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Abstract

Background: Premature leaf senescence induced by external stress conditions, e.g. drought stress, is a main factor
for yield losses in barley. Research in drought stress tolerance has become more important as due to climate
change the number of drought periods will increase and tolerance to drought stress has become a goal of high
interest in barley breeding. Therefore, the aim is to identify quantitative trait loci (QTL) involved in drought stress
induced leaf senescence and drought stress tolerance in early developmental stages of barley (Hordeum vulgare L.)
by applying genome wide association studies (GWAS) on a set of 156 winter barley genotypes.

Results: After a four weeks stress period (BBCH 33) leaf colour as an indicator of leaf senescence, electron transport
rate at photosystem II, content of free proline, content of soluble sugars, osmolality and the aboveground biomass
indicative for drought stress response were determined in the control and stress variant in greenhouse pot experiments.
Significant phenotypic variation was observed for all traits analysed. Heritabilities ranged between 0.27 for osmolality and
0.61 for leaf colour in stress treatment and significant effects of genotype, treatment and genotype x treatment were
estimated for most traits analysed. Based on these phenotypic data and 3,212 polymorphic single nucleotide polymorphisms
(SNP) with a minor allele frequency >5 % derived from the Illumina 9 k iSelect SNP Chip, 181 QTL were detected for all traits
analysed. Major QTLs for drought stress and leaf senescence were located on chromosome 5H and 2H. BlastX search for
associated marker sequences revealed that respective SNPs are in some cases located in proteins related to drought stress or
leaf senescence, e.g. nucleotide pyrophosphatase (AVP1) or serine/ threonin protein kinase (SAPK9).

Conclusions: GWAS resulted in the identification of many QTLs involved in drought stress and leaf senescence of
which two major QTLs for drought stress and leaf senescence were located on chromosome 5H and 2H. Results may
be the basis to incorporate breeding for tolerance to drought stress or leaf senescence in barley breeding via marker
based selection procedures.
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Background
Barley (Hordeum vulgare L.) is one of the first cereals
domesticated in the Fertile Crescent [1] and today it is
the fourth most important crop species concerning acre-
age next to wheat, maize, and rice [2]. Worldwide, barley
is mainly used for animal feed and malting and only a
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very small amount is used for direct human consump-
tion and bakery. Average yield of barley on the world-
wide level is 2.9 t/ha but in some European countries,
e.g. Germany average yield is up to 6.5 t/ha [2]. Barley
yield in many parts of the world is reduced by biotic
stress but also by abiotic stress e.g. heat, salt, deficits in
nitrogen nutrition and drought [3–6]. Especially, in the
juvenile stages from sowing to tillering, drought can se-
verely influence barley development already reducing
the potential yield [7]. Research on drought stress toler-
ance has become more important worldwide as due to
climate change the number of drought periods will in-
crease in the future [8, 9]. Up to now, most studies
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conducted in barley focused on effects of terminal
drought stress whereas drought in juvenile stages is less
well documented [10].
Drought tolerance is a complex quantitative trait, that

is controlled by various mechanisms [11, 12]. Abscisic
acid (ABA) is a key phytohormone involved in adaption
to environmental stresses and regulation of plant develop-
ment. It promotes the closure of stomata under drought
stress conditions initiated by a loss of turgor [13]. Further-
more, it increases the hydraulic conductivity of water, pro-
motes chlorophyll breakdown and leads to leaf senescence
[14]. Another relevant protein is ubiquitin which regulates
the degradation of proteins [15, 16]. Moreover, late em-
bryo abundant (LEA) proteins and heat shock proteins
that are involved in the protection of functional proteins
are induced in response to various abiotic stresses [17–19].
For example protein kinases and protein phosphatases
which activate or deactivate proteins by phosphorylation
and dephosphorilation [20], as well as the LEA protein
dehydrin which is described to have different functions in
different stresses [21] is often present along with drought
stress [22]. A lot of parameters indicative for drought
stress influenced by these and additional genes were
analysed in different crops [23, 24]. For example, biomass
production [25], yield [26], photosynthesis rate [27], as
well as the content of free proline [28], total content of
soluble sugars [29], or osmolality [30] are parameters
which are affected by drought stress in barley.
Another factor relevant for yield improvement is leaf

senescence [31], which is a natural degradation process
at the final stage of the development of organs and
plants. This process is divided into three steps and starts
with reprogramming of gene expression to turn on sen-
escence activating genes. Before programmed cell death
in the terminal phase occurs, the second step in which
nutrients and metabolites are transported from source
(e.g. roots, leaves) to sink (e.g. fruits, seed) is important
for yield and quality of the seeds harvested [32]. During
this reorganization phase, degradation of chlorophyll
and a decrease in photosynthesis is observed [33, 34].
Because of degradation of chlorophyll, yellowing of the
leaves is a symptom of leaf senescence [35], which in
many studies is rated visually [36, 37], but can be more
precisely determined by Soil Plant Analysis Development
(SPAD) readings which estimate leaf greenness [38].
Degradation of chlorophyll is regulated by chlorophyllase,
pheophorbide α oxygenase and red chlorophyll catabolite
reductase among others [34], but so far for regulation of
leaf senescence only a few genes are known [39, 40]. Leaf
senescence is a process which is influenced by a lot of ex-
ternal stress conditions e.g. drought stress [24, 41]. Stress
often results in premature induction of leaf senescence
and therefore leads to an inefficient recycling of resources
and a massive yield loss [42–44]. In contrast, plants
showing delayed leaf senescence under stress, represented
by a “stay green effect”, minimize yield loss [45].
Genome wide association studies (GWAS) are a power-

ful tool to subdivide such complex pathways as drought
stress and leaf senescence by the detection of quantitative
trait loci (QTL) out of the regression analysis of genotypic
and phenotypic data [19, 46–48]. Up to now, some QTLs
involved in drought stress response were published in
barley [49–52], whereas for leaf senescence only few
QTLs are known [42, 53]. Besides this, QTLs which are
involved in the response to other abiotic stresses, e.g.
salt stress were identified in barley [6, 54]. Molecular
markers, such as single nucleotide polymorphisms
(SNP) flanking QTLs having a significant influence on
the respective trait can be used for efficient marker
assisted selection and smart breeding procedures [55].
The aim of the present study is therefore the identifi-

cation of QTLs for drought stress and drought stress in-
duced leaf senescence in early developmental stages of
barley suited to be used in future barley breeding pro-
grams using GWAS followed by the identification of the
function of these QTLs associated to respective traits.

