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ABSTRACT: Much work has been done by a number of authors with the aim of constructing
the supersymmetric Standard Model in type ITA intersecting-brane theories compactified
on an orientifold with various Zy or Zjy; X Zy point groups. Here we consider the Z1s point
group which has previously received comparatively little attention. We consider intersecting
D6-branes that wrap 3-cycles consisting of a 2-cycle of the 4-dimensional lattice upon which
the Zo is realised times a 1-cycle of the remaining 2-torus. Our discussion is restricted to
the case when these 2-cycles are “factorisable” in the sense discussed in section 3. Although
it is possible to find models with the correct supersymmetric Standard Model quark-doublet
content, we have not found it possible to obtain the correct quark-singlet content.
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1 Introduction

The use of intersecting D6-branes in Type ITA string theory offers an attractive route to
constructing the Standard Model in string theory [1, 2], and indeed an attractive model
having just the spectrum of the (non-supersymmetric) Standard Model has been obtained
by Ibanéz et al. [3]. In this approach one starts with two stacks a, with N, = 3 D6-branes,
and b with Ny = 2 D6-branes, each wrapping the three large spatial dimensions plus 3-
cycles of the six-demensional compactified space Y. Open strings beginning and ending on
the stack a generate the gauge group U(3) = SU(3)colour X U(1)g, while those that begin
and end on the stack b generate the gauge group U(2) = SU(2)r x U(1). Thus the non-
Abelian component of the Standard Model gauge group is immediately assured. Further,
(four-dimensional) chiral fermions in the bi-fundamental (N,, N;) = (3, 2) representation
of U(3) x U(2) appear at the multiple intersections of the two stacks. (Here the 3 repre-
sentation of U(3) has charge @), = +1 with respect to U(1),, and the 2 representation of
U(2) has charge @, = —1 with respect to U(1);.) This is just the representation needed
for the Standard Model quark doublet ();. However, non-supersymmetric intersecting-
brane models lead to flavour-changing neutral-current (FCNC) processes that can only be
suppressed to levels consistent with the current bounds by making the string scale rather
high, of order 10* TeV, which in turn leads to fine-tuning problems [4]. Further, in non-
supersymmetric theories, the complex structure moduli are generally unstable [5]. Both
of these problems are avoided if instead we seek intersecting-brane models that yield the
supersymmetric Standard Model. This is the strategy that we shall pursue in this paper.



To ensure that we obtain N’ = 1 supersymmetry in the four space-time dimensions,
it is necessary that the compactified space Y should be a Calabi-Yau 3-fold or a toroidal
orbifold Q = T%/P, where the (discrete) point group P must be a subgroup of SU(3) [6].
(We shall only consider the latter possibility.) The requirement that the point-group gen-
erator @ acts crystallographically on the lattice I that defines the torus 7° then restricts
P to be either Zy, with N = 3,4,6,7,8,12, or Zy; X Zy, with N a multiple of M and
N = 2,3,4,6 [7, 8]. The first question is whether one can find stacks a and b, as above,
whose intersections yield just the three Standard Model quark doublets. However, before
proceeding further it should be noted that both of these stacks are positively charged with
respect to the Ramond-Ramond (RR) 7-form gauge field to which they are “electrically”
coupled. Since Y is a compact space, the electrical flux lines associated with the RR charges
must close, which can only happen if the RR charges sum to zero. This in turn requires
the introduction of negative RR charge. Anti D-branes, D6-branes, annihilate D6-branes,
and the only feasible alternative is to use the O6-planes. These are topological defects that
arise when Y is an orientifold, i.e. Y = Q/R, where R is the embedding of the world-sheet
parity operator in the compactified space. This means that every stack x = a,b,... has
an orientifold image x’ = Rk, and that the stack a will in general intersect with both b
and its orientifold image b’. As with the intersections of a with b, the intersections of a
with " also yield chiral fermions but they are now in the representation (N, N;) = (3,2)
representation of U(3) x U(2), where the 2 of U(2) has charge Q) = +1 with respect to
U(1)p. Then in order to get just the 3QQ; quark doublets, we require that the numbers of
intersections, a o b of @ with b, and a o b’ of a with b, satisfy

aob+aob/ =3 (1.1)

Of course, we must also ensure that these states have weak hypercharge Y (Qr) = 1/6. In
general, Y is a linear combination

Y = ZynQn (12)

of all of the U(1), charges Q.. A quark doublet arising as a (3,2) representation of
U(3) x U(2) has Y (3,2) = y, — yp, whereas the alternative has Y (3,2) = y, + yp. If quark
doublets of both types occur, then y, = 1/6 and y, = 0. However, if there is only one type
then, depending upon which, all we know is that y, F y, = 1/6.

There have been many attempts to construct the supersymmetric Standard Model,
or something like it, using a variety of orientifolds [9]-[23]. None has been completely
successful, but the closest approach has probably come using the Zj orientifold. The
question then arises as to whether one can do better with a different orientifold. In this
paper, we address that question using the Zj2-1I orientifold. This orbifold (and the Zjo-1
orbifold) is not completely factorisable; that is, it cannot be realised on 7% x T% x T2. Some
of the technical problems associated with such orbifolds have been discussed in [24]. In
that paper the authors determine the non-chiral solutions of the RR tadpole cancellation
conditions when the D6-branes lie on top of the orientifold O6-planes, the whole system
satisfying (twisted) sector-by-sector RR tadpole cancellation; this is more stringent than



necessary, as the vanishing of RR flux just requires overall tadpole cancellation. In what
follows we consider more general configurations of intersecting (fractional) D6-branes, and
attempt to construct the chiral quark, lepton and Higgs spectrum of the supersymmetric
Standard Model, with the strategy of imposing overall tadpole cancellation at the end to
constrain any such configurations that generate the required spectrum.

