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Abstract
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1 Introduction
Denote by H(D) the space of all analytic functions on the unit disk D = {z : |z| < } in the
complex plane. Let H∞ = H∞(D) denote the space of bounded analytic functions on D.
An f ∈H(D) is said to belong to the Bloch space B if

‖f ‖B = sup
z∈D

∣∣f ′(z)
∣∣( – |z|) <∞.

The logarithmic-Bloch space, denoted by LB, consists of all f ∈H(D) satisfying

‖f ‖log = sup
z∈D

(
 – |z|)∣∣f ′(z)

∣∣ log e
 – |z| < ∞.

LB is a Banach space with the norm ‖f ‖LB = |f ()|+‖f ‖log. It is well known thatLB∩H∞

is the space ofmultipliers of the Bloch spaceB (see [, ]). For some results on logarithmic-
type spaces and operators on them, see, for example, [–].
Let ϕ be an analytic self-map of D. The composition operator Cϕ is defined by

Cϕ(f ) = f ◦ ϕ, f ∈H(D).

The differentiation operator D is defined by Df = f ′, f ∈ H(D). For a nonnegative integer
m ∈N, we define

Dmf = f (m), f ∈H(D).

The product of differentiation and composition operators CϕDm is defined as follows:

CϕDmf = f (m) ◦ ϕ, f ∈H(D).
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A basic problem concerning concrete operators on various Banach spaces is to relate
the operator theoretic properties of the operators to the function theoretic properties of
their symbols, which attracted a lot of attention recently, the reader can refer to [–].
It is a well-known consequence of the Schwarz-Pick lemma that the composition oper-

ator is bounded on B. See [–, , –, ] for the study of composition operators
and weighted composition operators on the Bloch space. The product-type operators on
or into Bloch type spaces have been studied in many papers recently; see [–, , –
, , ] for example.
Let X and Y be two Banach spaces. Recall that a linear operator T : X → Y is said to be

compact if it takes bounded sets in X to sets in Y which have compact closure. The essen-
tial norm of an operator T between X and Y is the distance to the compact operators K ,
that is, ‖T‖X→Y

e = inf{‖T –K‖ : K is compact}, where ‖ · ‖ is the operator norm. It is easy
to see that ‖T‖X→Y

e =  if and only if T is compact. For some results in the topic, see, for
example, [, , , , , , ].
In [], Wu andWulan obtained a characterization for the compactness of the product

of differentiation and composition operators acting on the Bloch space as follows:

Theorem A Let ϕ be an analytic self-map of D,m ∈N. Then CϕDm : B → B is compact if
and only if

lim
n→∞

∥∥CϕDm(
zn

)∥∥
B = .

The purpose of the paper is to extend Theorem A to the case of LB. We will character-
ize the boundedness and compactness of CϕDm in terms of the sequence {zn}. Moreover,
an estimate for the essential norm of CϕDm will be given. The main results are given in
Sections  and .
In the paper, we say that a real sequence {an}n∈N is asymptotic to another real sequence

of {bn}n∈N and write ‘an ∼ bn’ if and only if

lim
n→∞

an
bn

= .

In addition, we say that A 
 B if there exists a constant C such that A ≤ CB. The symbol
A≈ Bmeans that A 
 B
 A.

2 Auxiliary lemmas
In this section, we state and prove some auxiliary results which will be used to prove the
main results in this paper.

Lemma . For m,n ∈N, define the function Hm,n : [, ) → [,∞) by

Hm,n(x) =
n!

(n –m – )!
xn–m–( – x)m+ log

e
 – x

. (.)

Then the following statements hold:
(i) For n,m ∈N and n≥m + , there is a unique xm,n ∈ [, ) such that Hm,n(xm,n) is the

absolute maximum of Hm,n.

http://www.journalofinequalitiesandapplications.com/content/2014/1/453


Zhou and Zhu Journal of Inequalities and Applications 2014, 2014:453 Page 3 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/453

(ii)

lim
n→∞xm,n =  (.)

and

lim
n→∞

[
n( – xm,n)

]
=m + . (.)

(iii)

lim
n→∞

max<t<Hm,n(t)
log(n + )

=
(
m + 
e

)m+

. (.)

