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Abstract Weconsider integration of functionswith values in a partially ordered vector
space, and two notions of extension of the space of integrable functions. Applying both
extensions to the space of real valued simple functions on a measure space leads to
the classical space of integrable functions.
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1 Introduction

For functions with values in a Banach space there exist several notions of integration.
The best known are the Bochner and Pettis integrals (see [1,2]). These have been
thoroughly studied, yielding a substantial theory (see Chapter III in the book by Hille
and Phillips [3]).

As far as we know, there is no notion of integration for functions with values in a
partially ordered vector space; not necessarily a σ -Dedekind complete Riesz space.
In this paper we present such a notion. The basic idea is the following. (Here, E is a
partially ordered vector space in which our integrals take their values.)
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In the style of Daniell [4] and Bourbaki [5, Chapter 3,4], we do not start from a
measure space but from a set X , a collection � of functions X → E , and a functional
ϕ : � → E , our “elementary integral”. We describe two procedures for extending ϕ

to a larger class of functions X → E . The first (see Sect. 3), the “vertical extension”,
is analogous to the usual construction of the Riemann integral, proceeding from the
space of simple functions. The second (see Sect. 4), the “lateral extension”, is related
to the improper Riemann integral.

In Sect. 5 we investigate what happens if one repeatedly applies those extension
procedures, without considering the space E to be σ -Dedekind complete or even
Archimedean. However, under some mild conditions on E one can embed E into a
σ -Dedekind complete space. In Sect. 6 we discuss the extensions procedures in the
larger space. Sections 7 and 8 treat the situation in which � consists of the sim-
ple E-valued functions on a measure space. (In Sect. 7 we have E = R.) In Sect. 9
we consider connections of our extensions with the Bochner and the Pettis integrals
for the case where E is a Banach lattice. In Sect. 10 we apply our extensions to
the Bochner integral. For more alternative approaches we refer to the discussion in
Sect. 11.

2 Some notation

N is {1, 2, 3, . . .}.
Let X be a set. We write P(X) for the set of subsets of X . For a subset A of X :

1A(x) =
{
1 if x ∈ A,

0 if x /∈ A.

As a shorthand notation we write 1 = 1X .
Let E be a vector space. We write x = (x1, x2, . . .) for functions x : N → E (i.e.,

elements of EN) and we define

c00[E] = {x ∈ EN : ∃N ∀n ≥ N [xn = 0]}, c00 = c00[R]

Wewrite c0 for the set of sequences in R that converge to 0, c for the set of convergent
sequences in R, �∞(X) for the set of bounded functions X → R, �∞ for �∞(N), and
�1 for the set of absolutely summable sequences in R. We write en for the element
1{n} of R

N.
For a complete σ -finite measure space (X,A, μ) we write L1(μ) for the space of

integrable functions, L1(μ) = L1(μ)/N where N denotes the space of functions
that are zero μ-a.e. Moreover we write L∞(μ) for the space of equivalence classes of
measurable functions that are bounded almost everywhere.

For a subset � of a partially ordered vector space �, we write �+ = { f ∈ � : f ≥
0}. If �,ϒ ⊂ � and f ≤ g for all f ∈ � and g ∈ ϒ we write � ≤ ϒ ; if � = { f } we
write f ≤ ϒ instead of { f } ≤ ϒ etc. For a sequence (hn)n∈N in a partially ordered
vector space we write hn ↓ 0 if h1 ≥ h2 ≥ h3 ≥ · · · and infn∈N hn = 0.
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3 The vertical extension

Throughout this section, E and � are partially ordered vector spaces, � ⊂ �

is a linear subspace and ϕ : � → E is order preserving and linear. Additional
assumptions are given in 3.14.

Definition 3.1 Define

�v =
{
f ∈ � : sup

σ∈�:σ≤ f
ϕ(σ) = inf

τ∈�:τ≥ f
ϕ(τ)

}
, (1)

and ϕv : �v → E by

ϕv( f ) = sup
σ∈�:σ≤ f

ϕ(σ) ( f ∈ �v). (2)

Note: If f ∈ � and there exist subsets �,ϒ ⊂ � with � ≤ f ≤ ϒ such that
supϕ(�) = inf ϕ(ϒ), then f ∈ �v and ϕv( f ) = inf ϕ(ϒ).

3.2 The following observations are elementary.

(a) � ⊂ �v and ϕv(τ ) = ϕ(τ) for all τ ∈ �.
(b) �v is a partially ordered vector space and ϕv is a linear order preserving map1.
(c) (�v)v = �v and (ϕv)v = ϕv .
(d) If 
 is a subset of �, then 
v ⊂ �v .

Of more importance to us than �v and ϕv is the following variation in which we
consider only countable subsets of �.

Definition 3.3 Let �V be the set consisting of those f in � for which there exist
countable sets �,ϒ ⊂ � with � ≤ f ≤ ϒ such that

supϕ(�) = inf ϕ(ϒ). (3)

From the remark following Definition 3.1 it follows that �V is a subset of �v and that
(for f and � as above) ϕv( f ) is equal to supϕ(�). We will write ϕV = ϕv|�V . We
call �V the vertical extension2 under ϕ of � and ϕV the vertical extension of ϕ.

In what follows we will only consider ϕV and not ϕv . However, most of the theory
presented can be developed similarly for ϕv . (For comments see 11.2.)

Example 3.4 �V is the set of Riemann integrable functions on [0, 1] and ϕV is the
Riemann integral in case E = R, � = R

[0,1] and � is the linear span of {1I :
I is an interval in [0, 1]} and ϕ is the Riemann integral on �.

3.5 In analogy with 3.2 we have the following.

1 This follows from the following fact: Let A, B ⊂ E . If A and B have suprema (infima) in E , then so
does A + B and sup(A + B) = sup A + sup B (inf(A + B) = inf A + inf B).
2 One could also define the vertical extension in case E ,�,� ⊂ � are partially ordered sets (not necessarily
vector spaces) and ϕ : � → E is an order preserving map.
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(a) � ⊂ �V and ϕV (τ ) = ϕ(τ) for all τ ∈ �.
(b) �V is a partially ordered vector space and ϕV is a linear order preserving map.
(c) (�V )V = �V and (ϕV )V = ϕV .
(d) If 
 ⊂ �, then 
V ⊂ �V .

Definition 3.6 Let D be a linear subspace of E . D is called mediated in E if the
following is true:

If A and B are countable subsets ofD such that inf A − B = 0 in E, then

A has an infimum (and consequently B has a supremum and inf A = sup B). (4)

D is mediated in E if and only if the following requirement (equivalent with order
completeness in the sense of [6], for D = E) is satisfied

If A and B are countable subsets of D such that inf A − B = 0 in E, then

there exists an h ∈ E with B ≤ h ≤ A. (5)

We say that E is mediated if E is mediated in itself.
Note: if D is mediated in E , then so is every linear subspace of D. Every σ -Dedekind
complete E is mediated, but so is R

2, ordered lexicographically. Also, c00 and c0 are
mediated in c, but c is not mediated.

With this the following lemma is a tautology.

Lemma 3.7 Suppose ϕ(�) is mediated in E. Let f ∈ �. Then f ∈ �V if and only if
there exist countable sets �,ϒ ⊂ � with � ≤ f ≤ ϒ such that

inf
τ∈ϒ,σ∈�

ϕ(τ − σ) = 0. (6)

The next example shows that �V is not necessarily a Riesz space even if E and �

are. However, see Corollary 3.10.

Example 3.8 Consider E = c, � = c × c, � = �∞ × �∞. Let ϕ : � → c be
given by ϕ( f, g) = f + g. For all f ∈ �∞ there are h1, h2, . . . ∈ c with hn ↓ f . It
follows that, �V = {( f, g) ∈ �∞ × �∞ : f + g ∈ c}. Note that �V is not a Riesz
space since for every f ∈ �∞ with f ≥ 0 and f /∈ c we have ( f,− f ) ∈ �V but
( f,− f )+ = ( f, 0) /∈ �V .

Lemma 3.9 Suppose ϕ(�) is mediated in E. Let � : � → � be an order preserving
map with the properties:

• if σ, τ ∈ � and σ ≤ τ , then 0 ≤ �(τ) − �(σ) ≤ τ − σ ;
• �(�) ⊂ �V .

Then �(�V ) ⊂ �V .
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Proof Let f ∈ �V and let �,ϒ ⊂ � be countable sets with � ≤ f ≤ ϒ satisfying
(6). Then �(�) ≤ �( f ) ≤ �(ϒ) and

inf
τ∈�(ϒ),σ∈�(�)

ϕ(τ − σ) = inf
τ∈ϒ,σ∈�

ϕ
(
�(τ) − �(σ)

) ≤ inf
τ∈ϒ,σ∈�

ϕ(τ − σ) = 0.

(7)

��
Corollary 3.10 Suppose that ϕ(�) is mediated in E. Suppose � is a Riesz space and
� is a Riesz subspace of �. Then so is �V .

Proof Apply Theorem 3.9 with �(ω) = ω+. ��
3.11 If � is a directed set, i.e., � = �+ −�+, then so is �V . Indeed, if f ∈ �V , then
there exist σ, τ ∈ �+ such that f ≥ τ − σ and thus f = ( f + σ) − σ ∈ �+

V − �+
V .

3.12 In the last part of this section we will consider a situation in which � has some
extra structure. But first we briefly consider the case where E is a Banach lattice with
σ -order continuous norm. As it turns out, such an E is mediated (see Theorem 4.24),
but is not necessarily σ -Dedekind complete (consider the Banach lattice C(X) where
X is the one-point compactification of an uncountable discrete space). For such E we
describe �V in terms of the norm.

Theorem 3.13 Let E be a Banach lattice with a σ -order continuous norm. Let � be
a Riesz space and � be a Riesz subspace of �. For f ∈ � we have: f ∈ �V if and
only if for every ε > 0 there exist σ, τ ∈ � with σ ≤ f ≤ τ and ‖ϕ(τ) − ϕ(σ)‖ < ε.

Proof First, assume f ∈ �V . As � is a Riesz subspace of � there exist sequences
(σn)n∈N and (τn)n∈N in � such that σn ↑, τn ↓,

σn ≤ f ≤ τn (n ∈ N), sup
n∈N

ϕ(σn) = inf
n∈N

ϕ(τn). (8)

Then ϕ(τn − σn) ↓ 0 in E , so ‖ϕ(τn) − ϕ(σn)‖ ↓ 0 and we are done.
The converse: For each n ∈ N, choose σn, τn ∈ � for which

σn ≤ f ≤ τn, ‖ϕ(τn) − ϕ(σn)‖ ≤ n−1. (9)

Setting σ ′
n = σ1 ∨ · · · ∨ σn and τ ′

n = τ1 ∧ · · · ∧ τn we have, for each n ∈ N

σ ′
n, τ

′
n ∈ �, σ ′

n ≤ f ≤ τ ′
n . (10)

If n ≥ N , then 0 ≤ σ ′
n − σ ′

N ≤ f − σN ≤ τN − σN , whence ‖ϕ(σ ′
n) − ϕ(σ ′

N )‖ ≤
‖ϕ(τN ) − ϕ(σN )‖ ≤ N−1. Thus, the sequence (ϕ(σ ′

n))n∈N converges in the sense of
the norm. So does (ϕ(τ ′

n))n∈N. Their limits are the same element a of E , and, since
σ ′
n ↑, τ ′

m ↓, we see that a = supn∈N ϕ(σ ′
n) = infm∈N ϕ(τ ′

m). ��
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3.14 In the rest of this section � is the collection FX of all maps of a set X into a
partially ordered vector space F.

3.15 A function g : X → R determines a multiplication operator f �→ g f in �. We
investigate the collection of all functions g for which

f ∈ �V �⇒ g f ∈ �V , (11)

and, for given f , the behaviour of the map g �→ ϕV (g f ).

3.16 For an algebra of subsets of X , A ⊂ P(X) we write [A] for the Riesz space
of all A-step functions, i.e., functions of the form

∑n
i=1 λi1Ai for n ∈ N, λi ∈ R,

Ai ∈ A for i ∈ {1, . . . , n}. Define the collection of functions [A]o by

[A]o ={ f ∈ R
X : there are (sn)n∈N in [A] and ( jn)n∈N in [A]+

for which | f − sn| ≤ jn and jn ↓ 0 pointwise}. (12)

(This [A]o is the vertical extension of [A] obtained by, in Definition 3.3, choosing
E = R

X ,� = R
X , � = [A], ϕ( f ) = f ( f ∈ �).) Note that [A] and [A]o

are Riesz spaces, and uniform limits of elements of [A] are in [A]o. (Actually, [A]o
is uniformly complete.) Furthermore, [A]o contains every bounded function f with
{x ∈ X : f (x) ≤ s} ∈ A for all s ∈ R. In case A is a σ -algebra, [A]o is precisely the
collection of all bounded A-measurable functions.

Lemma 3.17 LetA ⊂ P(X) be an algebra of subsets of a set X. Suppose that (gn)n∈N
is a sequence in [A]o for which gn ↓ 0 pointwise. Then there exists a sequence ( jn)n∈N
in [A] with jn ≥ gn and jn ↓ 0 pointwise.

Proof For all n ∈ N there exists a sequence (snk)k∈N in [A]with snk ≥ gn for all k ∈ N

and snk ↓k gn pointwise. Since (gn)n∈N is a decreasing sequence, we have smk ≥ gn
for all m ≤ n and all k ∈ N. Hence jn := infm,k≤n smk is an element in [A] with
jn ≥ gn . Clearly jn ↓ and infn∈N jn = infn∈N infm,k≤n smk = infn∈N infk∈N snk =
infn∈N gn = 0. ��

The following lemma is a consequence of Lemma 3.9.

Lemma 3.18 Define the algebra

A = {A ⊂ X : f 1A ∈ � for f ∈ �}. (13)

If ϕ(�) is mediated in E, then

f 1A ∈ �V ( f ∈ �V , A ∈ A). (14)

Definition 3.19 E is called Archimedean3 (see Peressini [8]) if for all a, b ∈ E the
following holds: if na ≤ b for all n ∈ N, then a ≤ 0.

3 In some places, e.g., Birkhoff [7], the term ‘integrally closed’ is used.
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Definition 3.20 A sequence (an)n∈N in E is called order convergent to an element
a ∈ E if there exists a sequence (hn)n∈N in E+ with hn ↓ 0 and −hn ≤ a − an ≤ hn .

