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Abstract This paper addresses the sojourn time asymptot-
ics for a GI/GI/· queue operating under the Processor Shar-
ing (PS) discipline with stochastically varying service rate.
Our focus is on the logarithmic estimates of the tail of
sojourn-time distribution, under the assumption that the job-
size distribution has a light tail. Whereas upper bounds on
the decay rate can be derived under fairly general conditions,
the establishment of the corresponding lower bounds re-
quires that the service process satisfies a sample-path large-
deviation principle. We show that the class of allowed ser-
vice processes includes the case where the service rate is
modulated by a Markov process. Finally, we extend our re-
sults to a similar system operation under the Discriminatory
Processor Sharing (DPS) discipline. Our analysis relies pre-
dominantly on large-deviations techniques.
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1 Introduction

Based on the traffic characteristics and Quality-of-Service
requirements, traffic flows in communication networks can
be roughly divided into two categories: streaming flows
(voice, video, etc.) and elastic flows (data files, Web pages,
etc.), see e.g. [20]. Streaming flows require strict delay guar-
antees for the duration of its connection time, whereas elas-
tic traffic is less demanding. One way of handling both types
of traffic is to meet these Quality-of-Service requirements
by prioritizing streaming traffic. The bandwidth remaining
from the transmission of streaming traffic is made available
to elastic traffic. It is widely agreed upon that the protocols
for handling elastic traffic are such that each elastic flow ob-
tains roughly an equal share.

Motivated by the above application, one could consider
the following model. Let elastic flows (we use the word jobs
throughout) arrive at a queueing resource, according to a re-
newal process, and let these jobs be independent samples
from some common distribution. The jobs are served in a
Processor Sharing (PS) manner, but the capacity available
(to be interpreted as the service rate left over by the stream-
ing flows) fluctuates in time. The streaming flows ‘do not
see’ the elastic flows, so their performance can be evaluated
by using traditional models. The performance experienced
by the elastic flows, however, can be regarded as a GI/GI/·
queue with a service rate that varies in time (according to
some stochastic process), operating under PS, and is more
involved. In this paper we study the asymptotic properties
of the sojourn-time distribution of the elastic flows.

It is worth noting that in the case of processor-sharing
queues with constant service capacity, the sojourn time has
been studied in many different settings, and this has al-
ready proven to be a rather challenging task. The (con-
ditional) sojourn time distribution in the M/G/1-PS queue
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was analyzed in terms of Laplace–Stieltjes transforms (LST)
by e.g. Yashkov [23], Schassberger [21], Ott [18], Núñez-
Queija [16], and Zwart and Boxma [24]. Unfortunately, an-
alytic inversion of these LST s has appeared to be hard, and
only partial results are available.

Another classical subject of research is the derivation
of the asymptotic behavior of sojourn times in PS-queues.
Notably, one of the major insights is that there is a fun-
damental difference between sojourn-time asymptotics un-
der heavy-tailed and light-tailed jobs. A so-called reduced-
load approximation for queues with heavy-tailed distributed
job sizes was proven in different settings by, e.g., Zwart
and Boxma [24], Núñez-Queija [16] and Jelenković and
Momčilović [13]; importantly, long sojourn times are es-
sentially due to the tagged job itself being large. For PS
queues with a light-tailed job-size distribution long sojourn
times are predominantly caused by the jobs that arrive dur-
ing the sojourn time of the tagged job. For the light-tailed
case, exact asymptotics are known in a few special cases,
see [4, 10, 11]; for a survey, see [6].

Recent work by Mandjes and Zwart [15] addressed the
logarithmic asymptotics of the sojourn time in the GI/GI/1-
PS queue, under technical assumptions which guarantee that
the tail distribution of the service time is not too light and
not too heavy. More precisely, they proved under specific
conditions that the sojourn time V obeys

lim
x→∞

1

x
log P(V > x) = inf

θ≥0
(α(θ) − θ), (1.1)

where α(s) is the so-called (asymptotic) cumulant function
of total amount of work fed to the queue, i.e.,

α(θ) = lim
x→∞

1

x
log E[eθA(0,x)],

with A(0, x) the amount of traffic offered to the system in
(0, x]. The goal of the present paper is to generalize the re-
sult (1.1) of [15] to a setting in which the available service
capacity varies according to some stochastic process. Again
the job sizes should be from a light-tailed distribution (but
not too light). We extend (1.1) by constructing asymptotic
lower and upper bounds, which coincide as x becomes large.
The upper bounds can be established under rather general
conditions, whereas the lower bound requires that the ser-
vice process obeys a sample-path large-deviation principle.
More specifically, the main result of our work is that we can
express the exponential decay rate of P(V > x) through

lim
x→∞

1

x
log P(V > x) = inf

θ≥0
(α(θ) + c(−θ)), (1.2)

where α(·) and c(·) are the cumulant functions of the arrival
and service processes, respectively. The exact statement of
the result is given in Theorem 3.4.

As a special case, we study service processes that have
a so-called Markov-fluid structure. Under the extra assump-
tion of the interarrival times of the jobs being exponential
(rather than renewal), we derive for these service processes
an explicit upper bound on the tail probability, rather than
just an upper bound on the exponential decay rate.

Our proofs predominantly rely on large-deviation tools,
such as the classical Chernoff bound, as well as the applica-
tion of sample-path large deviations principles. An impor-
tant role, however, is also played by the insight that, for
PS systems with load larger than 1, the queue length in-
creases roughly at a linear rate. As a by-product, the proofs
also show that the sojourn-time asymptotics resemble busy-
period asymptotics (in the sense that their exponential decay
rates coincide). Although our results are an extension of the
results in [15], we have succeeded to simplify the proofs; in
particular, we have eliminated the need to use detailed fluid-
limit results for overloaded PS queues, as used in [15].

Finally, our methods allow us to obtain an extension of
the result to the system operating under the Discriminatory
Processor Sharing (DPS) discipline. As for the single-class
case, we allow the service process to be random, but note
that this result is also new for the standard DPS queue with a
fixed service rate. More specifically, we show that the decay
rate of the sojourn-time is weight-independent (and hence
the same for jobs of any class).

The literature on the analysis of the sojourn time asymp-
totics in PS queues with time-varying service is quite sparse.
Assuming the job-size distribution being heavy-tailed, dif-
ferent extensions of the reduced-load approximations (as
derived for the situation with constant service rate) were
found. Núñez-Queija [16] studied the M/G/1-PS system in
which the service rate is an On-Off process with exponen-
tial On-periods. Later, the sojourn time asymptotics for a
general DPS queue with time-varying service rate were ana-
lyzed in [7]; the authors considered the service rate process
which does not fluctuate too wildly compared to the size of
a job. Other versions of the reduced-load approximation for
queues with varying service rate are given in e.g. [1, 3, 5].
Somewhat related results for workloads in a GPS queue can
be found in [25].

