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Abstract

Background: Whether type 2 diabetes mellitus (DM) in the absence of hypertension (HTA) and coronary artery
disease (CAD) affects left ventricular (LV) phenotype and function among asymptomatic DM patients that can
be easily discovered in everyday practice, what is the clinical risk profile for diabetic cardiomyopathy and how
HTA and CAD modulate LV structure and function above diabetic cardiomyopathy, are still incompletely
answered questions.

Methods: In 210 DM patients (group I: 70 asymptomatic DM patients without HTA and CAD; group II: 70 DM
patients with HTA and no CAD; group III: 70 DM patients with CAD and no HTA) and 80 healthy individuals,
comprehensive echocardiography including speckle tracking strain and strain rate analysis, was done.

Results: Compared to control DM patients without HTA and CAD had increased LV mass, more frequently
concentric remodeling, impaired LV relaxation and lower LV ejection fraction (EF), fraction of shortening (FS)
and mitral annular plane excursion (MAPSE). Addition of HTA further impaired EF, FS and MAPSE and aggravated
diastolic dysfunction, whereas concomitant CAD further impaired FS and MAPSE. Peak global longitudinal strain
(Slong) and early diastolic longitudinal strain rate (SRlong E) were impaired in group I compared to control, even
when EF was preserved. Peak circumferential strain (Scirc) was impaired only when DM was associated with HTA
or CAD. In multivariate analysis DM was significantly and independently from HTA, CAD, age, gender and body
mass index associated with: increased LV mass, concentric LV remodeling, lower EF, FS, MAPSE, Slong, SRlongE
and distorted diastolic parameters. DM duration, glycosylated hemoglobin, microalbuminuria and retinopathy,
were not independent predictors of LV geometry and function.

Conclusion: DM per se has strong and independent influence on LV phenotype and function that can be detected
by conventional and speckle tracking echocardiography in everyday clinical practice, even in asymptomatic patients.
We could not confirm that these changes were independently related to duration of DM, quality of metabolic control
and presence of microvascular complications. Concomitant HTA or CAD furthermore distorted LV systolic and
diastolic function.
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Background
A strong correlation between cardiovascular diseases and
diabetes mellitus type 2 (DM) has been persistently shown
[1–3]. Adults with DM are two to four times more likely
to have heart disease than adults without diabetes [2].
Aggregation of risk factors in people with DM (hyper-
tension, abnormal lipid level, obesity and lack of physical
activity) strongly contributes to premature, hasten and
more severe cardiovascular diseases. However, diabetes
per se is powerful promoter of accelerated atherosclerosis
and development of coronary artery disease [3]. Diabetes
induces changes in the myocardium including metabolic,
structural and functional alterations [4, 5]. It augments
fatty acid metabolism, restrains glucose oxidation, and
modifies intracellular signaling in cardiomyocytes, leading
to inefficient energy production, derangements in excita-
tion–contraction coupling, and increased susceptibility to
ischemia/reperfusion injury [6]. Microvascular rarefaction
and dysfunction, remodeling of the extracellular matrix
in the myocardium, myocardial fibrosis and myocardial
steatosis are also engaged in systolic and diastolic dysfunc-
tion of diabetic hearts [4–6]. Although concept of diabetic
cardiomyopathy was introduced in 1972 by Rubler [7],
and further developed by other authors [8–13], it is still
questioned. There is still a debate whether DM per se
without hypertension (HTA) and coronary artery disease
(CAD) has impact on left ventricular (LV) phenotype, its
systolic and diastolic function that can be easily detected
in everyday clinical practice. Improvement of diagnostic
procedures capable to detect non-ischemic heart failure
associated with DM and development of specific strategies
to prevent and treat diabetes cardiomyopathy are areas
of intensive research. The echocardiographic techniques
based on speckle tracking offer possibilities to evaluate
myocardial mechanics that can be distorted early in the
course of the disease, even before the clinical expression
or changes detectable by conventional echocardiography
[14, 15].
The primary aim of this study was to investigate the

impact of DM without HTA or CAD on LV phenotype,
its systolic and diastolic function, using conventional
and speckle tracking echocardiographic techniques
among asymptomatic patients. The second aims were to
compare these results with the influence of DM coupled
with HTA or CAD and to define clinical risk profile for
diabetic cardiomyopathy.

Methods
Patient selection
In order to evaluate the influence of DM on LV pheno-
type and function and to compare it with the additional
influence of HTA or CAD, three study groups were
defined: group I (DM patients without HTA and CAD,
i.e. lone DM), group II (DM patients with HTA and no