Notation: an
o−→ a.

Theorem 3.21 Let A be as in (13). Suppose that E is Archimedean, � is directed and
ϕ(�) is mediated in E. Furthermore assume ϕ has the following continuity property.

IfA1, A2, . . . in A are such thatA1 ⊃ A2 ⊃ · · · and
⋂
n∈N

An = ∅,

then ϕ( f 1An ) ↓ 0 for all f ∈ �+. (15)

(a) g f ∈ �V for all g ∈ [A]o and all f ∈ �V .
(b) Let g ∈ [A]o and let (gn)n∈N be a sequence in [A]o for which there is a sequence

( jn)n∈N in [A]o+ with − jn ≤ gn − g ≤ jn and jn ↓ 0 pointwise. Then

ϕV (gn f )
o−→ ϕV (g f ) ( f ∈ �V ). (16)

(Order convergence in the sense of E.)

Proof We first prove the following:
(�) Let f ∈ �+

V . Let (gn)n∈N be a sequence in [A]o for which gn f ∈ �V for all
n ∈ N and gn ↓ 0 pointwise. Then

ϕV (gn f ) ↓ 0. (17)

Let σ ∈ �+, σ ≥ f . It follows from Lemma 3.17 that we may assume gn ∈ [A]
for all n ∈ N. For all n ∈ N we have 0 ≤ ϕV (gn f ) ≤ ϕV (gnσ), so we are done if
ϕV (gnσ) ↓ 0.

Let h ∈ E , h ≤ ϕV (gnσ) for all n ∈ N; we prove h ≤ 0.
Take ε > 0. For each n ∈ N, set An = {x ∈ X : gn(x) ≥ ε}. Then An ∈ A for

n ∈ N and A1 ⊃ A2 ⊃ · · · and ⋂
n∈N An = ∅. Putting M = ‖g1‖∞ we see that

gn ≤ ε1X + M1An (n ∈ N), (18)

whence

h ≤ ϕV (gnσ) ≤ εϕ(σ ) + Mϕ(1Anσ) (n ∈ N). (19)

By the continuity property of ϕ, h ≤ εϕ(σ ). As this is true for each ε > 0 and E is
Archimedean, we obtain h ≤ 0.

(a) Since �V is directed (see 3.11) it is sufficient to consider f ∈ �+
V . Let g ∈ [A]o.

There are sequences of step functions (hn)n∈N and ( jn)n∈N for which hn ↑ g, jn ↓ g
and thus jn − hn ↓ 0. By Lemma 3.18 hn f, jn f ∈ �V for all n ∈ N. Then hn f ≤
g f ≤ jn f for n ∈ N and infn∈N ϕV (( jn − hn) f ) = 0 by (�). By Lemmas 3.7 and
3.5(c) we obtain that g f ∈ �V .
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(b) It is sufficient to consider f ∈ �+
V . By (a) we may also assume g = 0. But then

(b) follows from (�). ��
Remark 3.22 Consider the situation in Theorem 3.21. Suppose B ⊂ A is a σ -algebra.
Then all boundedB-measurable functions lie in [A]o. If (gn)n∈N is a bounded sequence
of bounded B-measurable functions that converges pointwise to a function g, then the
condition of Theorem 3.21(b) is satisfied.

Remark 3.23 In the next section we will consider a situation similar to the one of
Theorem 3.21, in which A is replaced by a subset I that is closed under taking finite
intersections. We will also adapt the continuity property on ϕ (see 4.3).

4 The lateral extension

The construction described in Definition 3.3 is reminiscent of the Riemann integral
and, indeed, the Riemann integral is a special case (see Example 3.4).

In the present section we consider a type of extension, analogous to the improper
Riemann integral. One usually defines the improper integral of a function f on [0,∞)

to be

lim
s→∞

∫ s

0
f (x) dx, (20)

approximating the domain, not the values of f .
For our purposes a more convenient description of the same integral would be

∞∑
n=1

∫ an+1

an
f (x) dx, (21)

where 0 = a1 < a2 < · · · and an → ∞. Here the domain is split up into manageable
pieces.

Splitting up the domain is the basic idea we develop in this section. (This may
explain our use of the terms “vertical” and “lateral”.)

Throughout this section,X is a set,E and F are partially ordered vector spaces,
� is a directed4 linear subspace of FX, and ϕ is a linear order preserving map
� → E. (With � = FX , all considerations of Sect. 3 are applicable.)

Γ ⊂ FX

E

ϕ

Furthermore, I is a collection of subsets of X , closed under taking finite inter-
sections. See Definitions4.1 and 4.2 for two more assumptions.

4 For the construction of the lateral extension, one does not need to assume that � is directed. However, as
one can see later on in the construction, the only part of � that matters for the extension is �+ − �+.
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As a shorthand notation, if (an)n∈N is a sequence in E+ and {∑N
n=1 an : N ∈ N}

has a supremum, we denote this supremum by

∑
n

an . (22)

Definition 4.1 A disjoint sequence (An)n∈N of elements in I whose union is X is
called a partition If (An)n∈N and (Bn)n∈N are partitions and for all n ∈ N there exists
an m ∈ N for which Bn ⊂ Am , then (Bn)n∈N is called a refinement of (An)n∈N.
Note that if (An)n∈N and (Bn)n∈N are partitions then there exists a refinement of both
(An)n∈N and (Bn)n∈N (e.g., a partition that consists of all sets of the form An ∩ Bm

with n,m ∈ N).We assume that there exists at least one partition.

Definition 4.2 We call a linear subspace � of FX stable (under I) if

f 1A ∈ � ( f ∈ �, A ∈ I). (23)

If � is a stable space, then a linear and order preserving map ω : � → E is said to be
laterally extendable if for all partitions (An)n∈N

ω( f ) =
∑
n

ω( f 1An ) (see(22)) ( f ∈ �+). (24)

We assume � is stable and ϕ is laterally extendable.

4.3 In the situation of Theorem 3.21 we can choose I = A; then (15) is precisely
the lateral extendability of ϕ.

Example 4.4 For any partially ordered vector space F and a linear subspace E ⊂ F ,
the following choices lead to a system fulfilling all of our assumptions: X = N,
I = P(N), � = c00[E] (see Sect. 2), ϕ( f ) = ∑

n∈N f (n) for f ∈ �.

Definition 4.5 Let � be a stable subspace of FX and let ω : � → E be a laterally
extendable linear order preserving map. Let (An)n∈N be a partition, and f : X → F .
We call (An)n∈N a partition for f (occasionally �-partition for f ) if

f 1An ∈ � (n ∈ N). (25)

A function f : X → F is said to be a partially in � if there exists a partition for f .
For f : X → F+, (An)n∈N is called a ω-partition for f if it is a partition for f and if

∑
n

ω( f 1An ) exists. (26)

A function f : X → F+ that is partially in � is called laterally ω-integrable if there
exists a ω-partition for f .
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Example 4.6 Consider the situation of Example 4.4. A function x : N → F is partially
in � if and only if xn ∈ E for every n ∈ N. If x ≥ 0, then x is laterally integrable if
xn ∈ E for every n ∈ N and

∑
n xn exists in E .

4.7 Naturally, we wish to use (26) to define an integral for f . For that we have to
show the supremum to be independent of the choice of the partition (An)n∈N.

Lemma 4.8 (a) Let f : X → F and let (An)n∈N be a partition for f . If (Bn)n∈N is
a partition that is a refinement of (An)n∈N, then (Bn)n∈N is a partition for f .

(b) Let f : X → F+ and let (An)n∈N and (Bm)m∈N be partitions for f . Then the sets

{
N∑

n=1

ϕ( f 1An ) : N ∈ N

}
and

{
M∑

m=1

ϕ( f 1Bm ) : M ∈ N

}
(27)

have the same upper bounds in E.

Proof We leave the proof of (a) to the reader. Let u be an upper bound for the
set {∑N

n=1 ϕ( f 1An ) : N ∈ N}; it suffices to prove that u is an upper bound for
{∑M

m=1 ϕ( f 1Bm ) : M ∈ N}. Take M ∈ N; we are done if u ≥ ∑M
m=1 ϕ( f 1Bm ),

i.e., if u ≥ ϕ( f 1B) where B = B1 ∪ · · · ∪ BM . But f 1B ∈ � so ϕ( f 1B) =∑
n ϕ( f 1B1An ) = supN∈N

∑N
n=1 ϕ( f 1B1An ), whereas, for each N ∈ N

N∑
n=1

ϕ( f 1B1An ) ≤
N∑

n=1

ϕ( f 1An ) ≤ u. (28)

��
Theorem 4.9 Let f : X → F+ be laterally ϕ-integrable. Then every partition for f
is a ϕ-partition for f . There exists an a ∈ E+ such that for every partition (An)n∈N
for f ,

a =
∑
n

ϕ( f 1An ). (29)

If f ∈ �+, then a = ϕ( f ).

Proof This is a consequence of Lemma 4.8(b). ��
Definition 4.10 For a laterally ϕ-integrable f : X → F+ we call the element a ∈ E+
for which (29) holds its ϕL-integral and denote it by ϕL( f ). For the moment, denote
by (�+)L the set of all laterally ϕ-integrable functions f : X → F+. We proceed to
extend ϕL to a linear function defined on the linear hull of (�+)L , see Definition 4.14.

4.11 The assumptions that � is stable and ϕ is laterally extendable are crucial for
the fact that the ϕL -integral of a laterally ϕ-integrable function is independent of the
choice of a ϕ-partition (see Lemma 4.8(b)).
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4.12 We will use the following rules for a partially ordered vector space E :

an ↑ a, bn ↑ b �⇒ an + bn ↑ a + b (an, bn, a, b ∈ E), (30)

an ↑, bn ↑ b, an + bn ↑ a + b �⇒ an ↑ a (an, bn, a, b ∈ E). (31)

4.13 (Extending ϕL) Define �L = { f1 − f2 : f1, f2 ∈ (�+)L}.
Step 1 Let f, g ∈ (�+)L . There exists an (An)n∈N that is a ϕ-partition for f and for
g. By defining aN = ∑N

n=1 ϕ( f 1An ) and bN = ∑N
n=1 ϕ(g1An ) for N ∈ N, by (30)

we obtain f + g ∈ (�+)L with ϕL( f + g) = ϕL( f ) + ϕL(g).
Consequently, �L is a vector space, containing (�+)L .

Step 2 If g1, g2, h1, h2 ∈ (�+)L and g1 − g2 = h1 − h2, then g1 + h2 = g2 + h1 so
that, by the above, ϕL(g1) − ϕL(h1) = ϕL(g2) − ϕL(h2).

Hence, ϕL extends to a linear function �L → E (also denoted by ϕL ).
Step 3 Let f, g ∈ (�+)L and f ≤ g. By defining aN and bN as in step 1 and
cN = bN − aN , by (31) we infer that g − f ∈ (�+)L .

Thus, if f ∈ �L and f ≥ 0, then f ∈ (�+)L . Briefly: (�+)L is �+
L , the positive

part of �L .

Definition 4.14 A function f : X → F is called laterally ϕ-integrable if f ∈ �L

(see 4.13), i.e., if there exist f1, f2 ∈ (�+)L for which f = f1 − f2. The ϕL -integral
of such a function is defined by ϕL( f ) = ϕL( f1) − ϕL( f2).

ϕL is a function�L → E and is called the lateral extension of ϕ. The set of laterally
ϕ-integrable functions, �L , is called the lateral extension of � under ϕ.

Note that, thanks to Step 3 of 4.13, this definition of “laterally ϕ-integrable” does
not conflict with the one given in Definition 4.10.

4.15 Like for the vertical extension, we have the following elementary observations:

(a) � ⊂ �L
5 and ϕL(τ ) = ϕ(τ) for all τ ∈ �.

(b) �L is a directed partially ordered vector space and ϕL is a linear order preserving
function on �L .

(c) If 
 is a directed linear subspace of FX and 
 ⊂ �, then 
L ⊂ �L .

((�L)L is not so easy. See Theorem 4.18 and Example 4.19.)

In case E is a Banach lattice with σ -order continuous norm, for �+
L we have an

analogue of Theorem 3.13.

Lemma 4.16 Suppose E is a Banach lattice with σ -order continuous norm. Let f :
X → F+. Then f lies in �+

L if and only if there exists a �-partition (An)n∈N for f
such that the sequence (ϕ( f 1An ))n∈N has a sum in the sense of the norm, in which
case ϕL( f ) is this sum.

Proof The “only if” part follows by definition of �L and the σ -order continuity of the
norm. For the “if” part; this follows from the fact that if an ↑ and ‖an − a‖ → 0 for
a, a1, a2, . . . ∈ E , then an ↑ a. ��

5 Note that for this inclusion it is necessary that � be directed.
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We will now investigate conditions under which ϕL and ϕV themselves are laterally
extendable. (For that, their domains have to be able to play the role of �, so they have
to be stable.) First a useful lemma:

Lemma 4.17 Let f ∈ �L . Then there exists a partition (An)n∈N for f such that every
refinement (Bm)m∈N of it (is a partition for f and) has this property:

h ∈ E, h ≥
M∑

m=1

ϕ( f 1Bm ) for all M ∈ N �⇒ h ≥ ϕL( f ). (32)

Proof Write f = f1 − f2 with f1, f2 ∈ �+
L . Let (An)n∈N be a partition for f1 and f2,

and let (Bm)m∈N be a refinement of (An)n∈N. Note that (Bm)m∈N is a partition for f1
and f2. Let h be an upper bound for {∑M

m=1 ϕ( f 1Bm ) : M ∈ N} in E . For all M ∈ N,

h +
M∑

m=1

ϕ( f21Bm ) ≥
M∑

m=1

ϕ( f 1Bm ) +
M∑

m=1

ϕ( f21Bm ) =
M∑

m=1

ϕ( f11Bm ). (33)

Taking the supremum over M yields h + ϕL( f2) ≥ ϕL( f1), i.e., h ≥ ϕL( f ). ��
Theorem 4.18 (a) Suppose �L is stable. Then ϕL is laterally extendable, i.e.,

ϕL( f ) =
∑
n

ϕL( f 1An ) (34)

for every f ∈ �+
L and every ϕL-partition (An)n∈N for f . Therefore (�L)L = �L

and (ϕL)L = ϕL .
(b) Suppose �V is stable. Then ϕV is laterally extendable. (For (�V )L see Sect.5.)