Material & methods
Plant material and experimental setup
A set of 156 winter barley genotypes (Additional file 1)
consisting of 113 German winter barley cultivars [49
two-rowed and 64 six-rowed, [56] and 43 accessions of
the Spanish barley core collection (SBCC) [57] were
used to investigate drought stress induced leaf senes-
cence in juvenile barley plants. Drought stress was ap-
plied in greenhouses of the Julius Kühn-Institut in Groß
Lüsewitz, Germany according to Honsdorf et al. [51].
Trials were conducted in a split plot design with three
replications per genotype and variant (control, drought
stress). Ten seeds of each accession were sown per plas-
tic pot (16x16x16 cm) containing 1,500 g of a mixed clay
soil ED73 (H. Nitsch & Sohn GmbH & Co. KG, Dorsten
Germany). After germination, seedlings were reduced to
seven plants per pot. Plants were grown under semi-
controlled long day conditions in a temperature range
from 20 to 22 °C at day (16 h) and 17 to 19 °C at night
(8 h). If natural radiation was below 20 klx, additional
light was applied from 6 a.m. to 10 p.m. Drought stress
started at the primary leaf stage (BBCH 10) seven days
after sowing (das). At this time watering of the stress
variant was stopped till the soil reached 20 % of the
maximal soil water capacity, and then this level was kept
by weighting each pot and re-watering. Control plants
were continuously watered to 70 % of the maximal soil
water capacity. Water capacity was calculated of the sat-
urated soil weight and drought weight according to DIN
ISO 11465 1996–12 [58]. At the end of a four weeks
stress period (BBCH 33) physiological traits were determined
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and above ground biomass was harvested (experimental
setup A). Experimental setup A was repeated in three years.
A modified experimental setup was conducted to optimize
lightening conditions of the primary leaves for the meas-
urement of leaf colour (SPAD) and electron transport rate
at photosystem II (ETR) (experimental setup B). General
settings were the same as in setup A, but only four plants
were grown in smaller pots (12x12x12 cm) to allow wider
spacing of pots and all leaves except the primary leaves
were tied up to reduce shading. Experimental setup B was
repeated in two years.

Physiological parameters determined
Six physiological traits, i.e. leaf colour (SPAD), electron
transport rate at photosystem II (ETR), content of free
proline (CFP), content of soluble sugars (CSS), osmolality
(OA) and the aboveground biomass yield (BY) were
determined in the control and stress treatment. Meas-
urement and sampling respectively were conducted on
primary leaves.
Chlorophyll content which was used as the main indi-

cator for drought stress induced leaf senescence was
measured 33–34 das by Minolta SPAD readings (Konica
Minolta Chlorophyll Meter SPAD-502 Plus, Osaka
Japan), which gives a value for leaf colour. Three primary
leaves of three plants for each pot were measured at five
positions per leaf. These SPAD readings turned out to
be correlated to the chlorophyll content analysed photo-
metrically [59, 60]. Because of this relation, the chloro-
phyll content can be indirectly measured by SPAD [61].
At 34–35 das chlorophyll fluorescence was measured

in all genotypes using light adapted plants with the
OS1P-Chlorophyll Fluorometer (OPTI-SCIENCE, Hudson
USA) in the middle of three primary leaves per pot at one
position per leaf. The relative electron transport rate at
photosystem II (PSII) (ETR = Y(II) * PAR * 0, 84 * 0, 5) was
calculated including the photosynthetically active radi-
ation (PAR), as well as the quantum photosynthetic
yield of PSII (Y(II)) and constants representing light
which is absorbed by the leaf (0.84) and light which is
equally absorbed by PSI and PSII (0.5) [62].
At 36 das five primary leaves per pot were harvested

and cut in pieces of 1 cm length for the analysis of CFP,
CSS and OA. These samples were frozen in liquid nitrogen
immediately and samples for CFP and CSS measurement
were freeze dried. For CFP measurement the ninhydrin
method [63] was applied, and for CSS measurement the
anthron method [64] was used. Both traits were measured
photometrical using a spectrophotometer. The concentra-
tion of these ingredients was determined with a standard
curve calculated on a dry weight basis. To assess OA, fro-
zen leaf samples were grinded in a swing mill (30/s for
3 min), filled up with 200 μl water and centrifuged at
15,000 rpm for 15 min to get cell sap for the measurement
of osmolality with a freezing-point osmometer (Osmomat
O-30 Gonotec, Berlin Germany). Osmolality was corrected
for the water content of fresh and dry weight. Above
ground biomass was harvested 36 das, too. Leaf material
was dried in a compartment dryer at 105 °C and weighted.
For all traits an outlier test was calculated to exclude

extreme deviations [65]. To get information on the sta-
bility of all analysed traits in response to drought stress
compared to the control, the drought susceptibility
index (DSI) was calculated [66] for each trait and across
treatments according to the formula:

DSI ¼ ð1 – LSMean Trait Genotype; Stress =

LSMean Trait Genotype; ControlÞ = D; with

D ¼ 1 – ðLSMean Trait Assortment; Stress =

LSMean Trait Assortment; ControlÞ
DSI is a relative value estimated for each genotype and

trait. According to the formula genotypes revealing a
DSI close to one are highly susceptible to drought and
those close to zero or showing a negative value are
tolerant.