2 The Z42 orbifolds

The generator 0 of any abelian point group P may be diagonalised using three complex
coordinates z;, (k = 1,2,3) for T° such that

0z = €270k 2 (2.1)

with 0 < v, < 1 and vy £ v9 +v3 = 0 so that P C SU(3). For the Zj2 point group, there
are two essentially different ways to ensure the SU(3) holonomy:

1

Zia—1: (v1,v2,v3) = E(la —5,4) (2.2)
1

Zio—11: (v1,v2,v3) = ﬁ(la 5,—6) (2.3)

Both of these may be realised as Coxeter orbifolds. That is to say, € acts on the (six-
dimensional) lattice of simple roots of a Lie algebra as a (possibly generalised) Coxeter
element. For the Zjo-1 case we may use the lattice SO(8) x SU(3), and for Zjo-II case
SO(8) x SU(2) x SU(2). The SO(8) lattice is generated by the four simple roots o, (a =
1,2,...,4) of the SO(8) Lie algebra, which satisfy a2 = 2 and aj.a3 = —1 = as.a3 = as.ay;
the other scalar products a1.a3 = 0 = 3.y = ay.a are all zero. The order 12 generalised
Coxeter element is given by

CSO(S)[3] = 818285134 (2.4)

where the Weyl reflection s, in «, acts on a general vector x as
Sq(x) = — (x.0g) g (2.5)

and $134 is the automorphism of the SO(8) Dynkin diagram that cyclically permutes the
outer roots a; — a3 — ag — aq. (ag is the central root.) Then

siga(x) =2 — %[(m.al)(al —a3) + (z.a3)(as — ay) + (z.0q) (g — )] (2.6)

Cso(s)[;a] determines the action of # on the four basis 1-cycles m, (a = 1,2,...4) of the
SO(8) lattice:

Oy = w1 + w9 + 73

97‘(‘2 = —T1 — 79

O3 = w1 + 7o + Ty

N~
© oo
= = = —

Oy = w9 (



The F} lattice is generated by the simple roots 5, (a = 1,2,...4) of the F; Lie algebra.
They satisfy 87 = 2 = 33, ﬁ% =4 =% and B1.82 = —1, B2.83 = —2 = B3.84; the other
scalar products 31.03 = 0 = 82.64 = (1.0 are all zero. . The (ordinary) Coxeter element is

CF, := 51525354 (2.11)

where the Weyl reflection is now given by

(x.Ba)
(Ba-Ba)
C'r, also acts as the generator of Z12. However, it is easy to verify that the SO(8) and Fy lat-
tices are identical. It follows that the orbifolds Fy x SU(3) for Z;o-1 and Fy x SU(2) x SU(2)
for Z1o-11 respectively are identical to the corrsponding SO(8) orbifolds, so we shall not

Sq(x) =2 —2 Ba (2.12)

pursue them further. The action of 6 on the remaining two basis 1-cycles, w5 and 7g, is
different for the two Z19 orbifolds.

Z12—I: 97T5:7T6—7T5 and 97T6:—7T5 (2.13)
Zlg—II : 071'5 = —T5 and 97‘(‘6 = —Tg (214)

There are six independent 2-cycles 7,5 on the SO(8) lattice. They are defined as m,y :=
e @ mp, with a,b=1,2,3,4 and a < b. So for both orbifolds there are twelve independent
3-cycles g p 1 1= T p @ T With k =5, 6.

Invariant 3-cycles are constructed by evaluating the independent combinations of the
form (1+6+ 0%2+.. .+ 911)7(‘@71)7]6. In the Z15-1 case there are only two independent invariant
3-cycles

pri=(1+0+0>+. . 40" ) o u6=4(T125—T245—T345+T136+T236+T246) (2.15)
p2 = (1+0+07+. . . +0" )54 6=4(T135+T2,35FT245—T1,2,6— 1,36 —72,3,6+T3,46)
(2.16)

However, for the Zio-11 case there are four:

p1:=(1+6+ 0%+ ...+ 011)772,375 =6(m145 + 235 + T245) (2.17)
pri= (14+04+60*+ ... +0M)mas5=6(—m135 — Tass + Toas +7345)  (2.18)
p3 = (14+04+6> 4 ... +0"M)ma36 = 6(m1a6 + T236 + T2,46) (2.19)
pri=(1+0+0>+.. . +0M)moa6=6(—m136— T236+ T2a6+T346) (2.20)

Both of these are consistent with the cohomology of these orbifolds in the untwisted sec-
tor. Because of the smaller number of independent invariant 3-cycles, the former case has
the property, also posessed by the Zg orbifold, that any supersymmetric bulk 3-cycle is
automatically invariant under the orientifold action R. The action of R is derived for the
Z12-11 case in section 5. (The corresponding results for the Z9-1 orientifold are given in the
appendix.) Then, up to an overall multiplicative factor, all supersymmetric 3-cycles have
a common bulk part, and the differing intersection numbers needed to construct the Stan-
dard Model must derive solely from their differing exceptional parts. Previous experience



with the the Zg orbifold [12], as opposed to the Zg case [15], suggests that such a structure
is not rich enough to permit construction of the Standard Model. In any case, as also
shown in the appendix, the Z19-1 orbifold only has six exceptional 3-cycles, whereas there
are ten in the Zg case. Accordingly we have not studied the Z1o-1 case further. Henceforth

we consider only the Zjo-I1 case. A general 3-cycle 7, is specified by the eight integer

K

wrapping numbers n/ ,,

nf, ms
Ty 1= Z(ng”,bﬂa,b) ® (n3ms + misme) (2.21)
a,b

Then the invariant bulk 3-cycle constructed from this is

Mk .= 201+ 0+ 6>+ ...+ 60°)m, (2.22)
4
= Apy (2.23)
p=1
where
AT = nfaf (2.24)
A5 = n3ay (2.25)
Af = mbaf (2.26)
A} = m5ay (2.27)
with
af == —nig+niy+ngy (2.28)
as == nio—nig—ni4+ng, (2.29)

The intersection number ITP"k o Hl/{‘ﬂk of two bulk 3-cycles is defined as

11 11
1
[Pulk o prbulk . — » (Z ekm> o (Z 9€7T,\> (2.30)
k=0 =0

with 7, and 7y one of the basis 3-cycles 7,5 1. Then

props =0=p30py (2.31)
props =06=pzops (2.32)
props=0=pgops (2.33)
and for two general bulk 3-cycles of the form (2.21) we get
mPulk o mIbulk — 6(AFAY — A5 A} + A5A} — AT AY) (2.34)
= 6(afay + afay)(nfm3 — mfn3) (2.35)

As with other orbifolds, it is evident that in order to get odd intersection numbers, as

required by eq. (1.1), we shall need to make use of exceptional 3-cycles, constructed using

the collapsed 2-cycles that arise in the §%-twisted sector.