Proof (a) Let f ∈ �+
L and let (Bn)n∈N be a ϕL -partition for f . Let (An)n∈N be the

partition for f as in Lemma 4.17. Then form a common refinement of (Bn)n∈N
and (An)n∈N and apply Lemma 4.17.

(b) Let f ∈ �+
V and let (An)n∈N be a partition. Let h ∈ E, h ≥ ∑N

n=1 ϕV ( f 1An ) for
every N ∈ N. We wish to prove h ≥ ϕV ( f ), which will be the case if h ≥ ϕ(σ)

for every σ ∈ � with σ ≤ f . For that apply Lemma 4.17 to σ .
��

The following shows that �L may not be stable, in which case there is no (�L)L .
(However, see Theorem 4.25(a).)

Example 4.19 Consider the situation in Example 4.4 and assume there is an a : N →
E+ such that

∑
n an exists in F and

∑
n a2n does not (e.g. E = F = c and an =

en = 1{n}). By Example 4.6 a lies in �L but b = (0, a2, 0, a4, . . .) does not; but
b = a1{2,4,6,...} and {2, 4, 6, . . .} ∈ I. (Actually, the existence of such an a : N → E+
is equivalent to E not being “splitting” in F ; see Definition 4.21 and (36).)

Remark 4.20 �V may not be stable either. With E = c, F = �∞, X = {1, 2},
� = c × c and ϕ( f, g) = f + g (as in Example 3.8), the space �V is not stable for
I = P(X).
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Definition 4.21 Let D be a linear subspace of E . D is called splitting in E if the
following is true:

If(an)n∈N and (bn)n∈N are sequences in Dwith 0 ≤ an ≤ bn for n ∈ N

and
∑

n
bn exists in E, then so does

∑
n
an . (35)

It is not difficult to see that D is splitting in E if and only if

If(an)n∈N is a sequence in D+ and
∑

n
an exists in E,

then so does
∑

n
1A(n)an for all A ⊂ N. (36)

If D is splitting in E , then so is every linear subspace of D. If E is σ -Dedekind
complete, then E is also splitting. More generally, D is splitting in E if every bounded
increasing sequence in D has a supremum in E . Also, R

2 with the lexicographical
ordering is splitting.

In Theorem 4.25 we will see what is the use of this concept. First, we have a look
at the connection between “splitting” and “mediated”.

Lemma 4.22 Suppose D is a linear subspace of E. Consider the condition:

For all sequences(an)n∈N, (bn)n∈NinD :
an ↓, bn ↑, inf

n∈N
an − bn = 0 �⇒ inf

n∈N
an = sup

n∈N
bn . (37)

(The infima and suprema in (37) are to be taken in E.) If D is either splitting or
mediated in E, then (37) holds. Conversely, (37) implies that D is splitting if D = E,
whereas (37) implies that D is mediated in E if E is a Riesz space and D is a Riesz
subspace of E.

Proof It will be clear that mediatedness implies (37) and vice versa if E is a Riesz
space and D a Riesz subspace of E .

If D is splitting in E and an ↓, bn ↑ and inf an − bn = 0, then
∑

n bn+1 − bn +
an − an+1 = a1 − b1. Hence (37) holds.

Suppose D = E and (37) holds. Let (an)n∈N and (bn)n∈N be sequences in D with
0 ≤ an ≤ bn for n ∈ N such that

∑
n bn exists. Let z = ∑

n bn , An = ∑n
i=1 ai ,

Cn = ∑n
i=1 bi − ai for n ∈ N. Then An ↑,Cn ↑ and z − Cn − An ↓ 0 (note that

z − Cn ∈ D). Hence supn∈N An = ∑
n an exists. ��

4.23 (a) If E is a Riesz space, then every splitting Riesz subspace is mediated in E .
(b) If E is mediated, then it is splitting. The converse is also true if E is a Riesz space.
(c) c00 is mediated in c, not splitting in c (with D = E = c also (37) is not satisfied).
(d) If D is the space of all polynomial functions on [0, 1] with degree at most 2 and

E = C[0, 1], then D is splitting in E , but not mediated in E . (Actually, D is
splitting, but not mediated.)
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D is splitting (and satisfies (37) with E = D): if un ∈ E+, un ↑ and un ≤ 1,
then |un(x) − un(y)| ≤ 4|x − y| as can be concluded from the postscript in
Example 5.15. Therefore the pointwise supremum is continuous. It is even in D
since un(x) = anx2 + bnx + cn , where an, bn, cn are linear combinations of
un(0), un( 12 ), un(1) (see also the postscript in Example 5.15).
D is not mediated: for example one can find countable A, B ⊂ E for which 1[ 12 ,1]
is pointwise the infimum of A and 1( 12 ,1] is pointwise the supremum of B, then
inf A − B = 0, but there is no h ∈ E with B ≤ h ≤ A.

Theorem 4.24 Let E be a Banach lattice with σ -order continuous norm. Then E is
both mediated and splitting.

Proof Suppose an, bn ∈ E with 0 ≤ an ≤ bn for n ∈ N. Suppose that {∑N
n=1 bn :

N ∈ N} has a supremum s in E . We prove that {∑N
n=1 an : N ∈ N} has a supremum in

E . Since the norm is σ -order continuous, we have ‖s − ∑N
n=1 bn‖ → 0. In particular

we get that for all ε > 0 there exists an N ∈ N such that for all n,m ≥ N with
m > n we have ‖∑m

i=n bi‖ < ε and thus ‖∑m
i=n ai‖ < ε. From this we infer that

(
∑N

n=1 an)N∈N converges in norm. Therefore it has a supremum in E . Thus E is
splitting. By Lemma 4.22 E is mediated. ��
Theorem 4.25 (a) ϕ(�) splitting in E �⇒�L is stable andϕL is laterally extendable.
(b) ϕ(�) mediated in E �⇒ �V is stable and ϕV is laterally extendable.
(c) ϕ(�) splitting in E and ϕL(�L) mediated in E �⇒ (�L)V is stable and (ϕL)V is

laterally extendable.

Proof (a) Let f ∈ �L , B ∈ I; we prove f 1B ∈ �L . (This is sufficient by Theorem
4.18(a).) Without loss of generality, assume f ≥ 0. Choose a ϕ-partition (An)n∈N
for f . Now apply (35) to

an := ϕ( f 1An∩B), bn := ϕ( f 1An ) (n ∈ N). (38)

(b) follows from Lemma 3.18 and Theorem 4.18(b).
(c) By (a) �L is stable and ϕL is laterally extendable. Hence we can apply (b) to �L

and ϕL (instead of � and ϕ) and obtain (c).
��

4.26 To some extent, the assumption of Theorem 4.25(a) is minimal.
Indeed, in the situation of Example 4.4, we see that �L is stable if and only if E

(which is ϕ(�)) is splitting in F (see (36)).

In Theorem 4.25(c) we assumed that ϕL(�L) (and thus also ϕ(�)) was mediated
in E . It may happen that ϕ(�) is mediated in E , but ϕL(�L) is not, as Example 4.27
illustrates. However, splitting is preserved under the lateral extension and mediation
is preserved under the vertical extension, see Theorem 4.28.

Example 4.27 Let X = N, I = P(N), E = F = c. Let� = c00[c00] (see Sect. 2) and
ϕ : � → E be given by ϕ( f ) = ∑

n∈N f (n). Then ϕ(�) = c00, which is mediated in
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c. A function f : N → c is partially in � if and only if f (N) ⊂ c00. For x ∈ c+ the
function given by f (n) = x(n)1{n} for n ∈ N lies in �L , and ϕL( f ) = x . It follows
that ϕL(�L) is c, which is not mediated in c.

Theorem 4.28 (a) If ϕ(�) is splitting in E, then so is ϕL(�L).
(b) If ϕ(�) is mediated in E, then so is ϕV (�V ).

Proof (a) Suppose an ∈ ϕL(�L)+ for n ∈ N and
∑

n an exists. Let A ⊂ N. For all
n ∈ N there exist bn1, bn2, . . . ∈ ϕ(�)+ with an = ∑

m bnm . Hence
∑

n an =∑
n,m bnm and so

∑
n,m 1A×N(n,m)bnm = ∑

n 1A(n)an exists in E .
(b) Suppose A, B ⊂ ϕV (�V ) are countable sets with inf A−B = 0. For all a ∈ A and

b ∈ B there exist countable setsϒa,�b ⊂ � with a = inf ϕ(ϒa), b = supϕ(�b).
Then inf ϕ(

⋃
a∈A ϒa − ⋃

b∈B �b) = 0 and thus inf A = inf ϕ(
⋃

a∈A ϒa) =
supϕ(

⋃
b∈B �b) = sup B.

��
4.29 For a Riesz space F we will now investigate under which conditions the space
�L is a Riesz subspace of FX . The next example shows that even if E is a Riesz space
and � is a Riesz subspace of FX , �L may not be one. However, see Theorem 4.32.

Example 4.30 Let a, b be as in Example 4.19; this time put d = (0, a1 + a2, 0, a3 +
a4, . . .). Then a, d ∈ �L but a ∧ d = b /∈ �L .

Hence, in Example 4.4, if F is a Riesz space and E is not splitting in F , then �L is
not a Riesz subspace of FX . As we will see in Theorem 4.32, considering the situation
of Example 4.4: �L is a Riesz subspace of FX if and only if E is splitting in F .

Lemma 4.31 Let f : X → F be partially in �.

(a) If f is in �LV , then f ∈ �L .
(b) Suppose ϕ(�) is splitting in E. If g ≤ f ≤ h for certain g, h ∈ �L , then f ∈ �L .

Proof (a) By the definition of �LV there exists a ρ ∈ �L with ρ ≤ f . Then f − ρ

is partially in �, f − ρ ∈ �LV , and we are done if f − ρ ∈ �L . Hence we may
assume f ≥ 0.
Let (An)n∈N be a partition for f ; we prove

∑
n ϕ( f 1An ) = ϕLV ( f ). It will be

clear that
∑N

n=1 ϕ( f 1An ) ≤ ϕLV ( f ) for N ∈ N. For the reverse inequality let
h ∈ E be an upper bound for {∑N

n=1 ϕ( f 1An ) : N ∈ N}. It suffices to show that
h must be an upper bound for {ϕL(σ ) : σ ∈ �L , σ ≤ f }.
Take a σ ∈ �L with σ ≤ f . If (Bn)n∈N is any refinement of (An)n∈N that is a ϕ-
partition forσ , then for allM ∈ N there exists an N ∈ Nwith B1∪· · ·∪BM ⊂ A1∪
· · · ∪ AN , so that h ≥ ∑N

n=1 ϕ( f 1An ) ≥ ∑M
m=1 ϕ( f 1Bm ) ≥ ∑M

m=1 ϕ(σ1Bm ). It
follows from Lemma 4.17, applied to σ , that the partition (Bm)m∈N can be chosen
so that this implies h ≥ ϕL(σ ).

(b) As h − g ∈ �L and 0 ≤ f − g ≤ h − g, we may (and do) assume g = 0. Let
(An)n∈N be a partition for f that is also a ϕ-partition for h. Now just apply (35) to

an := ϕ( f 1An ), bn := ϕ(h1An ) (n ∈ N). (39)

��
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As a consequence of Lemma 4.31:

Theorem 4.32 Let F be a Riesz space and� be a Riesz subspace of F X . The functions
X → F that are partially in � form a Riesz space, �. If ϕ(�) is splitting in E, then
�L is a Riesz ideal in �, in particular, �L is a Riesz space.

In the classical integration theory and the Bochner integration theory one starts
with considering a measure space (X,A, μ) and simple functions on X with values
in R or in a Banach space. One defines an integral on these simple functions using the
measure and extends this integral to a larger class of integrable functions. In 4.33 we
will follow a similar procedure, replacing R or the Banach space with E and applying
the lateral extension. In Sect. 8 we will treat such extensions in more detail.

4.33 Suppose (X,A, μ) is a σ -finite complete measure space and suppose E is
directed. Let F = E . For I we choose {A ∈ A : μ(A) < ∞}. The σ -finiteness of μ

guarantees the existence of a partition (and vice versa).
We say that a function f : X → E is simple if there exist N ∈ N, a1, . . . , aN ∈ E ,

A1, . . . , AN ∈ I for which

f =
N∑

n=1

an1An . (40)

The simple functions form a stable directed linear subspace S of EX , which is a Riesz
subspace of EX in case E is a Riesz space.

For a given f in S one can choose a representation (40) inwhich the sets A1, . . . , AN

are pairwise disjoint; thanks to the σ -finiteness of μ one can choose them in such a
way that they occur in a partition (An)n∈N.

This S is going to be our �. We define ϕ : S → E by

ϕ( f ) =
N∑

n=1

μ(An)an, (41)

where f, N , An, an are as in (40). The σ -additivity of μ is (necessary and) sufficient
to show that S is laterally extendable.

A function f : X → E is partially in S if and only if there exist a partition (An)n∈N
and a sequence (an)n∈N in E for which

f =
∑
n∈N

an1An . (42)

An f as in (42) with f ≥ 0 that is partially in S is an element of SL if and only if∑
n μ(An)an exists in E . (See Theorem 4.9.)

5 Combining vertical and lateral extensions

In this section E,F,X,I, �, ϕ are as in Sect. 4.
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As we have seen, the lateral extension differs from the vertical extension in the
sense that the vertical extensions of � and ϕ can always be made, but for lateral
extension we had to assume the space � to be stable and ϕ to be laterally extendable
(see 4.11). In this section we investigate when one can make a lateral extension of
another (say vertical) extension. Furthermore we will compare different extensions
and combinations of extensions.

Instead of (�L)V and ((�L)V )L we write �LV and �LV L ; similarly ϕLV = (ϕL)V
etc.

5.1 By Theorem 4.18 the following holds for a stable directed linear subspace � of
FX and a laterally extendable order preserving linear map ω : � → E : If �L is
stable, then ωL is laterally extendable (and so �LL exists). If �V is stable, then ωV

is laterally extendable (and so �V L exists). We will use these facts without explicit
mention.