Proof Directly computing we have

H ′
m,n(x) =

n!
(n –m – )!

xn–m–( – x)m
(
(n –m –  – nx) log

e
 – x

+ x
)
.

Define

gm,n(x) = (n –m –  – nx) log
e

 – x
+ x, x ∈ [, ). (.)

It is easy to see that gm,n is continuous on [,) and gm,n() = n–m– ≥ , limx→– gm,n(x) =
–∞. Furthermore,

g ′
m,n(x) = –n log

e
 – x

+ n –
m + 
 – x

+  < , x ∈ [, ).

Then gm,n is decreasing on [, ).When n =m+, we getmax≤x<Hm,n(x) =Hm,n().When
n >m+, the intermediate value theoremof continuous function gives the result that there
exists a unique xm,n ∈ (, ) such that gm,n(xm,n) = . So we have

max
<t<

Hm,n(x) =Hm,n(xm,n).

(i) has been proved. By (.), we have gm,n(xm,n) = . Thus

(
n –m – 

n
– xm,n

)
log

e
 – xm,n

= –
xm,n

n
.

It follows from limn→∞ xm,n
n =  and log e

–xm,n
≥  that (.) holds. Also, gm,n(xm,n) =  gives

the result that

n –m – 
n

– xm,n = –
xm,n

n log e
–xm,n

.

So we have

n( – xm,n) –m –  = –
xm,n

log e
–xm,n

.

This gives the result (.). The proof of (ii) is complete.

http://www.journalofinequalitiesandapplications.com/content/2014/1/453
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Note that

n logxm,n ∼ n log
[
 + (xm,n – )

] ∼ n(xm,n – )→ –m –  as n→ ∞.

This and (.) give

lim
n→∞xn–m–

m,n = e–m–. (.)

By (.) and (.) we obtain

lim
n→∞

Hm,n(xm,n)
log(n + )

= lim
n→∞

n!xn–m–
m,n ( – xm,n)m+ log e

–xm,n

(n –m – )! log(n + )

= e–m– lim
n→∞

n!((m + )/n)m+ log en
m+

(n –m – )! log(n + )
=

(
m + 
e

)m+

,

which shows that (iii) hold. The proof is complete. �

Lemma . Let m,n ∈N and n–m– > . Let rm,n = (n–m–)/n.Then Hm,n is increasing
on [rm,n–m, rm,n] and

min
rm,n–m≤x≤rm,n

Hm,n(x) =Hm,n(rm,n–m)∼
(
m + 
e

)m+

log(n + ) as n→ ∞. (.)

Consequently,

min
rm,n–m≤x≤rm,n

Hm,n(x)
‖zn‖LB

=
Hm,n(rm,n–m)

‖zn‖LB
∼ (m + )m+

em
as n→ ∞. (.)

Proof Since n –m –  > , we have

H ′
m,n(rm,n) =

n!
(n –m – )!

(
n –m – 

n

)n–m–(m + 
n

)m(
n –m – 

n

)
> .

By Lemma ., we have rm,n < xm,n, where xm,n is given as in Lemma .. Since H ′
m,n(x) > 

for x ∈ (,xm,n), we see that Hm,n is increasing on [rm,n–m, rm,n]. Thus

min
rm,n–m≤x≤rm,n

Hm,n(x) = Hm,n(rm,n–m)

=
n!

(n –m – )!

(
n – m – 
n –m

)n–m–(m + 
n –m

)m+

log
e(n –m)
m + 

.

Applying the important limit limn→∞( + 
n )

n = e we obtain the result that (.) holds.
By Lemma . we have

∥∥zn∥∥LB = sup
|z|<

n|z|n–( – |z|) log e
 – |z| =H,n(x,n), (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/453
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where x,n is given in Lemma .. By Lemma . we have

lim
n→∞

Hm,n(rm,n–m)
‖zn‖LB

= lim
n→∞

Hm,n(rm,n–m)
log(n + )

log(n + )
‖zn‖LB

= lim
n→∞

Hm,n(rm,n–m)
log(n + )

lim
n→∞

log(n + )
‖zn‖LB

=
(m + )m+

em
.