In the #5-twisted sector there are 16 fixed tori T32 at the Zs fixed points fo, 55,053,064 O1
the SO(8) lattice, where

4
1
Jor,00,05,00 1= B} 21 0qQq (2.36)
a=

with o, = 0,1. For ease of reference, we use the same notation as in the Zf case [15],
denoting the fixed points by f; ; with the pairs (o1,02) and (03,04) given the labels i, j =
1,4, 5,6 respectively for the values (0,0), (1,0), (0,1),(1,1). Under the action of the point-
group the 16 fixed points split into four sets, each set transforming into itself as follows:

fi,1 invariant
faa — f16 = fa5 — faa
fa1 — fea — fo,6 — fa6 — f56 = [5,5 = fa1

fs1 = fo1 — fi1a— fo5 = f54 — fi5 = f51

There are then four non-zero invariant exceptional 3-cycles:

ei=(1+60+6%+ 0°)f11 @75 = (fa1— fou + fo.6 — fas+ fs6 — fo5) @ m5 (2.41)
Gi=(1+60+6%+ 0°)f11 @76 = (fa1 — foa+ fo6 — fae + f5.6 — f55) @ T (2.42)
er:=(1+60+6%+ 0°) fs0 @15 = (fs1 — fo1 + fra— fos + f54 — fi5) @ m5 (2.43)
&:=(1 +9+92+"'+05)f5,1®776:(f5,1_f61+f14_f65+f54_f15)® T (2.44)

which is consistent with the cohomology of the #%-twisted sector. The self-intersection
number of a (Zg) collapsed 2-cycle is, as before, given by

fij o fre=—20;k050 (2.45)

Then,
€; O gj = 2(51‘]‘ = —Ei 9] Gj Z,j = 1, 2 (246)

(The corresponding results for the Zis-1 case are given in the appendix.) The general
exceptional brane II$* is then given by

2
I =) " ef(nfe; + m5é) (2.47)
i=1
where the coefficients ef' are determined by the fixed points wrapped by the 2-cycle used
to construct TPk, as we shall see in the following section. For two general exceptional
branes of this form

7 o IS = 2(efeq + efe)(nfmy — miny) (2.48)
Exceptional cycles also arise in other twisted sectors. For example, in the #%-sector

there are 9 fixed tori at the Zs fixed points

gmp = 3mos — 01 — a3) + plas — )] (2.49)



with m,p =0, 1,2, and, as above, collapsed 2-cycles at these fixed points may be combined
with 1-cycles in T32 to construct further twisted 3-cycles. However, only bulk cycles and
exceptional cycles at Zo fixed points have a known interpretation in terms of partition
functions [25] . In what follows we have therefore only considered the exceptional 3-cycles
defined in egs. (2.41)—(2.44).

3 Factorisable 2-cycles

The general 2-cycle on the SO(8) lattice that appears in eq. (2.21) has the form

I, = Zna,bﬂ—a,b (3.1)

a<b

with a,b =1,2,...,4 and n,y six arbitrary integers. Now suppose that Il is the product
of two 1-cycles ) nqmg and ), mym,, where n, and my, are integers. In this case the six
integers n,; are expressible in terms of the eight integers n, and my as

Na b = NaMp — MaNp (3.2)
They then satisfy the constraint
n1,2M3,4 + N1 4N23 = N1,3N2.4 (3.3)

A general set of six wrapping numbers n,; will generally not satisfy this constraint, and
even if they do it is not sufficient to ensure that Il is “factorisable” in this way. If it is, it
is straightforward to identify the four fixed points f; ; that are wrapped by II. For exam-
ple, if such a factorisable 2-cycle has (n1,2, 71,3, 71,4, 12,3, n2,4,134) = (1,0,0,0,0,0) mod 2,
then (n3,n4) = (0,0) mod 2 = (mg, m4) and either (n1,n2) = (1,0) mod 2 and (my, ma) =
(0,1) or (1,1) mod 2, or vice versa. Evidently Ily, like 7 2, wraps the four fixed points
f14, faj, I5,5, fe,; with j = 1,4,5,6 arbitrary. Henceforth we shall only consider such fac-
torisable 2-cycles.

A priori, there are 2 cases to consider for the set (n1,2,M1,3, 11,4, 123, N2.4,N34) mod 2.
However, the case in which all n; ; are even is of no physical interest, since we require the
wrapping numbers to have no common factor. The action of @ splits the remaining 63 cases
into sets as follows:

63 =3(1) +6(2) +4(3) +6(6) (3.4)

and we only need to keep one representative of each of the 19 sets. In fact, only 9 of these
can satisfy the factorisation constraint given in eq. (3.3). They are listed in table 1 together
with the associated values of aj 2 mod 2; these are defined in egs. (2.28) and (2.29).

Each of these classes is associated with four sets of four fixed points, as illustrated
above. The bulk part TIP"¥ of a fractional brane x, where

1 1
K= ingulk + I, (3.5)

is determined by the 3-cycle given in eq. (2.21). Supersymmetry requires that it wraps the
four fixed points that determimine the exceptional part II7* as follows. The four fixed points



(n1,2,m1,3,n1,4,M23,n24,n34) mod 2 | (a1, az) mod 2
(0,1,1,0,0,1) (0,0)
(0,0,0,1,0,0)
(1,1,1,0,0,0)
(0,0,0,0,0,1)

(0,1,1,0,0,0)

( )

( )

( )

( )

1,0,0,0,0,0
0,1,0,0,0,0
0,0,1,0,0,0
1,1,0,0,0,0

Table 1. Representatives of the 9 potentially factorisable classes of 2-cycles.

contribute with a sign determined by the Wilson lines ¢§,t},t5 = 1. In the example given
above, the four fixed points f11, fa.1, f5,1, f6,1 are associated with the invariant exceptional
3-cycle generated by tf(f11 + t5 fa1 + t§ fs1 + t5t5 fe,1) ® (nfms + m4me), which gives

2
I = (ofe; + afE) (3.6)
i=1
where
aj = nge )
&; = mye;
and in this example
el = t5ts (3.9)
e5 = t5tT (1 —t5) (3.10)

The fixed points for all 9 classes, together with the corresponding values for e} and e5, are
listed in table 2.