5.2 The following statements follow from the definitions and theorems we have:

(a) �V ⊂ �LV and ϕLV = ϕV on �V .
(b) �L ⊂ �LV and ϕLV = ϕL on �L .
(c) ϕV = ϕL on �L ∩ �V .

For (d), (e) and (f) let �V be stable.
(d) �LV ⊂ �V LV and ϕV LV = ϕLV on �LV .
(e) �V L ⊂ �V LV and ϕV LV = ϕV L on �V L .
(f) ϕLV = ϕV L on �LV ∩ �V L .

Observe that as a consequence of (a) and (b): if f ∈ �L and g ∈ �V and f ≤ g (or
f ≥ g), then ϕL( f ) ≤ ϕV (g) (or ϕL( f ) ≥ ϕV (g)). Moreover, as a consequence of
(c) and (d); if �V is stable: if f ∈ �LV and g ∈ �V LV and f ≤ g (or f ≥ g), then
ϕLV ( f ) ≤ ϕV LV (g) (or ϕLV ( f ) ≥ ϕV LV (g)).

5.3 Note that if � is stable and ϕ is laterally extendable, then we can extend � to
�V , �L and �LV . If, moreover, �V is stable, then we can also extend � to �V L and
�V LV . However, “more stability”will not give us larger extensions than�V LV . Indeed,
if �LV is stable then �LV ⊂ �LV L = �V L (see Theorem 5.8). If moreover �V LV is
stable, then even �V LV L = �V LV = �V L .

Lemma 5.4 (a) If f ∈ �+
LV , then there exists a countable � ⊂ � with � ≤ f and

ϕLV ( f ) = supϕ(�).
(b) If �V is stable and f ∈ �+

V L , then there exists a countable � ⊂ � with � ≤ f
and ϕV L( f ) = supϕ(�).

Proof (a) There exist σ1, σ2, . . . in �L with σn ≤ f for all n ∈ N and
supn∈N ϕL(σn) = ϕLV ( f ). Hence, we are done if for every σ in �L with σ ≤ f
there is a countable set �σ ⊂ {ρ ∈ � : ρ ≤ f } such that every upper bound
for ϕ(�σ ) majorizes ϕL(σ ). But that is not hard to prove. For such a σ , by
Lemma 4.17 there exists a partition (Bm)m∈N for which (32) holds. Now let �σ

be {∑M
m=1 σ1Bm : M ∈ N}.

(b) Suppose �V is stable. Let (An)n∈N be a ϕV -partition for f . Then the set � f =
{∑N

n=1 f 1An : N ∈ N} is a countable subset of �V and supϕV (� f ) = ϕV L( f ).
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Moreover, for every N ∈ N there is a countable set �N ⊂ {σ ∈ � : σ ≤∑N
n=1 f 1An } for which supϕ(�N ) = ϕV (

∑N
n=1 f 1An ). Take � = ⋃

N∈N �N .
��

Theorem 5.5 For (b), (c), (d) and (e) let �V be stable and f be partially in �V .

(a) If f ∈ �LV , then 6

f ∈ �V ⇐⇒ there exist π, ρ ∈ � with π ≤ f ≤ ρ.

(b) If f ∈ �V L , then

f ∈ �V ⇐⇒ there exist π, ρ ∈ � with π ≤ f ≤ ρ 6.

(c) f ∈ �LV ⇐⇒ f ∈ �V L and there exist π, ρ ∈ �L with π ≤ f ≤ ρ.

(d) If ϕV (�V ) is splitting in E, then

f ∈ �V L ⇐⇒ there exist π, ρ ∈ �V L with π ≤ f ≤ ρ.

(e) If ϕV (�V ) is splitting in E, then

f ∈ �V L ∩ �LV ⇐⇒ there exist π, ρ ∈ �L with π ≤ f ≤ ρ.

Proof The proofs of (a) and (b) are similar to the proof of (c) and therefore omitted.

(c) ⇐: By Lemma 5.4 (b) there exist countable sets �,ϒ ⊂ � with � ≤ f − π and
ϒ ≤ ρ − f for which supϕ(�) = ϕV L( f − π) and supϕ(ϒ) = ϕV L(ρ − f ).
Then � + π and ρ − ϒ are countable subsets of �L with � + π ≤ f ≤ ρ − ϒ

and supϕL(� + π) = ϕV L( f ) = inf ϕL(ρ − ϒ). Hence f ∈ �LV .
⇒: Let f ∈ �LV and be partially in �V . There exists a π ∈ �L for which
f − π ∈ �+

LV , hence we may assume f ≥ 0. Let (An)n∈N be a �V -partition
for f , i.e., f 1An ∈ �V and thus ϕLV ( f 1An ) = ϕV ( f 1An ) for all n ∈ N (see
5.2(a)). Then ϕLV ( f ) ≥ ∑N

n=1 ϕV ( f 1An ) for all N ∈ N. Let h ∈ E be such that
h ≥ ∑N

n=1 ϕV ( f 1An ) for all N ∈ N. From Lemma 4.17 we infer that h ≥ ϕL(σ )

for every σ ∈ �L with σ ≤ f . We conclude that
∑

n ϕV ( f 1An ) = ϕLV ( f ), i.e.,
f ∈ �V L .

(d) ⇐: We may assume π = 0. Let (An)n∈N be a ϕV -partition for ρ with f 1An ∈ �V

for all n ∈ N. Then 0 ≤ ϕV ( f 1An ) ≤ ϕV (ρ1An ) for all n ∈ N and
∑

n ϕV (ρ1An )

exists in E . Hence, so does
∑

n ϕV ( f 1An ), i.e., f ∈ �V L .
(e) is a consequence of (c) and (d).

��
In the following example all functions in �LV are partially in �V .

6 By the definition of ideal in [9] or [10] (note that �V is directed) this means that �V is the smallest ideal
in �LV (and for (b); in �V L ) that contains �.
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Example 5.6 Consider X = N, I = P(N), E = F ; let D be a linear subspace of E
and let DV be the vertical extension of D with respect to the inclusion map D → E .
Let � = c00[D] and ϕ : � → E be ϕ( f ) = ∑

n∈N f (n). Then �V = c00[DV ].
Let f ∈ �LV . We will show that f (k) ∈ DV and thus that f is partially in �V . Let
σn, τn ∈ �L be such that σn ≤ f ≤ τn and infn∈N ϕ(τn) = supn∈N ϕ(σn). Then
infn∈N(τn(k) − σn(k)) ≤ infn∈N ϕ(τn − σn) = 0. Since σn(k), τn(k) ∈ D for all
n ∈ N, we have f (k) ∈ DV .

Thus every f ∈ �LV is partially in �V . Since �V is stable, by Theorem 5.5(c) we
conclude that �LV ⊂ �V L .

Lemma 5.7 Suppose that �LV is stable. Then every f ∈ �LV is partially in �V .

Proof Let f ∈ �LV and let π, ρ ∈ �L be such that π ≤ f ≤ ρ. Let (An)n∈N be a
ϕ-partition for both π and ρ. Then f 1An ∈ �LV and π1An ≤ f 1An ≤ ρ1An for all
n ∈ N. By Theorem 5.5(a) we conclude that f 1An ∈ �V . ��
Theorem 5.8 Suppose that �V and �LV are stable. Then �LV ⊂ �V L = �LV L .
Write � = �V L and ϕ = ϕV L . If � is stable, then �L = � and ϕL = ϕ. If �V is
stable, then �V = � and ϕV = ϕ.

In particular, if ϕL(�L) is mediated in E and ϕV (�V ) is splitting in E, then �V ,
�LV and �V L are stable (see Theorem 4.25) and thus �LV ⊂ �, � = �V = �L ,

ϕ = ϕV = ϕL , so � = � (and ϕ = ϕ).

Proof The inclusion �LV ⊂ �V L follows by Theorem 5.5(c) and Lemma 5.7. We
prove �LV L ⊂ �V L . For f ∈ �+

LV L there is a ϕLV -partition for f and since �LV ⊂
�V L this is also a ϕV L -partition for f , hence there exists a ϕV -partition for f , i.e.,
f ∈ �V L .
Suppose � is stable. Then �L = (�V L)L = �V L = � and ϕL = ϕ by Theorem

4.18(a).
Suppose �V to be stable. As �V is stable we can apply the first part of the theorem

to �V instead of �. Indeed, (�V )V and (�V )LV are stable, since (�V )V = �V and
(�V )LV = �V . Hence, (�V )LV ⊂ (�V )V L = �V L , i.e., �V ⊂ � (and ϕV = ϕ).

Suppose ϕL(�L) is mediated in E and ϕV (�V ) is splitting in E . Then �L , �V

and �LV are stable by Theorem 4.25(a),(b) and (c). Consequently, again by Theorem
4.25(b) �V L is stable. ��
Corollary 5.9 Suppose E is mediated (and thus splitting), � = �V L . Then � =
�V = �L , so � = � (and ϕ = ϕ).

At the end of Sect. 5 we will show that sometimes �V L � �LV (Example 5.14)
and sometimes �LV � �V L (Example 5.15). Note that this implies that �V LV can be
strictly larger then either �V L or �LV .

Theorem 5.8 raises the question whether stability of �V entails �V L ⊂ �LV . In
general the answer is negative; see Example 5.15. In Theorem 5.10 we give conditions
sufficient for the inclusion.

Theorem 5.10 Suppose �V is stable. Consider these two statements.

(a) For every f ∈ �+
V L there is a ρ in �+

L with f ≤ ρ.
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(b) E satisfies:

If Y1,Y2, . . . ⊂ E are nonempty countable with inf Yn = 0 for all n ∈ N,

then there exist y1 ∈ Y1, y2 ∈ Y2, . . . such that
∑
n

yn exists in E . (43)

If (a) is satisfied, then �V L ⊂ �LV . (b) implies (a).

Proof If (a) is satisfied, then by Theorem 5.5(c) follows that �V L ⊂ �LV .
Suppose (b). Let f ∈ �+

V L . Let (An)n∈N be a ϕV -partition for f . For n ∈ N, let
ϒn ⊂ � be a countable set with f 1An ≤ ϒn and

ϕV ( f 1An ) = inf ϕ(ϒn). (44)

We may assume σ1An = σ for all σ ∈ ϒn . Choose σn ∈ ϒn for n ∈ N such that∑
n(ϕ(σn)−ϕV ( f 1An )) and thus

∑
n ϕ(σn) exist in E . Then ρ := ∑

n∈N σn is in �+
L

with f ≤ ρ. ��
5.11 We will discuss examples of spaces E for which (43) holds.

(I) If E is a Banach lattice with σ -order continuous norm, then E satisfies (43) (one
can find yn ∈ Yn with ‖yn‖ ≤ 2−n).

(II) Let (X,A, μ) be a complete σ -finite measure space and assume there exists a g ∈
L1(μ) with g > 0 μ-a.e. Then the space E of equivalence classes of measurable
functions X → R satisfies (43): It is sufficient to prove that if Z1, Z2, . . . ⊂ E
are nonempty countable with inf Zn = 0 for all n ∈ N, then there exists z1 ∈
Z1, z2 ∈ Z2, . . . and a z ∈ E such that zn ≤ z for all n ∈ N (for Zn take
2nYn). One can prove that such a z exists by mapping the equivalence classes of
measurable functions into L1(μ) by the order isomorphism f �→ (arctan ◦ f )g.

(III) R
N is a special case of (II), therefore satisfies (43).

Theorem 5.12 Let E be mediated and splitting and satisfy (43) (e.g. E be a Banach
lattice with σ -order continuous norm (Theorem 4.24), or E is the space mentioned in
5.11(II)). Then �V is stable and �V L = �LV , ϕV L = ϕLV .

Proof This is a consequence of Theorems 5.8 and 5.10. ��
For a Riesz space F and a Riesz subspace � of FX we will now investigate under

which conditions on ϕ(�), ϕL(�L) and ϕV (�V ) the spaces �LV and �V L are Riesz
subspaces of FX .

Theorem 5.13 Suppose F is a Riesz space and � is a Riesz subspace of F X . If ϕ(�)

is splitting in E and ϕL(�L) is mediated in E, then �LV is a Riesz subspace of F X .
If ϕ(�) is mediated in E and ϕV (�V ) is splitting in E, then �V L is a Riesz subspace
of F X .

In particular, if E is mediated (and thus splitting), then both �LV and �V L are
Riesz subspaces of F X .
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Proof Note first that if ϕ(�) is mediated in E , then �V is stable by Theorem 4.25(b).
For a proof, combine Theorem 4.32 and Corollary 3.10. ��

The next example illustrates that �LV is not always included in �V L (given that �V

is stable) even if E and F are Riesz spaces and �,�LV , �V L Riesz subspaces of FX .

Example 5.14 [�V L � �LV = �V LV ] For an element b = (β1, β2, . . .) of R
N we

write b = ∑
n∈N βnen .

Consider X = {0, 1, 2, . . .} and I = P(X). Let E = c, F = R
N, � = FX . We

view the elements of � as sequences (a, b1, b2, . . .) with a, b1, b2, . . . ∈ R
N.

Define sets � ⊂ � ⊂ � and a map � : � → R
N by

� = {(a, β1e1, β2e2, . . .) : a ∈ c, β1, β2, . . . ∈ R}, (45)

�(a, β1e1, β2e2, . . .) = a +
∑
n∈N

βnen (a ∈ c, β1, β2, . . . ∈ R), (46)

� = {(a, β1e1, β2e2, . . .) : a ∈ c, (β1, β2, . . .) ∈ c00}. (47)

Then�(�) = c = E ; let ϕ = �|� . From the definition it is easy to see that � is stable
and ϕ is laterally extendable. We leave it to the reader to verify that �V = �,

�L = {(a, β1e1, β2e2, . . .) : a ∈ c, (β1, β2, . . .) ∈ c} (48)

and ϕL = � on �L .
It follows that�V is stable and�V L = �L ⊂ �LV = �V LV .We prove�V L �= �LV .

To this end, define h ∈ � by

{
h(n) = (−1)nen (n = 1, 2, . . .),

h(0) = −∑
n∈N h(n) = −∑

n∈N(−1)nen .
(49)

As h(0) /∈ cwe have h1{0} /∈ �; in particular, h is not partially in�, so h /∈ �L = �V L .
It remains to prove h ∈ �LV .