The organization of this paper is as follows: The model
is described in Sect. 2. In Sect. 3 we present our main re-
sults on the logarithmic asymptotics for the queue with gen-
eral service rate. In addition, we consider the special case
in which the service rate varies according to a Markov-fluid
process. The proofs can be found in Sect. 4. In Sect. 5 we
generalize the result to the DPS queue. Concluding remarks
can be found in Sect. 6.
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2 Model description and preliminaries

We now specify the GI/GI/· queue operating under the PS
discipline, with varying service rate. Jobs arrive according
to a renewal process, and the job sizes constitute an i.i.d. se-
quence; our focus is on the sojourn time, say V , of a ‘tagged’
job (with job size B0), that we assume to arrive at time 0. The
service is according to the PS discipline; all jobs present in
the system are served simultaneously and receive an equal
share of the available capacity. A complication, however, is
that we allow the available capacity to fluctuate in time. The
main goal of the paper is to describe the asymptotic behavior
of P(V > x) as x → ∞.

In this paper we use the following notation. Let An, n ∈
N, be the time between the (n − 1)-st and n-th arrival after
time zero. To emphasize that an arrival occurred in the past,
we also use the notation A−n, n ∈ N, for the time between
the (n−1)-st and n-th arrival before time zero. Furthermore,
let Bn, n ∈ Z, be the request size of the n-th job; recall that
B0 corresponds to the tagged job. We assume that (An)n and
(Bn)n are mutually independent sequences, each consisting
of i.i.d. random variables. We introduce the random walks
SA

n = A1 +· · ·+An and SB
n = B1 +· · ·+Bn, and similarly,

with respect to events in the past, SA−n = A−n + · · · + A−1,

SB−n = B−n +· · ·+B−1. We denote the random variable cor-
responding to a generic interarrival time (service time) by A

(B , respectively).
We set

N(t) := max{n ∈ N : SA
n ≤ t}

representing the number of arrivals in the time interval (0, t].
Denote by A(0, t), t > 0, the total amount of work fed into
the queue in the time interval (0, t], i.e.,

A(0, t) =
N(t)∑

i=1

Bi.

Analogously, C(t1, t2) is defined as the total service avail-
able during the time interval (t1, t2] with t2 > t1,

C(t1, t2) =
∫ t2

t1

R(u)du,

where R(u) denotes the (random, non-negative) service rate
available at time u. Later we also consider the system in the
past, i.e., before time zero; then we use the notation A(−t,0)

for the total amount of work fed into the system on [−t,0).
Note that we do not include the tagged arrival which oc-
curred at time 0 into either A(0, t) or A(−t,0). The cumu-
lative arrival and service processes are assumed to be inde-
pendent of each other.

Throughout the paper we assume the cumulative service
process to satisfy the following conditions:

1. the cumulative service process has stationary increments,
i.e., the distribution of C(t1 + δ, t2 + δ) does not depend
on δ;

2. the service rate R(·) is bounded from above, i.e. there
exists rmax such that R(u) ≤ rmax for all u;

3. the asymptotic cumulant function of C(0, x) exists:

c(s) := lim
x→∞

1

x
log E[esC(0,x)].

Furthermore, the system is assumed to be stable, i.e.,
the long-run average work offered to the system, say α, is
smaller than the average offered service, say c, where

α := lim
t→∞

EA(0, t)

t
, c := lim

t→∞
EC(0, t)

t
.

Define the moment generating functions (mgfs) �B(s) :=
E[esB ] and �A(s) := E[esA]. Since both �A(·) and �B(·)
are strictly increasing and strictly convex functions, the in-
verse functions �←

A (·) and �←
B (·) are well defined. We as-

sume that either A or B does not have a deterministic dis-
tribution. A useful result is that the cumulant function of
the amount of work fed to the system can be expressed ex-
plicitly in terms of the moment generating functions of A

and B .

Lemma 2.1 For s ≥ 0, the asymptotic cumulant function
α(s) of A(0, x), x > 0, is given by

α(s) := lim
x→∞

1

x
log E[esA(0,x)] = −�←

A

(
1

�B(s)

)
. (2.1)

If either A or B is non-deterministic, then α(·) is strictly
convex.

The result of Lemma 2.1, as stated by Whitt [22], was
proved in [15]. In light of the above result, we require
throughout the paper that �B(s) < ∞ for some positive
s > 0. This way we exclude jobs with a heavy-tailed distri-
bution. Importantly, there are no restrictions imposed on the
interarrival times; these can be heavy-tailed or light-tailed:
for s ≥ 0, 1/�B(s) ∈ (0,1], and hence �←

A (1/�B(s)) is
well-defined, irrespective of the shape of the distribution of
the interarrival times.

In the sequel, we separately consider the special case
in which the service process is given by a Markov-fluid
process. Such a process can be described as follows. Con-
sider a continuous-time Markov chain on a finite state
space {1,2, . . . , d}. The transition rate matrix is denoted
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by Q := (qij )i,j=1,2,...,d , where qij ≥ 0 (i �= j ) and qii =
−∑

j �=i qij . We assume that the Markov chain is irre-
ducible, and π denotes its unique steady-state distribution.
When the Markov chain is in state i, the server provides
service at constant rate ri ≥ 0. Let R be the diagonal ma-
trix with coefficients ri on the diagonal. Denote the mean
rate by c := ∑d

i=1 riπi . We denote this class of processes
by Mf(Q,R); if the service process is of this type, we write
C(·, ·) ∈ Mf(Q,R). Results from Kesidis et al. [14] yield
the following standard properties.

Property 2.1 Let C(·, ·) ∈ Mf(Q,R). Then the following
statements hold:

1. The mgf of the service provided to the jobs in an interval
of length x is given by

EesC(0,x) = πe(Q+sR)x1,

where 1 the all-one vector of dimension d .
Denote by c1(s), . . . , cd(s) the eigenvalues of matrix

Q + sR. Hence, the mgf can be represented, for appro-
priate numbers m1, . . . ,md , as

EesC(0,x) =
d∑

i=1

mie
ci (s)x .

2. For all real s there exists a limiting mgf:

lim
x→∞

1

x
log EesC(0,x) = c(s).

Moreover, c(s) = max(c1(s), . . . , cd(s)), i.e., c(s) is the
largest real eigenvalue of Q + sR; the corresponding
eigenvector is componentwise positive.

3. There exists a finite K such that

EesC(0,x) ≤ Kec(s)x .

For instance, K = ∑d
i=1 mi .

3 Main results

In this section we present the main results of the paper.
These characterize the logarithmic asymptotic behavior of
the tail probability P(V > x) as x → ∞, under the assump-
tion that the job size has a light-tailed distribution.