Statistical analysis of phenotypic data
Statistical analyses were performed with SAS 9.3 [67].
Least square means (LSMeans) were calculated with
GLM procedure for the replications of each genotype in
the respective years and for both control and drought
conditions. Descriptive statistics was calculated out of
LSMeans by PROC UNIVARIATE. Analysis of variance
(ANOVA) was calculated using PROC MIXED with ge-
notypes (G), drought stress treatment (T) and GxT as
fixed effects. Replication (R), year (Y) and row type are
chosen as random factors. The heritability (h2) was calcu-
lated with SAS in two steps. First, the variance compo-
nents for the genotypes (VG), variance associated with the
genotype by year interaction (VGY) and VE which is the
error variance were calculated with PROC VARCOMP.
Next, h2 was calculated with the following formula:
VG/(VG + VGY/Y + VE/RY) for both well watered and
drought stress conditions. Furthermore, the coefficient
of correlation (PROC CORR) by Pearson was calculated
with SAS based on LSMeans.

Genotyping and genome wide association study (GWAS)
For genotyping the whole set of genotypes was analysed
with the barley Illumina 9 k iSelect SNP-chip [68]. Popula-
tion structure was calculated with STRUCTURE 2.3.4 [69]
based on 51 simple sequence repeat (SSR) markers cover-
ing the whole genome. The STRUCTURE programme
was run 20 times for pre-defined k (the number of popula-
tion groups) from 1 to 5 each. To get the number of
calculated subpopulations (k) with highest likelihood
the procedure of Evanno et al. [70] was applied. An
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independent run with 500,000 iterations of a Monte
Carlo Markov Chain with a length of the burn in
period of 500,000 was conducted for the k with the
highest likelihood to obtain the q-matrix. Kinship was
calculated with SPAGeDi 1.3d [71] based on 51 SSRs
and allele size correlation coefficient [72] with 5,000
permutations.
Out of 3,886 genetically mapped SNP markers (398 at

1H, 690 at 2H, 583 at 3H, 342 at 4H, 781 at 5H, 546 at
6H and 546 at 7H) [68], 3,212 polymorphic markers with
minor allele frequencies higher than 5 % were taken into
account. Based on these data and respective phenotypic
data (LSMeans) GWAS was conducted applying a mixed
linear model (MLM) using TASSEL 3.0 [73]. All results
with p values <0.001 were considered as significant
marker trait associations. Linkage disequilibrium (LD)
was calculated on mapped polymorphic SNPs with R
[74] by an estimate of the average decay [75] over all
barley chromosomes.
Sequences of significantly associated SNP-markers

(p <0.001) were downloaded from the James Hutton
Institute [http://bioinf.hutton.ac.uk/iselect/app] and respect-
ive sequences were compared against the plant proteome in
the UniProtKB/Swiss-Prot protein database by BlastX (Basic
Local Alignment Search Tool, p <10−5 or query cover of
minimum 80 % in NCBI [https://www.ncbi.nlm.nih.gov]
accessed Oct 2014) to get information on the proteins
Table 1 Descriptive statistics, heritability (h2) and number of signific

Traita Description Treat.b Unit

BY Total above ground biomass yield Control g

Stress g

DSI unit free

SPAD Leaf colour Control unit free

Stress unit free

DSI unit free

ETR Relative electron transport rate at PSII Control Y(II) x PAR x 0,84 x

Stress Y(II) x PAR x 0,84 x

DSI unit free

OA Osmolality Control osmol kg−1

Stress osmol kg−1

DSI unit free

CFP Content of free proline Control μmol g−1

Stress μmol g−1

DSI unit free

CSS Total content of soluble sugars Control μmol g−1

Stress μmol g−1

DSI unit free
aBY: biomass yield, SPAD: leaf colour, ETR: electron transport rate at PSII, OA: osmol
bControl and drought stress treatment, as well as DSI: drought susceptibility index a
cMinimum, maximum, mean, standard deviation in % (SD), coefficient of variation (C
coded by these sequences [76]. Using UniProt [77] the in-
volvement of respective proteins in drought stress and leaf
senescence processes was analysed. In a last step a genetic
map with all significantly associated SNPs in genes coding
for proteins known to be involved in drought stress toler-
ance was generated using MapChart 2.2 [78].

Results
Phenotyping
The experiments revealed variability for genotype and
treatment in all analysed traits as shown in Table 1. For
the traits biomass yield (BY), leaf colour (SPAD) and the
electron transport rate (ETR) the mean values for the
stress treatment were lower than in the well watered
variant. An exception are some genotypes of the SBCC
(SBCC 3, 12, 14, 76, 80, 138 and 140) showing no de-
crease in SPAD and ETR or even an increase, repre-
sented by negative values across treatments (DSI). In
contrast to the above mentioned traits, osmolality (OA),
content of free proline (CFP) and total content of sol-
uble sugars (CSS) increased under drought stress.
The coefficient of variation (CV) was comparable for

control and drought stress treatment (Table 1) for all six
traits. Heritabilities (h2) estimated ranged between 0 for
OA to 0.80 for BY in the control treatment and 0.27 for
OA and 0.61 for SPAD in the stress treatment. Gener-
ally, h2 was higher for the stress treatment except for BY
ant (p <0.001) quantitative trait loci (QTL)

Minc Maxc Meanc SDc CVc LSDc h2 No. QTL
(SNPs)

4.47 18.18 10.70 2.68 25.08 4.12 0.80 72 (179)

2.73 9.98 5.57 1.83 32.80 1.45 0.58 19 (32)

0.65 1.28 0.98 50 (87)

4.70 48.80 35.76 8.33 23.30 23.39 0.64 8 (12)

7.83 46.77 34.16 6.56 19.20 21.41 0.61 3 (6)

−7.70 9.41 0.93 2 (2)

0,5 6.12 32.26 15.73 4.63 29.46 19.47 0.08

0,5 2.00 30.70 13.41 4.54 33.85 16.38 0.50 2 (2)