For k ∈ N, define τk, σk : X → R
N:

⎧⎪⎨
⎪⎩

τk(0) = −∑k
n=1(−1)nen + ∑∞

n=k+1 en,

τk(n) = h(n) = (−1)nen (n = 1, . . . , k),

τk(n) = en (n = k + 1, k + 2, . . .),

(50)

⎧⎪⎨
⎪⎩

σk(0) = −∑k
n=1(−1)nen − ∑∞

n=k+1 en,

σk(n) = h(n) = (−1)nen (n = 1, . . . , k),

σk(n) = −en (n = k + 1, k + 2, . . .).

(51)

Then τk, σk ∈ �L , τk ≥ h ≥ σk , ϕL(τk) = �(τk) = 2
∑

n>k en , ϕL(σk) =
−2

∑
n>k en , so infk∈N ϕL(τk) = supk∈N ϕL(σk) = 0, and h ∈ �LV .
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The next example illustrates that �V L is not always included in �LV ; it provides an
example of an f ∈ �+

V L for which there exist no ρ ∈ �+
L with f ≤ ρ (see Theorem

5.5(c)).

Example 5.15 [�LV � �V L ] Let E = C[0, 1] and let D ⊂ C[0, 1] be the set of
polynomials of degree≤ 2.The set D is order dense7 inC[0, 1] (see [11, Example4.4]).
Hence, for all f ∈ E there exist (gn)n∈N, (hn)n∈N in D with f = infn∈N gn =
supn∈N hn . Therefore E is the vertical extension of D with respect to the inclusion
map D → E .

Take X = N, I = P(N), F = E = C[0, 1], � = c00[D] ⊂ FN = EN and let
ϕ : � → E be given by ϕ( f ) = ∑

n∈N f (n). Since this situation is the same as in
Example 5.6 with DV = E , we have �V = c00[E] and �LV ⊂ �V L .

Furthermore (see 4.6)

�+
L =

{
f ∈ (D+)N :

∑
n

f (n) exists in E

}
, (52)

�+
V L =

{
f ∈ (E+)N :

∑
n

f (n) exists in E

}
. (53)

We construct an f ∈ �+
V L that is not in �LV . For n ∈ N let fn be the ‘tent’ function

defined by (Fig. 1)

fn(0) = 0; fn(
1
n ) = 1; fn(

1
i ) = 0 if i ∈ N, i �= n;

fn is affine on the interval [ 1
1+i ,

1
i ] for all i ∈ N. (54)

Then
∑∞

n=1 fn = 1(0,1] pointwise, so
∑

n fn = 1 in C[0, 1]. Hence f =
( f1, f2, f3, . . .) ∈ �+

V L .
We will prove that f /∈ �LV ; by showing there exists no ρ ∈ �L for which f ≤ ρ.
Suppose ρ ∈ �L and f ≤ ρ. Then ρ = (ρ1, ρ2, . . .)where ρ1, ρ2, . . . are elements

of D+ and j = ∑
n ρn exists in E = C[0, 1]. Let M be the largest value of j . Every ρn

is a quadratic function that maps [0, 1] into [0, M]. Consequently (see the postscript)

|ρn(x) − ρn(y)| ≤ 4M |x − y| (x, y ∈ [0, 1], n ∈ N). (55)

7 A subspace D of a partially ordered vector space E is called order dense in E if x = sup{d ∈ D : d ≤ x}
(and thus x = inf{d ∈ D : d ≥ x}) for all x ∈ E .
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In particular, ρn(0) ≥ ρn(
1
n ) − 4M 1

n ≥ fn(
1
n ) − 4M 1

n = 1− 4M 1
n ≥ 1

2 for n ≥ 8M .
As j (0) ≥ ∑

n≥N ρn(0) for all N ∈ N, this is a contradiction.
Postscript Let h : x �→ ax2 + bx + c be a quadratic function on [0, 1] and 0 ≤
h(x) ≤ M for all x ; we prove |h′(x)| ≤ 4M for all x ∈ [0, 1]. Since the derivative is
either decreasing or increasing, we have |h′(x)| ≤ max{|h′(0)|, |h′(1)|}. Now h′(0) =
b = 4h( 12 ) − h(1) − 3h(0) and h′(1) = 2a + b = 3h(1) + h(0) − 4h( 12 ). Since|h(x) − h(y)| ≤ M for all x, y ∈ [0, 1], we get the bounds |h′(0)| ≤ 4M and
|h′(1)| ≤ 4M as desired.

5.16 Observe that �V L in Example 5.15 is not stable since ( f1, 0, f3, 0, . . .) /∈ �V L .

6 Embedding E in a (slightly) larger space

In this section E,F,X,I, �, ϕ are as in Sect. 4.
Suppose E• is another partially ordered vector space and E ⊂ E•. Consider ϕ• :

� → E•, where ϕ•( f ) = ϕ( f ) for f ∈ �.
Write �•

V for the vertical extension of � with respect to ϕ•. If ϕ• is laterally
extendable, write �•

L for the lateral extension of � with respect to ϕ•, �•
LV for the

vertical extension of �•
L with respect to ϕ•

L . Similarly, if �•
V is stable, we introduce

the notations �•
V L and �•

V LV .
It is not generally the case that �V ⊂ �•

V or �L ⊂ �•
L , but a natural restriction on

E• helps; see Theorem 6.2.
For E• we can choose to be a Dedekind complete Riesz space in which countable

suprema of E are preserved, in case E is Archimedean and directed (see 6.3). In this
situation, in some sense, �•

V L is the largest extension one can obtain.

Definition 6.1 Let D be a subspace of a partially ordered vector space P . Then we
say that countable suprema in D are preserved in P if the following implication holds
for all a ∈ D and all countable A ⊂ D

A has supremum a in D �⇒ A has supremum a in P. (56)

Note that the reverse implication holds always.

The following theorem is a natural consequence.

Theorem 6.2 Suppose that countable suprema in E are preserved in E•. Then ϕ• is
laterally extendable and

f ∈ �V ⇐⇒ f ∈ �•
V and ϕ•

V ( f ) ∈ E, (57)

f ∈ �L ⇐⇒ f ∈ �•
L and ϕ•

L( f ) ∈ E, (58)

ϕ•
V ( f ) = ϕV ( f ) for f ∈ �V , ϕ•

L( f ) = ϕL( f ) for f ∈ �L , (59)

�LV ⊂ �•
LV , ϕ•

LV ( f ) = ϕLV ( f ) for f ∈ �LV . (60)
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Suppose �V and �•
V are stable. Then

�V L ⊂ �•
V L , ϕ•

V L( f ) = ϕV L( f ) for f ∈ �V L , (61)

�V LV ⊂ �•
V LV , ϕ•

V LV ( f ) = ϕV LV ( f ) for f ∈ �V LV . (62)

6.3 Under the assumptionsmade in Sect. 4� is directed, thus so are�L ,�V (see 3.11)
and �LV (etc.). Hence ϕV (�V ), ϕL(�L), ϕLV (�LV ) (etc.) are all subsets of E+ − E+.
For this reason we may assume that E itself is directed.

Then under the (rather general) assumption that E is also Archimedean (see Defini-
tion 3.19), E can be embedded in a Dedekind complete Riesz space such that suprema
and infima in E are preserved, as we state in Theorem 6.4.

Consequently, choosing such a Dedekind complete Riesz space for E• one has the
following: �•

V , �
•
LV , �

•
V L , �

•
V LV are stable and �•

LV ⊂ �•
V L =: �

•
, �

•
L = �

•
V = �

•

and ϕ•
L = ϕ•

V = ϕ•, where ϕ• := ϕ•
V L (see 5.8). Moreover, one has (60) and if �V is

stable; (61) and (62). For this reason one may consider �
•
and ϕ• instead of �LV and

ϕLV , instead of �•
LV and ϕ•

LV or instead of �V LV and ϕV LV , indeed �
•
contains all

of the other extensions and ϕ• agrees with all integrals.

Theorem 6.4 [8, Chapter 4,Theorem 1.19] Let E be an Archimedean directed par-
tially ordered vector space. Then E can be embedded in a Dedekind complete Riesz
space Ê:

There exists an injective linear γ : E → Ê for which

(a) a ≥ 0 ⇐⇒ γ (a) ≥ 0,
(b) γ (E) is order dense in Ê (for the definition of order dense see the seventh footnote).

Consequently, suprema in γ (E) are preserved in Ê.

7 Integration for functions with values in R

In this section (X,A, μ) is a complete σ -finite measure space and E = F = R.
We write S for the vector space of simple functions from X to R (see 4.33). Since

R is a Banach lattice with σ -order continuous norm, SV is stable and SLV = SV L ,
ϕLV = ϕV L (by Theorem 5.12). We write S = SV L and ϕ = ϕV L .

Theorem 7.1 S = L1(μ) and ϕ( f ) = ∫
f dμ for all f ∈ S.

Proof We prove that S+
V L ⊂ L1(μ)+ ⊂ S+

LV and that ϕLV ( f ) = ∫
f dμ for all

f ∈ L+(μ).
SV consists of the bounded integrable functions f for which {x ∈ X : f (x) �= 0}

has finitemeasure. Bymonotone convergence, we have f ∈ L1(μ) for every f ∈ S+
V L .

Conversely, let f ∈ L1(μ)+; we prove f ∈ S+
LV and ϕLV ( f ) = ∫

f dμ. Let
t ∈ (1,∞). For n ∈ Z, put An = {x ∈ X : tn ≤ f (x) < tn+1}. Then (An)n∈Z forms
a partition. Define g := ∑

n∈Z tn1An and h := tg; then g ≤ f ≤ h. Since

∑
n∈Z

tnμ(An) ≤
∑
n∈Z

∫
f 1An dμ =

∫
f dμ, (63)
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we have g ∈ SL and ϕL(g) ≤ ∫
f dμ. Also, h = tg ∈ SL , and ϕL(h) − ϕL(g) =

(t − 1)ϕL(g) ≤ (t − 1)
∫

f dμ. By this and Lemma 3.7 it follows that f ∈ SLV and
ϕLV ( f ) = ∫

f dμ. ��

8 Extensions of integrals on simple functions

In this section E is a directed partially ordered vector space, (X,A, μ) is a com-
plete σ -finite measure space and I,S,ϕ are as in 4.33 (F = E)

In 8.1–8.8 for f in SLV or SV L we discuss the relation between f being almost
everywhere equal to zero and f having integral zero (i.e., either ϕLV ( f ) = 0 or
ϕV L( f ) = 0).

In 8.9 we show that under some conditions a function in SV multiplied with an
integrable function with values in R is a function in SLV .

In 8.11–8.13 we investigate the relation between the “LV ”-extension on simple
functions with respect to μ and ν, where ν = hμ for some measurable h : X →
[0,∞).

In 8.14 we discuss the relation between the “LV ”-extension simple functions with
values in E or in another partially ordered vector space F , when one makes the
composition of a function in the extension with a σ -order continuous linear map
E → F .

In 8.15–8.17 we will prove that under certain conditions on X the function x �→
F(x, ·) is in SV for all F ∈ C(X × T ) and we relate that to convolution of certain
finite measures with continuous functions on a topological group.

Theorem 8.1 Let f : X → E and f = 0 a.e. If f ∈ SLV , then ϕLV ( f ) = 0. If SV is
stable and f ∈ SV LV , then ϕV LV ( f ) = 0.

Proof Let B = {x ∈ X : f (x) �= 0}. Then B ∈ A and μ(B) = 0.

(I) Assume f ∈ SV . Choose σ, τ ∈ S with σ ≤ f ≤ τ . Then σ1B, τ1B ∈ S,
σ1B ≤ f ≤ τ1B , and ϕ(σ1B) = ϕ(τ1B) = 0. Hence ϕV ( f ) = 0.

(II) Suppose σ ∈ S+
L and (An)n∈N is a ϕ-partition for σ . Then σ1An∩B ∈ S+ for

all n ∈ N and
∑

n ϕ(σ1An∩B) = 0, i.e., σ1B ∈ S+
L with ϕL(σ1B) = 0. In

particular, if f ∈ SL then ϕL( f ) = 0.
(III) Assume f ∈ SLV . With (II) one can repeat the argument of (I) with S replaced

by SL and conclude ϕLV ( f ) = 0.
(IV) Suppose SV is stable and f ∈ SV LV . One can repeat the argument in (III) with

S replaced by SV and conclude ϕV LV ( f ) = 0.

��
Definition 8.2 A subset D ⊂ E is called order bounded if there are a, b ∈ E for
which a ≤ D ≤ b.

Theorem 8.3 Let f ∈ SLV or (assuming SV is stable) f ∈ SV LV . Then there exists
a partition (An)n∈N such that each set f (An) is order bounded.

Proof There exists a partition (An)n∈N such that for all n ∈ N there exist hn, gn ∈ S
for which hn ≤ f 1An ≤ gn . Choose an, bn ∈ E for which an ≤ hn(x) and gn(x) ≤ bn
for all x ∈ X . Then an ≤ f (x) ≤ bn for n ∈ N, x ∈ An . ��
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Theorem 8.4 Let f : X → E and f = 0 a.e. Suppose there exists a partition
(An)n∈N such that for every n ∈ N the subset f (An) of E is order bounded. Then
f ∈ SLV and if SV is stable then also f ∈ �V L .

Proof Choose a1, a2, . . . and b1, b2, . . . in E such that

an ≤ f (x) ≤ bn (n ∈ N, x ∈ An). (64)

Let B = {x ∈ X : f (x) �= 0}. Then B ∈ A and μ(B) = 0. Hence g :=∑
n∈N an1An∩B and h := ∑

n∈N bn1An∩B are elements of SL with ϕ(g) = 0 and
ϕL(h) = 0. As g ≤ f ≤ h, we get f ∈ SLV and if SV is stable also f ∈ SV L . ��

For a real valued function f : X → R with f ≥ 0 and
∫

f dμ = 0 we have f = 0
a.e. We will give an example of a f ∈ S+

V with ϕV ( f ) = 0 but which is nowhere
zero (Example 8.8). On the positive side, in Theorem 8.7 we show that f = 0 a.e. if
f ∈ S+

LV and ϕLV ( f ) = 0 provided that E satisfies a certain separability condition.

