
RESEARCH ARTICLE

Crystal structure of E. coli arginyl-tRNA
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ABSTRACT

The arginyl-tRNA synthetase (ArgRS) catalyzes the
esterification reaction between L-arginine and its cog-
nate tRNAArg. Previously reported structures of ArgRS
shed considerable light on the tRNA recognition mech-
anism, while the aspect of amino acid binding in ArgRS
remains largely unexplored. Here we report the first
crystal structure of E. coli ArgRS (eArgRS) complexed
with L-arginine, and a series of mutational studies using
isothermal titration calorimetry (ITC). Combined with
previously reported work on ArgRS, our results eluci-
dated the structural and functional roles of a series of
important residues in the active site, which furthered our
understanding of this unique enzyme.

KEYWORDS arginyl-tRNA synthetase, amino acyl-tRNA
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INTRODUCTION

Aminoacyl-tRNA synthetase (aaRS) serves to generate the
raw materials for protein synthesis—aminoacyl-tRNA in
organisms of all complexities. aaRS catalyzes the esterifi-
cation reaction between the amino acid carboxyl group and
the 2′ or 3′ end hydroxyl group on the corresponding tRNA.
The highly specific recognition of amino acid and its cognate
tRNA is a critical aspect of the enzyme, the malfunction of

which may severely impact cellular survival. Understanding
the mechanism of amino acid binding is also beneficial to the
ongoing efforts of protein expression with non-natural amino
acids (Hendrickson et al., 2004; Wang and Schultz, 2005;
Sinkeldam et al., 2010; Wang et al., 2012). Namely, natural
aaRSs are ideal templates for creating new aaRSs that
recognize side chain moieties beyond the pool of 20 natural
amino acids.

Being such an essential enzyme for medicine and protein
engineering, aaRSs received extensive research in the past
two decades (Martinis et al., 1999; Woese et al., 2000). The
binding and catalytic mechanisms of most aaRSs are now
well understood, based on which the 20 aaRSs are cate-
gorized into two classes. As of biochemical functions, the 20
aaRSs differ only in the recognition of cognate amino acid
side chain and tRNA anti-codon, whereas the primary and
tertiary structures of aaRSs are highly diverse. Among
aaRSs from different species, very low sequence similarity
exists between organisms even closely related evolution-
arily, indicative of convergent evolution.

A member of the class I aaRS, the arginyl-tRNA synthe-
tase (ArgRS) possesses several distinct characteristics.
Prior to the formation of the arginyl-tRNA bond, the activation
of arginine by ATP requires the binding of tRNA to the
enzyme, which is only observed in GlnRS and GluRS
(Mehler and Mitra, 1967; Mitra and Smith, 1969; Kern and
Lapointe, 1980). ArgRSs of many organisms lack the
canonical KMSK motif which constitutes the active site of all
other class I aaRSs (Zhou et al., 1997). There are six sets of
codons encoding arginine, which poses considerable chal-
lenge to ArgRS insofar as identifying cognate tRNA via
matching the anti-codons. Consequently, ArgRS utilizes
several highly conserved basis on the D-loop region of tRNA
as additional identity elements. To better recognize these
identity elements, ArgRS possesses an N-terminal domain
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of roughly 100 amino acids—the Add1 domain, which is
unique among aaRSs.

Hitherto, several research groups have reported the
crystal structures of ArgRS from three species. The 3D
structures of yeast ArgRS-L-arginine complex and the ter-
nary complex of ArgRS-L-arginine-tRNAArg shed consider-
able light on the mechanism of tRNA recognition in ArgRS
(Cavarelli et al., 1998; Delagoutte et al., 2000). The recog-
nition of anti-codons by the enzyme opens the active site of
ArgRS, which in part rationalized the dependence on tRNA
binding for arginine activation. The crystal structure of the
Thermus thermophilus ArgRS (ttArgRS) apoenzyme, repor-
ted by Shimada et al., further accounted for the critical role of
the identity element A20 on tRNA recognition (Shimada
et al., 2001). Konno and co-workers determined the structure
of ArgRS-tRNAArg complex from Pyrococcus horikoshii (py-
roArgRS). The atomistic model of the ATP-bound complex,
constructed based on the pyroArgRS structure, depicted the
detailed mechanism of arginine activation in the presence of
ATP (Konno et al., 2009).