−4.09 4.82 0.90

0.23 0.78 0.46 0.05 11.57 0.19 0.00

0.40 1.16 0.67 0.08 11.48 0.23 0.27 22 (29)

0.44 2.00 1.02 0.26 1 (1)

0.00 22.36 3.66 3.11 84.89 7.33 0.13

1.02 78.57 23.94 16.86 70.43 44.30 0.29

0.00 3.46 1.15 1 (2)

86.07 568.07 231.40 85.51 36.95 240.72 0.13

164.61 981.40 419.64 164.03 39.09 411.52 0.30 1 (1)

0.08 2.95 1.07

ality, CFP: content of free proline, CSS: total content of soluble sugars
cross treatments by Fischer & Maurer (1978)
V) (standard deviation divided by mean) and least significant difference (LSD)

http://bioinf.hutton.ac.uk/iselect/app
https://www.ncbi.nlm.nih.gov


Table 3 Coefficient of correlation (PEARSON) for control and
drought stress treatment

Treatment SPAD ETR OA CFP CSS

BY Control 0.395*** 0.091 −0.127 −0.328*** −0.220**

Stress 0.361*** −0.087 −0.124 0.307*** 0.367***

SPAD Control 0.160* −0.185* −0.239** −0.192*

Stress −0.105 0.034 0.425*** 0.418***
aBY: biomass yield, SPAD: leaf colour, ETR: electron transport rate at PSII, OA:
osmolality, CFP: content of free proline, CSS: total content of soluble sugars
r is significant with *p <0.05, **p <0.01 and ***p <0.001

Wehner et al. BMC Plant Biology  (2015) 15:125 Page 5 of 15
and SPAD. Analysis of variance (ANOVA) revealed sig-
nificant (p <0.001) genotype and treatment effects for all
investigated traits and genotype x treatment interactions
for BY, CFP and CSS (Table 2).
To get information on the influence of the physio-

logical parameters estimated on biomass yield as the in-
dicator for drought stress and SPAD as the indicator for
drought stress induced leaf senescence, correlations to
these traits were calculated (Table 3). For control and
stress treatment BY is significantly correlated to SPAD
with r = 0.39 and r = 0.36, respectively. A significant cor-
relation was also determined for CSS to SPAD with r =
0.42 and for CFP with r = 0.42 in the drought stress
treatment whereas for the control treatment significantly
negative correlations were found. Low but nevertheless
significant correlations to SPAD were also detected for
ETR and OA in the control treatment. Similar correla-
tions were detected for BY. High and significant correla-
tions were found between BY and CSS (r = 0.36) and
CFP (r = 0.31) for the drought stress treatment. Under
control conditions the SBCC being a sub-population of
its own, influences the correlation by producing less BY
which results in reduced shading of the primary leaves
and a negative correlation especially to CFP and CSS.
By correlating only the German cultivars, these effects
are excluded and no correlations (r = −0.16 for CFP and
Table 2 Analysis of variance (ANOVA) of analysed traits showing
F and p values

Traita Effectb F value P value

BY Genotype 7.61 <.0001

Treatment 10878.9 <.0001

G x T 4.16 <.0001

SPAD Genotype 8.81 <.0001

Treatment 30.74 <.0001

G x T 0.83 0.9348

ETR Genotype 2.08 <.0001

Treatment 43.69 <.0001

G x T 0.97 0.6007

OA Genotype 1.45 0.0004

Treatment 3737.86 <.0001

G x T 1.16 0.0962

CFP Genotype 2.59 <.0001

Treatment 2544.91 <.0001

G x T 2.89 <.0001

CSS Genotype 2.85 <.0001

Treatment 1984.1 <.0001

G x T 2.42 <.0001
aBY: biomass yield, SPAD: leaf colour, ETR: electron transport rate at PSII, OA:
osmolality, CFP: content of free proline, CSS: total content of soluble sugars
bGenotype, Treatment and GxT: genotype x treatment interaction effect
r = −0.03 for CSS) were observed. ETR and OA were
not significantly correlated to BY.

Genotyping
The set of genotypes was analysed with the 9 k iSelect
SNP-chip available for barley. In summary 6,807 SNPs
turned out to be polymorphic. Out of these, 3,212 SNPs
are mapped on the seven barley chromosomes [68],
showing a minor allele frequency (MAF) >5 %. This set
of SNPs was used for the calculation of the linkage dis-
equilibrium decay (LD), which turned out be on average
2.52 cM for this set of genotypes. The number of sub-
populations was estimated at k = 4 (Fig. 1).

Genome wide association study (GWAS)
Results of GWAS are shown in detail in Additional file 2
and summarized in Tables 4 and 5. 191 SNPs signifi-
cantly (p <0.001) associated to traits estimated in the
control variant, 70 significantly associated SNPs in the
stress treatment and 92 significantly associated SNPs
across treatments (DSI), were detected using the MLM
analysis in TASSEL. Significant associations were found
on all barley chromosomes. Most of the significant
Fig. 1 Optimal k of the population structure. The number of
subpopulations within the set of barley genotypes was estimated
at k = 4 by calculation described in Evanno et al. [70]



Table 4 Significant markers traits associations detected under drought stress conditions at a significance of p <0.001

Traita Number of genomic regions associated with the traits on the seven linkage groups (barley chromosomes)b,c

1H 2H 3H 4H 5H 6H 7H Total QTL

BY 81.7 cM (3 SNP) 2 cM (3 SNP) 76.2 cM (1 SNP) 99.1 cM (1 SNP) 46.7 cM (8 SNP) 48.3 cM (1 SNP) 19 (32 SNPs)

92.2 cM (1 SNP) 5.5 cM (1 SNP) 135.5 cM (1 SNP) 59.7 cM (1 SNP) 70.2 cM (1 SNP)

12.1 cM (1 SNP) 80.3 cM (1 SNP) 133.9 cM (1 SNP)

