior

derivative squares to zero and the integral of d(vi ∧ ωI ∧ ωJ) over Y should vanish. The

constraints are encapsulated by algebraic relations, given by

titkI εkj + tiJT
J
jI = 0 ,

T IiJη
JKtiK = 0 ,

T IiJ t
i − T IiKεijTKjJ = 0 ,

tiηIJ − εijT IjKηKJ − εijT JjKηKI = 0 .

(3.13)

7We choose our conventions such that ε12 = 1.
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The last equation determines the symmetric part of T IjKη
KJ , j = 1, 2, so that

T IiKη
KJ = T̃ IiKη

KJ − 1

2
εijt

jηIJ , (3.14)

where T̃ IjK is a pair of so(3, n− 3) matrices, i.e.

T̃ IjKη
KJ + T̃ JjKη

KI = 0 . (3.15)

The third condition just states that the T̃ IiJ form a solvable so(3, n− 3) subalgebra S

defined by

T̃ IiKεij T̃
K
jJ = T̃ IiJ t

i . (3.16)

In particular, S is Abelian if ti = 0. The remaining condition is

T̃ JjIt
i
J = εjk(t

itkI +
1

2
tiIt

k) . (3.17)

If ti is zero, the tiJ are invariant under T̃ JjI . If ti is non-zero, the tiJ form a non-trivial

representation under S.

Before we close this section, we want to stress that the main conditions we impose on

the reduction ansatz are (3.2) and (3.12). These conditions must be checked case by case

for each SU(2)-structure compactification individually. In section 4.2, we will construct a

set of modes on the Enriques Calabi-Yau that satisfies all of these conditions.

3.2 Reducing gravity to four dimensions

We start with the task of dimensionally reducing the gravitational term in the ten-dimen-

sional supergravity action (3.1),

Sgrav =
1

2

∫
10

e−2Φ(∗101)r10 , (3.18)

where r10 is the ten-dimensional Ricci scalar and Φ is the ten-dimensional dilaton with the

kinetic term

SΦ = 2

∫
10

dΦ ∧ ∗10dΦ . (3.19)

The main task is the computation of the ten-dimensional Ricci scalar in terms of the

ansatz of section 3.1. This is performed in detail in appendix A. We first compute the

ten-dimensional Levi-Cevita connection in appendix A.2 from (2.22) for the ansatz (3.12),

up to the SU(2) connection θ, which cannot be computed explicitly, but also does not
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appear in the four-dimensional expressions. The connection components read

ωµν = ω̃µν +D[µGν] · kT ·K ,

γiµ = kijD[µG
j
ν]e

ν +
1

2
Dµρ2K

i − 1

2
(Im τ)−1Dµ Im τ(σ3)ijK

j

+
1

2
(Im τ)−1Dµ Re τ(σ1)ijK

j ,

λαµ =
1

4
eαDµρ4 +

1

2
eρ4/2(Ia)βαω

I
βγe

γ(δJI − ζbIζbJ)Dµζ
a
J ,

φ0 = −e−ρ2t · kT ·K − d Re τ

2 Im τ
+

1

2
t · gτ ·G ,

φa =

(
1

4
εabcζbIζ

c J T̃ IjJ(k−1)ji −
1

2
e−ρ4/2ζaItjIk

i
j

)
Ki − 1

4
εabcζbIζ

c J T̃ IiJG
i ,

τ iα =
1

2
kijt

j
Iω

I
αβe

β +
1

4
e−ρ2εijk

j
kt
keα

+
1

2
eρ4/2(k−1)ji ζ

a
K T̃

K
jI (δIJ − ζb IζbJ)ωJαγ(Ia)γβe

β ,

(3.20)

where we have defined the covariant derivatives as

Dρ2 = dρ2 −G · ε · t ,
Dρ4 = dρ4 +G · ε · t ,
Dτ = dτ − ((1, τ) ·G)((1, τ) · t) ,
DζaI = dζaI −GiT̃ JiIζaJ ,

DGi = dGi +
1

2
tiG · ε ·G .

(3.21)

These covariant derivatives will appear in the four-dimensional action and are related to

the gaugings of the theory. From the explicit form of the connection in (3.20), we can

compute the ten-dimensional Ricci scalar r10 in a straight-forward way. The computation

is performed in the appendix. Its result reads

r10 = r̂4 − eρ2D[µGν] · gτ ·D[µGν] − 2∇µDµρ2 −
3

2
(Dµρ2)(Dµρ2)

− 1

2
(Im τ)−2(Dµτ)(Dµτ̄)− 2∇µDµρ4 −

5

4
Dµρ4D

µρ4 −
5

4
e−ρ2t · gτ · t

− 4eρ2−ρ4tI · gτ · tJηIJ + e−ρ2(ηIJ − ζb Iζb J)ζaKζ
a
LT̃

K
I · (gτ )−1 · T̃LJ

− 2Dµρ2D
µρ4 +Dµζ

a
I (ηIJ − ζb Iζb J)DµζaJ ,

(3.22)

where we have defined

gτ = (Im τ)−1

(
1 Re τ

Re τ |τ |2

)
. (3.23)

With this, the reduction of the ten-dimensional action

Sgrav,Φ = Sgrav + SΦ =
1

2

∫
10

e−2Φ((∗101)r10 + 4dΦ ∧ ∗10dΦ) (3.24)

– 11 –



J
H
E
P
0
4
(
2
0
1
3
)
0
5
8

yields

Sgrav,Φ =
1

2

∫
4

e−2φ(∗41)
(
r̂4 − eρ2D[µGν] · gτ ·D[µGν] − 1

2
(Dµρ2)(Dµρ2)

− 1

2
(Im τ)−2(Dµτ)(Dµτ̄)− 1

4
Dµρ4D

µρ4 −
5

4
e−ρ2t · gτ · t

− 4eρ2−ρ4tI · gτ · tJηIJ + e−ρ2(ηIJ − ζb Iζb J)ζaKζ
a
LT̃

K
I · (gτ )−1 · T̃LJ

+Dµζ
a
I (ηIJ − ζb Iζb J)DµζaJ + 4∂µφ∂

µφ
)
,

(3.25)

where we have defined the four-dimensional dilaton φ = Φ− 1
2(ρ4 + ρ2). In order to obtain

the action in the four-dimensional Einstein frame, we perform the Weyl rescaling

eµ → eφeµ , (3.26)

which leads to the final result

Sgrav,Φ =
1

2

∫
4
(∗41)(r4 − e−2φ+ρ2D[µGν] · gτ ·D[µGν] − 1

2
(Dµρ2)(Dµρ2)

− 1

2
(Im τ)−2(Dµτ)(Dµτ̄)− 1

4
Dµρ4D

µρ4 −
5

4
e2φ−ρ2t · gτ · t

− 4e2φ+ρ2−ρ4tI · gτ · tJηIJ + e2φ−ρ2(ηIJ − ζb Iζb J)ζaKζ
a
LT̃

K
I · (gτ )−1 · T̃LJ

+Dµζ
a
I (ηIJ − ζb Iζb J)DµζaJ − 2∂µφ∂

µφ) .

(3.27)

We see that several fields appear through their covariant derivative, defined in (3.21). These

scalars are gauged under the Kaluza-Klein vectors Gi. This is already a first indication

that the reduced action will include gaugings as a standard feature.

3.3 The form fields

Now let us complete the dimensional reduction of the action (3.1) by reducing the terms

involving the form fields B2, C1 and C3. The ansatz for these fields has been given in (3.8).

Let us start with the NS-NS two-form B2. From (3.8), we find

H3 = (dB −Bi ∧DGi) + (DBi − εijb12DG
j) ∧ (vi +Gi) +DbI ∧ ωI

+Db12 ∧ (v1 +G1) ∧ (v2 +G2) + (bJT
J
iI + b12t

j
Iεji)(v

i +Gi) ∧ ωI ,
(3.28)

where the covariant derivative of Gi has been given in (3.21) and we have further defined

the covariant derivatives

DBi = dBi − εijtkGj ∧Bk ,
Db12 = db12 + b12t · ε ·G−Biti ,
DbI = dbI −BitiI − bJT JiIGi .

(3.29)

In the derivation of (3.28), we have used (3.12) and in particular the thereby implied

identity

d(vi +Gi) = DGi + ti(v1 +G1) ∧ (v2 +G2)− tiεjk(vj +Gj) ∧Gk + tiIω
I . (3.30)
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The ten-dimensional kinetic term SH = −1
4

∫
10 e−2ΦH3 ∧ ∗10H3 becomes

SH = −1

4

∫
4

e−2φ
(
(dB −BiDGi) ∧ ∗̂4(dB −BiDGi)

+ e−ρ2(gτ )−1 ij(DBi − εikb12DG
k) ∧ ∗̂4(DBj − εjlb12DG

l)

+ e−ρ4HIJDbI ∧ ∗̂4DbJ + e−2ρ2Db12 ∧ ∗̂4Db12

+ (∗41)e−ρ4−ρ2(gτ )−1 ijHIJ(bKT
K
iI + b12t

k
I εki)(bLT

L
jJ + b12t

l
Jεlj)

)
.

(3.31)

The Weyl rescaling (3.26) of the metric by φ gives

SH = −1

4

∫
4

(
e−4φ(dB −Bi ∧DGi) ∧ ∗4(dB −Bi ∧DGi)

+ e−2φ−ρ2(gτ )−1 ij(DBi − εikb12DG
k) ∧ ∗4(DBj − εjlb12DG

l)

+ e−ρ4HIJDbI ∧ ∗4DbJ + e−2ρ2Db12 ∧ ∗4Db12

+ (∗41)e2φ−ρ4−ρ2(gτ )−1 ijHIJ(bKT
K
iI + b12t

k
I εki)(bLT

L
jJ + b12t

l
Jεlj)

)
.

(3.32)

We can combine SH with Sgrav,Φ to find the reduced action for the entire NS-NS sector,

SNS =
1

2

∫
4

(
(∗41)r4 −

1

2
e−4φ(dB −Bi ∧DGi) ∧ ∗4(dB −Bi ∧DGi)

− 1

2
e−2φ+ρ2gτijDG

i ∧ ∗4DGj

− 1

2
e−2φ−ρ2(gτ )−1 ij(DBi − εikb12DG

k) ∧ ∗4(DBj − εjlb12DG
l)

− dφ ∧ ∗4dφ− 1

2
e−2ρ2(Db12 ∧ ∗4Db12 +Deρ2 ∧ ∗4Deρ2)

− 1

4
(Im τ)−2Dτ ∧ ∗4Dτ̄ −

1

8
Dρ4 ∧ ∗4Dρ4 −

1

4
(HIJ − ηIJ)DζaI ∧ ∗4DζaJ)

− 1

2
e−ρ4HIJDbI ∧ ∗4DbJ −

5

4
e2φ−ρ2t · gτ · t

+ e2φ−ρ2(ηIJ − ζb Iζb J)ζaKζ
a
LT̃

K
I · (gτ )−1 · T̃LJ − 4e2φ+ρ2−ρ4tI · gτ · tJηIJ

+ (∗41)e2φ−ρ4−ρ2(gτ )−1 ijHIJ(bKT
K
iI + b12t

k
I εki)(bLT

L
jJ + b12t

l
Jεlj)

)
.

(3.33)

Let us now turn to the Ramond-Ramond fields C1 and C3. From (3.8), we find

F4 = (dC − dA ∧B +A ∧ dB + (Ci −A ∧Bi) ∧DGi)
+ (DCi − dA ∧Bi +A ∧DBi + εij(C12 − b12A) ∧DGj) ∧ (vi +Gi)

+ (DC12 +A ∧Db12 − b12dA) ∧ (v1 +G1) ∧ (v2 +G2)

+ (DCI +A ∧DbI − bIdA+ ciIDG
i) ∧ ωI

+ (DciI + (T JiIbJ − εijt
j
Ib12)A) ∧ (vi +Gi) ∧ ωI

+ (ciIt
i − ciJεijT JjI)(v1 +G1) ∧ (v2 +G2) ∧ ωI + ciIt

i
Jη

IJ vol
(0)
4 ,

F2 = (dA+ aiDG
i) +Dai ∧ (vi +Gi) + ait

i(v1 +G1) ∧ (v2 +G2) + ait
i
Iω

I ,

(3.34)
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where we have defined the covariant derivatives

DCi = dCi + εijG
j ∧ tkCk ,

DC12 = dC12 + Cit
i + C12 ∧G · ε · t ,

DCI = dCI + Cit
i
I + T JiICJ ∧Gi ,

DciI = dciI + εijt
j
IC12 − CJT JiI + εijG

jckIt
k − ciJT JjIGj ,

Dai = dai + εijG
jtkak .