Definition 8.5 We call a subset D of E+\{0} pervasive8 in E if for all a ∈ E with
a > 0 there exists a d ∈ D such that 0 < d ≤ a. We say that E possesses a pervasive
subset if there exists a pervasive D ⊂ E+\{0}.
Example 8.6 The Riesz spaces R

N, �∞, c, c0, �1 and c00 possess countable pervasive
subsets. Indeed, in each of them the set {λen : λ ∈ Q

+, λ > 0, n ∈ N} is pervasive.
IfX is a completely regular topological space, thenC(X ) has a countable pervasive

subset if and only if X has a countable base. (If D ⊂ E+\{0} is countable and
pervasive, then U = { f −1(0,∞) : f ∈ D} is a countable base; vise versa if U is a
countable base then with choosing an fU in C(X)+ for each U ∈ U with fU = 0 on
Uc and fU (x) = 1 for some x ∈ U , the set D = {ε fU : ε ∈ Q, ε > 0,U ∈ U} is
pervasive.)

L1(λ) and L∞(λ) do not possess countable pervasive subsets, considering the
Lebesgue measure space (R,M, λ). (Suppose one of them does. Then one can prove
the existence of non-negligible measurable sets A1, A2, . . . ∈ M such that every
non-negligible measurable set contains an An , whereas λ(An) < 2−n for all n ∈ N.
Putting C = R\ ⋃

n∈N An we have a non-negligible measurable set that contains no
An : a contradiction.)

Theorem 8.7 Let E possess a countable pervasive subset D. Let f ∈ SLV . Let
�,ϒ ⊂ SL be countable sets such that � ≤ f ≤ ϒ and supϕL(�) = inf ϕL(ϒ).
Then for almost all x ∈ X

sup
g∈�

g(x) = f (x) = inf
h∈ϒ

h(x). (65)

Consequently, if f ∈ S+
LV and ϕLV ( f ) = 0, then f = 0 a.e. (However, see Example

8.8.)

8 Our use of the term is similar to the one of van Gaans and Kalauch in [12, Definition 2.3].
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Proof (I) First, as a special case (namely f = 0), let (τn)n∈N be a sequence in SL
with τn ≥ 0 for all n ∈ N and infn∈N ϕL(τn) = 0. We prove that infn∈N τn(x) = 0
for almost all x ∈ X , by proving that μ(A) = 0, where A is the complement of
the set {x ∈ X : infn∈N τn(x) = 0}. Indeed, for this A we have

A =
⋃
d∈D

Ad , with Ad =
⋂
n∈N

{x ∈ X : d ≤ τn(x)}. (66)

Note that for all n ∈ N and d ∈ D the set {x ∈ X : d ≤ τn(x)} is measurable.
Furthermore, for all d ∈ D we have:

dμ(Ad) = ϕ(d1Ad ) ≤ ϕL(τn) (n ∈ N). (67)

Hence μ(Ad) = 0 for all d ∈ D and thus μ(A) = 0.
(II) Suppose that �,ϒ ⊂ �L are countable sets such that � ≤ f ≤ ϒ , supϕL(�) =

inf ϕL(ϒ). Then inf ϕL(ϒ − �) = 0, so by (I) infg∈ϒ,h∈�(g(x) − h(x)) = 0 for
almost all x ∈ X .

��
Example 8.8 We give an example of a f ∈ S+

V with ϕV ( f ) = 0, where f �= 0
everywhere. Let ([0, 1),M, λ) be the Lebesgue measure space with underlying set
[0, 1). Let E = �∞([0, 1)) (see Sect. 2). Let f : R → E+ be defined by f (t) = 1{t}
for t ∈ [0, 1). Note that f is not partially in S. We will show f ∈ SV . For n ∈ N make
τn ∈ S:

τn(t) = 1[ i−1
n , in )

if i ∈ {1, . . . , n}, t ∈ [ i−1
n , i

n ). (68)

Then ϕ(τn) = 1
n1[0,1) and 0 ≤ f ≤ τn for n ∈ N, so f ∈ SV and ϕV ( f ) = 0. But

f (t) �= 0 for all t .

Theorem 8.9 Let E be Archimedean and mediated. Let f : X → E and g : X → R.
We write g f for the function x �→ g(x) f (x). Then

(a) f ∈ SV and g is bounded and measurable �⇒ g f ∈ SV .
(b) f is partially in SV and g is measurable �⇒ g f is partially in SV .
(c) f ∈ SV and g ∈ L1(μ) �⇒ g f ∈ SLV .
(d) f ∈ SV L and g is bounded and measurable �⇒ g f ∈ SV L .
(e) f ∈ SV L , f (X) is order bounded and g ∈ L1(μ) �⇒ g f ∈ SV L .

Proof E is splitting (see 4.23(b)).

(a) is a consequence of Theorem 3.21(a) (see also Remark 3.22).
(b) Let (An)n∈N be a partition such that f 1An ∈ SV and g1An is bounded for all

n ∈ N. By (a) every g f 1An lies in SV . Then g f is partially in SV .
(c) Assume f ≥ 0 and g ≥ 0. Choose (see the proof of Theorem 7.1) a partition

(An)n∈N and numbers λ1, λ2, . . . in [0,∞) with

τ :=
∑
n∈N

λn1An ≥ g,
∑
n∈N

λnμ(An) < ∞. (69)
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Then τ s ∈ SL for all s ∈ S. Choose s ∈ S with s ≥ f . Then 0 ≤ g f ≤ τ s. From
Theorem 5.5(e) and (b) it follows that g f ∈ SLV .

(d) Assume f ≥ 0 and 0 ≤ g ≤ 1. Using (b), choose a partition (An)n∈N with
f 1An ∈ SV and g f 1An ∈ SV for all n ∈ N. Then

0 ≤ ϕV (g f 1An ) ≤ ϕV ( f 1An ) (n ∈ N). (70)

Since
∑

n ϕV ( f 1An ) exists and E is splitting,
∑

n ϕV (g f 1An ) exists.
(e) Assume f ≥ 0 and g ≥ 0. Choose a ∈ E+ with f (x) ≤ a for all x ∈ X . Choose

a partition (An)n∈N and λ1, λ2, . . . ∈ [0,∞) with

g f 1An ∈ SV (n ∈ N), (71)

g ≤
∑
n∈N

λ1An ,
∑
n∈N

λnμ(An) < ∞ (see the proof of Theorem 7.1). (72)

Then

g f 1An ≤ λna1An (n ∈ N), (73)

ϕV (λna1An ) = ϕ(λna1An ) = λnμ(An)a (n ∈ N), (74)

so
∑

n ϕV (λna1An ) exists and so does
∑

n ϕV (g f 1An ).

��

8.10 In Lemma 8.11, Theorems 8.12 and 8.13 we investigate the relation between
the extensions SLV generated by two different measures, namely μ and hμ for a
measurable function h : X → [0,∞).

Note that for such a function h and all s ∈ (1,∞) there exists a j : X → [0,∞)

that is partially in the space of simple functions X → [0,∞), i.e., j = ∑
n∈N αn1An

for a partition (An)n∈N and (αn)n∈N in [0,∞) (or in the language of 3.16 j is partially
in [A]) for which j ≤ h ≤ s j . In the following (8.11, 8.12 and 8.13) we will write
Iμ, Sμ and ϕμ instead of I, S and ϕ and, similarly for another measure ν on (X,A),
we write Iν, Sν and ϕν according to 4.33 with ν instead of μ.

Lemma 8.11 Suppose E is splitting. Let h : X → [0,∞) be measurable, ν := hμ.
Let s ∈ (1,∞) and let j : X → [0,∞) be partially in [A] and such that j ≤ h ≤ s j .
Let f ∈ Sν+

L . Then j f ∈ Sμ
L and ϕ

μ
L ( j f ) ≤ ϕν

L( f ) ≤ sϕμ
L ( j f ).

Proof Assume (An)n∈N is a partition for j and a ϕμ-partition for f (so (An)n∈N is
in Iν ∩ Iμ, i.e., μ(An), ν(An) < ∞ for all n ∈ N). Choose (αn)n∈N in [0,∞) and
(bn)n∈N in E+ such that

j =
∑
n∈N

αn1An , f =
∑
n∈N

bn1An . (75)
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Then j f = ∑
n∈N αnbn1An and thus is in Sμ

L if
∑

n μ(An)αnβn exists in E . For each
n ∈ N

0 ≤ μ(An)αn =
∫

j1An dμ ≤
∫

h1An dμ = ν(An), (76)

whence 0 ≤ μ(An)αnbn ≤ ν(An)bn . Because f ∈ Sν+
L ,

∑
n ν(An)bn exists in E .

Since E is splitting also
∑

n μ(An)αnbn exists in E , i.e., j f ∈ Sμ
L .

Furthermore, ϕ
μ
L ( j f ) = ∑

n μ(An)αnbn ≤ ∑
n ν(An)bn = ϕν

L( f ). On the other
hand, we get μ(An)αn = ∫

j1An dμ ≥ 1
s

∫
h1An dμ = 1

s ν(An) for each n ∈ N: it
follows that ϕμ

L ( j f ) ≥ 1
s ϕ

ν
L( f ). ��

Theorem 8.12 Let E be Archimedean and splitting. Let h : X → [0,∞) be measur-
able, ν := hμ.

(a) f ∈ Sν
LV �⇒ h f ∈ Sμ

LV , ϕ
μ
LV (h f ) = ϕν

LV ( f ),
(b) f ∈ Sν

V L �⇒ h f ∈ Sμ
V L , ϕ

μ
V L(h f ) = ϕν

V L( f ).

Proof Since both Sν
LV and Sν

V L are directed, we assume f ≥ 0.

(a) Let f ∈ Sν+
LV . For n ∈ N let jn be partially in [A] and such that jn ≤ h ≤ (1+ 1

n ) jn .
Let �,ϒ ⊂ Sν

L be countable sets with � ≤ f ≤ ϒ be such that supϕν
L(�) =

ϕν
LV ( f ) = inf ϕν

L(ϒ). Then for all σ ∈ � (note that σ ∈ Sν+
L − Sν+

L ), τ ∈ ϒ and
n ∈ Nwehave jnσ ≤ h f ≤ (1+ 1

n ) jnτ andbyLemma8.11 jnσ and (1+ 1
n ) jnτ are

in Sμ
L . Therefore we are done if both infn∈N,σ∈�,τ∈ϒ ϕ

μ
L ((1+ 1

n ) jnτ − jnσ) = 0
and ϕ

μ
L ( jnσ) ≤ ϕν

LV ( f ) ≤ ϕ
μ
L ((1 + 1

n ) jnτ) for all n ∈ N and all σ ∈ �, τ ∈ ϒ .
By Lemma 8.11 applied repeatedly we have

0 ≤ ϕ
μ
L ((1 + 1

n ) jnτ − jnσ) = ϕ
μ
L ( jnτ − jnσ) + 1

nϕ
μ
L ( jnτ)

≤ ϕν
L(τ − σ) + 1

nϕν
L(τ ), (77)

which has infimum 0 since E is Archimedean and infτ∈ϒ,σ∈� ϕν
L(τ − σ) = 0.

On the other hand, by Lemma 8.11,

ϕμ( jnσ) ≤ ϕν
L(σ ) ≤ ϕν

LV ( f ) ≤ ϕν
L(τ ) ≤ (1 + 1

n )ϕ
μ
L ( jnτ)

(n ∈ N, σ ∈ �, τ ∈ ϒ). (78)

(b) Let f ∈ Sν+
V L . Choose a partition (An)n∈N with f 1An ∈ Sν

V for n ∈ N. By (a),
h f 1An ∈ Sμ

LV for n ∈ N; by Lemma 5.7 h f 1An is partially in Sμ
V .

Therefore we can choose a partition (Bn)n∈N with

f 1Bn ∈ Sν
V , h f 1Bn ∈ Sμ

V (n ∈ N). (79)

By (a), ϕν
V ( f 1Bn ) = ϕ

μ
V (h f 1Bn ) for all n ∈ N. But f ∈ Sν+

V L , so

ϕν
V L( f ) =

∑
n

ϕν
V ( f 1Bn ) =

∑
n

ϕ
μ
V (h f 1Bn ). (80)

Then h f ∈ Sμ
V L and ϕ

μ
V L(h f ) = ϕν

V L( f ). ��
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Theorem 8.13 Let E be Archimedean and splitting. Let h : X → [0,∞) be measur-
able, ν := hμ, A = {x ∈ X : h(x) > 0}. Let f : X → E be such that h f ∈ Sμ

LV .
Then f 1A ∈ Sν

LV .

Proof Define h∗ : X → [0,∞) by

h∗(x) =
{

1
h(x) if x ∈ A,

0 if x /∈ A.
(81)

Then h∗ is measurable and hh∗ = 1A and 1A = 1 ν-a.e.
h f is in Sμ

L and thus in S1Aμ
L , and since 1Aμ = h∗ν, also h f ∈ Sh

∗ν
L . By Theorem

8.12, applied to h∗, h∗ν, ν, h f instead of h, ν, μ, f , the function h∗h f is an element
of Sν

LV . But h
∗h f = 1A f . ��

In Theorem 8.14 we show that extensions of simple functions with values in E
composed with a σ -order continuous linear map E → F are extensions of simple
functions with values in F (where E and F are Riesz spaces).

Theorem 8.14 Let E and F be Riesz spaces. Let SE and ϕE be as in 4.33, and let SF

and ϕF be defined analogously. Let Lc(E, F) denote the set of σ -order continuous
linear functions E → F and E∼

c = Lc(E, R) (definition and notation as in Zaanen
[13, Chapter 12,§84]). Let f ∈ SELV . Then α ◦ f ∈ SFLV for all α ∈ Lc(E, F) and

α
(
ϕE
LV ( f )

)
= ϕF

LV (α ◦ f ). (82)

In particular, α ◦ f is integrable for all α ∈ E∼
c , and α(ϕE

LV ( f )) = ∫
α ◦ f dμ.

Proof Suppose α ∈ Lc(E, F)+. Let τ ∈ SE+
L . Suppose τ = ∑

n∈N an1An

for some partition (An)n∈N and a sequence (an)n∈N in E+. Then α(ϕE
L (τ )) =

α(
∑

n μ(An)an) = ∑
n μ(An)α(an). Thusα◦τ is in SFLV withα(ϕE

L (τ )) = ϕF
L (α◦τ).