90.2 cM (3 SNP) 110.1 cM (1 SNP)

139.1 cM (1 SNP)

152.4 cM (1 SNP)

167.7 cM (1 SNP)

SPAD 49.2 cM (1 SNP) 44.2 cM (4 SNP) 128.3 cM (1 SNP) 3 (6 SNPs)

ETR 59.4 cM (1 SNP) 2.1 cM (1 SNP) 2 (2 SNPs)

OA 116.8 cM (1 SNP) 51.8 cM (1 SNP) 2.4 cM (1 SNP) 52.3 cM (1 SNP) 46.5 cM (1 SNP) 10.3 cM (1 SNP) 106.5 cM (1 SNP) 22 (29 SNPs)

60.8 cM (2 SNP) 36.8 cM (2 SNP) 110.2 cM (1 SNP) 55.7 cM (1 SNP) 47.5 cM (1 SNP)

81.5 cM (4 SNP) 51.8 cM (1 SNP) 95 cM (1 SNP) 51 cM (2 SNP)

135.8 cM (1 SNP) 61.9 cM (1 SNP) 137.9 cM (1 SNP)

146.5 cM (1 SNP) 89.4 cM (1 SNP)

100.7 cM (2 SNP)

CSS 95.8 cM (1 SNP) 1 (1 SNP)

Total QTL 4 (6 SNPs) 10 (18 SNPs) 8 (10 SNPs) 3 (3 SNPs) 12 (22 SNPs) 4 (5 SNPs) 6 (6 SNPs) 47 (70 SNPs)

aBY: biomass yield, SPAD: leaf colour, ETR: electron transport rate at PSII, OA: osmolality, CSS: total content of soluble sugars
bOne genomic region up to 2.6 cM (LD); the chromosomal position in cM was taken from the respective SNP with the highest R2
cChromosome positions are based on Comadran et al. (2012)
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marker trait associations were located on barley chromo-
some 2H and 5H. A large number of SNPs on chromo-
some 5H around 45 cM turned out to be associated to
SPAD and BY in the stress treatment (Fig. 2). Most
significant associations for these traits were detected
on chromosome 5H. The highest number of marker
trait associations was detected for BY. No associations
were observed for CFP in control and stress treatment,
whereas across treatments one significant association
was found. For ETR two significant associations and
for CSS one significant association in the stress treatment
explaining 5.5 % (ETR) and 1.6 % (CSS) of the phenotypic
variance respectively were detected. The strongest associ-
ation was observed on chromosome 1H for BY across
treatments with a (−log p) value of 7.57 explaining 7.1 %
of the phenotypic variance. For OA 29 significant associa-
tions were detected in the stress treatment located over all
barley chromosomes, whereas in the control treatment no
associations and across treatments only one association
was found on chromosome 4H.
For SPAD as an indicator of leaf senescence, twelve

significant (p <0.001) marker trait associations in the
control treatment, six under stress conditions and two
across treatments were detected. For the drought stress
indicator biomass yield 179 significant marker trait asso-
ciations were found in the control treatment, 32 in the
stress treatment and 87 across treatments. Significant
marker trait associations for BY were evenly distributed
over all chromosomes. Out of these, eight were identical
in the stress treatment, control treatment and across treat-
ments and a high number of 65 marker trait associations
were identical in control treatment and across treatments.
In total the 191 significant associations estimated in

the control treatment account for 80 genomic regions
(LD = 2.52 cM), the 70 significant associations determined
in the stress treatment represent 47 genomic regions and
the 92 significant associations across treatments (DSI) ac-
count for 54 genomic regions. By comparing the localisa-
tion of marker trait associations detected, it turned out
that significant associations were found for different traits
at same positions, e.g. on chromosome 2H at 50 cM for
SPAD and OA in the stress treatment and at 120 cM for
BY and SPAD in the control treatment. Furthermore, on
chromosome 5H at 45 cM significant marker trait



Table 5 Significant blasted proteins related to drought stress or leaf senescence

Protein (Top BlastX hit with p <10−5 or query cover >80 %) Protein
abbr.

Accession Functiona Markerb Chr.b Pos. in
cMb

Traitc Treat.d

Protease Do-like DEGP2 [Swiss-Prot:O82261.2] ls BOPA1_8166-525 1H 47.5 BY C, DSI

Cullin-1 CUL1 [Swiss-Prot:Q94AH6.1] ls SCRI_RS_85918 1H 47.7 BY C

Serine/threonine-protein phosphatase PP1 isozyme 3 TOPP1 [Swiss-Prot:P48483.1] ds SCRI_RS_17924 1H 47.7 BY C, DSI

Electron transfer flavoprotein-ubiquinone oxidoreductase ETFQO [Swiss-Prot:O22854.1] ls SCRI_RS_132604 1H 48.4 BY C, DSI

ATP-dependent zinc metalloprotease FTSH3 [Swiss-Prot:Q84WU8.1] ls BOPA1_2881-935 1H 81.7 BY S

ABC transporter G family member 43 ABCG43 [Swiss-Prot:Q7PC81.1] ds BOPA2_12_31319 1H 92.4 SPAD C, DSI

Probable pectinesterase 49 PME49 [Swiss-Prot:Q9LY18.1] ds SCRI_RS_235724 1H 95.8 CSS S

Sucrose synthase 4 SUS4 [Swiss-Prot:Q9M111.1] ls SCRI_RS_239231 2H 49.2 SPAD S

Metal-nicotianamine transporter YSL YSL2 [Swiss-Prot:Q6H3Z6.2] ds SCRI_RS_221886 2H 80.9 BY C

Glutamate dehydrogenase 2 GDH2 [Swiss-Prot:Q38946.1] ls BOPA1_3469-1152 2H 81.5 BY C

Probable glutamate carboxypeptidase 2 AMP1 [Swiss-Prot:Q9M1S8.3] ds SCRI_RS_156090 2H 81.5 BY, OA C, S