(3.35)

Furthermore, the twisted field strength F̃4 = F4 − C1 ∧H3 is given by

F̃4 = (dC − dA ∧B + Ci ∧DGi)
+ (DCi + aidB − dA ∧Bi + (εijC12 − aiBj) ∧DGj) ∧ (vi +Gi)

+ (DC12 − b12dA− ai(εijDbj + b12DG
i)) ∧ (v1 +G1) ∧ (v2 +G2)

+ (DCI − bIdA+ ciIDG
i) ∧ ωI + (DciI + aiDbI) ∧ (vi +Gi) ∧ ωI

+ (ciIt
i − aib12t

i
I − (ciJ + aibJ)εijT

J
jI)(v

1 +G1) ∧ (v2 +G2) ∧ ωI

+ ciIt
i
Jη

IJ vol
(0)
4 .

(3.36)

We can now insert these results into the ten-dimensional action for the RR fields, consisting

of the kinetic term

SRR = −1

4

∫
10

(F̃4 ∧ ∗10F̃4 + F2 ∧ ∗10F2) , (3.37)

and the Chern-Simons term

SCS = −1

4

∫
10
F4 ∧ F4 ∧B2 . (3.38)

The kinetic term can be reduced in a straight-forward way. After taking into account the

Weyl rescaling (3.26), we find

SRR = −1

4

∫
4

(
e−4φ+ρ2+ρ4 |dC − dA ∧B + Ci ∧DGi|2

+ e−2φ+ρ4(gτ )−1 ij(DCi + aidB − dA ∧Bi + (εikC12 − aiBk) ∧DGk)
∧ ∗4(DCj + ajdB − dA ∧Bj + (εjlC12 − ajBl) ∧DGl)

+ e−ρ2+ρ4 |DC12 − b12dA− ai(εijDbj + b12DG
i)|2

+ eρ2HIJ(DCI − bIdA+ ciIDG
i) ∧ ∗4(DCI − bIdA+ ciIDG

i)

+ eρ2+ρ4 |dA+ aiDG
i|2 + e2φ+ρ4(gτ )−1 ijDai ∧ ∗4Daj

+ e2φHIJ(gτ )−1 ij(DciI + aiDbI) ∧ ∗4(DcjJ + ajDbJ)

+ e4φ−ρ2HIJ(ciIt
i − aib12t

i
I − (ciK + aibK)εikT

K
kI )

(cjJ t
j − ajb12t

j
J − (cjL + ajbL)εjlT

L
lJ)(∗41)

+ e4φ+ρ2−ρ4 |ciItiJηIJ |2(∗41) + e4φ−ρ2+ρ4 |aiti|2(∗41)

+ e4φ+ρ2(ait
i
I)H

IJ(ajt
j
J)(∗41)

)
.

(3.39)

– 14 –



J
H
E
P
0
4
(
2
0
1
3
)
0
5
8

Let us now compute the Chern-Simons term (3.38). First, we use partial integration

to write it as

SCS = −1

4

∫
10

(B2 ∧ dC̃3 ∧ dC̃3−B2 ∧B2 ∧ dA∧ dC̃3 +
1

3
B2 ∧B2 ∧B2 ∧ dA∧ dA) . (3.40)

Then, inserting the expansions (3.8) and using (3.13) yields

SCS = −1

2

∫
4
(dC − dA ∧B + Ci ∧DGi)(b12cjIt

j
Jη

IJ + bIcjKη
KJεjkT

I
kJ)

− 1

2

∫
4
(DCi + εijC12 ∧DGj − dA ∧Bi)εik(BkclItlJηIJ +DckIη

IJbJ)

+
1

4

∫
4
(dB −Bk ∧DGk) ∧ ciIηIJ(εijDcjJ + εijT

K
jJCK + tiJC12)

+
1

4

∫
4
BkciIη

IJ ∧ (DGk ∧ (εijDcjJ + εijT
K
jJCK + tiJC12)− εkjtiJBj ∧ dA)

− 1

2

∫
4
εikBk ∧ (DCI + cjIDG

j) ∧DciJηIJ +
1

2

∫
4
b12bIη

IJciJdA ∧DGi

− 1

4

∫
4
b12η

IJ(DCI + ciIDG
i) ∧ (DCJ + cjJDG

j)

− 1

2

∫
4
bIη

IJ(DC12 − b12dA) ∧ (DCJ −
1

2
bJdA+ ciJ ∧DGi) .

(3.41)

Note that the dimensional reduction of the action for the form fields yields, beyond

four-dimensional fields in canonical form, also a three-form C and three two-form fields B

and Ci, i = 1, 2. In order to compare the action we have obtained to a four-dimensional

supergravity in a conventional presentation, we must eliminate these form fields or tranform

them into standard four-dimensional fields. In four dimensions, a three-form C has no

dynamical degrees of freedom, as its four-form field strength is a top form. We can thus

eliminate this field simply by replacing it by its equations of motion. The 2-form fields

however are dynamical. They are dual to scalar fields, as a three-form field strength is

Hodge-dual to a one-form, the field strength of a scalar.

In the next section, we will integrate out C and perform field dualizations for the

tensor fields B and Ci.

3.4 Field dualizations

In this section, we will follow the strategy of [25] of eliminating the three-form C via its

equation of motion and of dualizing all three tensor fields B and Ci to dual scalars β and

γi. The latter task involves a subtlety in the generality in which we are performing the

reduction which did not arise in the treatment of [25]. We will explain this below.

Let us start with the three-form C. It does not carry any degrees of freedom and can

be integrated out. The part of the action involving it reads8

SC = −1

4

∫ (
e−4φ+ρ2+ρ4 |dC − dA ∧B + Ci ∧DGi|2

+ 2(dC − dA ∧B + Ci ∧DGi)(b12cjIt
j
Jη

IJ + bIcjKη
KJεjkT

I
kJ)
)
.

(3.42)

8Here and in the following, all integrals and Hodge operations will be in four-dimensional spacetime. We

will hence simplify our notation by dropping this specification.
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The corresponding equation of motion is

dC − dA ∧B + Ci ∧DGi = −e4φ−ρ2−ρ4(b12cjIt
j
Jη

IJ + bIcjKη
KJεjkT

I
kJ) ∗ 1 . (3.43)

Substituting this back into the above action gives the potential term

S̃C =
1

4

∫
e4φ−ρ2−ρ4 |b12cjIt

j
Jη

IJ + bIcjKη
KJεjkT

I
kJ |2 . (3.44)

Next, we want to dualize the two-forms Ci and B to scalars γi and β. However, the Ci
appear in the action not only through their covariant derivatives, but also in the covariant

derivative of the vectors C12 and CI , cf. (3.35), giving a Stückelberg-like mass term. In [25],

this complication was addressed by also dualizing these vectors. At first blush, the more

general gaugings (3.35) that arise in our reduction do not allow us to stop here, as the

vectors C12 and CI in turn appear in the covariant derivative of the ciI — the dualizing

of which would reintroduce two-form fields into the action. Fortunately, the quadratic

constraints (3.13) imply that the combinations of C12 and CI appearing in the covariant

derivative of the ciI are orthogonal to those combinations that need to be dualized due to

the two-forms Ci appearing in their covariant derivative. To compute the contributions to

the action involving γi, we will for simplicity introduce the magnetic duals to all vectors

C12 and CI as Lagrange multipliers for the respective Bianchi identities. The dualization

procedure for Ci will automatically pick out the linear combinations of the vectors in whose

covariant derivative the Ci appear; the action we will obtain for γi will only depend on

these linear combinations.

With regard to the fields C12 and CI , we will follow a different path than the one

pursued in [25]. While we will introduce the magnetic duals of the appropriate linear

combinations of these vectors, we will not integrate out the corresponding field strengths.

The action will hence depend on both electric and magnetic potentials, in the fashion of

the embedding tensor formalism [27], with the magnetic duals remaining non-dynamical.

In a final step, we will rewrite our results in terms of the embedding tensor formalism [27]

and find that they fit into its N = 4 supergravity version, discussed in [28].

Let us now proceed with the dualization of Ci and B. First, we replace these tensor

fields by their field strengths Fi and H, defined by

Fi = DCi + εijC12 ∧DGj

= dCi + εijG
j ∧ t · C + εijC12 ∧DGj ,

H = dB −Bi ∧DGi ,
(3.45)

respectively. Their Bianchi identities

dFi = t · F ∧ εijGj + εijDC12 ∧DGj ,
dH = −DBi ∧DGi ,

(3.46)

will be imposed via Lagrange multipliers γiεij and β. As discussed above, we will also

introduce the field strengths

FI = DCI + ciIDG
i = dCI + tiICi + T JiICJ ∧Gi + ciIDG

i ,

F12 = DC12 = dC12 + tiCi + C12 ∧G · ε · t .
(3.47)
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For their Bianchi identities, we find

dFI = tiIFi + T JiIFJ ∧Gi +DciI ∧DGi ,
dF12 = tiFi + F12 ∧G · ε · t .

(3.48)

Now we introduce Lagrange multipliers C̃I and C̃12 together with the before-mentioned

γiεij and β in the action, by adding

SBI =
1

2

∫
γi(εijdFj + t · F ∧Gi + F12 ∧DGi) +

1

2

∫
β(dH +DBi ∧DGi)

+
1

2

∫
C̃Kη

KI ∧ (dFI − tiIFi − T JiIFJ ∧Gi +DciI ∧DGi)

+
1

2

∫
C̃12 ∧ (dF12 − tiFi − F12 ∧G · ε · t)

(3.49)

to the action. We furthermore replace the two-form fields B and Ci by their field strengths

throughout. The action for the Fi then reads

SFi = −1

4

∫
e−2φ+ρ4(gτ )−1 ij(Fi + aiH − dA ∧Bi) ∧ ∗(Fj + ajH − dA ∧Bj)

− 1

2

∫
(Fi − dA ∧Bi)εikLk −

1

2

∫
Fi ∧ εijD̃γj +

1

2

∫
γiF12 ∧DGi ,

(3.50)

where we have used the abbreviations

D̃γi = dγi − εijtjγ ·G+ εijt
j
Iη
IJ C̃J + εijt

jC̃12 ,

Li = DciIη
IJbJ +Bit

j
Iη
IJcjJ .

(3.51)

The equations of motion for the Fi are

Fi = dA ∧Bi − aiH − e2φ−ρ4gτijεjk ∗ (D̃γk + Lk) . (3.52)

We can insert this into (3.50) and find

Sγi = −1

4

∫
e2φ−ρ4(gτ )−1 ij(Dγi + bIη

IJDciJ) ∧ ∗(Dγj + bKη
KLDcjL)

+
1

2

∫
H ∧ aiεij(Dγj + bIη

IJDcjJ)− 1

2

∫
dA ∧Bi ∧ εij(Dγj −BjtkIηIJckJ)

+
1

2

∫
γiF12 ∧DGi ,

(3.53)

where we have defined the covariant derivative

Dγi = dγi − εijtjγ ·G+ εijt
j
Iη
IJ C̃J + εijt

jC̃12 +Bit
j
Iη
IJcjJ . (3.54)

Having obtained this action, we can also take a different point of view, generalizing the

example of [29]. Starting with the action for the two-form fields Ci and the related vectors
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CI and C12, we can also directly introduce new scalar fields γi and auxiliary vector fields

C̃I , C̃12 by replacing the action for the Ci by

Sγi = −1

4

∫
e2φ−ρ4(gτ )−1 ij(Dγi + bIη

IJDciJ) ∧ ∗(Dγj + bKη
KLDcjL)

+
1

2

∫
H ∧ aiεij(Dγj + bIη

IJDcjJ)− 1

2

∫
dA ∧Bi ∧ εij(Dγj −BjtkIηIJckJ)

− 1

2

∫
(DCi + εijC12 ∧DGj) ∧ εij(tjIη

IJ C̃J + tjC̃12) +
1

2

∫
γiF12 ∧DGi ,

(3.55)

where the covariant derivative of γi is given by (3.54). Note that by removing the kinetic

term, the dynamical two-form fields Ci as they descend from string theory are rendered

non-dynamical, befitting the two-form fields of the embedding formalism. Given the action

in the form (3.55), the equations of motion for the vectors C̃J and C̃12 give the duality

equation (3.52), while the equations of motion for Ci imply in turn that the vectors C̃J
and C̃12 are the magnetic duals of CI and C12. Inserting these equations of motion back

into the action brings one back to the original action for the Ci and the vectors CI and

C12 as obtained directly from string theory. This action is reformulated in (3.55) in terms

of the embedding tensor formalism of [27, 28].

Dualizing B proceeds along the same lines as the dualization procedure for the Ci.