To put things in perspective, we first recall the result for
asymptotic behavior of the sojourn time in a PS queue with
constant (rather than fluctuating) service capacity. Mand-
jes and Zwart [15] performed a large-deviation analysis of
the steady-state sojourn time distribution in the GI/GI/1-PS
queue, and derived the following logarithmic estimates un-
der the assumption that the job-size distribution has a light
tail.

Theorem 3.1 (See [15]) Consider the GI/GI/1-PS queue
(with constant service rate of, say, 1). If there exists a so-
lution ν∗ > 0 to α′(s) = 1, and for each constant c > 0

lim
x→∞

1

x
log P(B > c logx) = 0,

then

lim
x→∞

1

x
log P(V > x) = inf

s≥0
(α(s) − s) = α(ν∗) − ν∗. (3.1)

The main goal of the present paper is to derive a general-
ization of the above result for a queue with varying service
rate. We will show that under similar assumptions on the ar-
rival and job-size processes, and in addition certain assump-
tions on the service process, we can prove the following ex-
tension of (3.1):

lim
x→∞

1

x
log P(V > x) = inf

s≥0
(α(s) + c(−s)). (3.2)

Despite the simple form, the proof of the above result is
quite technical. The proof consists of two parts, derivation of
the upper bound (i.e., (3.2) with “=” replaced by “≤”) and
derivation of the lower bound (i.e., (3.2) with “=” replaced
by “≥”) which coincide.

The proof of the upper bound is rather elementary, and
is essentially based on classical Chernoff-bound arguments,
and applies without imposing additional conditions on the
service process.

The proof of the lower bound, however, is substantially
harder. There we first truncate the job-size distribution (and
then let the truncation threshold increase to ∞), so that we
enforce linearly bounded queue length growth. Thus, the
problem is reduced to finding the corresponding busy-period
asymptotics, which effectively can be decomposed into two
independent terms representing a large deviation of the ar-
rival process and a large deviation of service process. This
argument, in particular, intuitively explains the occurrence
of long busy periods (and hence also of long sojourn times)
as the result of a ‘conspiracy’: the arrival rate is higher than
usual, the size of the jobs are larger than usual, and in ad-
dition less service is available than usual. We remark that
analysis of the large deviation of service process requires
an additional assumption: the service process should obey a
so-called sample-path large-deviation principle (more pre-
cisely: only the large-deviations lower bound is required
here).

In the following subsections we will present results for
the system with general service process, but also (more ex-
plicit) results for the case the service process is Markov
fluid. The proofs are deferred to Sect. 4.
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3.1 Upper bound

We first present the upper bound for a GI/GI/· system with a
generally distributed service process. We need to make the
following assumption.

Assumption 3.1 There exists ν > 0 such that α(ν) +
c(−ν) < 0.

This assumption ensures that service times are light-
tailed and that the system is stable. To be more precise, what
the assumption states is that in some neighborhood to the
right of the origin the sum stays finite. This implies (due to
Lemma 2.1) that there exists a neighborhood of the origin
in which the mgf �B(·) is well defined (as an aside, note
that this implies that B is light tailed). Since the function
g(s) = α(s)+ c(−s) is strictly convex and equals 0 at s = 0,
the assumption implies that g(·) has a negative derivative at
s = 0, α − c < 0, and hence, the system is stable.

Due to strict convexity of the cumulant function, we can
define ω∗ > 0 such that

ω∗ = arg inf
s≥0

(α(s) + c(−s)).

Since α(s) + c(−s) equals zero at s = 0 and has a strictly
negative derivative at s = 0, we also have infs≥0(α(s) +
c(−s)) = α(ω∗) + c(−ω∗) < 0.

The next theorem gives the logarithmic upper bound for
P(V > x) in terms of the cumulant functions.

Theorem 3.2 If Assumption 3.1 is valid, then

lim sup
x→∞

1

x
log P(V > x) ≤ inf

s≥0
(α(s) + c(−s)). (3.3)

Besides the general upper bound on the exponential de-
cay rate, as presented in Theorem 3.2, we have a tighter
result (namely bounds on the probability P(V > x) itself,
uniformly in x) for an important special case. This result re-
quires an additional assumption; it implies Assumption 3.1
and existence of ω∗.

Assumption 3.2 There exists a solution ν∗ > 0 to α(ν∗) +
c(−ν∗) = 0.

In the special case we consider, we specialize to Poisson
interarrival times (rather than renewal arrivals; the arrival
process is thus a compound Poisson process) and Markov-
fluid service. We remark that the constant K , as used in The-
orem 3.3, will be explicitly given in the proof of the result.

Theorem 3.3 Suppose the arrival process is given by a com-
pound Poisson process (with arrival rate λ) and the service

process is in Mf(Q,R). Then, under Assumption 3.2, uni-
formly in x ≥ 0,

P(V > x) ≤ Ke(α(ω∗)+c(−ω∗))x, (3.4)

and α(ω∗) = λ(�B(ω∗) − 1).

3.2 Lower bound

Let us now turn to stating the results for the lower bound on
P(V > x). Here we need the following assumption.

Assumption 3.3 For each constant c > 0, we have

lim
x→∞

1

x
log P(B > c logx) = 0.

It is readily checked that this assumption is satisfied by
most distributions of interest, such as phase-type, Gamma,
Weibull distributions, etc. However, it is noted that it is vio-
lated by distributions with extremely light tails. For instance,
the assumption does not hold for service times for which
P(B > x) is of the form exp(−ex), and by job size distrib-
utions with bounded support (for instance the deterministic
distribution). The merit of this assumption has been illus-
trated in [15], where it was shown that service times with
bounded support need a completely different treatment, see
also [10] for a detailed treatment of the M/D/1-PS queue.

The derivation of the lower bound is considerably more
involved than the corresponding upper bound. Importantly,
it requires extra structure of the process C(·, ·), namely that
the process C(·, ·) must satisfy the lower bound of a sample-
path large-deviation principle.

Definition 3.1 Denote by AC the space of all absolutely
continuous functions (see e.g. [9], p. 176). Consider the
space 
 := {f : [0,1] → R, f ∈ AC,f (0) = 0} equipped
with supremum norm topology ‖f ‖ = supu∈[0,1] f (u).

Let the process Zx(·) be given through

Zx(u) := 1

x

∫ ux

0
R(s)ds = 1

x
C(0, ux), u ∈ [0,1].