While most research efforts focused on tRNA recognition
and ATP-PPi exchange, the details of arginine binding are
largely unexplored. Although Cavarelli et al. identified three
highly conserved residues in the binding pocket of yArgRS,
the thermodynamic contributions of these and other sur-
rounding residues to theoverall bindingaffinity remain elusive.
In addition, ArgRS from E. coli (eArgRS), which shares only
29% sequence similarity with yArgRS, has no reported crystal
structure. Herein, we report a 2.9Å structure of the eArgRS-L-
arginine complex (PDB ID: 4OBY) and a series of mutational
studies of the enzyme active site. Our results showed that not
all the conserved residues are critical for substrate binding.
The thermodynamic details of the ligand binding reaction
provided a mechanistic view of how ArgRS achieved high
affinity and specificity towards L-arginine. As an enzyme from
the model organism E. coli, an atomistic model of eArgRS
would help further understand the structure-function relation-
ship of ArgRS and provide structural guidance for future
modifications of ArgRS in protein engineering.

RESULTS

The overall structure of E. coli ArgRS

The refined structure contains the whole sequence except
residues Q178–A187, D203–E204 and the C-terminal M577
(Fig. 1A). It can be divided into five domains. The crystallo-
graphically invisible residues (178–187 and 203–204) are
part of the insertion domain 1 (Ins1) as defined by Cavarelli
and co-workers (Cavarelli et al., 1998). E. coli ArgRS con-
tains the N-terminal additional domain (Add1, residues 1–
112), the catalytic domain (113–382) including two insertion
domains (Ins1, residues 164–221, and Ins2, residues 258–
311), and the C-terminal additional domain (Add2, 383–577).
A well-ordered L-arginine binds in the active site of the cat-
alytic domain. Although 2.5 mmol/L ATP was always present

in the crystal growth solution, ATP molecule is not visible in
the electronic density map. The difficulty in obtaining a
complex structure of ArgRS with ATP stably bound has been
noted by several research groups and was attributed to the
following two reasons: 1) the presence of both tRNAArg and
L-arginine are prerequisite for ATP binding (Rath et al.,
1998); 2) a lack of sufficient hydrophobicity and certain crit-
ical residues at the ATP binding site may have prevented the
stable binding of ATP and ATP-analog (Konno et al., 2009).

L-arginine binding and recognition

In the refined structure, a well-ordered arginine molecule is
present in the active site (Fig. 1A). The active site of eArgRS
consists of a Rossman fold (α11, α12) and one strand (β5,
Supplemental Figure). L-arginine binds tightly to the enzyme
via a network of hydrogen bonds and salt bridge interactions.
The main chain atoms of arginine are recognized by a series
of residues strictly conserved in ArgRS, e.g. N123 and Q341.
The β-bulge between the important strand β5 and helix α5
encompasses the main chain atoms of L-arginine. Three
residues in the region (A121, N123 and H132) formed
hydrogen bonds to the main chain atoms of L-arginine and
adopted similar orientations as observed in yeast structures
(Asn153 and Gln375 of yArgRS), independent of tRNA
binding (Cavarelli et al., 1998; Delagoutte et al., 2000). Our
structure therefore confirms the discovery from yArgRS
structures that tRNA is not required for L-arginine binding
(Fig. 1). The side chain recognition motif, which dictates the
specificity of the enzyme, contains three conserved residues
(D118, Y313, D317) making direct H-bonds (or salt bridges)
to the guanidinium moiety of arginine. Another residue R324
formed two hydrogen bonds with D118, stabilizing the ori-
entation of the latter.