The starting point is the action

SH = −1

4

∫
e−4φH ∧ ∗H +

1

2

∫
βDBi ∧DGi

+
1

4

∫
H ∧ (Dβ − aiεijDγj − εij(

1

2
ciI − aibI)ηIJDcjJ) ,

(3.56)

where we have defined the covariant derivative

Dβ = dβ − 1

2
ciIη

IJ(εijT
K
jJCK + tijC12) . (3.57)

As B does not appear in any covariant derivatives, no further fields need to be dualized in

its wake. Note that the combinations of CI and C12 appearing in this covariant derivative

are orthogonal to those that required dualization above. Integrating out H in (3.56) finally

yields the action

Sβ = −1

4

∫
e4φ(Dβ − aiεijDγj − εij(

1

2
ciI − aibI)ηIJDcjJ)

∧ ∗(Dβ − akεklDγl − εkl(
1

2
ckK − akbK)ηKLDclL)

+
1

2

∫
βDBi ∧DGi .

(3.58)

For later convenience, we collect all relevant covariant derivatives from (3.21), (3.29),

(3.35), (3.57) and (3.54): the covariant derivatives of the vectors are given by

DGi = dGi +
1

2
tiG · ε ·G ,

DBi = dBi − εijtkGj ∧Bk ,
DC12 = dC12 + Cit

i + C12 ∧G · ε · t ,
DCI = dCI + Cit

i
I + T JiICJ ∧Gi ,

(3.59)
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and the covariant derivatives of the scalars read

Dρ2 = dρ2 −G · ε · t ,
Dρ4 = dρ4 +G · ε · t ,
Dτ = dτ − ((1, τ) ·G)((1, τ) · t) ,
DζaI = dζaI −GiT̃ JiIζaJ ,
Db12 = db12 + b12t · ε ·G−Biti ,
DbI = dbI −BitiI − bJT JiIGi ,

DciI = dciI + εijt
j
IC12 − CJT JiI + εijG

jckIt
k − ciJT JjIGj ,

Dai = dai + εijG
jtkak ,

Dγi = dγi − εijtjγ ·G+ εijt
j
Iη
IJ C̃J + εijt

jC̃12 +Bit
j
Iη
IJcjJ ,

Dβ = dβ − 1

2
ciIη

IJ(εijT
K
jJCK + tijC12) .

(3.60)

3.5 N = 4 gauged supergravity

The reduced action that we found above should fit into the constrained framework of N = 4

gauged supergravity. For the case tiI = 0, this was already shown in [25]. In this section,

we will read off the embedding tensor components from the action derived above and thus

determine the gauge group of the theory. One can subsequently check that the action

derived in section 3 falls into the class of N = 4 gauged supergravities.

The vectors and scalars of our description map to the N = 4 vectors and scalars of [28].

The correct identification in the standard N = 4 frame has been worked out in [25]. The

electric and magnetic vectors VM+ and VM−, given by

VM+ = (Gi, B̃ ı̄, A, C̃12, η
IJCJ) ,

VM− = (Bi, G̃ı̄, C12, Ã, η
IJ C̃J) ,

(3.61)

are in the fundamental representation of SO(6, n) defined by the the metric ηMN

ηMN =



0 δi̄ 0 0 0

δı̄j 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 ηIJ


. (3.62)

We can now read off the embedding tensor components as they appear in the formulation

of [28]. The N = 4 axiodilaton σ is given by σ = 1
2(−b12 + i e−ρ2). From its kinetic term

we find the gauging [25]

ξ+M = −εijtj , ξ−M = 0 , (3.63)

so that

Dσ = dσ + VM(αεβ)γξγM tαβ = dσ + (t · ε ·G)σ +
1

2
t ·B , (3.64)
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where tαβ are the generators of SL(2) so that t22 and t(12) generate real shifts and rescalings

of σ.

The SO(6, n) matrix MMN collecting all other scalar fields has been worked out in [25].

We can read off the covariant derivative of its scalar fields from (3.21), (3.29), (3.35), (3.57)

and (3.54). We thereby find the following for the gauged Killing vectors of N = 4:

ki+ = −εijtj
(

∂

∂ρ2
+ b12

∂

∂b12
− ∂

∂ρ4
+ γk

∂

∂γk
+ σ

∂

∂σ

)
− T̃ JiIζaJ

∂

∂ζaI

− T JiIbJ
∂

∂bI
+ tj(εikg

τ
jl + εilg

τ
jk − εijgτkl)

∂

∂gτkl
− εij(t · a)

∂

∂aj

− (εijt
kδJI + δkj T

J
iI)ckJ

∂

∂cjI
,

k6+ = −tiεij
∂

∂γj
,

kI+ = −ηIKTKiJ
(

∂

∂ciJ
− 1

2
εijη

JLcjL
∂

∂β

)
,

ki− = −ti ∂

∂b12
− tiI

∂

∂bI
+ tjIη

IJcjJ
∂

∂γi
+

1

2
ti
∂

∂σ
,

k5− = −tiI
(
εij

∂

∂cjI
+

1

2
ciI

∂

∂β

)
,

kI− = −tiIεij
∂

∂γj
.

(3.65)

The general covariant derivative hence reads

D = d+VMαkMα = d+Giki+ +C̃12k6+ +CIη
IJkJ+ +Biki−+C12k5−+C̃Iη

IJkJ− . (3.66)

The only non-vanishing entries of the totally anti-symmetric embedding tensor component

fα[MNP ] are thus

f+ijı̄ = −1

2
εijδı̄kt

k ,

f+i56 =
1

2
εijt

j ,

f+iIJ = −TKiI ηKJ ,

f−iI5 = εijt
j
I .

(3.67)

The embedding tensor components in the last line are those that did not appear in [25].

They correspond to magnetic gaugings in the electric-magnetic duality frame of choice. We

find that ξαM and fα[MNP ] given in (3.63) and (3.67) obey

ξαMξβNη
MN = 0 ,

ξαMξβN ε
αβ = 0 ,

ξαMfβNPQη
MN = 0 ,

3fαR[MNfβPQ]Sη
RS + 2ξ(α|Mfβ)NPQ = 0 ,

εαβ(fαMNRfβPQSη
RS − ηRSξαRfβS[M [P ηQ]N ] − ηα[MfN ][PQ]β + ξα[P fQ][MN ]β) = 0 ,

(3.68)
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using the conditions (3.13). This implies the usual quadratic constraints on the embedding

tensor [28].

The algebra of Killing vectors kM can be easily computed from (3.65), using (3.13). The

Killing vectors (ki−, k5−, k6+, kI+, kI−) commute with each other. Only the Lie brackets

with ki are non-vanishing. They are given by

[ki+, kj+] = −εijtkkk+ , [ki+, kj−] = εikt
kkj− ,

[ki+, k6+] = εijt
jk6+ , [ki+, k5−] = −2εijt

jk5− ,

[ki+, kI+] = −εijtjkI+ − T JiIkJ+ , [ki+, kI−] = εijt
jkI− .

(3.69)

Therefore, the algebra is solvable. It consists of a semi-direct product of a two-dimensional

solvable algebra spanned by ki+ with an Abelian algebra spanned by the other vectors.

Note that in fact, tiki+ commutes with all Killing vectors except the ki+ and kI+. These

facts are also manifest in the covariant derivative of the vector fields in (3.21), (3.29)

and (3.35), as all non-Abelian parts of the field strength are proportional to Gi.

We could have performed a similar reduction of M-theory to five dimensions. The

resulting five-dimensional N = 4 gauged supergravity would exhibit the same gaugings as

the ones discussed above. However, the global symmetry group would be R+ × SO(5, n−
1). The above gaugings must hence necessarily be contained in this subgroup of Sl(2) ×
SO(6, n).

In appendix B, we find an expression for the four-dimensional gravitino mass matrix

in terms of the internal geometry of SU(2) structures. It is block-diagonal if we set the

internal field strengths to zero. In this case, each block is proportional to (σa)
ijP a with

P a =

∫
6

eφ−ρ2−ρ4K̄ ∧ (K ∧ dK̄ ∧ Ja + εabcJ
b ∧ dJc) . (3.70)

We furthermore argue there that the theory admits a supersymmetric vacuum if the forms

J = J3 +
1

2
iK ∧ K̄ , Ω = K ∧ (J1 + i J2) , (3.71)

satisfy the Calabi-Yau condition

dJ = 0 , dΩ = 0 . (3.72)

4 Calabi-Yau manifolds with vanishing Euler number

4.1 SU(2) structures on Calabi-Yau manifolds

In the following, we want to study Calabi-Yau threefolds Y with vanishing Euler number.

By the Hopf theorem, Euler number zero implies the existence of a nowhere vanishing

vector field K̂1 on the space.9 For a Calabi-Yau threefold, which has SU(3) holonomy, this

implies the reduction of the structure group to SU(2), as follows. The complex structure

I on the Calabi-Yau relates K̂1 to a second nowhere vanishing vector K̂2 = IK̂1, which

9The explicit construction of such a nowhere vanishing vector field on Y might be difficult.
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is everywhere linearly independent of K̂1. They can hence be combined into a complex

vector K satisfying the first two equations in (2.6). This already provides the structure

needed to define an almost product structure P via (2.7). Since K is a holomorphic vector

with respect to I, we can define Ja, a = 1, . . . , 3, in terms of the Kähler form J and

the holomorphic three-form Ω of the Calabi-Yau manifold via the relations (3.71). These

satisfy the third condition in (2.6). Moreover, we can rescale Ω such that (2.5) is fulfilled.

This thus completes the definition of an SU(2)-structure on Y .

In general, we cannot expect all moduli of a Calabi-Yau manifold to decompose into

SU(2) singlets and triplets; some of them might have an SU(2) doublet component. These

moduli will lie outside of the reduction ansatz outlined in section 3.1 and will thus not

appear in the effective action that we have derived for compactification on manifolds with

SU(2) structure. Instead, the SU(2) doublet components will be part of N = 4 massive

gravitino multiplets that must be coupled to the N = 4 gauged supergravity that we have

derived in section 3. We will comment on these modes further below.

For a given Calabi-Yau manifold, it is non-trivial to find a reduction ansatz which

closes under exterior differentiation, i.e. a set of forms that satisfy (3.12). This set must be

constructed on a case by case basis. It is not clear that this is always possible. In section 4.2,

we provide such a set of expansion forms in the case of the Enriques Calabi-Yau. Further

examples of Calabi-Yau manifolds of vanishing Euler characteristic can be found in [26, 32].

It would be interesting to construct analogous forms in these cases as well.

Let us now assume that a reduction ansatz satisfying the requirements of section 3.1

exists and discuss its special form for the case of a Calabi-Yau manifold. A first requirement

on the charges that appear in (3.12) comes from the fact that for proper Calabi-Yau spaces,

the holonomy group is exactly SU(3) and the first cohomology of Y must therefore be zero.

This translates into the fact that the exterior derivative on any linear combination of the

nowhere vanishing one-forms vi is non-zero.10 This implies that either tiεijt
j
I 6= 0 or t1I and

t2I are linearly independent. In other words, the rank of the matrix (ti, tiI) is maximal (i.e.

two). The almost product structure of Calabi-Yau manifolds of Euler number zero hence

cannot be integrable. As announced in the introduction, they thus lie outside of the ansatz

of [21, 24, 25]. This implies furthermore that the charges of the corresponding N = 4

gauged supergravity will always include some magnetic gaugings, cf. (3.65) and (3.67).

Now let us determine the number of harmonic forms included in the reduction ansatz

of section 3.1. Since (ti, tiI) has rank two, two linear combinations of the forms (v1∧v2, ωI)

are exact. Furthermore, the rank of the matrix

T̂ ÎiI = (−εijtjI , T
J
iI) (4.1)

determines the number of closed forms among the two-forms (v1∧v2, ωI). It is n+1−rk(T̂ ),

giving rise to n − 1 − rk(T̂ ) cohomology classes. This is the number of massless fields we

expect to find parametrizing the N = 2 Kähler moduli space. Similarly, there are rk(T̂ )

exact three-forms within the 2n three-forms of the truncation ansatz, and 2n−rk(T̂ ) closed

10Note that on a compact manifold Y a nowhere vanishing one-form can never be exact, as any function

on Y acquires its extremal points.
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three-forms. This gives 2(n−rk(T̂ )) third-cohomology classes within the truncation ansatz.

From this counting, we see that the number of massless modes parametrizing the complex-

ified Kähler and complex structure moduli spaces agree. In section 5, we will re-encounter

this condition in the general analysis of supersymmetry breaking from N = 4 to N = 2.

In the following, we want to discuss the Calabi-Yau condition for an SU(2)-structure

geometry of the form (3.3). The Calabi-Yau condition should define the N = 2 vacuum

condition inside the N = 4 scalar field space. It says that the holomorphic three-form and

the Kähler form of the Calabi-Yau threefold, given in (3.71), should be closed. This implies

d(J1 + i J2) ∧K + (J1 + i J2) ∧ dK = 0 , dJ3 +
1

2
i d(K ∧ K̄) = 0 . (4.2)

In terms of four-dimensional fields, the above relations can be rewritten as

kit
i
Jη

JIζ+
I = 0 ,

kiε
ijT IjKη

KJζ+
J = 0 ,

eρ4/2T JiIζ
3
J = (k · ε · k)ijt

j
I ,

(4.3)

where we have used (3.13) to simplify the second equation. Using the parametrization (3.4),

we find
(t1J + τt2J)ηJIζ+

I = 0 ,

(T J1K + τT J2K)ηKIζ+
I = 0 ,

eρ4/2T JiIζ
3
J = εijt

j
Ie
ρ2 .