The process Zx(·) obeys a sample-path large-deviation
principle (sp-LDP) if

lim sup
x→∞

1

x
log P(Zx(·) ∈ S) ≤ − inf

f ∈S

∫ 1

0
�(f ′(t))dt,

for all closed S ⊂ 
, (3.5)

lim inf
x→∞

1

x
log P(Zx(·) ∈ T ) ≥ − inf

f ∈T

∫ 1

0
�(f ′(t))dt,

for all open T ⊂ 
, (3.6)
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where �(t) := sups∈R(st − c(s)). We say that (3.5) is the
upper bound of the sp-LDP, and (3.6) is the lower bound of
the sp-LDP.

Assumption 3.4 The process Zx(·), defined through
Zx(u) := C(0, ux)/x, u ∈ [0,1], satisfies the lower bound
of the sp-LDP (3.6).

The next theorem presents the main result of the paper;
its upper bound was already stated in Theorem 3.2.

Theorem 3.4 If Assumptions 3.1, 3.3 and 3.4 are valid, then

lim
x→∞

1

x
log P(V > x) = inf

s≥0
(α(s) + c(−s)).

Although, to our best knowledge, no sp-LDP was estab-
lished for Markov fluid, we were still able to prove the cor-
responding logarithmic lower bound.

Theorem 3.5 If C(·, ·) ∈ Mf(Q,R), and Assumptions 3.1
and 3.3 are valid, then

lim inf
x→∞

1

x
log P(V > x) ≥ inf

s≥0
(α(s) + c(−s)). (3.7)

Thus, combining the results in Theorems 3.3 and 3.5,
we conclude that if the service process is of Markov fluid
type, the logarithmic asymptote (3.2) holds under Assump-
tions 3.1 and 3.3.

Remark 3.1 Our results allow us to compare the perfor-
mance of the systems with varying service rate and with con-
stant rate (where the mean service rate is the same in both
systems). It is a quite general phenomenon that performance
nearly always improves if a random process is replaced by a
deterministic process with the same mean.

Therefore, we now consider the GI/GI/1-PS system with
fixed service rate c (recall that this is the mean service rate
of the system considered in this paper). Applying Jensen’s
inequality we obtain that

c(s) = lim
x→∞

1

x
log E[esC(0,x)] ≥ lim

x→∞
1

x
log eE[sC(0,x)]

= lim
x→∞

1

x
E[sC(0, x)] = sc.

Hence,

lim
x→∞

1

x
log P(V > x) = inf

s≥0
(α(s) + c(−s))

≥ inf
s≥0

(α(s) − sc),

where the latter is the exponential decay rate in the system
with constant service rate c. If the function c(−s) is strictly

convex, it can be shown that the above inequality is strict.
Thus, we conclude that, informally speaking, the random
service rate increases the probability of a long sojourn time.

4 Proofs

We now provide the proofs of the results presented in the
previous section.

4.1 Upper bound

We start by proving the upper bound.

Proof of Theorem 3.2 The event {V > x} implies that the
queue does not empty before time x. Evidently, as we as-
sume the system to be in steady state (with respect to job
arrivals), the workload present at time 0, say W , can be
identified with the FIFO waiting time. In other words, W

has the representation W = supt≥0(A(−t,0) − C(−t,0)).
Hence, we can write

P(V > x) ≤ P(W + B0 + A(0, x) − C(0, x) > 0)

= P
(

sup
t>0

(A(−t,0) − C(−t,0)) + B0

+ A(0, x) − C(0, x) > 0
)
. (4.1)

Now note that the process A(0, x) jumps at the arrival
epochs and is constant in between, whereas we assumed
the process C(0, x) to be non-decreasing. Hence, the dif-
ference A(0, x) − C(0, x) increases with positive jumps at
arrival epochs and is non-increasing in between. Therefore,
the supremum can only be attained at arrival epochs. This
yields that (4.1) is equivalent to

P
(

sup
n∈N

(A(−SA−n,0) − C(−SA−n,0))

+ B0 + A(0, x) − C(0, x) > 0
)
.

Now applying the standard union bound, this expression is
further bounded by

∞∑

n=1

P(A(−SA−n,0) − C(−SA−n,0) + B0 + A(0, x)

− C(0, x) > 0)

=
∞∑

n=1

P(A(−SA−n,0) + B0 + A(0, x)

− C(−SA−n, x) > 0),

where we recall that −SA−n denotes the time of the n-th ar-
rival in the past. Now we can apply the Chernoff bound to
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(each term in) the last expression, so that (recall indepen-
dence of A(−SA−n,0) and A(0, x)) we arrive at

P(V > x) ≤
∞∑

n=1

E[eω∗(A(−SA−n,0)+B0+A(0,x)−C(−SA−n,x))]

=
∞∑

n=1

∫ ∞

0
E[eω∗(A(−SA−n,0)+B0+A(0,x)−C(SA−n,x))|

SA−n = y]dP(SA−n ≤ y)

=
∞∑

n=1

∫ ∞

0
(E[eω∗B ])n+1E[eω∗A(0,x)]

× E[e−ω∗C(−y,x)]dP(SA−n ≤ y),

where in the last equality A(−SA−n,0) is interpreted as the
sum of n job sizes. Now applying the definition of the cu-
mulant function c(·), we obtain that for any ε > 0 for x large
enough the expression in the previous display is bounded
from above by

∞∑

n=1

∫ ∞

0
(E[eω∗B ])n+1e(α(ω∗)+ε)x

× e(c(−ω∗)+ε)(x+y)dP(SA−n ≤ y).

Evaluating the integral and using the definition of SA−n, we
see that the last expression equals

∞∑

n=1

(E[e(c(−ω∗)+ε)A])ne(α(ω∗)+c(−ω∗)+2ε)x(E[eω∗B ])n+1

= E[eω∗B ]e(α(ω∗)+c(−ω∗)+2ε)x

×
∞∑

n=1

(�B(ω∗)�A(c(−ω∗ + ε)))n.

Now observe that the summation over n does not depend
on x; we therefore now verify whether this sum is finite.
Note that (apply Lemma 2.1)

α(ω∗) + c(−ω∗) = −�←
A

(
1

�B(ω∗)

)
+ c(−ω∗) < 0.

Hence, due to continuity of the mgfs, we see that for ε

small enough the product under the sum is less than one,
and hence the geometric series is converging. Furthermore,
E[eω∗B ] < ∞. Thus, we conclude that P(V > x) can be
bounded from above by

P(V > x) ≤ Me(α(ω∗)+c(−ω∗)+2ε)x,

where M < ∞ is some positive constant. Taking logarithms,
dividing by x, letting x → ∞ and ε ↓ 0, we obtain

lim sup
x→∞

1

x
log P(V > x) ≤ α(ω∗) + c(−ω∗).

This proves the upper bound. �

We now turn to the proof of Theorem 3.3. Let us first state
the basic result for the workload distribution which is useful
for our proof. Denote by X(t) the state of the underlying
Markov chain at time t ; X(t) ∈ {1,2, . . . , d}.