Probable phospholipid hydroperoxide glutathione peroxidase GPX1 [Swiss-Prot:O23968.1] ds BOPA1_1635-691 2H 89.8 BY S

Ethylene receptor 1 ETR1 [Swiss-Prot:Q9SSY6.1] ls SCRI_RS_185665 2H 114.9 BY C, DSI

Cullin-3A 3B CUL3A CUL3B [Swiss-Prot:Q9ZVH4.1]
[Swiss-Prot:Q9C9L0.1]

ls BOPA1_3608-2133 2H 129.7 BY C

Senescence-induced receptor-like serine/threonine-protein kinase SIRK [Swiss-Prot:O64483.1] ls SCRI_RS_8420 2H 139.9 BY C

Putative F-box/LRR-repeat protein 21 FBL21 [Swiss-Prot:Q9M0U8.1] ds SCRI_RS_115423 3H 36.3 OA S

1-aminocyclopropane-1-carboxylate oxidase ACO1 [Swiss-Prot:Q9ZQZ1.1] ds SCRI_RS_167825 3H 100.3 BY, OA C, S, DSI

Dehydrin DHN 3 [Swiss-Prot:P12948.1] ds BOPA1_ABC13753-
1-2-167

3H 105.3 BY C

ABC transporter D family member 1 ABCA1 [Swiss-Prot:Q94FB9.1] ds SCRI_RS_142818 3H 148.2 BY C

Abscisic acid receptor PYL5 [Swiss-Prot:Q9FLB1.1] ds SCRI_RS_157396 4H 52.3 OA S

Ethylene-responsive transcription factor ERF011 [Swiss-Prot:Q9SNE1.1] ls SCRI_RS_9164 4H 113.7 BY C, DSI

Nucleotide pyrophosphatase/phosphodiesterase AVP1 [Swiss-Prot:Q687E1.2] ds BOPA1_9766-787 5H 44 BY S

Abscisic acid-inducible protein kinase TRIUR3 [Swiss-Prot:Q02066.1] ds SCRI_RS_102075 5H 44 SPAD S

Serine/threonine-protein kinase ATM [Swiss-Prot:Q75H77.1] ds BOPA1_ABC08327-
1-1-353

5H 44 SPAD S

Serine/threonine-protein kinase SAPK9 [Swiss-Prot:Q75V57.1] ds SCRI_RS_102075 5H 44 SPAD S

Anthocyanin regulatory R-S protein R-S [Swiss-Prot:P13027.1] ds BOPA1_12045-83 5H 46.7 BY S

Fasciclin-like arabinogalactan protein 2 FLA2 [Swiss-Prot:Q9SU13.1] ds BOPA1_5004-375 5H 83.5 BY C

Serine/threonine-protein kinase ATM [Swiss-Prot:Q9M3G7.1] ds BOPA1_6315-914 5H 94.7 SPAD C

Dehydration-responsive element-binding protein 1A DREB1A [Swiss-Prot:Q64MA1.1] ds BOPA2_12_30852 5H 95 BY, OA C, S
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Table 5 Significant blasted proteins related to drought stress or leaf senescence (Continued)

Probable zinc metalloprotease EGY1 EGY1 [Swiss-Prot:Q852K0.3] ls SCRI_RS_208686 5H 137.4 BY C, DSI

Cation/H(+) antiporter 2 CHX [Swiss-Prot:Q9SAK8.1] ds SCRI_RS_160297 7H 2.1 ETR S

Ethylene-responsive transcription factor ERF062 [Swiss-Prot:Q9SVQ0.1] ls SCRI_RS_150783 7H 48.3 BY S
aFunction of the proteins related to drought stress (ds) or leaf senescence (ls), given by UniProt
bMarkers and chromosome positions are based on Comadran et al. (2012)
cBY: biomass yield, CSS: total content of soluble sugars, ETR: electron transport rate at PSII, CFP: content of free proline, OA: osmolality, SPAD: leaf colour
dC: control treatment, S: stress treatment, DSI: drought susceptibility index across treatments by Fischer & Maurer (1978)
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Fig. 2 Manhattan plots. Showing –log p of association between Illumina SNPs and the analysed traits biomass yield (BY) and leaf colour (SPAD)
against the position of the markers on all seven linkage groups (barley chromosomes) for stress treatment. Threshold indicates a significance level
of p <0.001
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associations for BY, SPAD and OA were detected in the
stress treatment, and at 95 cM significant associations for
BY and SPAD in the control treatment.
Summarizing, overlapping of QTL was found across

treatments and for different traits, especially for BY and
SPAD, which are also significantly correlated (Table 3).
One interesting QTL was observed on chromosome 5H
at 45 cM where a significant association to BY and SPAD
in the drought stress treatment was found, which is also
within the LD of a significant association to OA (Table 4).
Therefore, at this position a putative major QTL for
drought stress and leaf senescence may be located.
From the 353 significantly associated SNPs detected in

the control treatment, stress treatment and across treat-
ments (DSI), 127 proteins were identified by an NCBI
Blast of the marker sequences. Out of these 19 proteins
turned out to be related to drought stress, 10 proteins
related to leaf senescence and 98 proteins turned out to
be not related to drought stress or leaf senescence. Out
of the 29 proteins for drought stress and leaf senescence
(Table 5), 16 revealed associations under drought stress
conditions. These were in a next step assigned to the
barley chromosomes by the known genetic localization
of respective SNPs (Fig. 3). Most of these were located
at barley chromosome 2H and 5H, none were mapped
on chromosome 6H.