(4.4)

Equations (4.4) describe the N = 2 conditions for the scalars coming from the metric.

For the N = 2 vacuum, the ten-dimensional form fields should be closed as well,

dB = 0 , dC1 = 0 , dC3 = 0 . (4.5)

Inserting the parametrization (3.8), this yields the following conditions on the scalar fields11

tiIb12 + εijT JjIbJ = 0 ,

ai = 0 ,

Ci = 0 ,

tiJη
JIciI = 0 ,

(tiδIJ + εijT IjJ)ciI = 0 .

(4.6)

Similarly, we find for the vector fields

Gi = 0 ,

Bi = 0 ,

tiIC12 + εijT JjICJ = 0 .

(4.7)

We will discuss this in further detail in section 5.1. In particular, we will find that these

equations fix the values of all vector fields that acquire a mass due to the Higgs mechanism,

while the modes ‘eaten’ correspond to the exact forms on Y .

11We also list the conditions on the two-forms Ci here as they can be dualized to scalars.
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4.2 The Enriques Calabi-Yau

An example of a Calabi-Yau threefold of Euler number zero has been given in [33]. It is

constructed by quotienting K3×T 2 by a freely acting involution τ . τ acts as the Enriques

involution on K3 and as the standard involution on the torus.12 The resulting manifold,

also referred to as the Enriques Calabi-Yau, has very special properties. It is self-mirror

and thereby does not have experience any worldsheet instanton corrections at the two-

derivative level [33]. There is however a non-trivial pattern of higher-derivative corrections

for this background (graviphoton-curvature couplings), some of which have been computed

in [35, 36].

We begin by considering the harmonic forms on the Enriques Calabi-Yau Y = (K3×
T 2)/Zτ2 . For their construction, let us consider the orbifold limit T 4/Zσ2 of K3. σ here is

the standard involution on the four-torus. If we introduce coordinates xa, a = 1, . . . , 6, on

T 6 with periodicity xa = xa + 1, the involutions σ and τ are given by [37]

σ : (x1, x2, x3, x4, x5, x6)→ (−x1,−x2,−x3,−x4, x5, x6) ,

τ : (x1, x2, x3, x4, x5, x6)→ (x1, x2 + 1/2,−x3,−x4 + 1/2,−x5,−x6) .
(4.8)

The involution σ has sixteen fixed points. Blowing up the resulting orbifold singularities

yields sixteen exceptional divisors E(i,j,k,l), i, j, k, l = 0, 1
2 , with the subscript denoting the

xi-coordinates of the fixed point. By considering the linear combinations

E(i,j,k,l) ± E(i,j+ 1
2
,k,l+ 1

2
) , (4.9)

we obtain two sets of eight cycles Eα±, with the subscript denoting the transformation

behavior under the involution τ . The intersection matrix of both Eα+ and Eα− is minus

twice the Cartan matrix of the exceptional Lie group E8.

The harmonic forms on Y can be read off from (4.8). They consist of all anti-symmetric

combinations of the dxa that are even under both σ and τ . There are no harmonic one-

forms on Y , a necessary condition for a proper Calabi-Yau manifold. The harmonic two-

forms are given by combinations of dx1 ∧ dx2, dx3 ∧ dx4, dx5 ∧ dx6, which define volume

forms of sub-two-tori of the original unquotiented T 6, and the (1,1) forms E+
α dual to the

exceptional cycles. The harmonic three-forms are given by those combinations of the one-

forms that have one leg on each such two-torus, i.e. dx1∧dx3∧dx5 etc., as well as E−α ∧dx5

and E−α ∧ dx6. Thus, Y has h1,1 = 11 and h2,1 = 11, and its Euler number vanishes, as

announced.

The massless spectrum of a conventional Calabi-Yau compactification on Y gives an

ungauged N = 2 theory with moduli space

MN=2 =
Sl(2,R)

SO(2)
× SO(2, 10)

SO(2)× SO(10)
× SO(4, 12)

SO(4)× SO(12)
. (4.10)

12For a review of the the Enriques involution on K3, see [34].
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The first two factors together carry a special Kähler structure, the last factor a quaternionic

Kähler structure. As Y is obtained as a quotient of K3×T 2, M is naturally a submanifold

of the N = 4 moduli space associated to this compactification manifold,

MK3×T 2 =
Sl(2,R)

SO(2)
× SO(6, 22)

SO(6)× SO(22)
. (4.11)

Now let us describe the construction of expansion forms on Y . The first step is to

define two nowhere vanishing one-forms vi, i = 1, 2, on Y that are linearly independent at

any point, yielding a nowhere vanishing two-form

vol2 ≡ v1 ∧ v2 . (4.12)

We start by constructing such one-forms on T 6. If they are well-defined on the quotient

and survive the blow-up, they sit in the image of the pullback map T ∗Y → T ∗T 6, hence

give nowhere vanishing one-forms on Y . We define

v1 = sin(2πx2)dx3 + cos(2πx2)dx5 , v2 = sin(2πx2)dx4 + cos(2πx2)dx6 , (4.13)

so that

vol2 =
1

2
(dx3 ∧ dx4 + dx5 ∧ dx6)− 1

2
cos(4πx2)(dx3 ∧ dx4 − dx5 ∧ dx6)

+
1

2
sin(4πx2)(dx3 ∧ dx6 − dx4 ∧ dx5) ,

(4.14)

which is clearly nowhere vanishing. The one-forms vi span the two-dimensional component

T ∗2 Y of T ∗Y at each point over the base Y . We need to work a little harder to describe

the orthogonal complement T ∗4 Y explicitly, as it is non-trivially fibered over Y . We begin

therefore by considering the quotient Ỹ = T 6/Zτ2 , where we can specify a global basis for

T ∗4 Ỹ , spanned by

u1 = cos(2πx2)dx3 − sin(2πx2)dx5 , u2 = cos(2πx2)dx4 − sin(2πx2)dx6 , (4.15)

and dx1 and dx2. This shows that Ỹ is a twisted six-torus, with T ∗Ỹ spanned by dxi,

ui and vi, i = 1, 2. We can define a product structure on Ỹ corresponding to the split

T ∗Ỹ = T ∗2 Ỹ ⊕ T ∗4 Ỹ via

PỸ = dv1∂v1 + dv2∂v2 − dx1∂1 − dx2∂2 − du1∂u1 + du2∂u2 (4.16)

= −dx1∂1 − dx2∂2 + cos(4πx2)(dx5∂5 + dx6∂6 − dx3∂3 − dx4∂4)

+ sin(4πx2)(dx5∂3 + dx3∂5 + dx6∂4 + dx4∂6) . (4.17)

Now note that PỸ descends to a map T ∗Y → T ∗Y after quotienting by σ, thus defining

the sought after almost product structure on Y . Since the dxi and ui are odd under σ,

the identity structure of Ỹ is enlarged to SU(2) after this quotienting (and the subsequent

blow-up).
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The torsion of Ỹ is specified by the algebra

dv1 = 2πdx2 ∧ u1 ,

dv2 = 2πdx2 ∧ u2 ,

du1 = −2πdx2 ∧ v1 ,

du2 = −2πdx2 ∧ v2 ,

(4.18)

with dxi being closed. The algebra spanned by these one-forms and their wedge products

is manifestly closed under the operations d, ∧, and ∗. The preimage of this algebra on

⊕iΛiT ∗Y inherits this property. It is spanned by the (preimage of the) one-forms v1 and

v2, as well as the six (preimages of the) two-forms obtained from all possible wedge products

among the 1-forms dxi and ui, i = 1, 2. We have thus succeeded in constructing a set of

forms on Y that satisfy the conditions of our reduction ansatz outlined in section 3.1.

The ansatz so far does not contain the harmonic two-forms Eα+ dual to the exceptional

divisors on Y . These are all located at x2 = 0, 1
2 , where v1 = dx5 and v2 = dx6. Therefore,

they are elements of T ∗4 Y . Being in addition closed and anti-self-dual, they can be safely

included as generators in our reduction ansatz. The ansatz misses one additional harmonic

form, dx3 ∧ dx4 − dx5 ∧ dx6. This form lies in the preimage of a linear combination of

two-forms on Ỹ which involves v1∧u2−v2∧u1, hence does not respect the T ∗2 Y ⊕T ∗4 Y split

of the cotangent space. Under penalty of having to include massive gravitini, as explained

in section 3.1, we must hence exclude this harmonic form from our reduction ansatz. In

total, the two-forms in our ansatz are hence spanned by v1 ∧ v2 ∈ Λ2T ∗2 Y and

(ω)I=1,...,14 = (dx1 ∧ u1 − dx2 ∧ u2, dx1 ∧ u2 + dx2 ∧ u1, u1 ∧ u2 + dx1 ∧ dx2,

dx1 ∧ u1 + dx2 ∧ u2, dx1 ∧ u2 − dx2 ∧ u1, u1 ∧ u2 − dx1 ∧ dx2, Eα+) ,

(4.19)

ωI ∈ Λ2T ∗4 Y . We have here organized the ωI in terms of three self-dual and eleven anti-

self-dual two-forms. They satisfy ωI ∧ ωJ = ηIJ vol
(0)
4 with

(η)IJ =

 (δ)ij 0 0

0 −(δ)ij 0

0 0 2(I8)αβ

 . (4.20)

Here, i, j = 1, . . . , 3, α, β = 1, . . . , 8, and I8 is the negative definite Cartan matrix of the

Lie group E8. In this basis, the torsion algebra can be computed from (4.18) to be

dv1 = π(ω2 − ω5) ,

dv2 = −π(ω1 − ω4) ,

dω1 = dω4 = πv1 ∧ (ω3 − ω6) ,

dω2 = dω5 = πv2 ∧ (ω3 − ω6) ,

dω3 = dω6 = −πv1 ∧ (ω1 − ω4)− πv2 ∧ (ω2 − ω5) ,

(4.21)

with all other derivatives being zero.
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The scalar field space of a type II compactification on this background is

MN=4 =
Sl(2,R)

SO(2)
× SO(6, 14)

SO(6)× SO(14)
. (4.22)

From (4.21) we can read off the gaugings to be

(t)i=1,2
I=1,...,14 = π

(
0 1 0 0 −1 0 0α

−1 0 0 1 0 0 0α

)
, (4.23)

as well as

(T )I1J = π



0 0 1 0 0 −1 0α

0 0 0 0 0 0 0α

−1 0 0 1 0 0 0α

0 0 1 0 0 −1 0α

0 0 0 0 0 0 0α

−1 0 0 1 0 0 0α

0β 0β 0β 0β 0β 0β 0αβ


, (4.24)

and

(T )I2J = π



0 0 0 0 0 0 0α

0 0 1 0 0 −1 0α

0 −1 0 0 1 0 0α

0 0 0 0 0 0 0α

0 0 1 0 0 −1 0α

0 −1 0 0 1 0 0α

0β 0β 0β 0β 0β 0β 0αβ


. (4.25)

In section 5.2 we will discuss the spontaneous supersymmetry breaking to N = 2 for this

example.

5 Spontaneous breaking of N = 4 to N = 2

The SU(2)-structure reduction we performed above specialized to any Calabi-Yau back-

ground should yield an N = 4 gauged supergravity which exhibits N = 2 Minkowski

vacua. The supersymmetry conditions translate into (4.4) and (4.6). Spontaneous partial

supersymmetry breaking in N = 4 supergravity has already been discussed in [39–47]. Our

results give new examples of such a breaking. Before we discuss them in more detail, let

us review general facts on spontaneous supersymmetry breaking to N = 2. See [47] for a

similar (but independently performed) analysis.