We mutated the four aforementioned residues to alanine
and generated four stable mutant ArgRSs (D118A, Y313A,
D317A and R324A). The binding thermodynamics between
ArgRS and L-arginine, determined via ITC, confirmed that
these four residues were important for the recognition of
arginine (Fig. 1B and 1C). Consistent with our structural
data, the binding isotherms fit reasonably well to the typical
one-to-one binding model (Fig. 2). Removing either of the
two D317 and D118 residues completely abolished the
binding reaction, while the mutation of Y313 and R324
introduced much less serious reduction in binding affinity
(Table 1). In particular, the Tyr-to-Ala mutation at position 313
resulted in a merely two-fold reduction in binding affinity. On
the other hand, both the Y313A and the R324A mutation
greatly reduced the favorable enthalpy of binding, which
were largely compensated for by the favorable change in
binding entropy.

The A20 recognition pocket and the Add1 domain

The N-terminal domain (NTD, Add1), a unique structural
feature of ArgRS, plays a critical role of recognizing the
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identity elements of cognate tRNA. Phylogenetic analysis
identified the nucleotide A20 as the major identity element
(Liu et al., 1999), which is highly conserved in tRNAArg of
most organisms with only a few exceptions including yeast.
The N-terminal Add1 domain accommodates the A20 rec-
ognition pocket as found in the structures of ttArgRS and
pyroArgRS (Shimada et al., 2001; Konno et al., 2009). The
bottom of the pocket is formed by the antiparallel strands β3
and β4. Cavarelli et al. (1998) and Shimada et al. (2001)
proposed a Tyr/Phe-Asn/Gln motif in the Add1 domain for
A20 recognition. Both the primary structure and tertiary
structure analyses confirmed that in eArgRS this motif was
present as Y84–N82 (Fig. 3), indicating that A20 recognition
is highly conserved in ArgRS.

Although the NTD did not undergo significant movement
(relative to the rest of the enzyme) upon tRNA binding
(Delagoutte et al., 2000), Shimada et al. noted that the
overall orientation of NTD with respect to the rest of the

enzyme in ttArgRS was markedly different from that of yAr-
gRS (Shimada et al., 2001). The NTD of eArgRS adopted a
different orientation from that of yArgRS as well. When
superimposed based on the active site Cα atoms of ArgRS,
the L-arginine ligands in yArgRS and in eArgRS aligned
nearly perfectly (Fig. 4A). However, when the NTD Cα atoms
served as the superposition standard, we observed large
deviation between the active sites of both orthologues
(Fig. 4B), which is independent of tRNA and L-arginine
binding (Cavarelli et al., 1998; Delagoutte et al., 2000).

Difference in the NTD orientations of various ArgRSs
most likely reflected the difference between the relative ori-
entations of the tRNA identity element region and those of
the acceptor stem region. We picked helix α1 and the strand
β5 as representatives of the NTD and the active site
respectively, and calculated the angle between these two
motifs (ζ). The three reported yArgRS structures had an
average ζ of 125.2˚ ± 0.8˚, while for eArgRS, ttArgRS and

Arginine

D317

R324

D118

Y313

Ins2

Ins1

Add1
Add2

Active site

A

C

Q341

A121

H132
N123

Arginine

B

Figure 1. Overall structure of the eArgRS-L-arginine complex and the detailed structure of the binding site. (A) Overall

structure of the eArgRS-L-arginine complex. The five domains previously identified by Cavarelli et al. are highlighted in different

colors. (B) Four residues form hydrogen bonds with the main chain atoms of arginine. (C) Three conserved residues help recognize

and hold the side chain guanidinium moiety. The omit map of L-arginine was generated at σ = 2.5.
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pyroArgRS, ζ were 120.0˚, 122.1˚ and 113.9˚, respectively. If
we regard the archaic pyroArgRS as the most primitive
enzyme in regard to evolution, it appears that ArgRSs of

higher species tend to have larger ζ than those of lower ones
in general. Nonetheless, the exact angle is highly species-
dependent.
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Figure 2. Binding isotherms of WT and mutant ArgRS with L-arginine. (A) Wild type; (B) Y313A; (C) R324A; (D) D317A;

(E) D118A.
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The Ω-loop

The Ω-loop (A451–A457), connecting helices α15 and α16,
acts as a molecular switch upon tRNA binding (Delagoutte
et al., 2000). Using the residues spanning Ω-loop, α15 and
α16 as superposition standard, the eArgRS Ω-loop structure
aligned perfectly with the yArgRS-Arg complex (Table 2).
The conformational change in this region upon tRNA binding
manifests mainly as larger deviation of Cα atoms from eAr-
gRS in α15 (Table 2).