Let (σn)n∈N, (τn)n∈N be sequences in SEL withσn ≤ f ≤ τn ,σn ↑, τn ↓ andϕE
LV ( f ) =

supn∈N ϕE
L (σn) = infn∈N ϕE

L (τn). Then we have α(ϕE
LV ( f )) = supn∈N α(ϕE

L (σn)) =
supn∈N ϕF

L (α ◦ σn) and α(ϕE
LV ( f )) = infn∈N α(ϕE

L (τn)) = infn∈N ϕF
L (α ◦ τn). Since

α ◦σn ≤ α ◦ f ≤ α ◦τn for all n ∈ N, we conclude that α ◦ f ∈ (SF )LV (see Theorem
7.1) with α(ϕE

LV ( f )) = ϕF
LV ( f ). ��

Theorem 8.14 will be used in Sect. 9 to compare the integrals ϕLV and ϕV L with
the Pettis integral.

Before proving Theorem 8.16 we state (in Theorem 8.15) that there is an equivalent
formulation for a function F to be in C(X ×T )whenever X, T are topological spaces
and X is compact.

Theorem 8.15 ([14, Theorem 7.7.5]) Let X be a compact and let T be a topological
space. Let F : X × T → R be such that F(·, t) ∈ C(X) for all t ∈ T . Then
F ∈ C(X × T ) if and only if t �→ F(·, t) is continuous, where C(X) is equipped with
the supremum norm. Consequently, if A ⊂ X is a compact set, then t �→ sup F(A, t)
and t �→ inf F(A, t) are continuous.
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Theorem 8.16 Let (X, d, μ) be a compact metric probability space. Let T be a
topological space and F ∈ C(X × T ). The function H : X → C(T ) given by
H(x) = F(x, ·) is an element of SV . Furthermore, for t ∈ T , x �→ F(x, t) is inte-
grable and

[ϕV (H)] (t) =
∫

F(x, t) dμ(x) (t ∈ T ). (83)

Proof For k ∈ N let Ak1, . . . , Aknk be a partition of X with diam Aki ≤ k−1. Define

�k(t) = sup
x,y∈X,d(x,y)<k−1

|F(x, t) − F(y, t)| (t ∈ T ). (84)

Since x �→ F(x, t) is uniformly continuous for all t ∈ T , �k(t) ↓ 0 for all t ∈ T . By
Theorem 8.15 t �→ sup F(Aki , t) and t �→ inf F(Aki , t) are continuous for all k ∈ N

and i ∈ {1, . . . , nk}. For k ∈ N let hk, lk : X → C(T ) be given by

hk(x) = t �→ sup F(Aki , t) (x ∈ Aki ),

lk(x) = t �→ inf F(Aki , t) (x ∈ Aki ). (85)

Then hk, lk ∈ S and (hk(x))(t) ≥ F(x, t) ≥ (lk(x))(t) for all x ∈ X , t ∈ T . For
x ∈ Aki ∩ Amj and t ∈ T

(hk(x) − lm(x))(t) = sup F(Aki , t) − inf F(Amj , t)

≤ sup{F(u, t) − F(v, t) : u, v ∈ Aki ∪ Amj } ≤ �k∧m(t). (86)

Let ak = ϕ(hk) and bk = ϕ(lk) for k ∈ N. Then 0 ≤ ak(t) − bm(t) ≤ �k∧m(t) for
all k,m ∈ N and infk,m∈N ak(t) − bm(t) ≤ infk∈N �k(t) = 0. Since ak, bk ∈ C(T )

and supn∈N bn(t) = infn∈N an(t) for all t ∈ T , the function t �→ infn∈N an(t) is
continuous, i.e., x �→ F(x, ·) is an element of SV . Furthermore, we conclude that the
function x �→ F(x, t) is integrable (by Theorem 7.1) and conclude (83). ��
Example 8.17 Consider a metrisable locally compact group G. Let X ⊂ G be a
compact set and μ be a finite (positive) measure on B(X), the Borel-σ -algebra of X .
Let g ∈ C(G). Define the convolution of g and μ to be the function g ∗ μ : G → R

given by g ∗ μ(t) = ∫
g(t x−1) dμ(x) for t ∈ G. For x ∈ X , let Lxg ∈ C(G) be the

function t �→ g(t x−1). Then by Theorem 8.16, the function f : X → C(G) given by
f (x) = Lxg is in SV and g ∗ μ = ϕV ( f ) ∈ C(G).

9 Comparison with Bochner- and Pettis integral

We consider the situation of Sect. 8, with an E that has the structure of a Banach
lattice. We write ‖ · ‖ for the norm on E and E ′ for the dual of E . Then, next to our
ϕLV (and other extensions) there are the Bochner and the Pettis integrals. (We refer
the reader to Hille and Phillips [3, Section 3.7] for background on both integrals.)
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We denote the set of Bochner (Pettis) integrable functions from the measure space
(X,A, μ) into the Banach lattice E by B (P) and the Bochner (Pettis) integral of an
integrable function f by b( f ) (p( f )).

9.1 By definition of the Bochner integral, where one also starts with defining the
integral on simple functions: S ⊂ B and ϕ = b on S. Since B ⊂ P and b = p on B
we also have S ⊂ P with ϕ = p on S.

9.2 The following is used in this section. The Banach dual of E is equal to the order
dual, i.e., E ′ = E∼. Moreover, for x, y ∈ E (see de Jonge and van Rooij [15, Theorem
10.2])

x ≤ y ⇐⇒ α(x) ≤ α(y) for all α ∈ E∼+. (87)

This implies that for a sequence (yn)n∈N and x, y in E :

inf
n∈N

α(yn) = 0 for all α ∈ E∼+ �⇒ inf
n∈N

yn = 0. (88)

Theorem 9.3 Let f ∈ P+ and f be partially in S. Then f ∈ S+
L and p( f ) = ϕL( f ).

Proof Let (An)n∈N be a partition forwhich fn := f 1An ∈ S. Then for everyα ∈ E∼+

α(p( f )) =
∫

α ◦ f dμ =
∑
n∈N

∫
α ◦ fn dμ =

∑
n∈N

α(ϕ( fn)). (89)

Hence infN∈N α(p( f ) − ∑N
n=1 ϕ( fn)) = 0 and thus p( f ) = ∑

n ϕ( fn) (see (88)). ��

Theorem 9.4 Let f ∈ P. Then the following holds.

(a) If g ∈ SLV and f ≤ g, then p( f ) ≤ ϕLV (g).
(b) If SV is stable, g ∈ SV LV and f ≤ g, then p( f ) ≤ ϕV LV (g).

Consequently, p = ϕLV on P ∩ SLV , and p = ϕV LV on P ∩ SV LV if SV is stable.
The statements in (a) and (b) remain valid by replacing all “≤” by “≥”.

Proof It will be clear that if g ∈ S and f ≤ g, then g ∈ P and hence p( f ) ≤ p(g) =
ϕ(g).

If g ∈ SV and f ≤ g, then there exists an ϒ ⊂ S with g ≤ ϒ and ϕV (g) =
inf ϕ(ϒ) = inf p(ϒ) ≥ p( f ).

Let g ∈ SL and assume f ≤ g. Let g1, g2 ∈ S+
L be such that g = g1 − g2. Let

(Bi )i∈N be a ϕ-partition for both g1 and g2. Write An = ⋃n
i=1 Bi for n ∈ N. Let

α ∈ E∼+. α ◦ ( f 1A) = (α ◦ f )1A for every A ∈ A, so that α ◦ ( f 1A) is integrable.
Thus, for n ∈ N we have
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∫
(α ◦ f )1An dμ =

∫
α ◦ ( f 1An ) dμ ≤

∫
α ◦ (g1An ) dμ

=
∫

α ◦ g11An dμ −
∫

α ◦ g21An dμ

= α(ϕ(g11An )) − α(ϕ(g21An ))

≤ α(ϕ(g11Am )) − α(ϕ(g21Ak )) (k,m ∈ N, k < n < m). (90)

Which implies that
∫
(α ◦ f )1An dμ + α(ϕ(g21Ak )) ≤ α(ϕL(g1)) as soon as k < n.

By letting n tend to ∞ (as
∫
(α ◦ f )1An dμ → ∫

α ◦ f dμ = α(p( f ))), for each
k ∈ N we obtain

α(p( f )) ≤ α(ϕL(g1) − ϕ(g21Ak )). (91)

This holds for all α ∈ E∼+, so

p( f ) ≤ ϕL(g1) − ϕ(g21Ak ). (92)

This, in term is true for every k, so p( f )) ≤ ϕL(g).
We leave it to check that the preceding lines can be repeated with SV , SL or SV L

instead of S. ��
Theorem 9.5 Suppose ‖ · ‖ is σ -order continuous. Write S = SLV = SV L and
ϕ = ϕLV = ϕV L (see Theorem 5.12).

(a) Then S ⊂ P. Consequently, if f is essentially separably valued and in S, then
f ∈ B. In particular, SL ⊂ B.

(b) Suppose there exists an α ∈ E∼+
c with the property that if b ∈ E and b > 0, then

α(b) > 0. Then BV ⊂ B. Consequently, S ⊂ B.

Proof (a) Because ‖ · ‖ is σ -order continuous, E ′ = E∼
c . Therefore Theorem 8.14

implies that S ⊂ P.
Note that SL ⊂ B. Since B is a Riesz ideal in the space of strongly measurable
functions X → E , an f ∈ S is an element of B if it is essentially separably
valued, since there are elements σ, τ ∈ SL with σ ≤ f ≤ τ and f is weakly
measurable since f ∈ P.

(b) Suppose f ∈ BV and σn, τn ∈ B are such that σn ≤ f ≤ τn for n ∈ N, σn ↑, τn ↓
and supn∈N b(σn) = bV ( f ) = infn∈N b(τn). Then infn∈N

∫
α ◦ (τn − σn) dμ =

α(infn∈N b(τn−σn)) = 0 and thereforeα(infn∈N(τn−σn)) = infn∈N α◦(τn−σn)

is integrable with integral equal to zero. Therefore infn∈N(τn−σn) = 0 a.e., hence
τn → f a.e. Therefore f is strongly measurable and thus f ∈ B by (a). By (a)
SL ⊂ B, hence S = SLV ⊂ B.

��
9.6 For the next theorem we write SR for the space of simple functions X → R.
Note that if u ∈ E+ and π is an element of (SR)+L , thus of L1(μ), then uπ ∈ SL and
ϕL(uπ) = u

∫
π dμ.
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Theorem 9.7 Let Y be a compact Hausdorff space and let E = C(Y ) be equipped
with the supremum norm, ‖ · ‖∞. Then B ⊂ SLV and ϕLV = b onB.

Proof Let f ∈ B and (sn)n∈N be a sequence of simple functions X → E such that∫ ‖ f − sn‖∞ dμ ≤ 1
n2n for all n. Then there exists an integrable function g : X →

[0,∞) with g ≥ ∑
n∈N n‖ f − sn‖∞ μ-a.e., and thus g ≥ n‖ f − sn‖∞ μ-a.e. By

Theorem 7.1 there exists a π ∈ (SR)+L (see 9.6) with π ≥ g. Then, let Z ∈ A with
μ(A) = 0 be such that ‖ f (x) − sn(x)‖∞ ≤ 1

nπ(x) for all x ∈ X\Z . We may, by
replacing sn by sn1X\Z , assume that sn = 0 on Z . With Zk = {x ∈ Z : k − 1 <

‖ f (x)‖∞ ≤ k} and ρ the element in S+
L with ρ(x) = 0 for x /∈ Z and ρ(x) = k1Y

for x ∈ Zk , we have

sn − 1
n1Yπ − ρ ≤ f ≤ sn + 1

n1Yπ + ρ (n ∈ N). (93)

Because ϕL(ρ) = 0, ϕL( 1n1Yπ) → 0, ϕL(sn) = b(sn) and b(sn) → b( f ), both
ϕL(sn − 1

n1Yπ − ρ) and ϕL(sn + 1
n1Yπ + ρ) converge to b( f ). Whence

b( f ) = sup
n∈N

ϕL(sn − 1
n1Yπ − ρ) = inf

n∈N
ϕL(sn + 1

n1Yπ + ρ). (94)

Thus f ∈ SLV and ϕLV ( f ) = b( f ). ��
By theYosida Representation Theorem the following is an immediate consequence.

Corollary 9.8 Let E be a Archimedean Riesz space with strong unit u and assume
E is uniformly complete, i.e., E is a Banach lattice under the norm ‖ · ‖u given by
‖x‖u = inf{λ ∈ [0,∞) : |x | ≤ λu}. Then B ⊂ SLV and ϕLV = b on B.

Example 9.9 (I) Take X = N, A = P(N), and let μ be the counting measure. We
have S = c00[E]; SV = c00[E]; all functions N → E are partially in S; S :=
SLV = SV L = SL (see Theorem 5.5(c)) and S

+
consists precisely of the functions

f : N → E+ for which
∑

n f (n) exists in the sense of the ordering. On the other
hand, f : N → E is Bochner integrable if and only if

∑∞
n=1 ‖ f (n)‖ < ∞.

• If ‖ · ‖ is a σ -order continuous norm, then B ⊂ S.
• Moreover ‖ · ‖ is equivalent to an abstract L-norm if and only ifB = S (since,

if B = S, the following holds: if x1, x2, . . . ∈ E+ and
∑

n xn exists, then∑
n∈N ‖xn‖ < ∞, see Theorem 12.1).

• For E = c0 there exists an f ∈ P that is not in S. For example f : N → c0
given by

f = (e1,−e1, e2,−e2, e3,−e3, . . .) (95)

is Pettis integrable since c′
0

∼= �1 has basis {δn : n ∈ N} where δn(x) = x(n)

and
∑

m∈N δn( f (m)) = 0 for all m ∈ N. c0 is σ -Dedekind complete and
thus by Theorem 4.32 the set S is a Riesz space. However, | f | is not in S and
therefore neither f is.
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• For E = c there exists an f ∈ S that is not in B and not in P: Consider
for example f : n �→ en . It is an element of S but not of B. It is not even
Pettis integrable. (Suppose it is, and its integral is a. Then for all u ∈ c′ we
have u(a) = ∫

u ◦ f dμ = ∑∞
n=1 u( f (n)) = ∑∞

n=1 u(en). Letting u be
the coordinate functions, we see that a(n) = 1 for all n ∈ N; letting u be
x �→ limn→∞ x(n) we have a contradiction.)