When N = 4 supergravity is spontaneously broken to N = 2, the fields in the N = 4

gravity and vector multiplets rearrange non-trivially into N = 2 multiplets. In particular,

two of the four gravitini must acquire a mass and form massive gravitino multiplets. There

are two kinds of massive gravitino multiplets in N = 2 supergravity, a long multiplet and

a short one that transforms as a doublet under a central charge [39]. Let us first focus on
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Massless N = 4 multiplets:

gravity multiplet (2), 4 (3/2), 6 (1), 4 (1/2), 2 (0)

nv +mv + 3 vector multiplets (1), 4 (1/2), 6 (0)

Massless N = 2 multiplets:

gravity multiplet (2), 2 (3/2), (1)

nv vector multiplets (1), 2 (1/2), 2 (0)

nv + 1 hypermultiplets 2 (1/2), 4 (0)

Massive N = 2 multiplets:

2 gravitino multiplets (3/2 +1/2), 4 (1+0), 6 (1/2), 4 (0)

mv vector multiplets (1+0), 4 (1/2), 5 (0)

Table 1. The N = 4 gravity and vector multiplet degrees of freedom rearrange in massless and

massive N = 2 multiplets. The spins of the various (real) fields are displayed in bold-face. Here the

gravitino multiplets are long multiplets. There is one more massless hypermultiplet than massless

N = 2 vector multiplets.

the case that the massive gravitini assemble in long massive multiplets. These multiplets

each have four (massive) vectors, six spinors and four scalars. There can be additional

massive fields in mv massive vector multiplets, consisting of a massive vector, four spinors

and five scalars. The massless fields of N = 2 supergravity assemble as usual into a gravity

multiplet as well as nv vector and nh hypermultiplets. In descending from N = 4, one

can expect correlations between the numbers nv and nh of N = 2 multiplets, as (massless)

N = 4 gauged supergravity knows only vector multiplets. Indeed, as detailed in table 1,

for this pattern of supersymmetry breaking, the number of hypermultiplets of the effective

N = 2 theory exceeds the number of vector multiplets by one, i.e. nv = nh − 1. We found

the same relation from our truncation ansatz in section 4.1. This is incidentally also the

relation that holds for regular compactifications on Calabi-Yau manifolds of Euler number

zero. If the massive gravitini assemble in short multiplets that form a doublet under a

central charge, the multiplets are smaller. Each of the two gravitino multiplets contains

two massive vectors and one spinor. Moreover, their masses must be equal. The counting

of fields, displayed in table 2, now gives a different result: the number of massless N = 2

vector multiplets must be larger by two than the number of massless hypermultiplets. We

thus do not expect this breaking pattern to appear for the N = 4 gauged supergravities

related to χ = 0 Calabi-Yau backgrounds.

5.1 General Calabi-Yau manifolds of vanishing Euler number

We now study N = 4 → N = 2 supersymmetry breaking for general N = 4 gauged

supergravities coming from SU(2) structure reductions of Calabi-Yau spaces. We begin by

considering the metric sector. There are two isometries acting on the scalars coming from

the ten-dimensional metric. These read

δiζ
a
I = −T̃ JiIζaJ ,

δiρ2 = −εijtj ,
δiρ4 = εijt

j ,

δiτ = −(1, τ)i(t
1 + τt2) .

(5.1)
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Massless N = 4 multiplets:

gravity multiplet (2), 4 (3/2), 6 (1), 4 (1/2), 2 (0)

nh +mv + 1 vector multiplets (1), 4 (1/2), 6 (0)

Massless N = 2 multiplets:

gravity multiplet (2), 2 (3/2), (1)

nh + 2 vector multiplets (1), 2 (1/2), 2 (0)

nh hypermultiplets 2 (1/2), 4 (0)

Massive N = 2 multiplets:

2 gravitino multiplets (3/2 +1/2), 2 (1+0), (1/2)

mv vector multiplets (1+0), 4 (1/2), 5 (0)

Table 2. The N = 4 gravity and vector multiplet degrees of freedom rearrange in massless and

massive N = 2 multiplets. The spins of the various (real) fields are displayed in bold-face. Here

the gravitino multiplets are short multiplets. There are two more massless N = 2 vector multiplets

than massless hypermultiplets.

Thus,

δiJ = δi(e
ρ4
2 ζ3

Iω
I + eρ2v1 ∧ v2) = −εijeρ2dvj , (5.2)

and

δiΩ = δi

(
e
ρ2+ρ4

2

√
Im τ

(v1 + τv2) ∧ ζ+
J ω

J

)
=
e
ρ2+ρ4

2

√
Im τ

(1, τ)iζ
+
J dωJ − i Im(1, τ)it

iΩ . (5.3)

The isometries hence act by adding exact pieces to J and Ω, and by rescaling Ω. As the

metric is determined by the cohomology class of J and projectively by the cohomology of

Ω, these directions in field space are unphysical. Correspondingly, when the Gi, the fields

which gauge these isometries, acquire a mass, these directions are modded out of the scalar

field space.

To count degrees of freedom, it will be useful to introduce the vectors

ζ̂3
Î

= (eρ2 , eρ4/2ζ3
I ) , (5.4)

and

t̂i
Î

= (ti, tiI) . (5.5)

In terms of these, the isometries act as shifts

δiζ̂
3
Î

= −eρ2εij t̂
j

Î
. (5.6)

Similarly, we can define

ζ̂+
iI = (k1

i + i k2
i )ζ

+
I , (5.7)

so that the gauged isometries act as

δj ζ̂
+
iI = (εijt

kδJI − δki T̃ JjI)ζ̂+
kJ . (5.8)
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The closure conditions (4.3) on J and Ω in terms of these variables read

T̂ ÎiI ζ̂
3
Î

= 0 ,

T̂ ÎiIεijη
IJ ζ̂+

jJ = 0 .
(5.9)

The matrix T̂ ÎiI was defined in (4.1). Note that the compatibility of these equation with

the gauged isometries (5.6) and (5.8) is guaranteed by (3.13).

Next, we want to understand how the constraints (3.6), which can be written as

ζ3
I η

IJζ3
J = 1 , (5.10)

ζ+
I η

IJζ+
J = 0 , ζ+

I η
IJζ−J = 2 , (5.11)

ζ3
I η

IJζ+
J = 0 , (5.12)

are compatible with the factorization of the N = 2 moduli space. Equation (5.12) appar-

ently couples J and Ω. Notice however that this equation imposes two real constraints,

which is the number of isometries acting on ζaI . The coupling of ζ3 with ζ+
I can thus be

absorbed by these isometries; J and Ω are only coupled via exact contributions, which are

not physical. The Kähler structure is thus parametrized by n − rk(T̂ ) − 1 real variables:

the n + 2 real parameters ζ̂3 subject to the linear constraint that is the first condition

in (5.9), the quadratic constraint (5.10), and the two isometries (5.8) . Let us preform the

analogous counting for the complex structure moduli space: one complex direction is fixed

by fixing the gauge freedom (5.8). Furthermore, (5.11) together with U(1) rotations of ζ̂+

fix two more complex degrees of freedom. Naively (5.9) would count for rk(T̂ ) complex

conditions. However, since ζ̂+ is defined as the direct product (5.7), there is an additional

local U(1) symmetry that reduces the number of independent equations in (5.9) by one.

Therefore, we find that ζ̂+ depends on n− rk(T̂ )− 1 complex degrees of freedom.

ζ̂+
iI forms a holomorphic symplectic vector with respect to the symplectic pairing εijη

IJ

that is subject to the second condition in (5.9). It coordinatizes a special-Kähler space with

the Kähler potential

K = − log i Ω ∧ Ω̄ = − log(i ζ̂+
iI εijη

IJ ζ̂−jJ) , (5.13)

where ζ̂−iI is the complex conjugate of ζ̂+
iI . The expression for the Kähler potential in terms

of the holomorphic three-form Ω is valid in terms of projective coordinates ζ̂. We conse-

quently disregard the second constraint of (5.11). Note that interpreting ζ̂iI as projective

coordinates allows us to scale ki and ζI independently.

Let us now understand the form of the holomorphic prepotential. We will rescale

k1
1 + i k2

1 to be a constant, leaving k1
2 + i k2

2 as a free complex parameter. Next, we perform

a linear coordinate transformation such that, retaining the name of the variables, the first

constraint of (5.11) takes the form ζ+
1 ζ

+
2 + ζM η̃

MNζN = 0, with M,N = 1, . . . , n− 2, and

η̃ having signature (1, n− 3). Rescaling ζ to fix ζ+
1 = 1 yields ζ+

2 as a quadratic expression

in the remaining n− 2 variables. The tensor product (5.7) thus gives rise to a symplectic
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vector with one constant component, n−1 linear components, n−1 quadratic components,

and one cubic component. This is the hallmark of a cubic prepotential. It reads

FΩ =
1

2
τ(ζM η̃

MNζN ) . (5.14)

Before imposing the Calabi-Yau condition (5.9), the ζ̂ thus parametrize the special-Kähler

space

MSK,0 =
Sl(2)

SO(2)
× SO(2, n− 2)

SO(2)× SO(n− 2)
. (5.15)

Imposing the linear constraint (5.9) on ζ̂+
iI leads to a Kähler subspace that we will now

argue to be special-Kähler as well. If we consider the linear constraint in the form (4.3),

they form a set of linear equations on ζ+
I with coefficients that might depend linearly on

τ . If the coefficients depend non-trivially on τ , the number of coordinates in ζ+
I simply

reduces by rk(T̂ ) and the number of components in ζ̂+
iI by 2 rk(T̂ ), while the general form

of the special-Kähler structure is unaltered. In this case, the N = 2 moduli space takes

the form of MSK,0 with n replaced by n − rk(T̂ ), cf. (5.9). In the more generic case

that τ does appear non-trivially in (4.3), some coordinates will be eliminated while others

will depend linearly on τ . Therefore, the holomorphic prepotential will no longer retain

the factorized form (5.14). It will however remain cubic. The scalar field space will in

general not correspond to a symmetric space though it will remain a homogeneous space,

all of which have been classified in [50, 51]. This determines the N = 2 moduli space of

complex structures. In particular, we have shown that MSK is special-Kähler with cubic

prepotential.

We now turn to the form fields. Their expansion in (3.8) involves three types of

internal forms: these internal differential forms split into those that are exact, closed but

not exact and those that are not closed. If an expansion form is closed, the corresponding

four-dimensional field turns out to be massless, as no potential terms are generated. If

the internal form is not closed, then a potential term is generated. In the case of four-

dimensional scalars, this is just a scalar potential that gives a mass to exactly these fields.

In the case of four-dimensional vectors, they instead show up in the covariant derivative

of some massless scalars (which were expanded in the corresponding exact form of one

degree higher). The vector acquires a mass during the super-Higgs mechanism and eats up

the scalar during this process. By this, all remaining fields of the effective N = 2 theory

come from expansion in non-trivial cohomology classes, as it is expected from the standard

Calabi-Yau reduction. Let us now discuss this in detail.

We begin with the B field. From (3.65), we read off the action of the two isometries

gauged by Gi on the internal components of B,

δib12 = −εijtjb12 , δibI = −T JiIbJ . (5.16)

Invoking the Calabi-Yau constraints (4.6), this yields

δiB
int = δi(b12v

1 ∧ v2 + biω
I) = −εijb12dvj , (5.17)
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which combines nicely with the transformation (5.2) of J to

δi(B
int + iJ) = −εij(b12 + ieρ2)dvj . (5.18)

Introducing the variable bÎ = (b12, bI), we see that the Calabi-Yau constraint (4.6) can be

written as

T̂ ÎiI b̂Î = 0 , (5.19)

which has the same form as (5.6). Hence, both the isometries and the constraints are

holomorphic in the variable b̂+ i ζ̂3.

Analogously to the complex structure moduli space, b̂ + i ζ̂3 parametrizes the special

Kähler space of complexified Kähler moduli, that is the subspace defined by complexifica-

tion of (5.9) within MSK,0, given in (5.15).

It remains to discuss the fate of the scalars coming from the Ramond-Ramond fields in

the spontaneous N = 4→ N = 2 supersymmetry breaking. The conditions (4.6) and (4.7)

eliminate all modes that correspond to non-closed forms on Y . In particular, we find

ai = 0 ,

T̂ ÎiIεijη
IJcjJ = 0 ,

T̂ ÎiICÎ = 0 ,

t̂i
Î
C̃ Î = 0 ,

(5.20)

where we have defined

CÎ = (C12, CI) , C̃Î = (C̃12, C̃I) , t̂i
Î

= (ti, tiI) . (5.21)

The scalars corresponding to the shift isometries

δÎciI = T̂ ÎiI (5.22)

are eaten by the vectors CÎ to give them a mass. Furthermore, the scalars γi are eaten due

to the Higgs mechanism that gives a mass to the magnetic vectors t̂i
Î
C̃ Î . Equivalently, one

could say that the vectors corresponding to the ti
Î

directions are eaten by the two-forms Ci
to acquire a mass.

The remaining vector fields are those CÎ that satisfy (5.20) and that are invariant

under the shifts

δiCÎ = ti
Î
. (5.23)

Therefore, there is exactly one vector for each complex scalar b̂Î + i ζ̂3
Î

that remains in the

N = 2 theory. Together, they form N = 2 vector multiplets. Note that the N = 2 vector

multiplet moduli space is not necessarily a direct product, in contrast to the case of purely

electric gaugings [47].