4 Supersymmetric bulk 3-cycles

The action of the point group generator given in eq. (2.3) ensures that the closed-string
sector is supersymmetric, but to avoid supersymmetry breaking in the open-string sector
the D6-branes must wrap special Lagrange cycles. That is to say, we require that

X" :=Re Q= >0 (4.1)
Y* :=Im Qg =0

where

Q:=dz; Ndzy N dzs (4.3)



n’;b mod 2 fij ay mod 2 | a5 mod 2 ey e5
(1,0,0,0,0,0)  f1,1, fa1, fs1, fe1 0 1 to t1(1 —t2)
J14, faa, f5.4, foa —t1ta 141
I J1,55 fa5, f5.5, fe5 —t1 —(1 4 t1t2)
J1,65 fa.6, f5.6, f6,6 tita +t1 — 12 0
(0,1,0,0,0,0)  f1,1, fa1, f1,4, faa 1 1 to ty
I5.1, f6,15 f5.4, fo.u —tity 1+t —1t2
II Ji55 fa5, f1.65 fa6 —t1to -1
I5,55 16,5, f5.6, f6,6 titg+1t1 —1 —to
(0,0,1,0,0,0)  fi,1, fa1, f1,5, fas 1 1 to —t
I5.15 f6,1, f5.5, fo.5 —t1 1 —ty —tity
I J145 fa4, f16 fa6 —t1to
I5,45 f6,4, f5.6, fo,6 tita 4+ t1 — to
(0707()’1’0’0) f1,13f5,1>f1,4af5,4 1 0 0 t1 +t2+t1t2
Ja, fe1s faa, fou 1 —tits —to
v J1,55 5,5, f1,6, f5.6 ta(ty — 1) -1
fas, fe6.5, 16, fo.6 ti(ta — 1) —ty
(0,0,0,0,0,1)  fi1, f1.4, f1,5, f1,6 0 0 0 to —t1
fa1s faa, fas, fae 1 —t1to 0
Vv f5.15 f5.4, f5.5, f5.6 ti(ta — 1) 1+ to
J6,15 f6,4, fo.5, fo.6 ta(t; — 1) —(141t1)
(1,1,0,0,0,0)  fi,1, fa1, f54, foa 1 0 ta(1 —t1) th
J1,55 fa5, f5.65 fe6 t1(1+ t2) -1
VI J5,05 f6,1, f1,4, faa 0 1+t —to
I5,55 f6,5, f1,6, fa6 —(1 + t1t2) —to
(0,1,1,0,0,0)  f1,1, fa1, faes f5.4 0 0 to(1 —t1) 0
f5.1, f6,1, f5.6 f6.6 t1(1+ t2) 11—t
VII J1,45 faa, f15, fas 0 1-t
I5,45 6,4, f5.5, fo.5 —(t1 + t2) 1 —tity
(1,1,1,0,0,0)  fi1, f11, f5.6, fo.6 0 1 t1 +ta + tito 0
I5,15 f6,1, f1,6, fa6 —t1to 11—t
VIII J1,45 faa, f5.5, fe.5 —11 1 —tity
I5,45 fo,4, f1,5, fas —t1to t1—1
(0,1,1,0,0,1)  fi1, 1,65 fa5, faa 0 0 0 0
I5.15 f5.6, fo.5, fo.4 to(1 —t1) 1-t
IX Ja1s fae, f1,5, f1.4 1—to t1(1 —t2)
fe,1, f6,6, f5.5, f5.4 to — 1 titg — 1

Table 2. The fixed points and coefficients ef of the exceptional cycles associated with the 9 classes
of factorisable 2-cycles; an overall factor of ¢y is omitted.

is the holomorphic 3-form. The complex coordinates z; and 29 are those which diagonalise
the action of § as in eq. (2.1) with vy and vy as given in eq. (2.3). The 2-cycle 74, may be



parametrised as
Tab = Mg +pump  with 0 < A, pu <1 (4.4)

so to evaluate dz; A dze on 7,5 we need a representation of the four simple roots «y in this
complex basis:
ap = (wl®, wi") (4.5)

Defining the central root by the general form
oy = \/i(ei‘Zbl cos 0, €2 sin 0) with 0<0<7/2 and 0<¢i2<2rm (4.6)
so that ag.cio = 2, it is easy to verify that the remaining roots are given by

a1 = —V2(e" cos (1 + ), e 2 sinf(1 — 1)) (4.7)
a3 = V2(—e cosf 2,2 sinf )
04 = V(e cosf 71, ¢ sinf f)

where 3 := ¢™/6 and cos 20 = —1/+/3. We parametrise the 1-cycle in T32 by
z3 = v(nses + mheg) with 0<wv <1 (4.10)

where e5 and eg define the SU(2) x SU(2) lattice. Then, with 7, as defined in eq. (2.21),
we find

Qlr, = Z nib(wga)wéb) - wgb)wéa))(ng + m5T3)es dA A dp A dv (4.11)
a,b
= V261 91192) o [i AR — AY 4 13 (i A5 — AR)] dA A dp A dv (4.12)

where 73 := eg/e5 is the complex structure of T32. The phases of e5 and eg as well as ¢ and
¢ are constrained by the requirement that the orientifold embedding of the world-sheet
parity operator also acts as an automorphism of the lattice.

5 The Zq»-1II orientifold

The embedding R of the world-sheet parity operator acts on the three complex coordinates
zi as complex conjugation
Rz =2z (k=1,2,3) (5.1)

In particular, since we require that R acts crystallographically on the root lattice, this
requires that

Rog =aa =Y _ Napoy (5.2)
b
where N, € Z. This leads to six independent solutions which are displayed in table 3. For
the bulk 3-cycles p, (p = 1,2,...,4) defined in eqgs. (2.17)-(2.20), only two combinations
01,2 of 2-cycles enter the invariant bulk 3-cycles:

01 = T14+ T23+ T4 (5:3)

09 ‘= —T13 — 723+ 724+ T34

,10,



Lattice Roy Rovo Ra Rou =21 | =22
a — (g + ay) o9 —(ag + ag) —(a1 + an) 1 1
b —(a1+astaztay) | ajtastay —(aq + an) g + as -p3 -B3
c —ay a1 + az ay a3 -8 -
d —(ag + as + ay) oy — (1 +aztoy) Q2 gt —B
e —(a1 + ag + as) as Qs atootay | =B | —p72
f —(on 202 +a3+ay) as + as —ag Qy B2 B2

Table 3. The action of R and the phases ¢; and ¢» for crystallographic action of R on «, (a =
1,2,3,4); an overall sign of ¢ = +1 is undisplayed.

Lattice | Rp1 | Rpo Rps Rpa
(ae,f)A | —p1 | p2 p3 —pa
(ae,f)B | —p1 | p2 | —p1+ps| p2—pa
(bye,d)A | p1 | —p2 —pP3 P4
(bye,d)B | p1 | —p2 | pr—p3 | —p2+pa

Table 4. The action of R on the invariant 3-cycles.

