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Abstract We consider integration of functions with values in a partially ordered vector
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1 Introduction

For functions with values in a Banach space there exist several notions of integration.
The best known are the Bochner and Pettis integrals (see [1,2]). These have been
thoroughly studied, yielding a substantial theory (see Chapter III in the book by Hille
and Phillips [3]).

As far as we know, there is no notion of integration for functions with values in a
partially ordered vector space; not necessarily a o-Dedekind complete Riesz space.
In this paper we present such a notion. The basic idea is the following. (Here, E is a
partially ordered vector space in which our integrals take their values.)

B W. B. van Zuijlen
willem.van.zuijlen @math.leidenuniv.nl

Department of Mathematics, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen,
The Netherlands

2 Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands

) Birkhauser


https://core.ac.uk/display/81789022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s11117-015-0392-y&domain=pdf

878 A. C. M. van Rooij, W. B. van Zuijlen

In the style of Daniell [4] and Bourbaki [5, Chapter 3,4], we do not start from a
measure space but from a set X, a collection I' of functions X — E, and a functional
¢ : I' = E, our “elementary integral”. We describe two procedures for extending ¢
to a larger class of functions X — E. The first (see Sect. 3), the “vertical extension”,
is analogous to the usual construction of the Riemann integral, proceeding from the
space of simple functions. The second (see Sect.4), the “lateral extension”, is related
to the improper Riemann integral.

In Sect.5 we investigate what happens if one repeatedly applies those extension
procedures, without considering the space E to be o-Dedekind complete or even
Archimedean. However, under some mild conditions on E one can embed E into a
o-Dedekind complete space. In Sect.6 we discuss the extensions procedures in the
larger space. Sections 7 and 8 treat the situation in which I' consists of the sim-
ple E-valued functions on a measure space. (In Sect.7 we have E = R.) In Sect.9
we consider connections of our extensions with the Bochner and the Pettis integrals
for the case where E is a Banach lattice. In Sect. 10 we apply our extensions to
the Bochner integral. For more alternative approaches we refer to the discussion in
Sect. 11.

2 Some notation

Nis{l1,2,3,...}.
Let X be a set. We write P(X) for the set of subsets of X. For a subset A of X:

1 ifxeA,
Tatx) = .
0 ifx¢A.
As a shorthand notation we write 1 = 1y.
Let E be a vector space. We write x = (x1, x2, ...) for functions x : N — E (i.e.,
elements of EN ) and we define

coolE] = {x € EN : 3N Vi > N [x, = 01}, coo = coolR]

We write cg for the set of sequences in R that converge to 0, ¢ for the set of convergent
sequences in R, £°°(X) for the set of bounded functions X — R, £°° for £°°(N), and
¢! for the set of absolutely summable sequences in R. We write e, for the element
1y of RN,

For a complete o-finite measure space (X, A, i) we write Ll (w) for the space of
integrable functions, Ll(p,) = Ll(u) JN where N denotes the space of functions
that are zero p-a.e. Moreover we write L°°(u) for the space of equivalence classes of
measurable functions that are bounded almost everywhere.

For a subset I' of a partially ordered vector space 2, we write [T = {f e ": f >
0L IfA, Y CQand f <gforall f e Aandg € T wewrite A < Y;if A = {f} we
write f < Y instead of { f} < T etc. For a sequence (%), cN in a partially ordered
vector space we write iy, | Oif hy > hy > hz > --- and inf,,cx h, = 0.
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3 The vertical extension

Throughout this section, E and 2 are partially ordered vector spaces, I' C
is a linear subspace and ¢ : ' — E is order preserving and linear. Additional
assumptions are given in 3.14.

Definition 3.1 Define

N={fee: sw g0 = ,eir‘;‘fzf‘”(”}’ )

ocelo<f

and ¢, : 'y => E by

po(f) = sup (o) (f el 2

ocelio<f

Note: If f € Q and there exist subsets A, Y C I' with A < f < 7T such that
supp(A) = inf ¢(Y), then f € I'y and ¢, (f) = inf (7).

3.2 The following observations are elementary.

(@ ' cTyand py(t) = p(t) forallt € T'.

(b) T, is a partially ordered vector space and ¢, is a linear order preserving map'.
() ('y)y =Ty and (py)y = @y.

(d) If ITis a subset of I', then IT, C I'y.

Of more importance to us than I, and ¢, is the following variation in which we
consider only countable subsets of T".

Definition 3.3 Let I'y be the set consisting of those f in € for which there exist
countable sets A, Y C I' with A < f < Y such that

sup 9(A) = inf (7). 3)

From the remark following Definition 3.1 it follows that 'y is a subset of '}, and that
(for f and A as above) ¢, (f) is equal to sup ¢(A). We will write ¢y = ¢@y|r,. We
call T'y the vertical extension® under ¢ of " and @y the vertical extension of ¢.

In what follows we will only consider ¢y and not ¢,. However, most of the theory
presented can be developed similarly for ¢, . (For comments see 11.2.)

Example 3.4 Ty is the set of Riemann integrable functions on [0, 1] and @y is the
Riemann integral in case £ = R, Q = RO and T is the linear span of {1 :
I is an interval in [0, 1]} and ¢ is the Riemann integral on T".

3.5 In analogy with 3.2 we have the following.

! This follows from the following fact: Let A, B C E. If A and B have suprema (infima) in E, then so
does A + B and sup(A + B) = sup A +sup B (inf(A + B) = inf A + inf B).

2 One could also define the vertical extension in case E, Q,T" C Q are partially ordered sets (not necessarily
vector spaces) and ¢ : I' — E is an order preserving map.
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(@ I'cTyandegy(r) =¢(r) forallt € T.