Similarly, the remaining scalars cjJ that obey (5.20) form a real symplectic vector

under the symplectic product εijη
IJ . Together with φ and β, they build the classical c-

map [48, 49] over the special-Kähler space spanned by ζ̂+
iI , with the Kähler potential (5.13).
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In total, we find the standard structure of classical N = 2 supergravity, with a cubic

prepotential. However, we in general cannot incorporate the full N = 2 massless spectrum

of an ordinary Calabi-Yau compactification in our N = 4 description without including

couplings to N = 4 massive gravitino multiplets.

In ordinary Calabi-Yau reductions, one obtains an N = 2 supergravity theory with cu-

bic prepotential as well. This prepotential is modified away from cubic form by worldsheet

instanton corrections. The N = 4 context of our setup is protected against such quantum

effects. We hence need to confront the question of how these corrections arise upon break-

ing to N = 2.13 We expect to be able to incorporate them in the couplings of the very

modes we excluded from our ansatz by not considering N = 4 massive gravitino multiplets.

The couplings of these fields to N = 4 supergravity have not been studied. They are not

fully constrained by N = 4 supersymmetry, and can hence experience quantum corrections

which should translate into the expected worldsheet instanton contributions to the prepo-

tential of the N = 2 theory. We conjecture that these corrections will only involve the

SU(2) doublet directions in scalar field space.

5.2 The Enriques Calabi-Yau

For the Enriques Calabi-Yau, the conditions (4.4) read

ζ+
2+ + τζ+

1+ = 0 ,

ζ+
3+ = 0 ,

ζ̃3
i+ = 0 for i = 1, 2 ,

ζ̃3
3+ = eρ2 ,

(5.24)

where we have defined ζai± = ζai ± ζai+3, i = 1, 2, 3, and ζ̃3
· = eρ4/2ζ3

· . We will use the same

conventions for the two-forms ωI below. As ti = 0, the two gauged isometries in the metric

scalar directions are generated by

δiζ
a
I = T JiIζ

a
J . (5.25)

Plugging in (4.24) and (4.25) for T JiI yields

δiζ
a
j+ = 0 , δiζ

a
j− = −2πζa3+δij , (5.26)

δiζ
a
3+ = 0 , δiζ

a
3− = 2πζai+ . (5.27)

As expected, these isometries hence preserve the Calabi-Yau conditions (5.24). Their action

amounts to adding exact forms ωi− and ω3− ∧ vi, i = 1, 2, to J and Ω respectively.

The quadratic constraints (3.6) on ζa take the form

ζ+
1+(ζ+

1− − τζ
+
2−) + ζ+

α I
αβ
8 ζ+

β = 0 ,

Re(ζ+
1+(ζ−1− − τζ

−
2−) + ζ+

α I
αβ
8 ζ−β ) = 1 ,

ζ+
i+ζ̃

3
i− + eρ2ζ+

3− + ζ+
α I

αβ
8 ζ̃3

β = 0 ,

eρ2 ζ̃3
3− + ζ̃3

αI
αβ
8 ζ̃3

β > 0 ,

(5.28)

13An initial guess that Calabi-Yau manifolds with vanishing Euler number experience no worldsheet

instanton corrections is correct in the case of the Enriques Calabi-Yau, but not true in general.
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where the intersection matrix ηIJ of the two forms is given by (4.20). From the first

equation, we see that ζ+
1+ must be non-zero. In the following, we rescale ζ+ → ζ̃+ (cor-

responding to a rescaling of Ω, which does not change the complex structure) such that

ζ̃+
1+ = 1. The first constraint in (5.28) then simplifies to

ζ̃+
1− − τ ζ̃

+
2− + ζ̃+

α I
αβ ζ̃+

β = 0 ,

Im τ Im ζ̃−2− + Im ζ̃+
α I

αβ Im ζ̃−β > 0 .
(5.29)

Furthermore, we gauge-fix the isometries (5.26) such that ζ+
3− = 0. We thus obtain a nice

product representation of Ω on the covering space K3× T 2 (the resolution of T 6/Zσ2 ),

Ω = (dx5 + τdx6) ∧
(
(dx3 + τdx4) ∧ (dx1 + ζ+

2−dx2) + ζ+
α E

α
−
)
. (5.30)

We have here used the equality vi∧Eα+ = dx5∧Eα−, as at the support of the two components

of Eα+, see (4.9), cos(2πx2) = ±1.

Similarly, the conditions on ζ̃3 read

ζ̃3
1− − τ ζ̃3

2− = −ζ̃+
α I

αβ ζ̃3
β ,

eρ2 ζ̃3
3− > −ζ̃3

αI
αβ ζ̃3

β .
(5.31)

We can write J as

J = eρ2(dx3 ∧ dx4 + dx5 ∧ dx6) + ζ̃3
3−dx1 ∧ dx2 + ζ3

αẼ
α , (5.32)

where we have defined

Ẽα+ = Eα+ +
1

2π Im τ
Iαβ Im(ζ̃+

β (dv1 − τ̄dv2)) , (5.33)

which differ from Eα+ by an exact piece.14

From the form (5.30) and (5.32) we see that the moduli space of Ω and J completely

decouple, as expected for the complex structure and Kähler moduli space of a Calabi-Yau

manifold. However, in the case of both moduli spaces, we do not reproduce the full result of

the standard Calabi-Yau reduction. For instance, Ω should span the special-Kähler space

MΩ =
Sl(2,R)

SO(2)
× SO(2, 10)

SO(2)× SO(10)
. (5.34)

Though we can guess from (5.30) the required cubic form of the full holomorphic prepo-

tential, one of the massless modes is missing in our expression (5.30) for the holomorphic

three-form Ω: both dx4 and dx6 exhibit the same complex parameter τ as coefficient. We

therefore only reproduce a special Kähler subspace of codimension one. Similarly, one

massless mode is missing in our expression (5.32) for the Kähler form J , corresponding to

the deformation in the direction of the two-form dx3 ∧ dx4 − dx5 ∧ dx6. We already noted

in section (4.2) that this harmonic form is excluded from our reduction ansatz. It does

14Note that this additional exact piece is needed for the closure of the differential algebra of the expansion

forms, a property the conventional expansion in harmonic forms lacks.
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not respect the T ∗2 Y ⊕ T ∗4 Y split of the cotangent space, thus giving rise, as mentioned

repeatedly above and explained in [23], to N = 4 gravitino multiplets which lie beyond the

N = 4 supergravity action considered in this paper.

What remains is the discussion of the degrees of freedom coming from the form fields.

Nothing is gained in this sector by restricting to the Enriques Calabi-Yau example. Suf-

fice it to repeat that the form field B2 pairs with J in the standard way, enhancing the

Kähler moduil space to a special-Kähler space with cubic prepotential. Moreover, the

Ramond-Ramond fields form a fibration over the complex structure moduli so that we find

a quaternion-Kähler space in the image of the c-map [48, 49].

6 Discussion

In this work, we dimensionally reduced the ten-dimensional action of type IIA on SU(2)

structure manifolds. We showed that this action is consistent with N = 4 gauged su-

pergravity and derived the embedding tensor components that specify the gaugings. The

gauge group of this gauged supergravity is solvable and in general contains a large number

of commuting isometries that transform non-trivially under a pair of isometries that are

gauged under the Kaluza-Klein vectors. In principle, one should be able to assemble all

degrees of freedom of these SU(2) structure backgrounds not captured by our ansatz in

massive multiplets of N = 4 supergravity.

Calabi-Yau spaces of Euler number zero constitute a distinguished class of SU(2) struc-

ture manifolds. These backgrounds famously admit N = 2 supersymmetry. The N = 4

gauged supergravity obtained upon compactification on these manifolds hence exhibits at

least one vacuum that breaks supersymmetry only partially, yielding new examples of spon-

taneous N = 4 → N = 2 supersymmetry breaking, extending the discussion of [39–47].

Integrating out the fields that acquire a mass upon supersymmetry breaking to N = 2

results in the standard N = 2 supergravity of Calabi-Yau reductions, up to those fields

that have a doublet component under the SU(2) structure group. These SU(2) doublets

correspond to N = 4 massive gravitino multiplets in four dimensions, which must be in-

cluded in order to recover the full N = 2 moduli space of Calabi-Yau compactifications.

The multiplet structure of the massive gravitino multiplet was worked out long ago [39].

However, its dynamics has not yet been studied, and there is still much to be understood

about its role in N = 4 supergravity.

Since N = 4 gauged supergravity does not allow for any quantum corrections to the

massless multiplets (at the two-derivative level) and since we find cubic holomorphic pre-

potentials from the super-Higgs mechanism, the N = 2 effective actions we obtain upon

supersymmetry breaking cannot incorporate quantum corrections. This is in accord with

the absence of perturbative quantum corrections in Euler number zero Calabi-Yau compact-

ifications. As worldsheet instanton corrections are not absent in such compactifications, we

conjecture that these quantum corrections to the N = 2 holomorphic prepotential of the

Kähler moduli space can be encoded fully in the couplings of massive gravitino multiplets

to N = 4 gauged supergravity. This provides strong motivation to study massive gravitino

multiplets in gauged supergravity in the future.
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The discussion of quantum corrections to the holomorphic prepotential of the complex

structure moduli space is completely analogous. Our analysis shows that before SU(2)

doublets are included, this prepotential is also cubic, consistent with mirror symmetry.15

The SU(2) doublet deformations will fiber over these modes, giving the full prepotential.

Therefore, the Picard-Fuchs equations should drastically simplify in a parametrization of

the holomorphic three-form compatible with the SU(2) structure. As in the Kähler sector,

all non-perturbative corrections, here gs corrections due to D-brane and NS5 instantons,

should come from massive gravitino multiplets that incorporate the SU(2) doublet degrees

of freedom.

The enhancement of supersymmetry from N = 2 to N = 4 should also be visible

from a different point of view. Even if these additional supercharges are broken by the

background, one should still be able to find the related conserved currents in the N = 2

supergravity. Their existence might be related to the absence of the quantum corrections

that we discussed above.

In the long run, discussing quantum corrections of Calabi-Yau spaces of vanishing Euler

number in terms of their SU(2) structure might also enable one to understand quantum

corrections for general G-structure backgrounds better, as some of the techniques could

carry over to the case where no supercharges are preserved. One related idea is to find

the correct twisted cohomology on the internal space that keeps track of all modes of the

N = 4 supergravity. Though first steps into this direction have been undertaken in [26] for

orbifold examples, the general definition of such a cohomology still seems to be missing.

We shall conclude with two comments concerning related constructions for theories

with higher dimension or less supersymmetry.

If the Calabi-Yau manifold Y is elliptically fibered, the four-dimensional N = 2 theory

has an interpretation in six dimensions in terms of a (1, 0) theory. Equivalently, we can

think of such a theory as coming from an F-theory compactification on Y [52–54]. When

the Euler number of Y vanishes, not only the irreducible part of the gravitational anomaly

vanishes, as required for anomaly cancellation, but the reducible part, i.e. the coefficient

of (trR2)2 [55] does as well (see [56] for a recent review). It would be interesting to

understand this vanishing of gravitational anomalies from the point of view of hidden

extra supersymmetry in the framework presented in this work.

Finally, one could hope to derive an N = 2 gauged supergravity with a vacuum pre-

serving N = 1 supersymmetry by considering the heterotic string on a Calabi-Yau manifold

of Euler number zero. Though less supersymmetry and the inclusion of the gauge bundle

might complicate the analysis, the discussion of quantum corrections to the holomorphic

prepotentials should carry over to this case. Moreover, since these Calabi-Yau spaces give

non-trivial examples of SU(2) structure manifolds, one could in principle hope that such

a study could be useful for understanding heterotic strings on general G-structure back-

grounds.

15The Euler numbers of mirror Calabi-Yau manifolds differ by sign only.
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A Computation of ten dimensional Ricci scalar

In this appendix we compute the Ricci scalar r10. For this we must first determine the

connection from (2.22) for the ansatz (3.12).

A.1 Useful identities

Let us first collect some identities that will be useful in the following computation.

From (3.4), we find that the matrix k satisfies the identities

kT · ε · k = k · ε · kT = eρ2ε ,

k−1 = −e−ρ2ε · kT · ε ,
kT · k = eρ2gτ ,

(A.1)

where

gτ = (Im τ)−1

(
1 Re τ

Re τ |τ |2

)
. (A.2)

We will need the following expressions for the four-dimensional derivatives of kij :

((dk) · k−1)sym =
1

2
dρ21−

1

2
σ3(Im τ)−1d Im τ +

1

2
σ1(Im τ)−1d Re τ ,

tr(ε · (dk) · k−1) = −(Im τ)−1d Re τ ,
(A.3)

where σ1 and σ3 are the standard Pauli matrices.