Yao and co-workers measured the lifetimes of the tRNA-
bound and free conformations of this α15-Ω-α16 region in
eArgRS using 19F NMR spectroscopy (Yao et al., 2003,
2004). The interconversion between the bound and the free
conformations proceeds in the intermediate to slow
exchange regime of 19F NMR time scale. In the eArgRS
structure, we observed a special structural feature that is
absent in the yeast orthologue. R400 is in close contacts
with both W446 and E396 (Fig. 5). While being stabilized by
the salt bridge from E396, the guanidinium moiety of R400
adopts a conformation parallel to the indole ring of W446,
where a cation-π interaction is likely in play. Adding to more
constraints of W446, it is also surrounded by a series of non-
polar side chains, which resembles the yArgRS structures.
Sequence alignment shows that yArgRS also possesses
these three residues on helices H15 and H17 (helices α13
and α15 in eArgRS): E424, K428 and W475 (Fig. 5). How-
ever, W475 of yArgRS locates too far from K428 to allow any

Y84

N82

Y77

Y79

Figure 3. Residues critical for recognizing the identity element A20: yeast (blue, PDB ID: 1BS2), eArgRS (red).

Table 2. Cα RMSD between eArgRS-arginine structure and
yeast structure

Secondary
structure

yArgRS-tRNA-
arginine

yArgRS-
tRNA

yArgRS-
arginine

H17(yeast)-α15 1.2 Å 1.3 Å 0.5 Å

H18(yeast)-α16 2.4 Å 2.4 Å 0.3 Å

Ω-loop 1.2 Å 1.2 Å 0.4 Å

Table 1. Binding thermodynamics of WT and mutant eArgRS with L-arginine

ArgRS Stoichiometry (N) Ka (M-1) ΔG (kcal/mol) ΔH (kcal/mol) -T•ΔS (kcal/mol)

WT 0.69 2.15E4 −5.9 −16.0 10.1

Y313A 0.86 1.24E4 −5.4 −10.5 5.1

R324A 0.82 5.23E3 −4.8 −11.3 6.4

D317A N/A

D118A N/A

A B

Figure 4. Different NTD orientations with respect to the

catalytic domain in eArgRS and yArgRS. (A) yArgRS (gray,

PDB ID: 1BS2) is superimposed to eArgRS (orange) according

to the active site domain. The bound L-arginine molecules are

depicted as blue (yArgRS) and yellow (eArgRS) vdW spheres.

(B) yArgRS is superimposed to eArgRS according to the NTD.
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direct contact. yArgRS without tRNA has E424 and K428
pointing away from the Ω-loop (Fig. 5B). The binding of tRNA
to yArgRS results in a ∼90˚ rotation of helix H15 and a
downward shift by about one helix turn (Fig. 5C and 5D)
(Delagoutte et al., 2000). If such conformational change is
maintained in eArgRS upon tRNA binding, the W446-R400
cation-π interaction would be absent in the tRNA-bound
form, which might in turn rationalize the slow exchange
kinetic feature measured in 19F NMR experiment (Yao et al.,
2004). That is, the W446-R400 interaction serves to
lengthen the lifetime of the tRNA-free conformation. Enzy-
matic assays and preferably 19F-NMR binding kinetics study
of yArgRS, and the eArgRS-tRNA complex structure are
required to further confirm the role of this W446-R400-E396
triad in controlling the conformation of Ω-loop and the binding
kinetics of cognate tRNA.

DISCUSSION

In this study, we solved the crystal structure of E. coli arginyl-
tRNA synthetase in complex with its substrate L-arginine,
and carried out ITC studies of a series of mutant enzymes. In
addition to providing more information regarding the mech-
anism of tRNA binding by ArgRS, our study shed consider-
able light on the less understood arginine recognition.