CAD) and group III (DM patients with CAD, but without
HTA). The inclusion criteria for group I were: asympto-
matic DM patient without HTA and CAD (no previous
myocardial infarction, no angina pectoris) and with nega-
tive stress echocardiography. The inclusion criteria for
group II (DM+HTA) were: DM patients with HTA and
no CAD (no previous myocardial infarction, no angina
pectoris) and with negative stress echo. The antihyperten-
sive therapy was optimized for patients in group II and
they had well controlled blood pressure (i.e. BP < 140/
90 mmHg) at least 7 days before echocardiographic
examination. The inclusion criteria for group III (DM
+CAD) were: DM patient without HTA and with CAD
(with stable angina pectoris, no previous myocardial
infarction) and with positive stress echo (i.e. documented
inducible ischemia). For patients in group III medical
therapy was optimized and they were without anginal
pain at least 7 days before echocardiographic examination.
Initially 492 consecutive DM patients were examined.
Patients with unstable angina pectoris, pervious myocar-
dial infarction, uncontrolled HTA, congenital heart dis-
eases, primary hypertrophic and dilated cardiomyopathy,
significant heart valve disease, left bundle branch block,
atrial fibrillation, severe form of ventricular arrhythmias
(Lown class IV and V), anemia, malignancy, severe ob-
structive pulmonary disease, disorders of thyroid function,
myocarditis and deformities of the chest that technically
limit echocardiographic examination were excluded. The
final study population included 210 DM patients (70 pts
in each group I, II and III). For the control group, 80 indi-
viduals similar in age and gender as DM patients and with
normal echo studies, without DM, cardiology or other
major health problems were pooled from the clinic data-
base, and called to participate in the study. This prospect-
ive, single centre study was conducted in the outpatient
cardiology clinic “Corona”, Uzice, from the beginning of
January 2012 to the end of May 2014. This study was
approved by the Ethics committee, School of medicine,
Belgrade University and was a part of the PhD thesis
of BL. Written informed consent was obtained from
all patients who participated in the study.

Study protocol
Several clinical variables were analyzed: weight, height,
risk factors for CAD, body mass index (BMI), blood pres-
sure, ECG and laboratory analysis including measure-
ments of blood glucose level, serum lipid levels, and
concentration of glycosylated hemoglobin (HbA1c), pres-
ence of microalbuminuria and examination of eye fundus
in order to detect diabetic retinopathy.

Echocardiographic study
Echocardiographic examination was done using a com-
mercially available ultrasound machine (ESAOTE My
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LAB 30 CV) and 3 MHz multifrequency transducer using
second harmonic technology. Echocardiography included
conventional resting 2D examination and quantification
of LV mechanics using 2D speckle tracking strain and
strain rate analysis. The studies were stored in digital
format with coded patient’s identity. Analysis of echo-
cardiographic studies were done off- line by experienced
echocardiographer (BL) blinded to patient’s identity.

Conventional echocardiographic study
Following parameters were measured for the evaluation
of LV geometry and function according to ASE recom-
mendation [16]: LV end diastolic diameter (LV EDD; cm),
LV end systolic diameter (LV ESD; cm), septum (Sep; cm)
and posterior wall (PW; cm) thickness, relative wall
thickness (RWT; [2 × posterior wall thickness]/end-
diastolic diameter), presence of concentric remodeling
(if RWT > 0.42 with normal LV mass index values),
LV ejection fraction by Simpson’s method (LV EF; %),
LV mass (LVM; g), LV mass index (LVM index; LVM/
body surface area; g/m2), left atrial volume measured
by biplane method (LA volume; ml), left atrial volume
index (LAVI; LA volume/body surface index; ml/m2).
Assessment of diastolic function was done according to
the guidelines [17]. Mitral inflow was assessed by pulsed
wave Doppler from the apical 4-chamber view. The Dop-
pler beam was aligned parallel to the direction of flow. A
one or two mm sample volume was placed between the
tips of mitral leaflets during diastole and the following
parameters were measured: peak E velocity (m/s), peak A
velocity (m/s), E-deceleration time (EDT; ms), E/A ratio.
Placing the cursor of pulsed Doppler in the left ventricular
outflow tract for simultaneously display of mitral inflow
and aortic flow isovolumic relaxation time (IVRT; ms) was
measured from the end of aortic ejection to the onset of
mitral inflow.
Pulmonary venous inflow was obtained by pulsed wave

Doppler in apical 4-chamber view [15]. A two or three mm
sample volume was placed 0.5 cm into the right upper
pulmonary vein for optimal recording of the spectral
waveforms. Measurements of pulmonary venous wave
forms included peak systolic (S) velocity, peak antero-
grade diastolic (D) velocity and the S/D ratio.
M-mode images were obtained at the LV septal, lateral,

anterior, and posterior borders of the mitral ring in the ap-
ical 2C- and 4C views, and an average mitral annular plane
systolic excursion (MAPSE) value was calculated [18].
Flow propagation velocity (Vp; cm/s) of the mitral

inflow was measured in the apical 4-chamber view, using
color flow imaging with a narrow color sector. The M-
mode scan line was placed through the center of the LV
inflow blood column from the mitral valve to the apex.
Then the color flow baseline was shifted to lower the
Nyquist limit so that the central highest velocity jet became

blue. Vp was measured as the slope of the first aliasing
velocity during early filling, measured from the mitral
valve plane to 4 cm distally into the LV cavity [17].
Tei index was measured as previously described [19].

The sample volume of pulsed waved Doppler was lo-
cated at the tips of the mitral valve leaflets, in the apical
4-chamber view, enables the measurement of interval
between the end and the start of transmitral flow (interval
a). The sample volume was then located in the LV outflow
tract, just below the aortic valve (apical 5-chamber view)
for the measurement of LV ejection time (interval b).
The interval a includes the isovolumic contraction time
(IVCT), the ejection time (ET) and the isovolumic relax-
ation time (IVRT), and the Tei index was calculated as
(a-b)/b, also expressed by the formula IVCT+IVRT/ET.
Early diastolic mitral annular velocity was measured

for septal and lateral mitral annulus by tissue Doppler
and averaged for Eprim and then E/Eprim ratio was
calculated.