Proposition 4.1 If C(·, ·) ∈ Mf(Q,R) and Assumption 3.2
is valid, then there exists a constant K > 0 such that for any
initial state of service process X(0) = i, i ∈ {1,2, . . . , d},
uniformly in x

P
(

sup
t≥0

A(−t,0) − C(−t,0) > x|X(0) = i
)

≤ Ke−ν∗x. (4.2)

Proof of Proposition 4.1 We present a proof that is based on
a change-of-measure argument; there are several alternative
approaches possible. This change of measure is such that
the event {W > x} becomes more likely than under the old
measure. We introduce a process

T (x) := inf{t : A(−t,0) − C(−t,0) > x}.

Then we can write

P(W > x) = P(T (x) < ∞).

Let us first twist the interarrival-time and job-size distribu-
tions. Define a new probability measure Pω for ω > 0 such
that

Pω(A ∈ dx) = P(A ∈ dx)e−α(ω)x/�A(−α(ω)),

Pω(B ∈ dx) = P(B ∈ dx)eωx/�B(ω).

In order to construct the change of measure for the ser-
vice process let us first define the largest real eigenvalue
of the matrix Q + ωR, which coincides with c(ω), where
the corresponding right eigenvector (v1, . . . , vd)T is compo-
nentwise positive, see Property 2.1(2). Note that the eigen-
vector also depends on ω, but for compactness we suppress
this. With the new probability measure we associate the
modified Markov chain with transition matrix Q∗ defined
as (for i �= j )

q∗
ij = qij vj /vi,

q∗
ii = qii + riω + c(−ω).

It is not hard to verify that these rates indeed constitute a
generator matrix (use that c(ω) is eigenvalue of Q + ωR).

We have the following fundamental identity

P(W > x) = Eω[LI {T (x) < ∞}], (4.3)
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see e.g. Theorem XIII.3.2 in [2]; here Eω denotes expecta-
tion under the new measure Pω, and L is the likelihood ratio
process stopped at T (x), which we specify below.

Instead of giving a detailed description of this likelihood
ratio process, we prefer to construct L directly, exploiting
the fact that the number of events form a simple discrete set.
We take the parameter ω (the ‘exponential twist’) to be equal
to ν∗. Suppose that in [−T (x),0) there were n arrivals; de-
note by ai, bi , i = 1, . . . , n, the interarrival times and cor-
responding job sizes. Also suppose that there were m tran-
sitions of the Markov chain governing the service process;
let, in time interval [−T (x),0), the Markov chain X(·) visit
states i0, i1, . . . , im. Define by tij , j = 1, . . . ,m, the time
service process spends in state ij .

Denote by Lj the likelihood after the j -th event. Let
L0 ← 1. The value of Lj is updated as follows:

Lj ← Lj−1e−c(−ν∗)ak e−ν∗bk�A(−α(ν∗))�B(ν∗),

if the j -th event is the k-th arrival (k = 1, . . . , n), and

Lj ← Lj−1
vik−1

vik

eν∗rik tik +c(−ν∗)tik ,

if the j -th event is the k-th transition of the Markov chain
(k = 1, . . . ,m). Observe that Lj is the product of (unit-
mean) random variables U1, . . . ,Uj , that form a martingale
with respect to the measure Pω.

Now consider this likelihood ratio stopped at the stop-
ping time T (x), which we simply denote by L. It is readily
verified that we can write

L =
(

vi0

vim

)
× (

eν∗ ∑m
j=1 rij tij +c(−ν∗)

∑m
j=1 tij

)

× (
eα(ν∗)

∑n
i=1 ai

) × (
e−ν∗ ∑n

i=1 bi
)

× (�A(−α(ν∗))�B(ν∗))n.

As −T (x) corresponds to an arrival epoch, we have that∑n
i=1 ai = T (x),

∑n
i=1 bi = A(0, T (x)). Also, recall from

Lemma 2.1 that �A(−α(ν∗))�B(ν∗) = 1. Recall the new
measure was chosen so that the event {T (x) < ∞} occurs
with probability 1. We thus find

L ≤
(

vi0

vim

)
× (

e−ν∗(A(0,T (x))−C(0,T (x)))
)

× (
eα(ν∗)T (x)+c(−ν∗)

∑m
j=1 tij

)
.

Taking into account that {I {T (x) < ∞} = 1} implies
A(−T (x),0) − C(−T (x),0) > x, in conjunction with
α(ν∗) = −c(−ν∗), we have identified a K > 0 such that

LI {T (x) < ∞} ≤ Ke−ν∗x.

We conclude that the identity (4.3) implies that indeed
P(W > x) ≤ Ke−ν∗x , irrespective of the value of
X(0) = i. �

Proof of Theorem 3.3 Since the event {V > x} implies that
the queue does not empty before time x, we obtain by using
the Chernoff bound

P(V > x) ≤ P(W + B0 + A(0, x) − C(0, x) > 0)

≤ E[eω∗(W+B0+A(0,x)−C(0,x))]
= E[E[eω∗(W+B0+A(0,x)−C(0,x))|X(0)]].

Conditioning on the state of the Markov chain at time 0 pro-
vides the independence between the workload process and
the arrival and service process after time 0. Therefore, the
last expression in the previous display is equal to

E[eω∗B0]E[E[eω∗W |X(0)]E[eω∗(A(0,x)−C(0,x))|X(0)]]

= E[eω∗B0 ]
d∑

i=1

E[eω∗W |X(0) = i]

× E[eω∗(A(0,x)−C(0,x))|X(0) = i]πi,

where we recall that π is the equilibrium distribution
of X(·). Since α(s) + c(−s) equals zero at s = 0, and has a
strictly negative derivative at s = 0, it follows that ω∗ < ν∗.
Then, Proposition 4.1 implies that there is a K1 such that

E[eω∗W |X(0)] =
∫ ∞

0
P(eω∗W > x|X(0))dx

=
∫ ∞

0
P(W > logx/ω∗|X(0))dx

≤ 1 +
∫ ∞

1
P(W > logx/ω∗|X(0))dx

≤ 1 +
∫ ∞

1
K1e−ν∗/ω∗ logxdx

< 1 + K1

∫ ∞

1
x−ν∗/ω∗

dx =: K2 < ∞.

Consequently,

P(V > x) ≤ K2 · E[eω∗B0 ]E[eω∗A(0,x)]E[eω∗−C(0,x))]. (4.4)

Note that due to Assumption 3.2, E[eω∗B ] < ∞. Since the
process A(0, x) is a compound Poisson process we have

E[eω∗A(0,x)] = eα(ω∗)x = eλx(�B(ω∗)−1).

Due to Property 2.1(3), there exists K3 < ∞ such that

E[eω∗C(0,x)] ≤ K3ec(ω∗)x .