It is easy to verify that the six different lattices reduce to just two classes when acting on
these combinations:

(a,e,f):
(b,c,d) :

Roy =

RUI =01,

—01,

Roo = 09 (5.5)
RO‘Q = —09 (5.6)

Note too that, independently of the overall sign €, the product of the phases given in table 3
restricts the hitherto unknown phase in eq. (4.12)

(a,e,f): ell91+d2) — 41 (5.7)
(b,c,d) : elortez) — 4 (5.8)
As in the Zj case, the action of R on the basis 1-cycles 756 in T32 is given by
A Rrs = s, Rme = —76 (5.9)
B: R7T5:7T5, R7T6:7T5—7T6 (5.10)

Thus, in both cases e5 is real and chosen to be positive, and the complex structure of T32
is given by

T3 = b+ ilm 73 (5.11)

with b = 0 or b = 1/2 respectively for the A and B lattices. Hence there are just four
different classes of behaviour of the bulk 3-cycles under the action of R. The results are
displayed in table 4. Choosing the lower signs in eqs. (5.7) and (5.8), the functions X* and
Y" defined in egs. (4.1) and (4.2) are then given in table 5.
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Lattice XF YY"

(a,e,f) A A5 +Im 13A% —AY +Im 13A5
(ae,f) B | A5 + 3 A +Im 13 A5 | —AF — JA5 + Im 13A%
(b,c,d) A Af —Im 3 Af A5 +Im 13A%

(b,c,d) B | A + 2 A5 —Im 7545 | A5 + 1A + Im 73A%

Table 5. The functions X* and Y*. (A global positive factor of v/2e5 for each entry is omitted).

Lattice | Invariant 1-cycle(s)
SO(8)a R Ty, T — T4
R Ty, T3 — T4
SO(8)b R m + T — W3, Wo + W3 + Ty
OR Ty, 279 + T3
SO(8)c R m + 2mo, w3 + Ty
R T — W3 + 27y, To + Ty
SO(8)d R T — T3, T + M4
R T, M1 — T4
SO(8)e R T — M3 + 2y, 7o + 73
OR T + T — Wy, o + T3 + My
SO(8)f R T4, 2m9 + T3
R T — W3, To + T4
T32A R 5
OR g
T?B R 5
R T5 — 6

Table 6. R- and #R-invariant 1-cycles.

As already noted, the orientifold action leads to the formation of O6-planes. To de-
termine these we must first identify the two R- and two OR-invariant 1-cycles on each
configuration of the SO(8) lattice. These are displayed in table 6, as is the single R- and
single §R-invariant 1-cycle on T5. The corresponding R- and §R-invariant 3-cycles then
generate the bulk 3-cycles displayed in table 7; the overall sign is fixed by the supersym-
metry requirement that X* is positive. The O6-plane is then the sum of the two orbits,
which gives:

(a,e,f)A: mos = 2(p2 + sp3) (5.12)
(a,e,f)B: 7o = 2[p2 + s(—p1 + 2p3)] (5.13)
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Lattice | Invariant | (n12,n13,n1.4, 123, N2.4,1n3.4) (N3, M3) 3-cycle
aA R (1,0,0,0,1,0)(1,0) 22
R (0,1,—1,0,0,0)(0,1) 2sp3
aB R (1,0,0,0,1,0)(1,0) 29
R (0,1,—1,0,0,0)(1,—1) 2s(—p1 +2p3)
bA R (1,1,1,1,1,—1)(1,0) 2p1
OR (0,0,0,0,2,1)(0,1) —25py
bB R (1,1,1,1,1,—1)(1,0) 2p1
OR (0,0,0,0,2,1)(1,—1) 25(p2 — 2p4)
cA R (0,1,1,2,2,0)(1,0) 2p1
OR (1,1,0,1,-2,-2)(0,1) —25p4
cB R (0,1,1,2,2,0)(1,0) 2p1
R (1,1,0,1,-2,-2)(1,-1) 2s(p2 — 2p4)
dA R (1,0,1,1,0, —1)(1,0) 201
OR (1,0,0,0,1,0)(0,1) —25p4
dB R (1,0,1,1,0,—1)(1,0) 21
OR (1,0,0,0,1,0)(1, 1) 2s(p2 — 2p4)
eA R (1,1,0,1,-2,-2)(1,0) 22
R (1,1,1,2,1,—-1)(0,1) 253
eB R (1,1,0,1,-2,-2)(1,0) 209
R (1,1,1,2,1,—1)(1,—1) 2s(—p1 +2p3)
fA R (0,0,0,0,2,1)(1,0) 22
OR (1,0,1,1,0,-1)(0,1) 25p3
fB R (0,0,0,0,2,1)(1,0) 209
OR (1,0,1,1,0,—1)(1,-1) 2s(—p1 + 2p3)

Table 7. Supersymmetric R- and #R-invariant bulk 3-cycles of the Zi5-1IT orientifold; s = £1 is
the sign of Im 73.

(bv ¢, d)A o6 = 2(P1 - 5P4) (5'14)
(b,c,d)B: mos = 2[p1 + s(p2 — 2p4)] (5.15)

where s is the sign of Im 73.

We also need the action of R on the exceptional cycles €; and €;, which in turn depends
upon the action of R on the sixteen Zs fixed points fi; (i,j = 1,4,5,6) in the §%-twisted
sector. This may be determined using the action of R on the simple roots o, of the SO(8)
lattice, which is displayed in table 3. On all six lattices there are 4 invariant fixed points and
6 pairs that transform into each other under the action of R. These are displayed in table 8.
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Lattice Invariants Pairs
a fi1, fs.15 fass fos | (far, f5.5)s (fe,15 f1.5), (f1.as f5,4), (f1.65 fa.a), (fo.a, f5.6): (fo.6, fa6)
b f1.15 f5.60 fass foa | (a1, fe6)s (f5,15 fe,5), (fo,15 f1,4), (f1.65 fa,4), (fae, f5,5), (f1,5, f5.4)
c Ji1s faxs fres fae | (fras fis), (faa, fas), (fs.4, fe.5): (f5.5, f6,4), (f5.6, fo.6), (f5,15 f6.1)
d Ji1s faas f5.50 fo6 | (fr.as fo5), (fi5 f5.1), (fr6) fa5)s (far, f5.6)s (fe.1, f5.4), (faes fo,4)
e Ji1s faas fs.a for | (fra, f5.1)s (fiss fo.5), (fres fas), (fars fo.4), (f5.6, fa6)s (f5.5, fo.6)
f fi1s fras fuss fie | (far, fae), (f5,15 f5.4), (fo,15 f6,5), (fass faa), (f55, f5,6), (f6.6, f6,4)

Table 8. Action of R on the §%-sector fixed points f; ; (i,j = 1,4,5,6).

Lattice | Re; | Reo Reéq Reés
(aye,f)A | e | —€ —€&; €9
(a,e,f)B €1 | —€ | € —€ | —ex+é9
(byc,d)A | —€1 | € €1 —é9
(byc,d)B | —€1 | €2 | —e1+ €1 | e2— &

Table 9. Action of R on the invariant exceptional 3-cycles ¢; and ¢;.