Quantification of LV mechanic
Quantification of LV mechanic was done according to
the recommendation using 2D speckle tracking echo-
cardiography [15]. A standard clinical 2D ultrasound im-
ages at rest was obtained with frame rate 40–90 frames/s.
Images were acquired from the peak of the R wave, and 3
cardiac cycles were used for analysis and stored in Digital
Imaging and Communications in Medicine (DICOM)
format for subsequent strain (S) and strain rate (SR)
off-line analysis. X-Strain software was used for S and SR
analysis. Three views were analyzed for longitudinal LV S:
apical 4-chamber, apical long-axis, and apical 2-chamber
views. From these views peak longitudinal strain (Slong; %),
and early diastolic longitudinal strain rate (SR long E; %)
were measured for each of the 16 segments and then aver-
aged. From short axis view at the level of papillary muscle
peak circumferential strain (Scirc; %) were measured
for six segments and then averaged. Longitudinal and
circumferential strains are shown in absolute values.

Statistical analysis
Data are presented as count (percent) or mean ± standard
deviation, depending on data type. T test, analysis of vari-
ance (ANOVA) and Pearson Chi square test were used for
group comparisons. Linear regression and binary logistic
analysis was used to assess correlation between dependent
variable and independent predictors. To assess the repro-
ducibility of myocardial strain and strain rate measure-
ments intra-class correlation coefficients (ICC) was done.
All p values less than 0.05 were considered significant. All
data were analyzed using SPSS 20.0 (IBM corp.) statistical
software.
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Results
Baseline clinical characteristics
The study included a total of 210 patients with DM and
80 healthy volunteers. Baseline characteristics of the
study groups are shown in Table 1. Groups were similar
in size. Individuals in the control group were similar in
sex and age with DM patients and had no DM, HTA,
CAD or hyperlipidemia. Patients with DM were similar
in age and gender irrespectively of associated HTA or
CAD. Compared to control, DM patients had higher BMI,
higher level of cholesterol and triglycerides, but there were
no significant differences among diabetes groups. Patients
from group I, has shorter duration of DM and better gly-
cemic control based on HbA1c, compared to patients with
DM and HTA (group II), or DM and CAD (Group III).
Frequency of retinopathy was similar among all diabetes
groups, whereas microalbuminuria was more frequent in
DM associated either with HTA or CAD.

Conventional echocardiographic study
Comparison of conventional echocardiographic parame-
ters between groups is presented in Table 2. There were
no significant differences regarding the LV end-diastolic
diameter between diabetes groups and control. However,
patients with DM compared to control had significantly
higher LV mass and more frequently concentric remodel-
ing, with no significant differences between DM groups.
Left atrial volume and left atrial volume index, markers of
chronic left ventricular filing pressure, were significantly
higher in all DM groups compared to control, with no
significant differences between diabetes groups. Conven-
tional parameters of LV systolic function (ejection fraction,
fraction of shortening and MAPSE), were significantly
lower in all patients with DM compared to control. Left

ventricular fraction of shortening and MAPSE further
deteriorated in DM patients with concomitant CAD or
HTA. All investigated parameters of LV diastolic function
were significantly distorted in DM groups compared to
control. E/A ratio, E deceleration time and isovolumic
relaxation time further deteriorated in patients with DM
and HTA compared to DM alone. Marker of integrated
left ventricular systolic and diastolic function, myocardial
performance index, was significantly higher in all DM
groups compared to control and further increased in
patients with DM and HTA.

Assessment of left ventricular mechanics by strain and
strain rate analysis
Left ventricular mechanic evaluated by longitudinal and
circumferential strain and longitudinal strain rate are
presented in Table 3. Compared to control all patients
with DM, including those in group I, had significantly
lower peak longitudinal strain (p < 0.05) and peak longi-
tudinal strain rate in early diastole (p < 0.05), whereas
peak circumferential strain was impaired only when DM
was associated with HTA or CAD. Among patients with
DM, presence of CAD was associated with further dec-
rement of peak longitudinal and peak circumferential
strains.

Left ventricular structure and function in DM patient with
preserved ejection fraction
In order to investigate whether DM without CAD or
HTA has impact on LV function even when LV ejection
fraction is preserved, comparison between healthy control
and subgroup of patients from group I with EF ≥ 55% was
done. DM patients with no HTA or CAD and with pre-
served ejection fraction (i.e. EF ≥ 55%) had increased LV

Table 1 Baseline characteristics

Control
(N = 80)

Group I (DM)
(N = 70)

Group II (DM+HTA)
(N = 70)

Group III (DM+CAD)
(N = 70)