Combining this with (4.4), we have identified a K > 0 such
that, uniformly in x ≥ 0, P(V > x) ≤ Ke(α(ω∗)+c(−ω∗))x ,
where α(ω∗) = λ(�B(ω∗) − 1), as desired. �
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4.2 Lower bound

We now proceed with proving the lower bound results.

Proof of Theorem 3.4
Our proof consists of five steps: (i) we truncate the job-

size distribution to find a lower bound on P(V > x) that, by
virtue of Assumption 3.3, reduces the problem to finding a
lower bound on a related busy period problem for the system
with truncated jobs; (ii) next, we show that long busy peri-
ods are due to a large deviation of both the arrival process
and the service process; (iii) after that, we analyze the large
deviations of the arrival process, and pay special attention
to the technicality of dealing with the truncated job sizes;
(iv) we then invoke the sp-LPD lower bound (3.6) to ana-
lyze the large deviations of the service process; (v) finally,
we combine all the above to establish the result.

Step (i). We truncate the job-size distribution, by intro-
ducing a new stochastic process Ak(0, x), k > 0, as follows:

Ak(0, x) :=
N(x)∑

i=1

BiI {Bi < k}.

By definition of the PS queue with varying service capacity,

P(V > x) = P
(

B0 >

∫ x

0

1

1 + Q(u)
dC(0, u)

)
,

where Q(u) is the number of jobs in the system at time u

excluding the tagged job.
If we have Ak(0, u)−C(0, u) > εu, then also Ak(0, u) >

εu, and as all jobs are at most of size k, we find a lin-
ear lower bound on the number of jobs present at time u:
Q(u) ≥ εu/k. We thus obtain

P(V > x) ≥ P
(

B0 >

∫ x

0

1

1 + Q(u)
dC(0, u),

Ak(0, u) − C(0, u) > εu,u ∈ (0, x)

)

≥ P
(

B0 >

∫ x

0

1

1 + εu/k
dC(0, u)

∣∣∣∣

Ak(0, u) − C(0, u) > εu,u ∈ (0, x)

)

× P(Ak(0, u) − C(0, u) > εu,u ∈ (0, x)).

By applying integration by parts and standard calculus,
∫ x

0

1

1 + εu/k
dC(0, u)

= C(0, x)

1 + εx/k
+ ε

k

∫ x

0
C(0, u)

1

(1 + εu/k)2
du

≤ C(0, x)

1 + εx/k
+ ε

k
rmax

∫ x

0

u

(1 + εu/k)2
du

≤ rmaxx

1 + εx/k
+ rmaxk

ε

(
1

1 + εx/k
− 1 + log

(
1 + ε

k
x

))

= rmaxk

ε
log

(
1 + ε

k
x

)
.

Hence,

P(V > x) ≥ P
(

B0 >
rmaxk

ε
log

(
1 + ε

k
x

) ∣∣∣∣

Ak(0, u) − C(0, u) > εu,u ∈ (0, x)

)

× P(Ak(0, u) − C(0, u) > εu,u ∈ (0, x)).

Now observe that in the first probability in the right-hand
side of the previous display, the value of B0 does not depend
on the condition, so that we finally arrive at the lower bound

P
(

B0 >
krmax

ε
log

(
1 + ε

k
x

))

× P(Ak(0, u) − C(0, u) > εu,u ∈ (0, x)). (4.5)

Due to Assumption 3.3 we conclude that the first probability
in (4.5) asymptotically behaves as eo(x). Therefore, we are
left with analyzing the second probability, which could be
interpreted as the probability of a busy period exceeding x

in the system with truncated jobs and a service rate perturbed
by ε.

Step (ii). We bound the second factor in (4.5) as follows:

P(Ak(0, u) − C(0, u) > εu,u ∈ [0, x]) ≥ P1(x) · P2(x);
here P1(x) := P(Ak(0, u) − bu > 0, u ∈ (0, x)), P2(x) :=
P(C(0, u) < (b − ε)u,u ∈ (0, x)), and b < c is any fixed
number. We have thus decomposed the probability of a long
busy period into a large deviation of the arrival process and a
large deviation of the service process; the intuitive explana-
tion is that the occurrence of a long busy period is the result
of both the arrival process generating traffic at a higher rate
than usual and the service process offering service at a lower
rate than usual. We emphasize that the value of b is free now,
but in Step (v) we choose an appropriate value. We now deal
with each of the probabilities separately; in Step (iii) we an-
alyze P1(x), and in Step (iv) P2(x).

Step (iii). Consider P1(x). Denote by Pk the busy period
in the system with truncated job size (at threshold k) and
constant service rate b. In [19] the asymptotics for large busy
periods in this system were derived; it is readily checked that
the corresponding conditions apply for truncated job sizes.
We thus find

lim inf
x→∞

1

x
log P(Ak(0, u) − bu > 0, u ∈ (0, x))

= lim inf
x→∞

1

x
log P(Pk > x) = inf

s≥0
(αk(s) − bs) = γ k

b < 0,
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where

αk(s) := lim
x→∞

1

x
log E[esAk(0,x)].

We now show that γ k
b → γb := infs≥0(α(s) − bs) as

k → ∞. To this end, define fk(s) := αk(s) − bs. Clearly,
fk(s) → f (s) = α(s) − bs pointwise as k → ∞ and fk(s)

is increasing in k. Consequently, we have that the limit of
γ k
b for k → ∞ exists and that

γ ∗
b := lim

k→∞γ k
b = lim

k→∞ inf
s≥0

fk(s) ≤ inf
s≥0

f (s) = γb.

It remains to be shown that the reverse inequality holds. For
this we follow an argument similar to the proof of Proposi-
tion 2.2 in Nuyens and Zwart [17].

Note that the function fk(·) is continuous in s. Moreover,
it is non-decreasing in k, and thus so is γ k

b ≡ infs≥0 fk(s).
Clearly, infs≥0 fk(s) ≤ fk(0) ≤ f (0) = 0, and hence γ ∗

b ≡
limk→∞ infs≥0 fk(s) ≤ 0.

Now denote by Bk the job size truncated at k. Take k0

such that P(Bk > bA) > 0 for k > k0. Then there exist
δ, η > 0 such that P(Bk − bA ≥ δ) ≥ η > 0 for k > k0.
Hence, for k ≥ k0,

�Bk(s)�A(−bs) = E[esBk ]E[e−sbA]
= E[es(Bk−bA)] ≥ ηesδ,

and consequently, for s large enough,

�A(−bs) ≥ 1

�Bk (s)
.