This gives (.). The proof is complete. �

Lemma . [] For m ∈N. Then f ∈LB if and only if

sup
z∈D

(
 – |z|)m∣∣f (m)(z)

∣∣ log e
 – |z| <∞.

Moreover,

‖f ‖LB ≈
m–∑
j=

∣∣f (j)()∣∣ + sup
z∈D

(
 – |z|)m∣∣f (m)(z)

∣∣ log e
 – |z| .

3 The boundedness of CϕDm onLB
In this section, we will state the boundedness criterion for the operator CϕDm on LB.
Since the boundedness of CϕDm on LB gives ϕ ∈LB, we may always assume that ϕ ∈LB.
The main result of this section is stated as follows.

Theorem. Let m ∈N and ϕ be an analytic self-map ofD such that ϕ ∈ LB. Then CϕDm

is bounded on LB if and only if

sup
n∈N

‖CϕDm(zn)‖LB
‖zn‖LB

< ∞. (.)

Proof ⇒) Assume that CϕDm is bounded on LB, that is, ‖CϕDm‖LB→LB < ∞. Since the
sequence {zn/‖zn‖LB} is bounded in the logarithmic Bloch space LB, we have

‖CϕDm(zn)‖LB
‖zn‖LB

≤ ∥∥CϕDm∥∥
LB→LB

∥∥∥∥ zn

‖zn‖LB

∥∥∥∥
LB

≤ ∥∥CϕDm∥∥
LB→LB < ∞,

for any n ∈ N, from which the implication follows.
⇐) We now assume that the condition (.) holds. On the one hand, for the case

supz∈D |ϕ(z)| < , there is an r ∈ (, ) such that |ϕ(z)| < r. By (.), for any given f ∈ LB,
we have

∥∥CϕDmf
∥∥
LB = sup

z∈D

(
 – |z|) log e

 – |z|
∣∣f (m+)(ϕ(z))ϕ′(z)

∣∣

≤ sup
z∈D

‖ϕ‖LB
|f (m+)(ϕ(z))|( – |ϕ(z)|)m+ log e

–|ϕ(z)|
( – |ϕ(z)|)m+ log e

–|ϕ(z)|


 sup
z∈D

‖ϕ‖LB‖f ‖LB
( – r)m+ ln e

–r
< ∞.

The last estimate shows that the operator Cϕ is bounded on LB.

http://www.journalofinequalitiesandapplications.com/content/2014/1/453
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On the other hand, for the case supz∈D |ϕ(z)| = . Let N be the smallest positive integer
such that DN is not empty, where

Dn =
{
z ∈ D : rm,n–m ≤ ∣∣ϕ(z)∣∣ ≤ rm,n

}

and rm,n is given in Lemma .. Note thatHm,n(|ϕ(z)|) > , when z ∈Dn, n≥N , by (.) we
obtain

ε := inf
z∈Dn

Hm,n(|ϕ(z)|)
‖zn‖LB

> .

For any given f ∈LB, by Lemma . we have

∥∥CϕDmf
∥∥
LB = sup

z∈D

(
 – |z|) log e

 – |z|
∣∣f (m+)(ϕ(z))ϕ′(z)

∣∣

= sup
n≥N

sup
z∈Dn

(
 – |z|) log e

 – |z|
∣∣f (m+)(ϕ(z))ϕ′(z)

∣∣

= sup
n≥N

sup
z∈Dn

(
 – |z|) log e

 – |z|
∣∣f (m+)(ϕ(z))ϕ′(z)

∣∣ ‖zn‖LB
Hm,n(|ϕ(z)|)

Hm,n(|ϕ(z)|)
‖zn‖LB


 ‖f ‖LB
ε

sup
n≥N

sup
z∈Dn

n!
(n –m – )!

(
 – |z|) log e

 – |z|
∣∣ϕ′(z)

∣∣ |ϕ(z)|n–m–

‖zn‖LB

≤ ‖f ‖LB
ε

sup
n≥N

‖CϕDm(zn)‖LB
‖zn‖LB

.