p

Age (years) 54.8 ± 4.9 54.8 ± 7.7 54.6 ± 5.8 55.3 ± 5.4 0.924

Female, n (%) 36 (45.0) 32 (45.7) 32 (45.7) 32 (45.7) 1.000

BMI (kg/m2) 25.7 ± 3.7*#¤ 27.5 ± 3.4 28.4 ± 4.6 28.2 ± 3.6 <0.001

Hyperlipidemia n (%) 15 (18.8) *#¤ 35 (50.0) 34 (48.6) 36 (51.4) <0.001

Obesity (BMI > 30.0) 13 (16.2)*#¤ 23 (32.9) 22 (31.4) 23 (32.9) 0.057

DM duration (years) - 7.7 ± 4.9§ 9.9 ± 5.3 9.2 ± 5.2 0.014

Blood glucose level (mmol/l) - 7.5 ± 1.5 7.7 ± 1.5 8.0 ± 1.5 0.110

HbA1c (%) - 6.95 ± 0.85Δ 7.08 ± 0.98 7.34 ± 1.07 0.040

Cholesterol (mmol/l) 5.01 ± 0.89*#¤ 5.78 ± 1.22 5.67 ± 1.13 5.78 ± 1.02 <0.001

Triglycerides (mmol/l) 1.77 ± 0.57*#¤ 2.46 ± 1.36 2.42 ± 1.14 2.49 ± 0.99 <0.001

Retinopathy n (%) - 15 (21.4) 26 (37.1) 20 (28.6) 0.122

Microalbuminura n (%) - 13 (18.6)§ 27 (38.6) 19 (27.1) 0.031

*p < 0.05 control vs DM; #p < 0.05 control vs DM+HTA; ¤p < 0.05 control vs DM+CAD
§p < 0.05 DM vs DM+HTA
Δp < 0.05 DM vs DM+CAD
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mass, LV mass index, LA volume and LA volume index,
lower EF, lower longitudinal systolic LV function (peak
longitudinal strain and MAPSE), higher myocardial per-
formance index and impaired parameters of diastolic LV
function compared to control (Table 4).

Multivariate analysis of determinants of LV phenotype,
systolic and diastolic function
In order to evaluate impact of age, gender, BMI, DM,
HTA and CAD on LV phenotype (diameters, mass and
remodeling), parameters of systolic and diastolic LV

Table 2 Conventional echocardiographic parameters

Control
(N = 80)

Group I(DM)
(N = 70)

Group II (DM+HTA)
(N = 70)

Group III (DM+CAD)
(N = 70)

p

Left ventricular and left atrial geometry and mass

LV EDD (cm) 5.03 ± 0.42 5.07 ± 0.44 5.14 ± 0.47 5.15 ± 0.56 0.386

LV ESD (cm) 3.43 ± 0.31#¤ 3.53 ± 0.43 3.64 ± 0.43 3.67 ± 0.48 <0.001

LVM (g) 101.76 ± 11.41*#¤ 119.23 ± 20.01 122.80 ± 20.18 119.50 ± 20.01 <0.001

LVM index (g/m2) 52.91 ± 4.29*#¤ 60.70 ± 8.71 60.85 ± 10.28 60.65 ± 12.37 <0.001

LV RWT 0.40 ± 0.04*#¤ 0.43 ± 0.04 0.43 ± 0.05 0.42 ± 0.03 <0.001

LV concentric remodeling, n (%) 24 (30)*#¤ 40 (57) 31 (44) 40 (57) 0.002

LAV (ml) 23.34 ± 3.75*#¤ 30.53 ± 5.86 33.17 ± 7.15 32.18 ± 10.45 <0.001

Left atrial volume index (ml/m2) 12.22 ± 2.24*#¤ 15.61 ± 3.32 16.47 ± 3.77 16.31 ± 5.70 <0.001

Left ventricular systolic function

LV ejection fraction (%) 61.68 ± 5.49*#¤ 56.30 ± 5.64§ 53.43 ± 5.73 53.87 ± 7.11 <0.001

LV fraction of shortening (%) 32.53 ± 3.75*#¤ 29.61 ± 3.37§Δ 27.40 ± 3.21 27.71 ± 4.05 <0.001

MAPSE (mm) 16.43 ± 1.56*#¤ 14.93 ± 2.20§Δ 13.83 ± 1.60 13.82 ± 1.65 <0.001

Left ventricular diastolic function

E/A ratio 1.30 ± 0.25*#¤ 1.10 ± 0.32§ 0.95 ± 0.25 1.05 ± 0.31 <0.001

E deceleration time (msec) 161.99 ± 21.80*#¤ 196.83 ± 38.93§ 206.73 ± 38.86 203.59 ± 34.64 <0.001

IsoVolumic Relaxation Time (msec) 84.35 ± 29.25*#¤ 89.74 ± 12.90§ 96.06 ± 9.67 94.07 ± 13.04 <0.001

Eprim (m/s) 0.1015 ± 0.03*#¤ 0.0794 ± 0.03 0.0701 ± 0.03 0.0711 ± 0.04 <0.001

E/Eprim 7.40 ± 1.42*#¤ 10.11 ± 3.27 10.22 ± 3.18 10.36 ± 2.98 <0.001

S/D ratio 1.37 ± 0.16#¤Δ 1.34 ± 0.21 1.24 ± 0.29 1.23 ± 0.27 <0.001

Vp (m/s) 0.75 ± 0.16*#¤ 0.56 ± 0.13 0.52 ± 0.09 0.52 ± 0.13 <0.001

Systolic and diastolic LV function

Myocardial Performance Index 0.40 ± 0.05*#¤ 0.47 ± 0.07§ 0.51 ± 0.08 0.50 ± 0.08 <0.001

LV left ventricle, LV EDD LV end diastolic diameter, LV ESD LV end systolic diameter, LVM LV mass, LVM index LV mass index, LV RWT LV relative wall thickness, LAV
left atrial volume, LAVI left atrial volume index, MAPSE mitral annular plane systolic excursion, Eearly mitral inflow wave, A late mitral inflow wave, Eprim early
diastolic mitral annular velocity by tissue Doppler imaging, S pulmonary venous flow systolic velocity, D pulmonary venous flow diastolic velocity, Vp mitral flow
propagation velocity
*p < 0.05 control vs DM; #p < 0.05 control vs DM+HTA; ¤p < 0.05 control vs DM+CAD
§p < 0.05 DM vs DM+HTA
Δp < 0.05 DM vs DM+CAD