Discussion
Using the experimental design described above a clear
cut influence of drought stress on biomass yield and
physiological parameters was observed (Table 1). This
effect of reduced biomass under drought conditions in
juvenile stages was also reported in Honsdorf et al. [51]
with an even higher reduction due to drought in early
developmental stages of barley by Jamieson et al. [25].
In experiments on terminal drought stress application in
barley this effect was not so pronounced [25, 79, 80] giv-
ing hint that barley is most susceptible to drought stress
in early developmental stages. Furthermore, a reduction
of the chlorophyll content under drought stress condi-
tions in barley has been observed [80, 81], but there are
also reports on adverse effects, e.g. for rapeseed or po-
tato [82, 83], which may be due to a reduced leaf growth
under drought stress conditions resulting in a reduced
cell expansion leading to a relatively higher chlorophyll
density in the leaves. In the present study measurement
was done on primary leaves, which were fully expanded
at the initiation of drought stress, so that this effect was
excluded. For biomass yield a significant correlation to
the leaf senescence parameter chlorophyll content was
observed (Table 3). This correlation may be based on a
true genetic relationship between these parameters, as it
is also reported in drought stress field studies on wheat
[59, 84] and in glasshouse experiments [85].
The electron transport rate at PS II as a parameter for

the chlorophyll fluorescence decreased under drought
stress indicating the degradation of chlorophyll during
drought stress induced leaf senescence (Table 1), as
already shown by Fang et al. [86], Li et al. [27], Netto
et al. [87] and Silva et al. [88].
As expected, osmolality increased under drought stress

thereby protecting cells against a turgor loss [30]. This is
also reported in other drought stress studies on barley
[29], but is more often detected in barley under salt



Fig. 3 Genetic map. Shows QTL including the significant associated SNP marker positions for significant blasted proteins (BlastX) linked to drought
stress or leaf senescence, related traits for drought stress treatment and percentage of phenotypic variance (explained R2 in %) of the SNPs for all
linkage groups (barley chromosomes)
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stress conditions [89, 90]. For OA no correlation was
found to BY, as also shown in a drought stress study on
spring barley [91].
The amino acid proline has been described as an osmo-

protectant [92] and is accumulated along with several abi-
otic stresses, such as drought stress, as seen in the present
study (Table 1). This effect was also found in other drought
stress studies, for example on barley in pot experiments
[28], in greenhouse [93] and on Arabidopsis thaliana in
climate chamber experiments [94]. The role of proline
accumulation is still controversially discussed as it is de-
scribed to function as a radical scavenger, antioxidant and
is involved in the regulation of apoptosis and in seed devel-
opment [95, 96, 97]. High correlations were detected for
CFP to SPAD and BY giving hint that this trait is involved
in drought stress tolerance and leaf senescence (Table 3).
The correlation of the proline content to SPAD was also
found in winter survival studies of barley [98] and in stud-
ies on salt stress tolerance in Trigonella foenum-graecum
[99]. Up to now no correlations of CFP to BY under
drought stress have been described for barley, but posi-
tive correlations to yield in wheat were observed under
drought stress [100].
Soluble sugars are acting also as osmo-protectants and

consequently like in our study an increase was detected
in several drought stress experiments on barley [29],
wheat [101], potato [102] and also pea [103]. Further-
more, studies showed that an increase of soluble sugars
occurs along with leaf senescence [104] and that CSS
was correlated to leaf senescence and biomass production
[105, 106]. Interactions between sugar and ABA signalling
may be responsible for the induction of senescence during
drought stress [107].
Quite high values for the heritability of respective

traits estimated under drought stress conditions (Table 1)
give hint that such an experimental design is suited to-
gether with a set of diverse genotypes and the respective
number of SNP-markers to detect QTLs using a genome
wide association approach (GWAS). Like in other stud-
ies [49, 108, 109], the highest number of associations
was detected for the traits with the highest heritability.
In the present study these were SPAD and BY. Most as-
sociations were found on barley chromosomes 2H and
5H on which QTLs were located at 50 cM and at
45 cM, respectively. Also in other GWAS studies of bar-
ley significant QTLs for SPAD and BY were located on
these chromosomes. Close to the QTL for SPAD located
on chromosome 2H (50 cM) a QTL for SPAD under
drought stress was also mapped by Li et al. [50]. More-
over, on chromosome 2H at 115 cM a QTL for SPAD
was identified in a pot experiment with post-flowering
drought stress [53]. QTLs for SPAD were also located
on chromosome 2H at 102.7 cM and on chromosome
5H at 165.2 cM in Mediterranean dry land experiments
(110), but no significant marker trait associations were
detected at these positions in our experiments. The same
holds true for a QTL for SPAD on chromosome 5H at
139 cM [49]. Varshney et al. [49] also detected a QTL
for biomass yield on chromosome 5H at 95 cM and
156 cM, which is near to associations, which were found
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in our study on chromosome 5H at 152 cM and 167 cM.
In addition, in the present study a QTL for SPAD and
BY under drought stress treatment was detected on
chromosome 5H at 45 cM, which has not been described
before. Furthermore, a lot of significant marker trait asso-
ciations were observed for osmolality under stress treat-
ment distributed over all barley chromosomes. This was
also reported for barley based on growth chamber drought
experiments [29].
Proteins involved in drought stress and leaf senescence

were detected by a blast of SNP marker sequences and it
turned out that they are distributed over all barley chromo-
somes, except 6H with a focus on chromosomes 2H and
5H (Table 5). Most interesting proteins detected in the
drought stress treatment (Fig. 3) are discussed in detail.
On chromosome 1H an ATP-dependent zinc metallo-

protease (FTSH3) which is a regulator of heat shock pro-
teins turned out to be associated to BY under drought
stress. This protein is involved in the thylakoid formation
and in the removal of damaged D1 in the photosystem II,
preventing cell death under high-intensity light condi-
tions. In interaction with heat shock proteins it reduces
chlorophyll a/b ratios in heat tolerance regulation in
Arabidopsis thaliana [111]. Heat stress often occurs
simultaneously with drought and also leads to leaf sen-
escence. Besides this, on chromosome 1H the pectin
methylesterase 49 (PME49) was found by sequence
alignment to be associated to CSS. This protein acts in
the modification of cell walls via demethylesterification
of pectin and turned out to be up-regulated by drought
stress in rice [112]. It influences the mechanical stability
of cell walls and thereby also of leaves.
On chromosome 2H a sucrose synthase 4 (SUS4) turned