The proof is complete. �

4 The essential norm of CϕDm onLB
Denote Krf (z) = f (rz) for r ∈ (, ). Then Kr is a compact operator on the space LB. It is
easy to see that ‖Kr‖ ≤ . We denote by I the identity operator.
In order to give the lower and upper estimate for the essential norm of CϕDm on LB, we

need the following result.

Lemma . There is a sequence {rk}, with  < rk <  tending to , such that the compact
operator

Ln =

n

n∑
k=

Krk

on LB satisfies:
(i) for any t ∈ (, ), limn→∞ sup‖f ‖LB≤t sup|z|≤t |((I – Ln)f )′(z)| = ,

(iia) limn→∞ sup‖f ‖LB≤ sup|z|< |(I – Ln)f (z)| ≤ ,
(iib) limn→∞ sup‖f ‖LB≤ sup|z|<s |(I – Ln)f (z)| = , for any s ∈ (, ),
(iii) lim supn→∞ ‖I – Ln‖ ≤ .

Proof (i) follows from (iib) by Cauchy’s formula. The proof of (iii) is similar to the proof
of Proposition  in []. Hence we omit it. Next we prove (iia) and (iib). The argument is
much like that given in the proof of Proposition . of [] or Lemmas  and  in []. For

http://www.journalofinequalitiesandapplications.com/content/2014/1/453
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any  < s < , we choose an increasing sequence rk tending to  such that rk ≥  – –s
k . For

any given z ∈D and rk , k = , , , . . . , there exists an sk ∈ (rk , ) such that

∣∣f (z) – frk (z)
∣∣ = zf ′(skz)(z – rkz). (.)

For any f ∈LB with ‖f ‖LB ≤ , we have

∣∣(I – Ln)f (z)
∣∣ ≤ 

n

n∑
k=

∣∣f (z) – frk (z)
∣∣ ≤ 

n

n∑
k=

∣∣f ′(skz)
∣∣( – rk)

≤ 
n

n∑
k=

 – rk
( – |rkz|) log e

–|rkz|
≤ 

n

n∑
k=

 = .

Thus

lim sup
n→∞

sup
‖f ‖LB≤

sup
|z|<

∣∣(I – Ln)f (z)
∣∣ ≤ .

This shows that (iia) holds.
If |z| ≤ s, by the equality (.), we have

∣∣(I – Ln)f (z)
∣∣ ≤ 

n

n∑
k=

 – rk
( – |sz|) log e

–|sz|

≤ 
n

n∑
k=

 – rk
( – s)

=

n

n∑
k=


k

≤ π

n
.

The above estimate gives (iib). The proof is complete. �

The following lemma can be proved in a standard way; see, for example Proposition .
in [].

Lemma . Let m ∈N and ϕ be an analytic self-map of D. Then CϕDm is compact on LB
if and only if CϕDm is bounded on LB and for any bounded sequence {fn} in LB which
converges to zero uniformly on compact subsets of D, then ‖CϕDmfn‖LB →  as n→ ∞.

Theorem . Let m ∈ N and ϕ be an analytic self-map of D. Suppose that CϕDm is
bounded on LB. Then the estimate for the essential norm of CϕDm on LB is

∥∥CϕDm∥∥LB→LB
e ≈ lim sup

n→∞
‖CϕDm(zn)‖LB

‖zn‖LB
. (.)

Proof We first give the lower estimate for the essential norm. Without loss of generality,
we assume that n≥m+. Choose the sequence of function fn(z) = zn/‖zn‖LB , n ∈ N. Then
‖fn‖LB = , and {fn} converges to zero weakly on LB as n→ ∞. Thus we have

lim
n→∞‖Kfn‖LB = 

http://www.journalofinequalitiesandapplications.com/content/2014/1/453
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for any given compact operator K on LB. The basic inequality gives

∥∥CϕDm –K
∥∥LB→LB ≥ ∥∥(

CϕDm –K
)
fn

∥∥
LB ≥ ∥∥CϕDmfn

∥∥
LB – ‖Kfn‖LB .

Thus we obtain

∥∥CϕDm –K
∥∥LB→LB ≥ lim sup

n→∞

∥∥CϕDmfn
∥∥
LB ≥ lim sup

n→∞

∥∥CϕDmfn
∥∥
LB .