The action of R on the exceptional cycles then follows from their definition in eqs. (2.41)—
(2.44) using egs. (5.9) and (5.10). It is important to include also the further minus sign as
detailed in eqn (4.3) of Blumenhagen et al. [25]; this is most easily seen by considering the
action of R on the Kahler form J := idzp A dZi. The results are displayed in table 9.

6 Fractional branes

As noted earlier, in order to obtain stacks which intersect at an odd number of points it is
necessary to use fractional branes of the form given in eq. (3.5), where the bulk part IT>uk
is of the form given in eq. (2.23), and determined by the 2-cycle wrapping numbers ny
and the 1-cycle wrapping numbers (nf,n%) on T5. The exceptional part I1¢ is of the form
given in eq. (2.47), in which, to ensure supersymmetry, the coefficients ey are determined
in the manner described in section 3 by the fixed points ff; on the SO(8) lattice that are
wrapped by the bulk 2-cycle. It follows from eqgs. (2.35) and (2.48) that

3 1
aob= | Slatal +agoh) + S(etel + 3| ugm§ — mnd (6.1
Similarly, using the results given in tables 4 and 9, on the (a,e,f)A lattice we find that
3 1
aol/ = [2(a‘fal{ — afa3) + o (—efel + egeg)] (n§mf +min3) (6.2)
Hence
aob—aob =nimb(3aial + efel) — mins(3aial + eeh) (6.3)
Now, by inspection of table 2 we see that in all cases
el =a5mod2 and e5 = a} mod 2 (6.4)
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Thus, on the (a,e,f)A lattice
aob—aob =0mod?2 (6.5)

Since aob+aob = (aob—aolb)mod2, we cannot satisfy eq. (1.1). It is apparent
from tables 4 and 9 that on the (b,c,d)A lattice the orientifold image b differs only by
an overall sign from that on the (a,e,f)A lattice. Thus the expression on the right-hand
side of eq. (6.3) applies to aob+ a o b’ on the (b,c,d)A lattice. Hence we cannot satisfy
eq. (1.1) on this lattice either.

Proceeding similarly, on the (a,e,f)B lattice we find instead that

1
aob—aob = —imgmg(a?alf — adab + efeb — edel) mod 2 (6.6)

It follows from eq. (6.4) that
Xop = afal — a§al + efe} — e3eh = 0 mod 2 (6.7)

so to ensure that aob —aobd’ =1 mod 2, we require that

mé = 1 mod 2 =m} (6.8)

Xap = 2mod 4 (6.9)

For the reasons given above, the same conclusions apply in the case of the (b,c,d)B lattice.
The general solution of eq. (6.9) is given by

(a%ab, a%ab, edel, edel) = (z,y,y,2+2) or (z,y,y+2,z) mod4 (6.10)
with z,y = 0,1, 2,3 mod 4.
Besides the requirements of supersymmetry and factorisability discussed earlier, there
are two further constraints that must be imposed upon the non-abelian stacks a and b.
The first derives from the fact that on an orientifold chiral matter in the symmetric S,
and antisymmetric A, representations of the gauge group may arise at the interesections
of any stack x with its orientifold image «’. The dimensionality of these is given by

1

[Sk] = (N X Noo)symm = 5 Nu(Ne +1) (6.11)
[An] = (Nfi X Nn)antisymm = %NI{(NH - 1) (6.12)

Thus, on the U(3) stack a, this gives unobserved symmetric 6-dimensional representations.
Likewise, on the U(2) stack b unobserved 3-dimensional chiral representations may arise.
Clearly, we must demand the absence of such symmetric representations on both of these
stacks. The antisymmetric representation on the a stack is the 3 representation. In prin-
ciple such states are acceptable as quark singlets ¢f states, provided that the hypercharge
Y (¢§) = 2y, is right. Evidently, this require that y, = 1/6 or —1/3, corresponding respec-
tively to df and uf states. On the b stack the antisymmetric representation is the singlet
representation. Again, such states are acceptable as charged lepton singlets ¢, provided
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that y, = 1/2, or as neutrino singlets v§, if y, = 0. It follows from the considerations
at the end of section 1 that only (y.,v,) = (1/6,0) or (—1/3,1/2) are consistent with
getting the correct weak hypercharge for the quark doublets. The numbers of such chiral
representations are given by

#(Sk) = %(ﬂ oK' — K o mog) (6.13)
#(A,) = %(EOK'HMOG) (6.14)

Since we must demand the absence of the symmetric S, and S, representations, the num-
bers of surviving anti-symmetric representations are

#(Ag) =Komos Kk=a,b (6.15)
So the first additional constraint is that
[#(AL) <3 k=ua,b (6.16)

since there are only 3 quark singlets and 3 lepton singlets of each flavour in the Standard
Model. It follows from eqs. (5.13) and (5.15), using the supersymmetry constraint Y% = 0,
with the forms of Y* as displayed in table 5, that

(a.e.f)B  #(A,) = 6[s(A} +245) — Af] = 6(2[m =5 - )4} (6.17)
(b,c,d)B = —6[s(A] +245) + A%] = 6(2)Im 73| — 1)AS  (6.18)

Since the bulk wrapping numbers A7 are all integers, it is evident from the middle equations
that #(A,) = 0 mod 6. Thus, we cannot satisfy eq. (6.16) unless #(A,) =0 = #(Ap). On
both lattices and both stacks this requires that A5 = Af mod 2. It follows from eq. (6.8)
that this in turn requires that

ai = a5 mod2 k=a,b (6.19)

on both lattices. If [Im 73| # 1/2, then on both stacks and on both lattices (af,af) =
(0,0) mod 2, and all terms on the left-hand side of eq. (6.10) are 0 mod 4 so cannot satisfy
eq. (6.9). The alternative is to require that

1
The solutions given in eq. (6.10) are now restricted to the form

(a%ab, alab, edel, edel) = (x,x,z, x + 2) mod 4 (6.21)

with = 0,1, 2,3 mod 4; the underlining signifies any permutation of the underlined en-
tries. This can only be satisfied if at most one of kK = a or b has (af,a5) = (0,0) mod 2.
Furthermore, if, say, (a¢,a$) = (0,0) mod 2, and (a?, a}) = (1,1) mod 2, then

(afai, aga, efel, e5el) = (af, as, ef, ¢5) mod 4 (6.22)
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and eq. (6.21) requires that only an odd number of a{, a3, e{, €§ can be 2 mod 4. However,
in this case it is easy to verify that aoa’ # 0, and hence #(S,) # 0. The conclusion is that
only if (af,af) = (1,1) mod 2 for both stacks k = a and b can this constraint be satisfied
if we allow only the Standard Model spectrum.