Although several residues in the arginine binding pocket are
highly conserved among ArgRS, or even among many aaRS’s,
our mutational study showed that some residues may in fact be
non-essential for achieving high binding affinity. The elimination
of electrostatic interactions by mutating either D317 or D118
abolished the binding of L-arginine, while the enzyme without
Y313 or R324 retained some of the wild type’s ligand binding
ability. In contrast to the small changes in binding free energy, a
closer look at the thermodynamic data of the Y313A and R324A
mutants revealedmuchgreater changes in bindingenthalpy and

binding entropy from those of the wild type. The well-docu-
mented enthalpy-entropy compensation manifested in both
mutants (Dunitz, 1995; Lemieux, 1996; Perozzo et al., 2004).
R324 does not make direct contact with the bound arginine, but
serves to lock the side chain of D118 at a favorable rotameric
conformation (Fig. 1C). Without the salt bridge fromR324, D118
was allowed to sample amuch larger configurational space and
might be adopting a less favorable conformation upon the
binding of arginine, giving rise to a 4.7 kcal/mol drop in binding
enthalpy. Such large decrease of favorable (negative) binding
enthalpy was well compensated by a 3.7 kcal/mol favorable
(positive) change in TΔS. That is, L-arginine is so tightly bound in
the active site that any destabilization of the highly specific
interactions increases the overall degrees of freedom.

A comparison with the yArgRS structure without arginine
showed that the highly conserved Y313 was solvent-exposed
and hydrogen bonded to the main chain carbonyl oxygen atom
of W162 in the absence of arginine. The binding of arginine
induced the rotation of the Cα-Cβ bond in Y313 and the Y313-
W162 H-bond switched to the Y313-L-arginine H-bond. Muta-
tion of W162 to alanine diminished the catalytic activity of eAr-
gRS (Zhang et al., 1998). Using 19F NMR spectroscopy, Yao
et al. showed that W162 was involved in arginine binding (Yao
et al., 2003). Since only the main chain atoms participate in the
Y313-W162 hydrogen bond, the side chain of W162 may be
involved inmaintaining a favorable orientation of the backbone
carbonyl group towards the Y313 side chain hydroxyl group.
Presumably, the Y313A mutation should introduce negligible
change in binding enthalpy, given that Y313 is always involved
in hydrogen bonding prior and after the binding of L-arginine.
However, the drop of ΔH in the Y313A mutant from that of the
wild typewasas largeas5.5 kcal/mol.A closer lookat theactive
siteof theeArgRS-L-argininecomplex revealedaclosed loopof
hydrogen bondingmoieties, consisting of L-arginine,Q341 and
Y313 (Fig. 6A). Y313 accepts a hydrogen bond from the

A B C D

Figure 5. Structural comparison of the triad W446-R400-E396 in eArgRS and W475-K428-E424 in yArgRS. Comparison

between the eArgRS-L-arginine structure (A) and the yArgRS-L-arginine structure (B–D, PDB ID: 1BS2, 1F7U, 1F7V) at the region of

α15-Ω-α16 and α13 (H17-Ω-H18 and H15 in yeast). The Ω-loop, is highlighted in blue. The W446-R400-E396 triad of E. coli and the

corresponding residues of yArgRS (W475-K428-E424) are highlighted in orange.
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guanidinium group of L-arginine and donates a hydrogen bond
to the amide carbonyl group of Q341. Q341 in turn donates a
hydrogen bond to the carbonyl group of L-arginine. The coop-
erative effect renders this hydrogen bond network highly
favorable energetically. In the Y313A mutant however, Q341
would participate in only one hydrogen bond with the carbonyl
group of L-arginine. It is not uncommon to have an enthalpy
difference as large as 5 kcal/mol between the presence and
absence of cooperative hydrogen bonding (Elrod andSaykally,
1994).On theother hand, thehydrogenbond loopofL-arginine-
Q341-Y313 imparted restriction to the mobility of L-arginine.
The removal of Y313 from the loop significantly increased the
degrees of freedom for L-arginine. As a result, the favorable
change in TΔS nearly canceled the unfavorable change in ΔH,
leaving the difference in ΔG at only 0.5 kcal/mol.