From (3.6) we find

(∂µζ
a
I )ηIJζbJ = 0 , (A.4)

which means that over four-dimensional spacetime, the Ja do not rotate into each other

and therefore really move in SO(3,n)
SO(3)×SO(n) . The decomposition of ωI into representations of

SU(2) reads

ωI = ζa IζaJω
J + (δIJ − ζa IζaJ)ωJ . (A.5)

The latter term is invariant under the Ia. We hence find

1

2
(Ia)αβ(ωI)βγe

α ∧ eγ = e−ρ4/2εabcζb IJc . (A.6)

Furthermore, we have

(ωI)αβ(Ia)αβ = 4eρ4/2ζa I . (A.7)
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A.2 Connection

From the first equation in (2.22), we see that γiµ(K̂j) and λαµ(êβ) must be symmetric in i

and j and α and β, respectively. It is straight-forward to solve for the first two equations.

For the third, we need to use dJa = (Ia)αβdeα ∧ eβ as well as (3.3) and (A.4). We find

0 =
1

2
dρ4 ∧ Ja + eρ4/2dζaI ∧ ωI + eρ4/2ζaI T

I
jJ(k−1)jiK

i ∧ ωJ − eρ4/2ζaI T
I
iJG

i ∧ ωJ

− (Ia)αβτ
i
αγK

i ∧ eβ ∧ eγ + 2εabcφb ∧ Jc + (Ia)αβλ
α
µ ∧ eµ ∧ eβ .

(A.8)

Now let us first solve the second equation in (2.22). For this, we recall that εijγ
i
µ(K̂j) = 0

and (A.3). This gives us

τ iαβe
α ∧ eβ = kijt

j
Iω

I ,

φ0 = −e−ρ2t · kT ·K − d Re τ

2 Im τ
+

1

2
t · gτ ·G ,

γiµ ∧ eµ = −kijDGj +
1

2
Ki ∧Dρ2 −

1

2
(σ3)ij(Im τ)−1Kj ∧D Im τ

+
1

2
(σ1)ij(Im τ)−1Kj ∧DRe τ ,

(A.9)

where we have defined the covariant derivatives

DGi = dGi +
1

2
tiG · ε ·G ,

Dρ2 = dρ2 −G · ε · t ,
DRe τ = d Re τ + (G · ε · k−1 · σ1 · k · t) Im τ ,

D Im τ = d Im τ + (G · ε · k−1 · σ3 · k · t) Im τ .

(A.10)

The latter two can be merged into the covariant derivative of the complex scalar τ as

Dτ = dτ − ((1, τ) ·G)((1, τ) · t) . (A.11)

Next, we make the ansatz

τ iαβ =
1

2
kijt

j
Iω

I
αβ + τ i0δαβ + (τ ia)αγ(Ia)γβ ,

λαµ = λα(µν)e
ν + λ0

µe
α + (λaµ)αγ(Ia)γβe

β ,
(A.12)

where τ ia = τ ia I(δ
I
J − ζa IζaJ)ωJ . We have used that λαµ(êβ) should be symmetric in α and

β as well as the fact that (2.22) implies that λαµ(êν) is symmetric in µ and ν. We then

solve (A.8) with help of (A.6) and find

τ iαβ =
1

2
kijt

j
Iω

I
αβ +

1

4
e−ρ2εijk

j
kt
kδαβ

+
1

2
eρ4/2(k−1)ji ζ

a
K T̃

K
jI (δIJ − ζa IζaJ)ωJαγ(Ia)γβ ,

φa = −1

2
e−ρ4/2ζaItjIk

i
jK

i +
1

4
εabcζbIζ

c J T̃ IiJ(k−1)ijK
j − 1

4
εabcζbIζ

c J T̃ IiJG
i ,

λαµ ∧ eµ =
1

4
eα ∧ (dρ4 − t · ε ·G)

+
1

2
eρ4/2(Ia)βαω

I
βγe

γ ∧ (dζaI −GiT̃ JiKζaJ(δKI − ζbKζbI)) .

(A.13)
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Finally, we solve the first equation in (2.22). This gives us

λα(µν) = 0 , γi(µ(êν)) = 0 ,

ωµν = ω̃µν +D[µGν] · kT ·K ,
(A.14)

where ω̃ is the connection of the four-dimensional metric. This determines the ten-

dimensional connection up to the SU(2) component θ. We will see that θ drops out of

all four-dimensional expressions. All other components are given by

ωµν = ω̃µν +D[µGν] · kT ·K ,

γiµ = kijD[µG
j
ν]e

ν +
1

2
Dµρ2K

i − 1

2
(Im τ)−1Dµ Im τ(σ3)ijK

j

+
1

2
(Im τ)−1Dµ Re τ(σ1)ijK

j ,

λαµ =
1

4
eαDµρ4 +

1

2
eρ4/2(Ia)βαω

I
βγe

γ(δJI − ζbIζbJ)Dµζ
a
J ,

φ0 = −e−ρ2t · kT ·K − d Re τ

2 Im τ
+

1

2
t · gτ ·G ,

φa =

(
1

4
εabcζbIζ

c J T̃ IjJ(k−1)ji −
1

2
e−ρ4/2ζaItjIk

i
j

)
Ki − 1

4
εabcζbIζ

c J T̃ IiJG
i ,

τ iα =
1

2
kijt

j
Iω

I
αβe

β +
1

4
e−ρ2εijk

j
kt
keα

+
1

2
eρ4/2(k−1)ji ζ

a
K T̃

K
jI (δIJ − ζb IζbJ)ωJαγ(Ia)γβe

β ,

(A.15)

where the covariant derivatives are defined as

Dρ2 = dρ2 −G · ε · t ,
Dρ4 = dρ4 +G · ε · t ,
Dτ = dτ − ((1, τ) ·G)((1, τ) · t) ,
DζaI = dζaI −GiT̃ JiIζaJ ,

DGi = dGi +
1

2
tiG · ε ·G .

(A.16)

A.3 Torsion and curvature of the SU(2) connection

In order to compute the Ricci scalar, we derive a relation between the curvature and the

torsion tensor of the SU(2) connection. Since η+i are invariant under the su(2) in which θ

lives, we have

0 = Rθαβγδγ
γδη+i . (A.17)

Contracting this equation with γβ gives

0 = Rθαβγδγ
βγδη+i − Ricθαβ γ

βη+i . (A.18)

We see that if θ were torsion-free, the Riemann tensor would obey the Bianchi identity

and the first term would be zero, thereby imposing that the connection be Ricci-flat. In
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general, the above equation gives a tool to compute the Ricci curvature in terms of torsion

classes. We can contract the above equation with η̄i+γ
ρ and find

Ricθαβ = Rθαγδρε
γδρβ . (A.19)

The failure to satisfy the Bianchi identity is measured by Rθ ∧ e = ∇T = dT + θT (as can

be seen from the definition of the torsion tensor T ), therefore

Ricθαβ = (dTα + θαλ ∧ T λ)(êγ , êδ, êρ)ε
γδρβ . (A.20)

Note that only the component of the SU(2)-covariant derivative of the torsion two-form

inside Λ3T ∗4 appears.

Now let us evaluate the SU(2) Ricci scalar by computing the SU(2) torsion tensor and

its covariant derivative by use of (A.15). We find

rθ = εαβγδ∇θTα(êβ, êγ , êδ) = −εαβγδ((Ia)αβφai + τ iαβ)kijt
j
Iω

I
γδ

= −εαβγδ((Ia)αβ(
1

4
εabcζbIζ

c J T̃ IjJ(k−1)ji −
1

2
e−ρ4/2ζaItjIk

i
j) +

1

2
kijt

j
Iω

I
αβ)kijt

j
Kω

K
γδ

= −e−ρ4/2εabcζaKζbIζ
c J T̃ IjJ t

j
K − 2eρ2−ρ4tI · gτ · tJ(ηIJ − ζaIζaJ) .

(A.21)

A.4 Ricci scalar

Our next aim is to compute the ten-dimensional Ricci scalar r10 from

r10 = Ricµµ + Ricii + Ricαα . (A.22)

For the Ricci tensor, we have

Ricµν = Rµλνλ +Rµiνi +Rµανα ,

Ricµi = Rµνiν +Rµjij +Rµαiα ,

Ricµα = Rµναν +Rµiαi +Rµβαβ ,

Ricij = Riµjµ +Rikjk +Riαjα ,

Riciα = Riµαµ +Rijαj +Riβαβ ,

Ricαβ = Rαµβµ +Rαkβk +Rαγβγ ,

(A.23)

so that

r10 = Rµνµν + 2Rµiµi + 2Rµαµα +Rijij + 2Riαiα +Rαβαβ . (A.24)

We will now compute the components via

R = dΩ + Ω ∧ Ω . (A.25)

For instance

Rµνµν = (dωµν )(êµ, êν) + (ωµλ ∧ ω
λ
ν )(êµ, êν) + (λµα ∧ λαν )(êµ, êν) + (γµi ∧ γ

i
ν)(êµ, êν)

= r̂4 + eρ2D[µGν] · gτ ·D[µGν] ,
(A.26)
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where r̂4 is the Ricci scalar of the four-dimensional metric up to a conformal factor, which

we will rescale below. Similarly, we have

Riµiµ =
(
dγiµ + γiν ∧ ωνµ + εijφ

0 ∧ γjµ + τ iα ∧ λαµ
)
(K̂i, êµ)

= −∇µDµρ2 −
1

2
(Dµρ2)(Dµρ2)− (Dµτ)(Dµτ̄)

2(Im τ)2
− eρ2D[µGν] · gτ ·D[µGν] ,

Rαµαµ =
(
dλαµ + λαν ∧ ωνµ + ταi ∧ γiµ + (Ia)αβφ

a ∧ λβµ + θαβ ∧ λβµ
)
(êα, êµ)

= −∇µDµρ4 −
1

4
Dµρ4D

µρ4 ,

Rijij = (εijdφ
0 + γiµ ∧ γ

µ
j + τ iα ∧ ταj )(K̂i, K̂j)

= −2e−ρ2t · gτ · t− 1

2
(Dµρ2)(Dµρ2) +

1

2
(Im τ)−2(Dµτ)(Dµτ̄) .

(A.27)

For the component Riαiα, we compute from (2.22) the following expressions

deα(êi, êα) = −τ iα(êα) = −2e−ρ2εijk
j
kt
k ,

d(ωIαβe
β)(êi, êα) = ωIαβ(deβ)(êi, êα) = −ωIαβ((Ia)βαφ

a(êi) + τ iβ(êα))

=
1

4
eρ4/2εabcζa IζbJζ

cK T̃ JjK(k−1)ji −
1

2
kijt

j
J(ηJI − ζb Jζb I) ,

d(ωIαγ(Ia)γβe
β)(êi, êα) = ωIαγ(Ia)γβ(deβ)(êi, êα) = ωIαγ(Ia)γβτ

i
β(êα)

= −1

2
eρ4/2(k−1)ji ζ

a
K T̃

K
j J(δJI − ζb JζbI) .

(A.28)

We find

dτ iα(êi, êα) = (Ia)αβτ
i
αβφ

a
i − τ iαβτ iβα . (A.29)

The curvature component Riαiα then reads

Riαiα = (dτ iα + τ iβ ∧ (Ia)βαφ
a + εijφ

0 ∧ τ jα + γiµ ∧ λµα)(êi, êα)

= −τ iαβτ iβα + εijφ
0
i τ
j
αα + γiµiλ

µ
αα

=
3

4
e−ρ2t · gτ · t+ 2eρ2−ρ4tI · gτ · tJHJI −Dµρ2D

µρ4

+ e−ρ2(ηIJ − ζb Iζb J)ζaKζ
a
LT̃

K
I · (gτ )−1 · T̃LJ .

(A.30)

Finally, we can use (A.21) to determine

Rαβαβ = rθ +
(
dφa(Ia)αβ + εabcφb ∧ φc(Ia)αβ − τ iα ∧ τ iβ − λαµ ∧ λβµ

)
(êα, êβ)

= −4eρ2−ρ4ζa ItI · gτ · tJζa J −
3

4
e−ρ2t · gτ · t

− e−ρ2(ηIJ − ζb Iζb J)ζaKζ
a
LT̃

K
I · (gτ )−1 · T̃LJ −

3

4
Dµρ4D

µρ4

+Dµζ
a
I (ηIJ − ζb Iζb J)DµζaJ .

(A.31)
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Summing up alI components, we arrive at the following expression for the ten-dimensional

Ricci scalar

r10 = r̂4 − eρ2D[µGν] · gτ ·D[µGν] − 2∇µDµρ2 −
3

2
(Dµρ2)(Dµρ2)

− 1

2
(Im τ)−2(Dµτ)(Dµτ̄)− 2∇µDµρ4 −

5

4
Dµρ4D

µρ4 −
5

4
e−ρ2t · gτ · t

− 4eρ2−ρ4tI · gτ · tJηIJ + e−ρ2(ηIJ − ζb Iζb J)ζaKζ
a
LT̃

K
I · (gτ )−1 · T̃LJ

− 2Dµρ2D
µρ4 +Dµζ

a
I (ηIJ − ζb Iζb J)DµζaJ .