Table 3 Left ventricular mechanic evaluated by strain and strain rate

Control
(N = 80)

Group I (DM)
(N = 70)

Group II (DM+HTA)
(N = 70)

Group III (DM+CAD)
(N = 70)

p

Slong (%) 18.71 ± 1.86*#¤ 17.36 ± 1.80Δ 16.31 ± 2.79 16.26 ± 2.84 <0.001

Scirc (%) 21.53 ± 0.99#¤ 21.25 ± 1.95Δ 18.24 ± 3.43 19.07 ± 2.76 <0.001

SR longE(s
−1) 1.25 ± 0.15*#¤ 1.00 ± 0.15 0.96 ± 0.12 0.98 ± 0.14 <0.001

Slong peak longitudinal strain, Scirc peak circumferential strain, SR long E early diastolic longitudinal strain rate
Note: Longitudinal and circumferential strains are shown in absolute values
*p < 0.05 control vs DM; #p < 0.05 control vs DM+HTA; ¤p < 0.05 control vs DM+CAD
Δp < 0.05 DM vs DM+CAD
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function linear regression and binary logistic analysis was
done (Table 5). The presence of DM was significantly and
independently from other covariant in the model associ-
ated with: LV mass (β = 0.388, p < 0.001), LV mass index
(β = 0.357, p < 0.001), LA volume (β = 0.381, p < 0.001),
LA volume index (β = 0.373, p < 0.001), LV ejection
fraction (β = −0.351, p < 0.001), LV fraction of shortening
(β = −0.308, p < 0.001), MAPSE (β = −0.313, p < 0.001),
E/A ratio (β = −0.270, p < 0.001), E deceleration time
(β = 0.401, p < 0.001), Isovolumic relaxation time (β = 0.199,

p = 0.004), Eprim (β = −0.022, p < 0.001), Vp (β = −0.510,
p < 0.001), myocardial performance index (β = 0.375, p <
0.001), Slong (β = −0.236, p = 0.001) and SRlongE (β =
−0.572, p < 0.001).
In order to analyze whether duration of DM, quality of

metabolic control (HbA1c) and presence of microvas-
cular complications (retinopathy and microalbuminuria)
are associated with LV phenotype and LV function
among DM patients, regression analysis was done. None
of the parameter of DM duration and severity was signifi-
cant and independent predictor of analyzed parameters
of LV phenotype and LV function (results are not shown).

Reproducibility
The echocardiographic studies were analyzed by expe-
rienced ultrasonographer (BL) The intraobserver variabi-
lity was very good for Slong (ICC 0.91), Scirc (ICC 0.78) and
SRlongE (ICC 0.87).

Discussion
The present study evaluated influence of type 2 DM on
LV phenotype (dimensions, mass, concentric remodeling)
and LV function using conventional and speckle tracking
echocardiography. The results pointed to several interest-
ing things. First, DM was associated with greater LV mass,
LV concentric remodeling, bigger left atria, impaired LV
systolic function and impaired LV relaxation indepen-
dently of age, gender, BMI, HTA and CAD. Addition of
HTA further impaired LV ejection fraction, fraction of
shortening and MAPSE and aggravated diastolic dysfunc-
tion. Concomitant CAD lowered furthermore LV fraction
of shortening and MAPSE. Second, DM patients without
CAD and HTA, had impaired longitudinal systolic and
longitudinal diastolic function (peak longitudinal strain
and peak longitudinal strain rate in early diastole), inde-
pendently from other cofounding variables, whereas cir-
cumferential systolic function was impaired only when
DM was associated with HTA or CAD. Third, even
asymptomatic DM patients without HTA and CAD and
with preserved EF (ie EF ≥55%) had increased LV mass
coupled with both systolic and diastolic impairment
compared to control. Forth, LV changes were not inde-
pendently related to DM duration, quality of metabolic
control and presence of microvascular complications.
Discovery of diabetic cardiomyopathy or subtle changes

in LV morphology and function in asymptomatic diabetic
patients without other risk factors is challenging in every-
day clinical practice. Two major hallmarks, diastolic dys-
function and cardiac hypertrophy in the absence of CAD
and HTA are suggested as cornerstones for diagnosis of
diabetic cardiomyopathy among patients with type 2 DM
[12], at least at the beginning of the disease. The stage-
adapted concept of diabetic cardiomyopathy with at least
four clinical phenotypes had been also proposed [9].

Table 4 Comparison of echocardiographic parameters between
control and subgroup of DM patients without HTA and CAD
(group I) and with preserved ejection fraction (EF ≥ 55%)

Control
(N = 80)

DM patients without HTA
and CAD, with EF≥ 55%
(N = 47)

p

LV EDD (cm) 5.03 ± 0.42 5.08 ± 0.43 0.576

LV ESD (cm) 3.43 ± 0.31 3.51 ± 0.41 0.259

LVM (g) 101.76 ±
11.41

117.86 ± 16.23 <0.001

LVM index (g/m2) 52.91 ± 4.29 60.31 ± 8.78 <0.001

LV concentric
remodeling, n (%)

24 (30) 21 (44.7) 0.095

LAV (ml) 23.34 ± 3.75 31.09 ± 6.27 <0.001

LAVI (ml/m2) 12.22 ± 2.24 15.95 ± 3.61 <0.001

LV ejection fraction
(%)