So we have

∥∥CϕDm∥∥LB→LB
e = inf

K

∥∥CϕDm –K
∥∥ ≥ lim sup

n→∞
‖CϕDm(zn)‖LB

‖zn‖LB
.

Now we give the upper estimate for the essential norm. For the case of supz∈D |ϕ(z)| < ,
there is a number δ ∈ (, ) such that supz∈D |ϕ(z)| < δ. In this case, the operator CϕDm is
compact onLB. In fact, choose a bounded sequence {fn}n∈N inLBwhich converges to zero
uniformly on compact subset of D. From Cauchy’s integral formula, {f (m+)

n } converges to
zero on compact subsets of D as n→ ∞. It follows that

lim
n→∞

∥∥CϕDmfn
∥∥
LB = lim

n→∞
(∣∣f (m)

n
(
ϕ()

)∣∣ + ∥∥CϕDmfn
∥∥
log

)

= lim
n→∞ sup

z∈D

(
 – |z|) log e

 – |z|
∣∣f (m+)
n

(
ϕ(z)

)
ϕ′(z)

∣∣
≤ ‖ϕ‖LB lim

n→∞ sup
z∈D

∣∣f (m+)
n

(
ϕ(z)

)∣∣
= ‖ϕ‖LB lim

n→∞ sup
|w|≤δ

∣∣f (m+)
n (w)

∣∣ = .

Then the operator CϕDm is compact on LB by Lemma .. This gives

∥∥CϕDm∥∥LB→LB
e = . (.)

On the other hand, by Lemma . and (.) we obtain

∥∥zn∥∥LB =H,n(x,n) ≥H,n(r,n) ≥ 

log(en),

which implies that

lim sup
n→∞

‖CϕDm(zn)‖LB
‖zn‖LB

≤ e lim sup
n→∞

sup
z∈D

(
 – |z|) log e

 – |z|
n!

(n –m – )!
∣∣ϕ(z)∣∣n–m–∣∣ϕ′(z)

∣∣
≤ e‖ϕ‖LB lim

n→∞nmδn–m– = .

Combining the last inequality with (.), we get the desired result.
Next, we assume that supz∈D |ϕ(z)| = . Let Ln be the sequence of operators given in

Lemma .. Since Ln is compact onLB and CϕDm is bounded onLB, then CϕDmLn is also

http://www.journalofinequalitiesandapplications.com/content/2014/1/453
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compact on LB. Hence

∥∥CϕDm∥∥LB→LB
e ≤ lim sup

n→∞

∥∥CϕDm –CϕDmLn
∥∥
LB→LB

= lim sup
n→∞

∥∥CϕDm(I – Ln)
∥∥
LB→LB

= lim sup
n→∞

sup
‖f ‖LB≤

∥∥CϕDm(I – Ln)f
∥∥
LB

= lim sup
n→∞

sup
‖f ‖LB≤

∥∥(
(I – Ln)f

)(m) ◦ ϕ
∥∥
LB

≤ I + I,

where

I = lim sup
n→∞

sup
‖f ‖LB≤

∣∣((I – Ln)f
)(m)(

ϕ()
)∣∣

and

I = lim sup
n→∞

sup
‖f ‖LB≤

sup
z∈D

∣∣((I – Ln)f
)(m+)(

ϕ(z)
)
ϕ′(z)

∣∣( – |z|) log e
 – |z| .

It follows from Lemma .(iib) and Cauchy’s integral formula that I = .
For each positive integer n≥m + , we define

Dn =
{
z ∈ D : rm,n–m ≤ ∣∣ϕ(z)∣∣ < rm,n

}
,

where rm,n is given in Lemma .. Let k be the smallest positive integer such that Dk �= .
Since supz∈D |ϕ(z)| = , Dn is not empty for every integer n≥ k and D =

⋃∞
n=k Dn, we have

sup
‖f ‖LB≤

sup
z∈D

∣∣((I – Ln)f
)(m+)(

ϕ(z)
)
ϕ′(z)

∣∣( – |z|) log e
 – |z| = I + I,

where

I = sup
‖f ‖LB≤

sup
k≤i≤N–

sup
z∈Di

∣∣((I – Ln)f
)(m+)(

ϕ(z)
)
ϕ′(z)

∣∣( – |z|) log e
 – |z|

and

I = sup
‖f ‖LB≤

sup
N≤i

sup
z∈Di

∣∣((I – Ln)f
)(m+)(

ϕ(z)
)
ϕ′(z)

∣∣( – |z|) log e
 – |z| .