Since �−1
A (−s) is increasing in s, we find that for s and k

large enough,

αk(s) − bs = −�−1
A

(
1

�Bk(s)

)
− bs

≥ −�−1
A (�A(−bs)) − bs = 0,

and γ ∗
b > −∞. Therefore, the level sets Lk = {s ≥ 0 :

fk(s) ≤ γ ∗
b } are non-empty, compact sets that are nested

with respect to k, which implies that there exists at least one
point, say s0, in their intersection. By definition of s0, we
have fk(s0) ≤ γ ∗

b for every k. Since fk converges pointwise,
we find

γb = inf
s≥0

f (s) ≤ f (s0) = lim
k→∞fk(s0) ≤ γ ∗

b .

Thus, we conclude that γ k
b → γb as k → ∞, and

lim inf
x→∞

1

x
log P1(x) = inf

s≥0
(α(s) − bs).

Step (iv). We now analyze the asymptotic behavior
of P2(x). First observe that we can rewrite P2(x) as follows:

P2(x) = P(C(0, u) < (b − ε)u,u ∈ (0, x))

= P(C(0, ux) < (b − ε)ux,u ∈ (0,1))

= P
(

1

x
C(0, ux) < (b − ε)u,u ∈ (0,1)

)

= P
(

1

x
C(0, ·x) ∈ S

)
,

where S := {f ∈ 
 : f (u) < (b − ε)u,u ∈ (0,1)}. As we
assumed that C(0, ·x)/x obeys the lower bound of the sp-
LDP (Assumption 3.4), we have

lim inf
x→∞

1

x
log P

(
1

x
C(0, ux) ∈ S

)
≥ − inf

f ∈So
I (f ) =: −I ∗,

I (f ) :=
∫ 1

0
�(f ′(t))dt,

where we recall that �(t) = sups∈R(st − c(s)). Since the
infimum of I (f ) over all f ∈ So is not larger than I (f ∗)
for any particular f ∗ ∈ So, taking f ∗(u) := (b − ε̄)u with
ε̄ := ε(1 + δ) for some small δ > 0, we obtain the lower
bound

−I ∗ ≥ − sup
s∈R

((b − ε̄)s − c(s)).

Observe that since the constant b is chosen such that b < c,
the supremum is attained for s ≤ 0. Hence, we may write

lim inf
x→∞

1

x
log P2(x) ≥ −I ∗ ≥ − sup

s≤0
((b − ε̄)s − c(s))

= − sup
s≥0

(−(b − ε̄)s − c(−s))

= inf
s≥0

((b − ε̄)s + c(−s)).

Step (v). By combining the results for P1(x) and P2(x)

we find that, for any b < c,

lim inf
x→∞

1

x
log P(Ak(0, u) − C(0, u) > εu,u ∈ (0, x))

≥ inf
s≥0

(α(s) − bs) + inf
s≥0

((b − ε̄)s + c(−s)). (4.6)

Take ε > 0 sufficiently small and note that log�B(·) is
convex, (log�B(·))′ = �′

B(·)/�B(·) is increasing and, due
to Assumption 3.2, is finite and continuous in a neighbor-
hood of ω∗. Similar arguments yield that �′

A(·)/�A(·) is
an increasing, finite and continuous function as well, and
α(·) is continuous and increasing. Thus, there exists an
ε > 0 for which there is ω = ωε such that �B(ωε) < ∞,
�′

B(ωε) < ∞, and α′(ωε)−c′(−ωε) = ε̄. Since α(·)+c(−·)
is a strictly convex function (this follows from the fact that
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α(·) is strictly convex and c(−·) is convex), α′(·) − c′(−·)
is increasing and hence, ωε is the unique solution. The con-
tinuity properties imply that limε→0 ωε = ω∗.

Let us now take b := α′(ωε) in (4.6). Note that this choice
satisfies requirement b < c: since the cumulant function c(·)
is a convex function, its derivative is increasing, and conse-
quently, for ε̄ small, b = c′(−ωε) + ε̄ < c′(0) = c.

Now consider the first optimization in (4.6): infs≥0(α(s)−
α′(ωε)s). It is readily checked that its first order condition
is α′(s) = α′(ωε), which is obviously met for s = ωε (and
there is just at most one solution, so ωε is the unique mini-
mizer). The first order condition for the second optimization
in (4.6) is then α′(ωε) − c′(−s) = ε̄, which is by definition
solved for s = ωε . We conclude that

inf
s≥0

(α(s) − bs) + inf
s≥0

((b − ε̄)s + c(−s))

= inf
s≥0

(α(s) + c(−s) − ε̄s).

Now let ε → 0, δ → 0 (and hence also ε̄ → 0). Due to con-
tinuity we have that ωε → ω∗, and consequently,

lim inf
x→∞

1

x
log P(Ak(0, u) − C(0, u) > εu,u ∈ (0, x))

≥ inf
s≥0

(α(s) + c(−s)).

This completes the proof. �

Proof of Theorem 3.5 The proof strongly resembles that of
Theorem 3.4. We leave it to the reader to check that only
the argumentation in Step (iv) needs to be modified. This
step relies on the validity of the lower bound of the sp-LDP,
and to our best knowledge, an sp-LDP for the processes
in Mf(Q,R) is not available from the literature. Therefore
we need a different approach to analyze the large deviation
P2(x) of the service process C(·, ·). The main idea of this
modification is to apply results of Chang [8] for Markov-
type processes in discrete time. For that we need to cast our
model into Chang’s framework. This is done as follows.

Consider, as before, P2(x) = P(C(0, u) < (b − ε)u,u ∈
(0, x)). For any fixed M < x and CM < (b − ε)M ,

P2(x) ≥ P(C(0, u) < (b − ε)u,u ∈ (0, x),

C(0,M) < CM,X(M) = j),

as the event in the right hand side is fully contained in that
of the left hand side. Now consider separately the intervals
(0,M] and (M,x). By using the conditional independence
and a straightforward time-shift, we have that the previous
probability is not smaller than

P(C(0, u) < (b − ε)u,u ∈ (0,M),C(0,M) < CM,

X(M) = j) × P̄2(x), where

P̄2(x) := P(C(0, u) < (b − ε)u + (b − ε)M − CM,

u ∈ (0, x − M) | X(0) = j).

Observe that the former probability is constant in x; there-
fore we need to concentrate just on P̄2(x). Now the fact that
the service rate is bounded by rmax entails

C(0, u) ≤ C

(
0,

⌊
u

δ

⌋
δ

)
+ rmaxδ,

for any δ. As a consequence, P̄2(x) majorizes

P
(

C(0, iδ) + rmaxδ < (b − ε)iδ + (b − ε)M − CM,

i = 0, . . . ,

⌈
x − M

δ

⌉ ∣∣∣∣ X(0) = j

)
.