61.68 ± 5.49 59.19 ± 3.65 0.003

LV fraction of
shortening (%)

32.53 ± 3.75 31.19 ± 2.36 0.015

MAPSE (mm) 16.43 ± 1.56 15.41 ± 2.14 0.006

E/A ratio 1.30 ± 0.25 1.10 ± 0.31 <0.001

E deceleration time
(msec)

161.99 ±
21.80

201.28 ± 36.46 <0.001

IsoVolumic Relaxation
Time (msec)

84.35 ± 9.25 89.53 ± 12.65 0.017

Eprim (m/s) 0.1015 ± 0.03 0.08 ± 0.03 <0.001

E/Eprim 7.40 ± 1.42 10.00 ± 3.17 <0.001

S/D ratio 1.37 ± 0.16 1.35 ± 0.21 0.641

Vp (m/s) 0.75 ± 0.16 0.55 ± 0.13 <0.001

Myocardial
Performance Index

0.40 ± 0.05 0.48 ± 0.07 <0.001

Slong (%) 18.71 ± 1.86 17.18 ± 1.89 <0.001

Scirc (%) 21.53 ± 0.99 21.18 ± 1.90 0.237

SR longE (s−1) 1.25 ± 0.15 1.01 ± 0.16 <0.001

LV left ventricle, LV EDD LV end diastolic diameter, LV ESD LV end systolic
diameter, LVM LV mass, LVM index LV mass index, LAV left atrial volume, LAVI
left atrial volume index, MAPSEmitral annular plane systolic excursion, E early
mitral inflow wave, A late mitral inflow wave, Eprim early diastolic mitral annular
velocity by tissue Doppler imaging, S pulmonary venous flow systolic velocity,
D pulmonary venous flow diastolic velocity, Vp mitral flow propagation velocity,
Slong peak longitudinal strain, Scirc peak circumferential strain, SR long E early
diastolic longitudinal strain rate
Note: Longitudinal and circumferential strains are shown in absolute values
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Table 5 Multivariate analysis of predictors of LV phenotype, systolic and diastolic function