Here N is a positive integer determined as follows.
By (.),

lim
i→∞

‖zi‖LB
Hm,i(rm,i–m)

=
em

(m + )m+ .

Hence, for any given ε > , there exists an N such that

‖zi‖LB
Hm,i(rm,i–m)

≤ em

(m + )m+ + ε

http://www.journalofinequalitiesandapplications.com/content/2014/1/453
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when i ≥N . For such N it follows that

I = sup
‖f ‖LB≤

sup
N≤i

sup
z∈Di

∣∣((I – Ln)f
)(m+)(

ϕ(z)
)
ϕ′(z)

∣∣( – |z|) log e
 – |z|

= sup
‖f ‖LB≤

sup
N≤i

sup
z∈Di

∣∣((I – Ln)f
)(m+)(

ϕ(z)
)
ϕ′(z)

∣∣

· ( – |z|) log e
 – |z|

Hm,i(|ϕ(z)|)
‖zi‖LB

‖zi‖LB
Hm,i(|ϕ(z)|)



(

em

(m + )m+ + ε

)
sup

‖f ‖LB≤

∥∥(I – Ln)f
∥∥
LB sup

N≤i
sup
z∈Di

∣∣ϕ′(z)
∣∣

· ( – |z|) log e
 – |z|

i!
(i –m – )!

|ϕ(z)|i–m–

‖zi‖LB

≤
(

em

(m + )m+ + ε

)
‖I – Ln‖ sup

N≤i

‖CϕDm(zi)‖LB
‖zi‖LB

.

Thus

lim sup
n→∞

I 

(

em

(m + )m+ + ε

)
sup
N≤i

‖CϕDm(zi)‖LB
‖zi‖LB

. (.)

By (ii) of Lemma . and Cauchy’s integral formula, we have

lim sup
n→∞

I

= lim sup
n→∞

sup
‖f ‖LB≤

sup
k≤i<N–

sup
z∈Di

∣∣((I – Ln)f
)(m+)(

ϕ(z)
)∣∣∣∣ϕ′(z)

∣∣( – |z|) log e
 – |z|

≤ ‖ϕ‖LB lim sup
n→∞

sup
‖f ‖LB≤

sup
|ϕ(z)|<rm,N–

∣∣((I – Ln)f
)(m+)(

ϕ(z)
)∣∣

= ,

which together with (.) implies that

I 

(

em

(m + )m+ + ε

)
sup
N≤i

‖CϕDm(zi)‖LB
‖zi‖LB

. (.)

From (.) we obtain

∥∥CϕDm∥∥LB→LB
e ≤ I + I 


(
em

(m + )m+ + ε

)
sup
N≤i

‖CϕDm(zi)‖LB
‖zi‖LB

.

By the arbitrariness of ε, we get

∥∥CϕDm∥∥LB→LB
e 
 em

(m + )m+ lim sup
n→∞

‖CϕDm(zn)‖LB
‖zn‖LB

.

The proof is complete. �

From Theorem ., we obtain the following result.

http://www.journalofinequalitiesandapplications.com/content/2014/1/453
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Corollary . Let m ∈ N and ϕ be an analytic self-map of D such that CϕDm is bounded
on LB. Then CϕDm is compact on LB if and only if

lim sup
n→∞

‖CϕDm(zn)‖LB
‖zn‖LB

= .

Especially, when m = , from the proof of Theorem ., we get the exact formula for
essential norm of composition operator on LB.

Corollary . Let ϕ be an analytic self-map ofD. Suppose that Cϕ is bounded onLB; then

‖Cϕ‖LB→LB
e = lim sup

n→∞
‖ϕn‖LB
‖zn‖LB

.
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17. Li, S, Stević, S: Weighted composition operators from Zygmund spaces into Bloch spaces. Appl. Math. Comput.

206(2), 825-831 (2008)
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