Should we succeed in finding supersymmetric (factorisable) stacks a and b satisfying
the constraints detailed above, it is desirable that the the (four-dimensional) SU(3) and
SU(2) gauge couplings strengths unify, i.e.

ay = (6.23)

although we do not impose this as a constraint. For the gauge group U(N), the four-
dimensional fine structure constant «, of a stack x of N, D6-branes wrapping a 3-cycle 7,
is given by [26, 27]
I mp Vol ()
O 2v/2Mgtring 1/ Vol(Y)

(6.24)

where mp is the Planck mass, and Y = T%/R x Zjo-II is the compactified space in this
case. For fractional branes x as defined in eq. (3.5)

1 1
Vol(k) = 5vol(H‘gulk) + 5 Vol(IT) =~ Vol (I1bulk) (6.25)

DN | =

since the consistency of the supergravity approximation requires that the contribution of
the bulk part is large compared to the contribution from the exceptional part. Then, as
shown in [21], for supersymmetric stacks

aq  Vol(Trbulk)

av Vol o
X0t
= - 2
= (6.27)

where X" is defined in eq. (4.1) and for the various lattices takes the values displayed in
table 5.

7 Computations

We have shown in section 6 that the only way that we might satisfy all of the constraints is
if af and a5 are both odd for both stacks, i.e. if they are of type II or III in table 2; then x
in eq. (6.21) is odd. The numerical search produced no solutions satisfying the constraints
in which (aob,aob’) = (1,2) or (2,1). The only solutions that satisfy eq. (1.1) (with
(aob,aob’)=(0,3) or (3,0)) and the constraints have the wrapping numbers (n§, mf) of
T 32 equal to (0,+3) for one of the stacks, i.e. the wrapping numbers are not coprime; such
solutions are unacceptable. The conclusion is that the Zjo-II orientifold cannot yield just
the spectrum of the supersymmetric Standard Model.

Since there are no solutions with just the supersymmetric Standard Model spectrum, it
is of interest to study models that approximate to it. Instead of demanding that #(A,) =0
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for both stacks, suppose that we allow just one, a say, to have |#(A,)| = |aomog| = 6, the
minimal non-zero number. On the (a,e,f)B lattice, it then follows from eq. (6.17) that

Al +e
249

Im 73| = (7.1)
where € = =£1. Further, since A — A} = 1mod2, it follows that (ai,a2) =
(1,0) or (0,1) mod 2. Thus a is of type I/VIII or of type IV/VI in table 2. For the

other stack, it follows that
Ab
#(Ayp) =bomos = A%fé (7.2)
4

So if there are no antisymmetric representations on this stack, we require that
AL =0=2d} (7.3)

Hence A} = 0 too. Also, since 244 + A% = 0 = (2n§ + mb)al, it follows that A} = 0 = A3.
This means that X® = 0, which gives an infinite value for the gauge coupling strength ay.
We are therefore compelled to have antisymmetric matter on both stacks. If we also require
the minimal amount on b too, then the stack b must be of the same type as a with

Al = 1A (7.4)

Similarly, on the (b,c,d)B lattice, if #(A,) = 6¢, then

s(2A% + A9) + A5 = (1 — 2|Im 73])A§ = —€ (7.5)
Hence
A% + €
I =3 .
i 5] = o (7.6)

Again, if we demand that #(A;) = 0, then Ag =0 (p = 1,2,3,4), and « is infinite.
Likewise, if instead we require the minimal amount on b too, then it must be of the same

type as a with
|A5] = |43 (7.7)

Solutions for a and b satisfying even these weaker constraints are fairly limited. For
example, on the (a,e,f)B lattice, when both a and b are of type I, we find solutions of the
required type with

(aclbv ag) = (2$a’ ya)’ (ngv mg) = (07 ya)’ (6(117 6%) = (Zav Qta)
b b b b, b b b b ob
(all)va2) = (2$ Y )7 (n37m3) = (y Y )7 (6%76621) = (Z , 2t )

where z", ¢y, 2% t* = +1. Then

A7 = (0,0,2x"y", 1), (af,ad) = (0,0,y%z%, 2y*t?) (7.10)
A?) = (Qxbyb) 1) _2xbyb7 _1)7 (O[li)v ~5) = (ybzbv 2ybtb) _ybzb) _2ybtb) (711)

and
%% = Im 73 = —aby? (7.12)
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5 b

X'=2=X (7.13)
Then from eq. (6.17), it follows that
#(Aq) =6 = —#(As) (7.14)
and the required intersection numbers (a 0 b,a o b’) = (3,0) arise provided that
2t = —yhyt = 2920 = —t4? (7.15)

Similarly, on the (a,e,f)B lattice, when both a and b are of type IV, there are solutions
of the form

Ag = (:Caya’ 2’ 7xaya’ 72)) (Oé;-l, 5‘;,1) = (QyGZaa yataa 72yaza’ 7yata) (716)
Ag = (07 07 _xbybv 2)7 (Oé?, Nf) = (07 O? —bezb7 _ybtb> (717)
when
a,,a b,,b
xf = —Tmrs = % (7.18)
X = Z = X° (7.19)

These too satisfy eqgs. (7.14) and have the required intersection numbers when
2t =yt = 2020 = —t %P (7.20)

Without loss of generality, we identify a as the SU(3) stack, and b as the SU(2) stack.
To avoid further non-abelian gauge symmetries, all remaining stacks A must consist of a
single D6-brane with Ny = 1. Given the fairly limited number of solutions for a and b, the
intersection numbers (a o A,a o \') and (bo A,bo \') with an arbitrary (supersymmetric)
stack A\ are also limited in number and highly correlated. As already noted, unavoidably
we have 6¢§ states arising in the antisymmetric 3 representation of SU(3) on the stack a;
if y, = 1/6 these are 6d, whereas if y, = —1/3 they are 6u$. Thus in these models the
minimal quark-singlet spectrum arising from the intersections of a with other stacks A, and
their orientifold images X, is 3(1% + 3u§ when y, = 1/6, and 3u§ + 3d§ when y, = —1/3.
In both cases we must therefore impose the constraint |a o A\| 4+ |a o X'| < 6 on any one of
the other stacks. The intersections of the b with other stacks A\ yield doublets that must
be identified either as lepton L and Higgs Hy doublets, if Y = —1/2, or H, doublets if
Y = 1/2. The supersymmetric Standard Model has 3L+ H,,+ H, so we should also impose
the constraint |bo A| + [bo A'| < 5 on any single stack. With a and b both of the same
type, I or IV, and on both the (a,e,f)B and (b,c,d)B lattices, the allowed intersection
numbers, subject to the constraints described above, are displayed in table 10.