Although Y313 is strictly conserved among GlnRS,
GluRS, TyrRS, TrpRS and ArgRS, this tyrosine residue
assumes different roles in different aaRS’s. In particular,
Y313 of eArgRS acts as a gate-keeper: keeping the binding
pocket open in the absence of arginine via the Y313-W162
H-bond, while locking the bound arginine in position after
rotameric rotation. Y313 contributes more in the kinetics
regime of arginine binding rather than in the regime of
binding thermodynamics (affinity)—keeping the substrate in
the active site sufficiently long for catalysis to take place
(Fig. 6B). Further NMR binding kinetics study and enzymatic
assays of the mutants are required to confirm our conclusion
based on crystal structures.

MATERIALS AND METHODS

Gene expression and protein purification

We used the plasmid containing ArgRS gene derived from E. coli as

a template to amplify the ArgRS gene, using the Primer5 software

(http://www.uea.ac.uk/∼e130/Primer5.htm) to design the up primer

5′-CGGGATCCATGAATATTCAGGCTCTTCTCTC-3′ and the down

primer 5′-CCCAAGCTTTTACATACGCTCTACTGTCTC-3′. The

gene was inserted into another plasmid vector pET-28a-SUMO. We

transformed the pET28a-SUMO/ArgRS plasmid into the expression

bacterial E. coli BL21 (DE3) (Novagen, Madison, WI). Protein

expression was induced with 0.2 mmol/L isopropyl β-D-1-thioga-

lactopyranoside (IPTG) at an optical cell density (OD600) of ∼0.8,
followed by incubation at 16°C for 20 h. Cell pellet was sonicated

with lysis buffer (20 mmol/L Tris-HCl pH 7.5, 300 mmol/L NaCl,

10 mmol/L β-mercaptoethanol, 1 mmol/L PMSF). The lysate was

centrifuged at 18,000 rpm for 30 min. The supernatant was incu-

bated with Ni2+-NTA affinity resin (Qiagen) for 3 h at 4°C, then the

resin was eluted with an imidazole gradient up to 200 mmol/L

imidazole and the target protein was eluted with 100 mmol/L imid-

azole. The protein was dialyzed overnight against a reservoir

solution of 20 mmol/L Tris-HCl (pH 7.5) and 300 mmol/L NaCl in the

presence of Ulp1 protease (made in house) which cleaved the

N-His-SUMO tag from the target protein (enzyme:protein = 1:30 w/w).

The released His-SUMO tag was removed by a second round of Ni2

+-NTA chromatography. The protein was further purified by size

exclusion chromatography using HiLoad 16/60 Superdex 200 column

(GE Healthcare) in gel-filtration buffer (20 mmol/L Tris-HCl pH 7.5,

300 mmol/L NaCl). The volume of the collected protein sample was

reduced to reach a final concentration of 10 mg/mL.

Crystallization and data collection

Initial crystallization was screened by several commercial kit, such

as crystal I/II and Index (Hampton Research) and crystals were

obtained in the reservoir containing 100 mmol/L Tris-HCl pH 8.5, 200

mmol/L ammonium acetate, 25% PEG-3350. We mixed the protein

sample with its substrate including 2 mmol/L L-arginine, 5 mmol/L

ATP. At last, the best crystal was grown at 16°C by sitting drop

diffusion method against a reservoir solution of 50 mmol/L HEPES

(pH 7.2), 100 mmol/L sodium acetate, 22% PEG-3350. We mixed

the 1 μL reservoir with 1 μL protein solution which contained 10 mg/mL

ArgRS, 2 mmol/L L-arginine, 5 mmol/L ATP, 10 mmol/L MgCl2.

Y313

Q341
L-arginine

BA

Figure 6. Thermodynamic and kinetic roles of residues in the L-arginine binding site. (A) Y313, Q341 and L-arginine comprise

a cooperative ring of hydrogen bonds (black dashed line). (B) Y313 locks the bound arginine (yellow) in the active site. Upon the

binding of arginine, the phenol ring of Y313 swings from a horizontal orientation (pink) to a vertical downward orientation (blue), which

shuts the active site. The coordinates of the phenol ring in the absence of arginine (pink) were taken from the corresponding residue

of Y347 in yeast structure (PDB ID: 1F7V).
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Crystal grew in two days and its shape was rectangle with sharp

edge. Ethylene glycol was used as cryoprotectant. We first soaked

the crystal in the 10% ethylene glycol and then transferred the

crystal into a higher ethylene glycol concentration up to 20%. Finally,

the crystal was preserved in the liquid nitrogen.