(II) B �⊂ SV LV . Let (R,M, λ) be the Lebesgue measure space. Let E be the σ -
Dedekind complete Riesz space L1(λ). Let g ∈ L1(λ) be the equivalence class

of the function that equals t− 1
2 for 0 < t ≤ 1 and equals 0 for other t . Let

Lxg(t) = g(t − x) for x ∈ R. Then the function f : R → L1(λ) for which
f (x) = 1[0,1](x)Lxg is Bochner integrable ( f is continuous in the ‖ · ‖1 norm
(because ‖Lεg − g‖1 = 2

√
ε for ε > 0) and

∫ ‖ f (x)‖1 d λ(x) = ∫ ∫ |g(t −
x)| d λ(t) d λ(x) = ‖g‖1 < ∞) but no element of SV LV (by Theorem 8.3).

10 Extensions of Bochner integrable functions

Consider the situation of Sect. 9.
As we have seen in Examples 9.9, e.g., (95), the set of Pettis integrable functions

need not be stable. We show thatB is stable and b is laterally extendable. Furthermore
we give an example of an f ∈ BLV that is neither in SV LV , nor inBL or BV .

Theorem 10.1 B is stable and b is laterally extendable.

Proof Note that f 1B ∈ B for all f ∈ B and B ∈ A (since f 1B is stronglymeasurable
and ‖ f 1B‖ is integrable), i.e., B is stable. Let (An)n∈N be a partition in A of X . Let
f : X → E+ be a Bochner integrable function. Then

∫ ‖ f ‖ dμ < ∞ and with
Bn = A1 ∪ · · · ∪ An and Lebesgue’s Dominated Convergence Theorem we obtain

∥∥∥∥∥b
(
f −

N∑
n=1

f 1An

)∥∥∥∥∥ ≤
∫

‖ f (x) − 1BN (x) f (x)‖ dμ(x) → 0. (96)

Thus

b( f ) = lim
N→∞

N∑
n=1

b( f 1An ) =
∑
n

b( f 1An ). (97)

We conclude that b is laterally extendable. ��
In the following situation we have BL = B = BV .

Lemma 10.2 Let E be a Banach lattice with an abstract L-norm (i.e., ‖a + b‖ =
‖a‖ + ‖b‖ for a, b ∈ E+).

(a) Then

‖b( f )‖ =
∫

‖ f ‖ dμ ( f ∈ B+). (98)
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(b) BL = B.
(c) There exist an α ∈ E∼+

c as in Theorem 9.5(b). Consequently BV = B.

Proof (a) It is clear that ‖b( f )‖ = ∫ ‖ f ‖ dμ for f ∈ S+, hence by limits for all
f ∈ B+.

(b) Suppose f ∈ B+
L . Let (An)n∈N be a b-partition for f , write fn = f 1An . Then

‖∑N
n=1 fn − f ‖ → 0, hence f is strongly measurable. Moreover, since ‖ · ‖ is σ -

order continuous ‖∑N
n=1 b( fn) − bL( f )‖ → 0, hence

∑N
n=1 ‖b( fn)‖ → bL( f ).

Using (a) we obtain
∫ ‖ f ‖ dμ = ∑

n∈N
∫ ‖ fn‖ dμ = ∑

n∈N ‖b( fn)‖ < ∞,
i.e., f ∈ B.

(c) Extend α : E+ → R given by α(b) = ‖b‖ to a linear map on E .
��

10.3 Consider the situation of Example 8.8. Since S ⊂ B and ϕ(h) = b(h) for
h ∈ S: f ∈ BV . The function f is not essentially separably-valued (i.e., f (X\A) is
not separable for all null sets A ∈ A), hence f (and thus g) is not strongly measurable
(see [3, Theorem3.5.2]). Hence f is not Bochner integrable, i.e., f ∈ BV but f /∈ B.

In a similar way as has been shown in Example 8.8, one can show that g : R → E+
defined by g(t) = 1{t} for t ∈ R is in SLV . Then g ∈ BLV but g /∈ BV .

10.4 All f ∈ BL are strongly measurable. Therefore for f ∈ BL we have f /∈ B if
and only if

∫ ‖ f ‖ dμ = ∞.

The following example illustrates that by extending the Bochner integrable func-
tions one can obtain more than by extending the simple functions.

Example 10.5 [ψ ∈ BV , ψ /∈ B]
Let X = [2, 3], let A be the set of Lebesgue measurable subsets of X and μ be the

Lebesgue measure on X . Let M denote the set of equivalence classes of measurable
functions R → R. Let

E =
{
f ∈ M : sup

x∈R

∫ x+1

x
| f | < ∞

}
, ‖ · ‖ : E → [0,∞), ‖ f ‖ = sup

x∈R

∫ x+1

x
| f |.
(99)

Then E equipped with the norm ‖ · ‖ is a Banach lattice. E is an ideal in M and
therefore σ -Dedekind complete (hence SV is stable; 4.25). The norm ‖ · ‖ is not
σ -order continuous.

For a ∈ R, c > 0 define Sa,c : X → E+ by Sa,c(x) = 1(a+cx,∞). If x, y ∈ X with
y > x then ‖Sa,c(x) − Sa,c(y)‖ ≤ ‖1(a+cx,a+cy]‖ ≤ c|x − y|, so Sa,c is continuous
and therefore strongly measurable. Furthermore ‖Sa,c(x)‖ = 1 for all x ∈ X , i.e.,
x �→ ‖Sa,c(x)‖ is integrable. Thus Sa,c is Bochner integrable. For d, e ∈ R with
e > d the map E → R, f �→ ∫ e

d f is a continuous linear functional. Therefore

∫ e

d
b(Sa,c) =

∫
X

∫ e

d
(Sa,c(x))(t) dt dx =

∫ e

d

∫
X
(Sa,c(x))(t) dx dt. (100)
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Since this holds for all d, e ∈ R with e > d, for t ∈ R we have

(b(Sa,c))(t) =
∫
X
(Sa,c(x))(t) dx =

∫ 3

2
1(a+cx,∞)(t) dx = ( t−a

c ∧ 3 − 2
) ∨ 0.

(101)

For k ∈ N define rk, Rk : X → E by

Rk := S0,k, rk := S0,k − S1,k . (102)

For x ∈ X and k ∈ N, rk(x) = 1(kx,kx+1] and kx + 1 < (k + 1)x . Define

ψ(x) := 1⋃
k∈N(kx,kx+1] =

∑
k∈N

rk(x), σn :=
n∑

k=1

rk, τn :=
n∑

k=1

rk + Rn+1.

(103)

Note that σn ≤ ψ ≤ τn and σn, τn ∈ B all for n ∈ N. Since E is σ -Dedekind complete
and therefore mediated, from the fact that

inf
n∈N

b(τn − σn) = inf
n∈N

b(Rn+1) = 0, (104)

it follows that ψ ∈ BV . However, ψ /∈ B since ψ is not essentially separably valued:
Let x, y ∈ X , x < y. We prove ‖ψ(x) − ψ(y)‖ ≥ 1. For k ∈ N:

k − 1 ≤ 1
y−x < k �⇒

{
1 + (k − 1)y ≤ kx,

1 + kx < ky,

�⇒ (kx, kx + 1] ∩
⋃
i∈N

(iy, iy + 1] = ∅. (105)

Hence ‖ψ(x) − ψ(y)‖ ≥ 1 for all x, y ∈ X with x �= y.
So ψ is an element of BV but not of B (and neither of BL ).

Example 10.6 [ f ∈ BLV , f /∈ BL , f /∈ BV , f /∈ SV LV ]
Let (X,A, μ) be the Lebesgue measure space (R,M, λ). Let E and ψ be as in

Example 10.5. Define u : R → E by

u(x) =
{

ψ(x) x ∈ [2, 3],
0 otherwise.

(106)

Then u is an element ofBV and not ofBL . As we have seen in Examples 9.9(II) there
exists a g in L1(λ) and thus in E such that v : x �→ 1[0,1](x)Lxg is an element of B
that is not an element of SV LV . Furthermore w : R → E given by w(x) = 1(n,n+1]
for x ∈ (n, n + 1] is an element of BL and not of BV . Therefore f = u + v + w is
an element of BLV (and thus of BV L ; see Theorem 5.8) but is neither an element of
SV LV nor of BV or BL .
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11 Discussion

Of course, to some extent our approach is arbitrary. We mention some alternatives,
with comments.

11.1 The reader may have wondered why in our definition of the lateral extension
the sets An are required not only to be disjoint but also to cover X (i.e., to form a
partition). Without the covering of X the definition remains perfectly meaningful, but
the sum of two positive laterally integrable functions need not be laterally integrable,
even in quite natural situations. (E.g., take E = F = R and X = [0, 1]; let I be the
ring generated by the open intervals, � the space of all Riemann integrable functions
on [0, 1], and ϕ the Riemann integral. If f is the indicator of the Cantor set, then 1− f
is laterally integrable but 21 − f is not.)

11.2 For the vertical extension we have, somewhat artificially, introduced a count-
ability restriction leading us fromϕv toϕV ; seeDefinition 3.3. In some sense,ϕv would
have served as well as ϕV . In order to get a non-void theory, however, we would need
a much stronger (but analogous) condition than “mediatedness”, restricting our world
drastically.

11.3 A different approach to both the vertical and the lateral extension, closer to
Daniell and Bourbaki, could run as follows. Starting from the situation of 3.14, call a
function X → F+ “integrable” if there exist f1, f2, . . . ∈ �+ such that

{
fn ↑ f in FX ,

supn∈N ϕ( fn) exists in E,
(107)

then define the “integral” ϕ( f ) of f by

ϕ( f ) := sup
n∈N

ϕ( fn). (108)

This definition is meaningful only if, in the above situation

g ∈ �+, g ≤ f, �⇒ ϕ(g) ≤ sup
n∈N

ϕ( fn) (109)

which in a natural way leads to the requirement that � be a lattice and that ϕ be
continuous in the following sense:

h1, h2, . . . ∈ �+, hn ↓ 0 �⇒ ϕ(hn) ↓ 0. (110)

These conditions lead to a sensible theory, but againwe consider themas too restrictive.
(See Example II.2.4 in the thesis of Jeurnink [16] for an example of a � that consists
of simple functions on a measure space with values in a C(X) for which (110) does
not hold for the standard integral on simple functions (see 4.33).)



Integrals for functions with values in a partially ordered vector space 915

Acknowledgments The authors are grateful to O. van Gaans for valuable discussions. W.B. van Zuijlen
is supported by ERC Advanced Grant VARIS-267356.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

Theorem 12.1 Let E be a Banach lattice with the property

If x1, x2, . . . ∈ E+ and
∑
n

xn exists, then
∑
n∈N

‖xn‖ < ∞. (12.1)

Then the norm ‖ · ‖ is equivalent to an L-norm.

The proof uses the following lemma.

Lemma 12.2 Let E be a Banach lattice that satisfies (12.1). Then there exists a C > 0
such that

x1, x2, . . . ∈ E+,
∑
n

xn exists �⇒
∑
n∈N

‖xn‖ ≤ C
∥∥∥ ∑

n

xn
∥∥∥. (2)

Proof Suppose not. For i ∈ N let xi1, xi2, . . . ∈ E+,
∑

n xin = bi and
∑

n∈N ‖xin‖ >

2i‖bi‖ and ‖bi‖ = 2−i . Then
∑

i∈N ‖bi‖ < ∞, so
∑

i bi exists. As
∑

i bi =∑
i
∑

n xin , by (12.1) we get ∞ >
∑

i∈N
∑

n∈N ‖xin‖ >
∑

i∈N 2i‖bi‖ = ∞. ��
Proof of Theorem 12.1 By Lemma 12.2 we can define p : E → [0,∞),

p(x) = sup

{∑
n∈N

‖xn‖ : x1, x2, . . . ∈ E+,
∑
n

xn ≤ |x |
}

, (3)

obtaining p(x) = p(|x |), p(t x) = |t |p(x), ‖x‖ ≤ p(x) ≤ C‖x‖ for all x ∈ E , t ∈ R

(with C as in Lemma 12.2) and p(x) ≤ p(y) for x, y ∈ E+ with x ≤ y.
Let x, y ∈ E+; we prove p(x + y) = p(x) + p(y).

• For ε > 0 choose x1, x2, . . . , y1, y2, . . . ∈ E+,
∑

n xn ≤ x,
∑

n yn ≤ y,∑
n∈N ‖xn‖ ≥ p(x) − ε,

∑
n∈N ‖yn‖ ≥ p(y) − ε. Considering the sequence

x1, y1, x2, y2, . . . we find
∑

n∈N(‖xn‖ + ‖yn‖) ≤ p(x + y). Hence p(x + y) ≥
p(x) + p(y).

• On the other hand: Let z1, z2, . . . ∈ E+,
∑

n zn ≤ x + y; we prove
∑

n∈N ‖zn‖ ≤
p(x) + p(y). Define un, vn by

u1 + · · · + un = (z1 + · · · + zn) ∧ x, vn = zn − un (n ∈ N). (4)

http://creativecommons.org/licenses/by/4.0/
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Then (z1+· · ·+zn)∧x−zn = (z1+· · ·+zn−zn)∧(x−zn) ≤ (z1+· · ·+zn−1)∧x ,
implying un − zn ≤ 0; and (z1 + · · · + zn) ∧ x ≥ (z1 + · · · + zn−1) ∧ x , implying
un ≥ 0. Thus

un ≥ 0, vn ≥ 0 (n ∈ N), (5)

∑
n∈N ‖un‖ ≤ ∑

n∈N ‖zn‖ < ∞, so
∑

n un exists;
∑

n un ≤ x , and
∑

n∈N ‖un‖ ≤
p(x).

∑
n∈N ‖vn‖ ≤ ∑

n∈N ‖zn‖ < ∞, so
∑

n vn exists. For every n ∈ N, z1 +
· · ·+zn ≤ (z1+· · ·+zn+y)∧(x+y) = (z1+· · ·+zn)∧x+y = u1+· · ·+un+y,
so v1 + · · · + vn ≤ y; then

∑
n vn ≤ y and

∑
n∈N ‖vn‖ ≤ p(y).

Thus
∑

n∈N ‖zn‖ ≤ ∑
n∈N ‖un‖ + ∑

n∈N ‖vn‖ ≤ p(x) + p(y). ��
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