R2 Age Gender BMI DM HTA AP

LV EDD (cm) 0.188 B −0.001 −0.348 0.025 0.001 0.039 0.060

Beta −0.005 −0.363 0.213 0.001 0.035 0.054

p 0.921 <0.001 <0.001 0.994 0.598 0.418

LV ESD (cm) 0.204 B −0.002 −0.287 0.020 0.068 0.091 0.123

Beta −0.023 −0.342 0.191 0.073 0.093 0.126

p 0.666 <0.001 0.001 0.276 0.159 0.056

LVM (g) 0.258 B 0.195 −7.984 0.502 16.646 3.151 −0.196

Beta 0.061 −0.207 0.105 0.388 0.070 −0.004

p 0.238 <0.001 0.050 <0.001 0.268 0.945

LVM index (g/m2) 0.175 B 0.146 4.209 −0.060 7.861 0.232 −0.073

Beta 0.090 0.213 −0.024 0.357 0.010 −0.003

p 0.101 <0.001 0.664 <0.001 0.880 0.962

LV RWT 0.328 B 0.000 0.012 0.001 0.031 −0.013 −0.004

Beta 0.053 0.141 0.054 0.312 −0.128 −0.035

p 0.350 0.013 0.534 <0.001 0.066 0.612

LV concentric remodeling 0.101 Exp (B) 1.004 1.782 1.043 2.949 0.567 0.968

p 0.840 0.020 0.185 0.002 0.102 0.925

LAV (ml) 0.246 B 0.005 0.857 0.148 6.925 2.502 1.537

Beta 0.003 0.053 0.073 0.381 0.132 0.081

p 0.948 0.314 0.174 <0.001 0.040 0.205

LAVI (ml/m2) 0.326 B 0.015 3.293 0.143 3.510 0.676 0.658

Beta 0.020 0.372 0.081 0.373 0.064 0.062

p 0.725 <0.001 0.183 <0.001 0.366 0.380

LV ejection fraction (%) 0.244 B 0.027 −0.534 0.006 −5.383 −2.873 −2.466

Beta 0.024 −0.039 0.004 −0.351 −0.179 −0.153

p 0.647 0.458 0.945 <0.001 0.005 0.017

LV fraction of shortening (%) 0.255 B 0.027 −0.051 −0.028 −2.863 −2.186 −1.892

Beta 0.039 −0.006 −0.027 −0.308 −0.225 −0.195

p 0.456 0.906 0.619 <0.001 <0.001 0.002

MAPSE (mm) 0.283 B −0.007 −0.062 −0.030 −1.447 −1.073 −1.080

Beta −0.022 −0.015 −0.057 −0.313 −0.222 −0.224

p 0.668 0.768 0.273 <0.001 <0.001 <0.001

E/A 0.183 B 0.002 0.005 −0.004 −0.189 −0.154 −0.052

Beta 0.045 0.008 −0.057 −0.270 −0.211 −0.071

p 0.404 0.886 0.312 <0.001 0.002 0.285

E deceleration time (msec) 0.250 B 0.778 −4.100 0.242 34.427 9.797 6.221

Beta 0.122 −0.053 0.025 0.401 0.109 0.069

p 0.020 0.306 0.638 <0.001 0.087 0.276

Isovolumic Relaxation Time (msec) 0.150 B 0.110 −1.391 0.012 5.379 6.320 4.269

Beta 0.055 −1.035 0.004 0.199 0.223 0.151

p 0.324 0.301 0.945 0.004 0.001 0.027

Eprim (m/s) 0.150 B 0.000 0.002 0.000 −0.022 −0.009 −0.008

Beta 0.056 0.023 −0.039 −0.283 −0.113 −0.103

p 0.315 0.677 0.496 <0.001 0.097 0.129
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The impact of DM on LV mass has been extensively
investigated. Santra et al. in 135 normotensive individ-
uals, half with DM and half healthy, reported higher LV
mass in DM patients compared to controls [20]. In the
Framingham Heart Study, increased LV mass and wall
thickness was independently associated with DM, although
in multivariable analysis, significance was reached only in
females [21]. In the Cardiovascular Health Study, both in
male and females, increased LV mass was independently
linked with DM after adjustment for body weight, blood
pressure, heart rate and coronary disease [22]. Similar data
came from even larger trail, The Strong Heart Study [23].
Our results are in concordance with the results showing
concentric remodeling and LV hypertrophy associated
with DM, independently from age, obesity, HTA and
CAD. Although none of our patients with lone DM
(i.e. without HTA and CAD) had LV hypertrophy (i.e. LV
mass index above reference points), LV mass and LV
mass index were increased compared to matched control.
Increased LV mass is negative prognostic marker, an in-
dependent risk factor for sudden death and ventricular
arrhythmias and might contribute to increased cardiovas-
cular risk among DM patients.

Left atrial size is often referred to as HbA1c of diastolic
dysfunction and LV filling pressure. Our results support
the observation of Atas et al. who found among normo-
tensive DM patients without symptomatic cardiovascular
disease higher volume, impaired compliance and con-
tractility of the left atrium, even when LV geometry and
LV systolic function were within normal limits [24].
In our study, ejection fraction and fractional shortening

were significantly lower in DM groups compared to con-
trol, including patients with lone DM. Although EF in the
majority of these patients was above 55%, the mean value
of EF for the group was significantly lower compared to
matched control. Data regarding this issue in literature
are diverse. In retrospective SOLVD study (Studies of Left
Ventricular Dysfunction) that included 2821 participants
with asymptomatic LV dysfunction, significant interplay
between DM and ischemic cardiomyopathy as risks for
progression from asymptomatic LV dysfunction to symp-
tomatic heart failure was reported [25]. DM was an im-
portant risk factor for progression from asymptomatic
systolic dysfunction to symptomatic heart failure only
in patients with ischemic cardiomyopathy [25]. However,
Ehl et al. showed that DM reduces LV ejection fraction,

Table 5 Multivariate analysis of predictors of LV phenotype, systolic and diastolic function (Continued)

E/Eprim 0.183 B −0.021 −0.456 0.042 2.636 0.070 0.225

Beta −0.043 −0.075 0.056 0.388 0.010 0.032

p 0.434 0.168 0.321 <0.001 0.883 0.632

S/D ratio 0.106 B 0.002 −0.015 −0.012 −0.002 −0.090 −0.103

Beta 0.059 −0.032 −0.207 −0.003 −0.161 −0.184

p 0.299 0.571 <0.001 0.964 0.021 0.008

Vp (m/s) 0.401 B −0.001 −0.053 −0.004 −0.184 −0.033 −0.036

Beta −0.021 −0.164 −0.092 −0.510 −0.088 −0.095

p 0.651 <0.001 0.055 <0.001 0.125 0.096

Myocardial Performance Index 0.292 B 0.001 −0.013 0.001 0.069 0.037 0.031

Beta 0.027 −0.077 0.033 0.375 0.190 0.161

p 0.592 0.130 0.533 <0.001 0.002 0.010

Slong(%) 0.164 B −0.004 −0.347 −0.003 −1.350 −1.041 −1.088

Beta −0.009 −0.068 −0.004 −0.236 −0.174 −0.182

p 0.868 0.219 0.941 0.001 0.010 0.007

Scirc (%) 0.280 B 0.004 −0.155 −0.155 −0.082 −2.907 −2.096

Beta 0.009 −0.028 −0.165 −0.013 −0.446 −0.322

p 0.857 0.587 0.002 0.837 <0.001 <0.001

SRlongE (s−1) 0.447 B −0.001 0.006 −0.003 −0.232 −0.064 −0.024

Beta −0.046 0.015 −0.041 −0.572 −0.141 −0.054

p 0.388 0.775 0.457 <0.001 0.029 0.404

LV left ventricle, LV EDD LV end diastolic diameter, LV ESD LV end systolic diameter, LVM LV mass, LVM index LV mass index, LV RWT LV relative wall thickness, LAV
left atrial volume, LAVI left atrial volume index, MAPSE mitral annular plane systolic excursion, E early mitral inflow wave, A late mitral inflow wave, Eprim early
diastolic mitral annular velocity by tissue Doppler imaging, S pulmonary venous flow systolic velocity, D pulmonary venous flow diastolic velocity, Vp mitral flow
propagation velocity, Slong peak longitudinal strain, Scirc peak circumferential strain, SR long E early diastolic longitudinal strain rate
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estimated by SPECT, irrespectively of the presence and
extent of CAD and suggested that it might in part ex-
plain generally worse cardiac survival compared to non-
diabetics [26].
MAPSE in our study was significantly lower in patients