For data collection, Diffraction data was collected at the beamline

BL17U of Shanghai Synchrotron Radiation Facility (SSRF) using an

ADSQ315 CCD detector. Data were processed with HKL2000 (Otwi-

nowski andMinor, 1997).Thecrystal structureofArgRSbelonged to the

space group C2. The partial coordinates of yeast ArgRS (PDB 1BS2)

(Cavarelli et al., 1998) as ensemble 1 and the structure 3GDZ as

ensemble 2 were used as search models for ArgRS using the program

Phaser from CCP4 package (Read, 2001). The initial model was built

using the rigidbody refinementwithPhenix.refine in thePhenixprogram

(Adams et al., 2010). Subsequent refinement was carried out with

alternating cycles of manual refitting and building under 2Fo-Fc and

1Fo-Fc electron density map in Coot (Emsley and Cowtan, 2004) and

using XYZ coordinates and individual B factors in the Phenix.refine

program (Adams et al., 2010). The R-working and R-free dropped to

23.9%and 26.5% for all data from30Å to 2.6Å. The final structure was

checked for geometrical correctness with PROCHECK (Laskowski

etal., 1993).Datacollectionand refinementstatisticsaresummarized in

Table 3. The atomic coordinates and the structure factor have been

deposited in the Protein Data Bank (PDB code: in submission). All

structural figures were generated using PyMOL (http://www.pymol.org)

and VMD (Humphrey et al., 1996).

Isothermal titration calorimetry study of the wild type and mutant

ArgRS

We designed four ArgRS mutants including D118A, D317A,

Y313A, R324A based on ArgRS structure. The mutation was

introduced into pET22b/ArgRS using the site-directed mutagenesis

and purified these proteins with the same method as described

previously. The formation constant and thermodynamic parameters

for the inclusion of Arginine in ArgRS were measured by the

titration calorimetry method by using an ITC MicroCal 200 (GE Life

Sciences). All solutions were prepared in a 200 mmol/L Tris-HCl pH

7.5, 300 mmol/L sodium chloride. A solution (0.25 mmol/L) of Ar-

gRS was placed in the sample cell, and a 2.5 mmol/L solution of

Arginine was added in a series of 20 injections, the heat evolved

was recorded at 25°C. The heat of injecting the Arginine into a neat

buffer solution is nearly zero. The data were analyzed and the

binding isotherm was fitted to a single-site model in the ORIGIN

7.0 software (GE Life Sciences).
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Table 3. Statistics of data collection and model refinement

Data collection

Space group C2

Unit cell parameters (Å) a = 118.60, b = 94.14,
c = 62.72; α = γ = 90°,
β = 110.5°

Resolution range (Å) 50–2.60 (2.69–2.60)

No. of total reflections 133676 (12309)

No. of unique reflections 20334 (2018)

I/σ 13.6 (4.8)

Completeness (%) 99.5 (99.4)

Rmerge (%)a 12.0 (65.1)

Structure refinement

Resolution (Å) 30–2.6

Rcryst/Rfree (%)b 23.9/26.5

r.m.s. deviations

Bond bonds (Å) 0.003

Bond angles (º) 0.750

Ramachandran plot

Favored region (%) 93.5

Allowed region (%) 4.5

Outlier region (%) 2.0

No. of atoms

Protein 4248

Water 30

Ligand 12

a Rmerge = ∑|Ii − Im|/∑Ii, where Ii is the intensity of the measured

reflection and Im is the mean intensity of all symmetry related

reflections.
b Rcryst = Σ||Fobs| − |Fcalc||/Σ|Fobs|, where Fobs and Fcalc are observed

and calculated structure factors.

Rfree = ΣT||Fobs| − |Fcalc||/ΣT|Fobs|, where T is a test data set of about

5% of the total reflections randomly chosen and set aside prior to

refinement.

Numbers in parentheses represent the value for the highest reso-

lution shell.
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