out to be associated with SPAD. This is a sucrose-cleaving
enzyme that provides UDP-glucose and fructose for vari-
ous metabolic pathways and is involved in nucleic acid
break down during leaf senescence as revealed by expres-
sion analysis e.g. in cucumber and rapeseed [113]. The
SNP marker with the homolog sequences to this protein
was associated to the leaf senescence parameter SPAD at
49.2 cM. So there may be a direct relationship between
the SPAD values and the activation of this enzyme, espe-
cially because this SNP marker explains 3.8 % of the
phenotypic variance. Furthermore, a probable glutamate
carboxypeptidase (AMP) revealed an association to OA
which plays an important role in shoot apical meristem
development and phytohormone homeostasis. By micro-
array analysis it turned out that AMP mediates ABA pro-
duction and is involved in abiotic stress response such as
drought stress in Arabidopsis thaliana [114]. Moreover, a
marker with a sequence homologue to a phospholipid hy-
droperoxide glutathione peroxidase (GPX1) associated to
BY was found which protects cells and enzymes from oxi-
dative damage. Photometrical analyses of protein quantity
and activity showed that the expression of GPX1 and
GPX3 is reduced under drought stress and restored after
recovery in winter wheat [115].
On chromosome 3H an F-box protein was detected

(FBL21) associated to OA. These proteins are ubiquitin
related and negatively regulate ABA mediated drought
stress response in Arabidopsis thaliana [116]. Further-
more, an association of OA to 1-aminocyclopropane-1-
carboxylate oxidase (ACO1) was detected which limits
leaf growth by inhibiting the ethylene biosynthesis and
so leads to drought tolerance. This was figured out in
barley by expression analyses of protein related genes
[117]. Surprisingly, in the control treatment associated
to BY, a well known drought stress related protein, i.e.
dehydrin (DHN) [118] was found which was also in an-
other study located on chromosome 3H [119]. This pro-
tein belongs to the family of late embryogenesis abundant
(LEA) proteins and is reported to be up-regulated in the
protection mechanisms activated by plants in response to
drought stress in wheat [120].
On chromosome 4H an ABA receptor (PYL5) was lo-

cated and associated to OA that activates ABA signalling
and ABA-mediated responses such as stomatal closure
and germination inhibition. Immuno-detection experi-
ments of protein extracts revealed that ABA signalling is
involved in several stresses for example drought stress in
Arabidopsis thaliana [121].
On chromosome 5H nucleotide pyrophosphatase/

phosphodiesterase (AVP1) was found associated to BY
which facilitates auxin transport by modulating apo-
plastic pH and regulating auxin-mediated developmen-
tal processes. Increased expression of protein related
genes in transgenic barley confers tolerance to NaCl
and to drought by increasing ion retention [122]. Further-
more, three protein kinases associated to SPAD were
located on this chromosome regulating protein activity by
phosphorylation. First a serine/threonine-protein kinase
(ATM) which leads to stress induced programmed cell
death, shown in Arabidopsis thaliana by expression
profiles of protein related genes [123], second a serine/
threonine-protein kinase (SAPK9) which is activated by
hyperosmotic stress in rice [124] and third the abscisic
acid-inducible protein kinase (TRIUR3) observed in
wheat, which is also involved in dehydration stress re-
sponse [125]. Moreover, an anthocyanin regulatory pro-
tein (R-S) was detected associated to BY. Anthocyanin is
often accumulated in abiotic stress response, among
others in drought stress with a photoprotective function
as shown in Arabidopsis thaliana [94, 126]. All of these
proteins showed homologies to sequences of SNPs at
chromosome 5H around 45 cM and were associated
significantly to BY or SPAD, representing an interesting
candidate QTL for drought stress and leaf senescence.
In addition, a dehydration-responsive element-binding
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protein (DREB1A) was found associated to OA, which
delays water stress symptoms and promotes expression
of drought tolerance genes in transgenic wheat [127].
On chromosome 7H another ethylene responsive protein

was found to be associated to BY under drought stress. The
transcription factor ERF062 is involved in the regulation of
gene expression by stress factors (transcriptional repressors)
and progression of leaf senescence in Arabidopsis thaliana
[128]. Besides, on chromosome 7H the cation/H(+) anti-
porter 2 (CHX) was detected associated to ETR, which is
important for pH gradients in the cell. This protein plays a
vital role in maintaining both cellular and intercellular ionic
balances under stresses such as drought stress as observed
in Arabidopsis thaliana [129].
In summary the blast of the associated SNPs to pro-

tein data bases revealed many proteins which are known
to be involved in drought stress response or leaf senes-
cence, respectively giving hint that the GWAS approach
is well suited for the genetic dissection of these traits in
barley. Out of the QTL detected, the ones on chromo-
some 2H at 50 cM and chromosome 5H at 45 cM are of
prime importance and may be involved in breeding bar-
ley for drought tolerance in the future due to the quite
high amount of phenotypic variance explained.

Conclusions
By GWAS marker trait associations for above ground
biomass and physiological traits involved in drought
stress tolerance and leaf senescence in early develop-
mental stages of barley were detected. Major QTL for
BY and SPAD under drought stress were located at
chromosome 2H at 50 cM and chromosome 5H at
45 cM, giving hint that in these regions putative major
QTLs for drought stress and leaf senescence are located.
With respect to the QTL on chromosome 2H, QTLs for
drought stress and leaf senescence were located at com-
parable positions in other GWAS studies while the one
on chromosome 5H was detected for the first time. By
BlastX of respective SNP carrying sequences, 29 proteins
were identified being involved in drought stress or leaf
senescence, respectively. Respective QTLs may be the
starting point for marker based selection in barley for
drought stress tolerance in the juvenile stage.
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