with lone DM compared to controls and decreased further
with CAD and HTA. While EF is more related to radial
LV function, MAPSE represents the global change of the
LV in the long-axis direction. Hu et al., reported that
reduced MAPSE is a consequence of longitudinal func-
tion impairment primarily caused by ischemia, fibrosis or
increased wall stress, the latter two frequently present in
diabetic cardiomyopathy [27].
In our study peak global longitudinal strain and early

diastolic longitudinal strain rate were impaired in DM
patients without HTA and CAD, compared to control.
In normotensive DM patients with normal coronary artery
and preserved EF, Zoroufian et al. also found decreased
longitudinal strain and higher LV dyssynchrony based on
segmental longitudinal strain [28]. Erannde at al. reported
longitudinal myocardial strain alteration associated with
LV remodeling during three-year follow-up among 154
asymptomatic type 2 DM patients [29]. Impaired longitu-
dinal LV systolic function in DM patients was confirmed
in many other studies using speckle tracking echocardiog-
raphy [30, 31]. Circumferential LV strain is less well ex-
plored among DM patients. In our study peak systolic
LV circumferential strain was impaired only when DM
was associated with HTA or CAD compared to control.
Hensel et al. found among children with DM type 1 and
higher blood sugar levels significantly increased LV circum-
ferential strain and strain rate in comparison to patients
with lower blood sugar levels or healthy controls [32].
Ernande et al. found by magnetic resonance imaging de-
creased not only longitudinal, but both radial and circum-
ferential strain among 37 patients with type 2 DM without
overt heart disease compared to 23 age-matched control
patients [33]. In our study, diabetic patients had impaired
peak cicumferencial strain compared to control only in
groups with associated hypertension or coronary artery
disease. Interestingly those DM patients had also more
impaired longitudinal strain, compared to patients with
lone DM. The explanation for these findings might be
the interaction between longitudinal and circumferen-
tial myofibers suggested by Cioffi et al. [34]. In short,
changes in the shortening of longitudinal fibres within
normal range are related to negligible variations in the
shortening of circumferential fibres. However, when
shortening of longitudinal fibers is within the range of
lowest values, minor reductions in longitudinal function
correspond to a significant decrease in the shortening of
circumferential fibres. Therefore, mild impairment in lon-
gitudinal function does not parallel a significant decrease
in circumferential shortening, while higher degree of

longitudinal systolic LV impairment causes increased stress
of circumferential fibres and speed up their dysfunction.
Diastolic dysfunction is an important component of

diabetic cardiomyopathy [35–40] and was reported to be
the first functional change and an important prognostic
parameter [27] with prevalence ranging from 47% [28]
to 54.33% [32]. Assessment of diastolic function is com-
plex multiparametric puzzle and we used several recom-
mended variables. Basically our results confirmed that
even lone DM is coupled with impaired LV relaxation
that becomes even more impaired in DM patients with
HTA. In our study E/Eprim ratio was significantly higher
in all DM patients, indicating increased LV filling pressure
among DM subjects. Compared to control S/D ratio was
significantly lower only in DM patients with CAD or
HTA, suggesting that decreased LA compliance and
increased LA pressure occur predominately when DM
is coupled with other cardiovascular comorbidities. Vp,
that correlates well with the time constant of LV relaxation,
was significantly lower in our DM patients compared to
controls. Although diastolic parameters of impaired relax-
ation are influenced by age and some of them by BMI, in
our study DM was independently from age, BMI, HTA and
CAD associated with impaired LV relaxation.
Diabetic cardiomyopathy among in type 2 DM is fre-

quently described as a typical heart failure with preserved
EF with diastolic dysfunction playing the major role [9, 12].
Our subgroup of DM patients without HTA and CAD
and with EF ≥55% had, beside impaired parameters of
diastolic function, also lower EF and lower longitu-
dinal systolic LV function (MAPSE and longitudinal sys-
tolic LV strain) compared to matched control. These
results confirm that DM is significant denominator of
systolic (especially longitudinal) function, even when LV
EF is preserved and that beside diastolic dysfunction,
impaired LV longitudinal systolic function might also
contribute to the development of heart failure with pre-
served EF. Indeed, Ernande et al. reported that systolic
LV strain alteration may exist despite normal diastolic
function, indicating that diastolic dysfunction should not
be always considered as the first marker of a preclinical
form of diabetic cardiomyopathy [36].
Myocardial performance index, a parameter of both

systolic and diastolic function, was significantly higher in
all our DM groups compared to control. MPI became
higher in DM patients with HTA compared to lone DM.
Pattoneri et al. found MPI significantly higher in DM
patients compared to control and suggested that this
index can be used to assess subclinical damage of systolic
and diastolic LV function [41].
In our study none of investigated clinical parameters,

including duration of DM, level of glycosylated hemoglobin,
presence of microalbuminuria and retinopathy, was inde-
pendent predictor of LV geometry, systolic and diastolic
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function. Although some data in literature are pointing to
potential relation between microalbuminuria and glycosy-
lated hemoglobin with diastolic dysfunction and subclinical
impairment of longitudinal LV systolic function among
normotensive DM patients, further studies are needed to
define clinical profile for the development of diabetic
cardiomyopathy [40, 42].

Conclusions
In conclusion, DM per se, in the absence of HTA and
CAD, is an independent determinator of LV phenotype
and function, especially LV mass, concentric LV remod-
eling, impaired LV relaxation and impaired longitudinal
systolic function, that can be appreciated by conven-
tional and speckle tracking echocardiography.
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