In both cases, since the only negative intersection numbers for a o A are invariably
accompanied by negative intersection numbers a o X/, and vice versa, it is clear that
we can never get just the required 3(3) + 3(8) quark-singlet states. When a and b are
both of type IV, this conclusion is true even if we do not impose the latter constraint
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(aoXaoXN) | (boAbol)
(—1,-1) (2,2)
(—2,-2) (1,1)

(0,6) (=3,0)
(6,0) (0,-3)

Table 10. Correlations between intersection numbers of the SU(3) stack a and those of the SU(2)
stack b when (aob,aob’) = (3,0).

|bo Al + |bo X| < 5. However, if they are both of type I, then it can be satisfied, but only
at the expense of having at least 12 doublets at the intersections of b with A and \. The
conclusion is that, at least within the range of parameters searched, we cannot get the
quark-singlet spectrum even of this Standard-like model.

8 Discussion

We have investigated whether there is scope to construct supersymmetric Standard Models
in type ITA intersecting-brane theories compactified on an orientifold with a Zio point
group. We focussed on the Zio-II case because, as discussed in section 2, the Zis-1 case
does not have enough independent 3-cycles to make a viable model likely. The SO(8) x
SU(2) x SU(2) lattice has been used; the Fy x SU(2) x SU(2) case is equivalent. A bulk
3-cycle then consists of a 2-cycle on the SO(8) lattice times a 1-cycle on the SU(2) x SU(2)
torus T32, and we have restricted attention to the case when the 2-cycle is factorisable in the
sense discussed in section 3. It is possible to find models with the correct supersymmetric
Standard Model quark-doublet content. All examples have (a o b,a o b') = (3,0) or (0,3)
and possess 6 copies of either df or u§ quark singlets, depending on the values of y,.
Thus, some vector-like matter is inevitable. All examples have non-abelian gauge coupling
constant unification in the sense that a, = «y at the string scale, but we have not found it
possible to obtain the minimal quark-singlet structure described in the previous section..

A The Z,»-1I orientifold

The six independent invariant exceptional 3-cycles on the Zj»-1 orbifold may be chosen as
follows:

€ 1= (1 + 6+ 02 + ...+ 95>f474 X T = 2[(.]6474 — f1,6) X 75 + (fl,G — f475) X 7T6] (Al)
G=(1+0+0"+...+0°)fra®me = 2[(f15 — fi6) @75 + (fra — fa5) @ 76] (A.2)
=1 +0+60*+... +0°)fr1@75 = (fa1— foa+ fae— f56) @75+

+(fo,a — fo,6 + f5.6 — f55) @ 76 (A.3)
E=1+0+0"+...+0°)f11@m6 = (—fou+ fo.s — [56+ fo.5) @5 +
+(fa,1 — fo.6 + fa6 — f55) @ 76 (A4)
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Lattice Roq Roo Ras Ray —2id1 —2ig2
a —(a2 + aa) Qi —(a2 + as) —(01 + a2) 1 1
b oy + a2 +as —Q3 —Q2 —(a1 +az+ay) ﬂQ 52
c —(a1+2as+as+as) ag + as —as Qy B2 B2
d a —(c1 + a2) —Qy —Qs B -8
e —(02 + a3 + ) o —(on4az+as) o gt | =Bt
f a1+ a2 + a3+ aa —(a1+az+tau) a1 + az — (a2 + a3) ) —1
Table 11. The phases ¢ and ¢y for crystallographic action of R on «; (i = 1,2,3,4); an overall

sign of € = £1 is undisplayed.

3= (1+0+0*+... +0) 51075 = (fs1 — for+ fo5 — f5.4) @75+

+(foq — fra+ fsa— f15) @76 (A.5)
E3=(1+0+0*+... +0)fs1076 = (—fo1+ fra— foa+ fi5) @75+

+(fs,0 — fia+ fo5 — fi5) @ 76 (A.6)

Then
€cjoep=0=¢j0¢ J k=1,2,3 (A.7)
€j 0 &, = —12E;6; (no summation) (A.8)

where
E1=2, E»—1=FE; (A.9)

assuming, as in eq. (2.45), that the self-intersection of a fixed point f; ; is —2.

In this case the action of the point group generator 6 is given in eq. (2.2). Then, with
the central root ay of the SO(8) lattice parametrised as in eq. (4.6), the remaining roots
are given by

a1 = —V2(e cos (1 + B), €2 sinf(1 — 1)) (A.10)
az = —V2B2(e" cos ), ¢'?? sin 0) (A.11)
oy = V26711 cos B, —e'¥? sin B) (A.12)

With R acting as complex conjugation, as in eq. (5.1), it acts crystallographically on this
lattice in the 6 orientations displayed in table 11. R acts crystallographically on the basis
l-cycles 756 of the SU(3) lattice in 7% in 2 orientations:

A Rﬂ-f} = T,
B: Rrs = 76,

RT['@ = T'5 — Tg (Al?))
Rrg = 5 (A.14)

Then the action of R on the invariant bulk 3-cycles defined in egs. (2.15) and (2.16) is
given in table 12. In this case, instead of eq. (4.10), we parametrise the 1-cycle on T3 by

dzg = e5(nf + m5B?)dv (A.15)
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Lattice Rp1 Rpa
(a,f)A p1+ p2 —pP2
(a,f)B p1 —(p1+p2)
(b,e)A P2 —pP1
(b,e)B | —(p1 + p2) p2
(c,d)A —p1 p1+ p2
(c,d)B P2 p1

Table 12. The action of R on the invariant 3-cycles.

Lattice Xr Y*r
(a,f)A V/3AY Af — 245
(a,f)B | 245 — A5 —V/3A5
(be)A | V3(Af — A5) | —(Af + A5)
(b,e)B | Af — 245 —\/3A%
(c,d)A V3A5 2A% — A%
(:d)B | Ap+A5 | V3(Af - A5)

Table 13. The functions X" and Y". (A global positive factor of Rjsin26, for each entry is

omitted).

which gives

Qlue = —25in 209e5e 1T [(AF — A5)B + A5BHdA A dp A dv

= (X" +iY")dA A dp A dv

where now the bulk wrapping numbers are given by

A
A3

with

The bulk brane is now given by

= afn§ + a5(n§ + m3)

= —atms + asng

II* = Afp1 + A3ps

(A.22)

The functions X* and Y" are as displayed in table 13. Evidently, as claimed in section 2,

up to an overall scale, all supersymmetric stacks have the same (R-invariant) bulk part.
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