Let us take δ < ((b − ε)M − CM)/rmax. Then the probabil-
ity in the previous display is not smaller than

P
(

C(0, iδ) ≤ (b − ε)iδ,

i = 0, . . . ,

⌈
x − M

δ

⌉ ∣∣∣∣ X(0) = j

)
.

The process Ci := C(0, iδ) = ∑iδ
u=0 R(u) = ∑iδ

u=0 rX(u)(u)

is now a (discrete-time) process that fits in the framework
considered in Example 2.5 in Chang [8] and proven to sat-
isfy sp-LDP with rate function as given in Definition 3.1.
Applying the sp-LDP lower bound on the last probability,
it is straightforward that the decay rate (in x) of the latter
probability is indeed

− sup
s≥0

((b − ε)s − c(s)),

as desired. Proceeding with Step (v) as before completes the
proof. �

Remark 4.1 An interesting implication of our results is the
following. Denoting by Pr the residual busy period in the
corresponding GI/GI/· queue (with the service rate varying
as specified before), we have

P(V > x) ≤ P(Pr > x)

≤ P(W + B0 + A(0, x) − C(0, x) > 0).

Thus, from the proof of the lower bound in the next sec-
tion, it follows that the decay rates of Pr and V coincide
under Assumptions 3.1, 3.3 and 3.4. Similar methods as in
the present paper can be applied to show that the decay rate
of the busy period P equals the decay rate of the residual
busy period Pr . Consequently, under Assumptions 3.1, 3.3
and 3.4,

log P(P > x) ∼ (α(ω∗) + c(−ω∗))x.
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The most likely way a large busy period occurs is by chang-
ing the drift in such a way that the system becomes critical.
This means that the average arrival rate is increased, and
the service rate decreased in such a way that they become
equal. In our setting, the arrival rate is increased from α′(0)

to α′(ω∗), and the service rate is decreased from c′(0) to
c′(−ω∗); the definition of ω∗ ensures that both values are
equal.

5 Extension to Discriminatory Processor Sharing

We now consider the extension of our analysis to the GI/GI/·
queue operating under Discriminatory Processor Sharing
(DPS) with varying service rate. The proof indicates that es-
sentially the same argumentation can be used as in the case
of PS with varying service rate (as dealt with in the previous
sections).

Suppose that there are M job classes sharing the avail-
able capacity. The aggregate job arrival process is assumed
to be a renewal process as considered in Sect. 2. An arriv-
ing job is of type k with probability pk, k = 1, . . . ,M . The
service times Bn in Sect. 2 denote the unconditional service
times of jobs (for our purposes, we do not need to specify
the conditional service time distributions). Thus, the asymp-
totic cumulant generating function of the aggregate arrival
process is still given by α(s).

All jobs present in the system are served simultaneously
with rates controlled by a vector of weights {gk > 0; k =
1, . . . ,M}. If there are Qj jobs of class j present in the
system, j = 1, . . . ,M , each class-k job is served at rate
gk/

∑M
j=1 gjQj . When all the weights are equal, this is

equivalent to the standard (i.e., egalitarian) Processor Shar-
ing (PS) system. By changing the DPS weights, one can ef-
fectively control the instantaneous service rates of different
job classes.

The proofs of the previous section show that the logarith-
mic sojourn-time asymptotics coincide with the logarithmic
busy-period asymptotics. The following theorem states that
the same result holds in the DPS queue, regardless of the
specific values of the weight factors.

Suppose the tagged job belongs to class 1. Denote by V1

its sojourn time, and by B1
0 its job size.

Theorem 5.1 If Assumptions 3.1, 3.3 and 3.4 are valid, then

lim
x→∞

1

x
log P(V1 > x) = inf

s>0
(α(s) + c(−s)).

Thus, the large deviations estimate does not change
when one assigns different weights to the various customer
classes. This may not be surprising since we already ob-
tained the insight that on a large deviations scale, a large
sojourn-time resembles a large busy period. The decay rate

of the latter is obviously weight-independent (as the length
of a busy period is the same for all work conserving service
disciplines, such as DPS).

On the one hand, this asymptotic insensitivity might be
considered as a negative fact. It says that independent of the
particular weights assignment, the DPS discipline does not
reduce the likelihood of extremely long sojourns. Long so-
journ times are inevitable, since they are typically caused by
the large amount of work brought by customers during the
service of the tagged job. On the other hand, the insensitivity
property may be regarded as a positive result, because it im-
plies that preferential treatment of classes with large weights
does not carry the penalty of increasing the occurrence of
long sojourn times for classes with smaller weights.

Proof of Theorem 5.1
The proof of the upper bound uses the same arguments

as for the single class PS queue, which we will not repeat
here. The proof of the lower bound is similar to that of The-
orem 3.4. We truncate the work process by accepting into
the system only jobs of size smaller than k and proceed in
the similar fashion as before. The only extra step involves
the maximal weight gmax = maxj=1,...,M gj ,

P(V1 > x)

≥ P
(

B1
0 >

∫ x

0

g1dC(0, u)

1 + ∑M
j=1 gjQj (u)

∣∣∣∣

Ak(0, u) − C(0, u) > εu,u ∈ (0, x)

)

× P(Ak(0, u) − C(0, u) > εu,u ∈ (0, x))

≥ P
(

B1
0 >

∫ x

0

g1dC(0, u)

1 + gmax
∑M

j=1 Qj(u)

∣∣∣∣

Ak(0, u) − C(0, u) > εu,u ∈ (0, x)

)

× P(Ak(0, u) − C(0, u) > εu,u ∈ (0, x)).

Since the jobs are not larger than k, under present condi-
tion, the total number of jobs

M∑

j=1

Qj(u) ≥ εu

k
.

It is now straightforward to verify that the first probability
behaves as eo(x) when x → ∞. The second probability gives
the desired decay rate. For details see Theorem 3.4. �

6 Concluding remarks

We have considered a PS queue with fluctuating service rate
and light-tailed service times and established logarithmic
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tail asymptotics for the sojourn time in a Processor Sharing
queue. Our results indicate that on a large-deviations scale,
the event of a large sojourn time is equivalent to the event
of a large busy period. In particular, the system is critically
loaded during the sojourn time of a customer. Our proof
method turned out to be powerful enough to extend to Dis-
criminatory Processor Sharing. As shown in Sect. 4, all that
is required is to be able to compute the decay rate of the busy
period distribution. It is rather surprising that this decay rate
has not been found yet under assumptions of the type con-
sidered in [12]; we were not able to deal with this level of
generality, and consider this to be an interesting open prob-
lem. Another open problem is to show that the sample-path
LDP holds for the Markov fluid service process. As men-
tioned before, we could not find any direct reference in the
applied probability literature. Finally, we expect that the re-
sults in this paper are useful to develop importance sampling
techniques.
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