(A.32)

B Fermions and supersymmetry

In this appendix, we want to derive the gravitino mass matrix of the four-dimensional

theory, as it appears in the supersymmetry variation of the gravitini. For this, we will first

identify the four-dimensional gravitini and fermions in terms of ten-dimensional fermionic

fields. Subsequently, we will derive the vacuum contribution to the supersymmetry varia-

tions in terms of the internal geometry. Similar discussions can be found in [10, 11, 30].

In type IIA supergravity, the ten-dimensional gravitini Ψ
(10) i
M and the dilatini χ(10) i

form the vector ⊗ spinor representation Ψ̂
(10) i
M given by

Ψ̂
(10) i
M = Ψ

(10) i
M +

1

8
ΓMχ

(10) i . (B.1)

We can expand the internal and external components of Ψ̂
(10) i
M as

Ψ̂(10) 1
µ = εjkΨ

j
µ+ ⊗ ηk+ + εjkΨ

j
µ− ⊗ ηk− +

1

2
εjkγµχ

j
+ ⊗ ηk+ +

1

2
εjkγµχ

j
− ⊗ ηk− ,

Ψ̂(10) 2
µ = εjkΨ

j+2
µ− ⊗ ηk+ + εjkΨ

j+2
µ+ ⊗ ηk− +

1

2
εjkγµχ

j+2
− ⊗ ηk+ +

1

2
εjkγµχ

j+2
+ ⊗ ηk− ,

Ψ̂
(10) 1
j = εklξ

k
j+ ⊗ ηl+ + εklξ

k
j− ⊗ ηl− ,

Ψ̂
(10) 2
j = εklξ

k+2
j− ⊗ η

l
+ + εklξ

k+2
j+ ⊗ η

l
− ,

Ψ̂(10) 1
a = εklζ

α
I λ

k
α+ ⊗ ωIbcγbcγaηl+ + εklζ

â
I λ

k
â− ⊗ ωIbcγbcγaηl−

+
1

4
εjkρ

j
+ ⊗ γaηk+ +

1

4
εjkρ

j
− ⊗ γaηk− ,

Ψ̂(10) 2
a = εklζ

α
I λ

k+2
α− ⊗ ωIbcγbcγaηl+ + εklζ

â
I λ

k+2
â+ ⊗ ω

I
bcγ

bcγaη
l
−

+
1

4
εjkρ

j+2
− ⊗ γaηk+ +

1

4
εjkρ

j+2
+ ⊗ γaηk− .

(B.2)

Here, µ is a space-time index, and j and a index the two- and four-dimensional component

respectively of the tangent bundle of the internal manifold. The ζαI are defined such that

ζαI η
IJζaJ = 0 , ηIJ = ζaI ζ

a
J − ζαI ζαJ . (B.3)
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From the above decomposition of the ten-dimensional fermions, we can read off the

four-dimensional fields. In the following, we only write the component of positive chirality

and drop the + index. The four-dimensional gravitini Ψa
µ read [10, 11]

Ψi
µ = (1⊗ η̄i+)Ψ(10) 1

µ +
1

2
(γµ ⊗ η̄i+γk)Ψ

(10) 1
k +

1

2
(γµ ⊗ η̄i+γa)Ψ(10) 1

a ,

Ψi+2
µ = (1⊗ η̄− i)Ψ(10) 2

µ +
1

2
(γµ ⊗ η̄− iγk)Ψ(10) 2

k +
1

2
(γµ ⊗ η̄− iγa)Ψ(10) 2

a .

(B.4)

Here, the second term ensures that the four-dimensional gravitini are traceless, i.e. γµΨa
µ =

0. Furthermore, the spin-1/2 fermions read

χi =
1

4
(1⊗ η̄i+)χ(10) 1 − (1⊗ η̄i+γa)Ψ(10) 1

a − (1⊗ η̄i+γk)Ψ
(10) 1
k ,

χi+2 =
1

4
(1⊗ η̄i−)χ(10) 2 − (1⊗ η̄i−γa)Ψ(10) 2

a − (1⊗ η̄i−γk)Ψ
(10) 2
k ,

ξik = (1⊗ η̄i+)Ψ
(10) 1
k +

1

8
(1⊗ η̄i+γk)χ(10) 1 ,

ξik+2 = (1⊗ η̄i−)Ψ
(10) 2
k +

1

8
(1⊗ η̄i−γk)χ(10) 2 ,

ρi = (1⊗ η̄i+γa)Ψ(10) 1
a +

1

2
(1⊗ η̄i+)χ(10) 1 ,

ρi+2 = (1⊗ η̄i−γa)Ψ(10) 2
a +

1

2
(1⊗ η̄i−)χ(10) 2 ,

λiα = ζαI (1⊗ η̄i+γaωIbcγbc)Ψ(10) 1
a ,

λi+2
α = ζαI (1⊗ η̄i−γaωIbcγbc)Ψ(10) 2

a .

(B.5)

These fermions form the 4 dilatini and 4n gaugini of N = 4 supergravity. The dilatini

could in principle be identified by identifying the linear combinations of the above fermions

whose supersymmetry transformation involves a spacetime derivative of the complex scalar

σ = −1
2(b12 + i e−ρ2).

In the following, we will restrict our attention to the supersymmetry transformation

of the gravitini, which in N = 4 gauged supergravity reads

δΨa
µ = Dµε

a
+ +

1

3
Aab1 γµε− b + . . . . (B.6)

The dots indicate terms involving four-dimensional vector fields. Furthermore, the grav-

itino mass matrix A1 is symmetric and has a a precise definition in terms of the four-

dimensional embedding tensor and the sigma model vielbeins [28]. In the remainder of this

section, we will determine A1 in terms of the internal geometry of Y .

The ten-dimensional supersymmetry parameters ε(10) i are related to their four-dimen-

sional counterparts εa, a = 1, . . . , 4, via

ε(10) 1 = εi ⊗ ηi+ + h.c. , ε(10) 2 = εi+2 ⊗ ηi− + h.c. . (B.7)
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We can thus relate the four-dimensional to ten-dimensional supersymmetry variations by

invoking the relation (B.4). The supersymmetry variations of the ten-dimensional gravitini

and dilatini in the Einstein frame read [10, 11, 38]

δΨ
(10) i
M = DM ε

(10) i +
1

96
e−φ/2(HNPQΓNPQM − 9HMNPΓNP )Γ11ε(10) i

− 1

64
e(5−2n)φ/4

∑
n

1

(2n)!
((2n− 1)ΓM1...M2n

M − 2n(9− 2n)δM1
M ΓM2...M2n)

FM1...M2nΓn11(σ1)ijε
(10) j , (B.8)

δχ(10) i = (∂Mφ
(10))ΓM ε(10) i +

1

96
HMNPΓMNPΓ11ε

(10) i

− 1

32
e(5−2n)φ/4

∑
n

5− 2n

(2n)!
FM1...M2nΓM1...M2nΓn11(σ1)ijε

(10) j , (B.9)

where the F2n are the type IIA field strengths in the democratic formulation and the matrix

Γ11 is the chirality operator. In the following, we only consider the scalar contribution that

determine the matrix A1. From this and (B.4), we compute the four-dimensional gravitino

variation to be

δΨi
µ = Dµε

i
+ +

1

2

(
η̄i+

(
γmDm +

1

24
γmnpHmnp

)
ηj−

)
γµε− j

+
1

8

∑
n

1

(2n)!
(η̄i+γ

m1...m2nFm1...m2nη
j
+)γµε− (2+j) ,

δΨ(2+i)
µ = Dµε

(2+i)
+ +

1

2

(
η̄− i

(
γmDm +

1

24
γmnpHmnp

)
η+ j

)
γµε− (2+j)

+
1

8

∑
n

1

(2n)!
(η̄− iγ

m1...m2nFm1...m2nη− j)γµε− j ,

(B.10)

where the indices m,mi, n and p run over the internal coordinates of Y . We see that the

components of A1 are given by

Aij1 =
3

4

∫
6

eφη̄i+(γmDm +
1

24
γmnpHmnp)η

j
− ,

A
i(2+j)
1 =

3

32

∫
6

e2φ
∑
n

1

(2n)!
η̄i+γ

m1...m2nFm1...m2nη
j
+ ,

A
(2+i)j
1 =

3

32

∫
6

e2φ
∑
n

1

(2n)!
η̄i−γ

m1...m2nFm1...m2nη
j
− ,

A
(2+i)(2+j)
1 =

3

4

∫
6

eφη̄− i(γ
mDm +

1

24
γmnpHmnp)η+ j ,

(B.11)

where the additional factor of eφ comes from the Weyl rescaling (3.26). Note that the

components are related by A
(2+i)(2+j)
1 = Āij1 and A

i(2+j)
1 = A

(2+i)j
1 .

We can now use the spinor bilinears (2.4) to express Aij1 in terms of internal forms.

More precisely, we have

d(Ψ−)ji = [γm, Dmη
j
−η̄− i]+ = (γmDmη

j
−)η̄− i + (γmηj−)(Dmη̄− i)

+ (Dmη
j
−)(η̄− iγ

m) + ηj−(Dmη̄− iγ
m) .

(B.12)
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Taking the product with the spinor bilinear (Ψ0)kl, this reads

e−ρ2−ρ4〈(Ψ0)kl,d(Ψ−)ji 〉 = δki η̄
l
+γ

mDmη
j
− + εljK̄m(Dmη̄− i)η

k
− . (B.13)

Similarly, we find

1

48
η̄i+γ

mnpHmnpη
j
− = e−ρ2−ρ4〈(Ψ0)k(i, H3 ∧ (Ψ−)

j)
k 〉 . (B.14)

This gives us an expression for Aij1 in terms of forms,

Aij1 =
3

2

∫
6

eφ−ρ2−ρ4〈(Ψ0)k(i, (d−H3∧)(Ψ−)
j)
k 〉 . (B.15)

Inserting (2.4) for the spinors bilinears and writing Aij1 = 3
4 i(σa)

ijP a, we find

P a =

∫
6

eφ−ρ2−ρ4K̄ ∧ (K ∧ dK̄ ∧ Ja + εabcJ
b ∧ dJc −H3 ∧ Ja) . (B.16)

These terms are in fact (up to complex conjugation) the only SU(2)-covariant one-derivative

expressions that can be built out of H3, K and the Ja. Similarly, we find for the off-diagonal

entries

A
i(2+j)
1 =

3

4

∫
6

e2φ−(ρ2+ρ4)/2〈(Ψ+)ij , F 〉 . (B.17)

Using (B.16), we can now discuss the amount of supersymmetry the vacuum preserves

depending on the internal geometry. We will here focus on the case of vanishing internal

field strengths F and H3. Then, A1 is block-diagonal and one can discuss each N =

2 subsector individually. Since the two components of A1 are identical up to complex

conjugation, we can only have N = 4, N = 2 or non-supersymmetric vacua.16 For an

N = 4 Minkowski vacuum, we need both K and the Ja to be closed, and we find that

the manifold is K3 × T 2. If we want to have at least an N = 2 supersymmetric vacuum,

the discussion is rather similar to N = 2 → N = 1 supersymmetry breaking as discussed

in [31]. A requirement for an N = 2 Minkowski vacuum therefore is that Aij1 , given

in (B.16), should be of rank one. Supersymmetry should then impose that the variations

of Aij1 have similar properties.

If we restrict ourselves to the supersymmetry related to η1, then P− = Ā11
1 becomes

(up to a Kähler prefactor) the holomorphic superpotential of an SU(3) structure defined

by η1, as first proposed in [9], with the definitions

J = J3 +
1

2
iK ∧ K̄ , Ω = K ∧ (J1 + i J2) . (B.18)

For this supersymmetry to be unbroken, the variations of Ā11
1 with respect to the spacetime

scalars must hence be set to zero. This is equivalent to the Calabi-Yau conditions

dJ = 0 , dΩ = 0 . (B.19)

16In the presence of Ramond-Ramond fluxes, vacua preserving N = 1 or N = 3 are no longer excluded.
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Spontaneous partial supersymmetry breaking requires furthermore that P 3 and its ana-

logues in the supersymmetry variations of the spin-1/2 particles vanish in the vacuum.

From (B.16), we find that

P 3 =

∫
6

eφ−ρ2−ρ4Ω̄ ∧ LKΩ + J ∧ J ∧ dK̄ . (B.20)

This vanishes on a Calabi-Yau manifold. From (B.5), one can deduce that the terms

appearing in the other fermion variations are not, as one might expect, variations of P 3

(which do not vanish). They are instead also proportional to (B.19), thus ensuring that

we find partial supersymmetry breaking on Calabi-Yau backgrounds.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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