(b) I'y is a partially ordered vector space and ¢y is a linear order preserving map.
(© (T'v)v =Ty and (pv)y = ¢y.

(d) IfI1 Cc T, then [Ty C I'y.

Definition 3.6 Let D be a linear subspace of E. D is called mediated in E if the
following is true:

If A and B are countable subsets of D such that inf A — B = 01in E, then

A has an infimum (and consequently B has a supremum and inf A = sup B). (4)

D is mediated in E if and only if the following requirement (equivalent with order
completeness in the sense of [6], for D = FE) is satisfied

If A and B are countable subsets of D such thatinf A — B = 0 in E, then
there existsan h € E with B < h < A. )

We say that E is mediated if E is mediated in itself.

Note: if D is mediated in E, then so is every linear subspace of D. Every o-Dedekind
complete E is mediated, but so is R?, ordered lexicographically. Also, cqo and g are
mediated in ¢, but ¢ is not mediated.

With this the following lemma is a tautology.

Lemma 3.7 Suppose ¢(I') is mediated in E. Let f € Q. Then f € T'y if and only if
there exist countable sets A, T C I" with A < f < Y such that

inf @t —o)=0. (6)

teY,0eA

The next example shows that Iy is not necessarily a Riesz space even if E and I"
are. However, see Corollary 3.10.

Example 3.8 Consider E = ¢, ' = ¢ x¢, Q2 = £ x£* Letgp : I' — ¢ be
given by ¢(f, g) = f + g. Forall f € £ there are hy, hy,... € ¢ with h, | f. 1t
follows that, 'y = {(f, g) € £*° x £*° : f + g € c}. Note that I'y is not a Riesz
space since for every f € £°° with f > 0 and f ¢ ¢ we have (f, —f) € T'y but
(fi=HT=(f,0) ¢Ty.

Lemma 3.9 Suppose ¢(I') is mediated in E. Let ® : Q — 2 be an order preserving
map with the properties:

e ifo,telando <t,then) <O(t) —O(0) <7t —0;
e O(") CTI'y.

Then ®(T'y) C T'y.
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Proof Let f € I'y and let A, Y C I be countable sets with A < f < Y satisfying
(6). Then ®(A) < O(f) < O(Y) and

ot —o) = re“ifl,lcfeA (p(@(‘[) B ®(G)) = re’%‘r,lgeA(p(T - =0
(7

inf
1€0(Y),0€0(A)

O

Corollary 3.10 Suppose that (') is mediated in E. Suppose Q2 is a Riesz space and
I' is a Riesz subspace of Q2. Then so is T'y.

Proof Apply Theorem 3.9 with ®(w) = w™. i

3.11 If T is adirected set,i.e., I’ = 't —I'", then sois I'y. Indeed, if f € 'y, then
there exist o, 7 € I'" suchthat f > 7 —o andthus f = (f +0) —0 € F“’,' —F“ﬁ.

3.12 In the last part of this section we will consider a situation in which 2 has some

extra structure. But first we briefly consider the case where E is a Banach lattice with
o-order continuous norm. As it turns out, such an E is mediated (see Theorem 4.24),
but is not necessarily o-Dedekind complete (consider the Banach lattice C (X) where
X is the one-point compactification of an uncountable discrete space). For such E we
describe I'y in terms of the norm.

Theorem 3.13 Let E be a Banach lattice with a o -order continuous norm. Let Q2 be
a Riesz space and T" be a Riesz subspace of Q. For f € Q we have: f € 'y if and
only if for every € > O there exist o, T € ' witho < f <t and ||p(t) — ¢(0)]| < e.

Proof First, assume f € I'y. As I' is a Riesz subspace of 2 there exist sequences
(On)nen and (t,) e in I such that oy 1, 7, |,

on < f =<t (meN), supe(o,) = inf ¢(7,). ()
neN neN

Then ¢(t, —0,) | 0in E, so ||¢(t,) — ¢(o,)| 4 0 and we are done.
The converse: For each n € N, choose 0, 7, € I" for which

on < f <t lo) -l <n . )

Setting o, =01V ---Vo,and 1, = 1) A--- A T, we have, foreachn € N

el o, <f<r1,. (10)

GI;’ n n

Ifn > N,then0 < 0, —oy < f —on <ty — oy, whence [¢(0,) — @) <
lo(zn) — @(on)|| < N1 Thus, the sequence (¢(0,,)),eN converges in the sense of
the norm. So does (¢(7,)),eN. Their limits are the same element a of E, and, since

o, 1,1, |, wesee that a = sup, .y ¢(0,) = inf,eN @ (7). o



882 A. C. M. van Rooij, W. B. van Zuijlen

3.14 In the rest of this section € is the collection FX of all maps of a set X into a
partially ordered vector space F.

3.15 A function g : X — R determines a multiplication operator f + gf in Q2. We
investigate the collection of all functions g for which

felly = gfely, (11

and, for given f, the behaviour of the map g — ¢y (gf).

3.16 For an algebra of subsets of X, A C P(X) we write [A] for the Riesz space
of all A-step functions, i.e., functions of the form Zl’-’zl Ailg, forn e N, A; € R,
A; € Afori € {1,...,n}. Define the collection of functions [.4]° by

[A]° ={f € RX : there are (s,),en in [A] and (jn)pey in [A]T
for which | f —s,| < j, and j, | O pointwise}. (12)

(This [A]° is the vertical extension of [A] obtained by, in Definition 3.3, choosing
E =RX Q =RXT = [A], o(f) = f (f e I').) Note that [A] and [.A]°
are Riesz spaces, and uniform limits of elements of [A] are in [A]°. (Actually, [.A]°
is uniformly complete.) Furthermore, [A]° contains every bounded function f with
{x e X: f(x) <s}e Aforalls € R. Incase A is a o-algebra, [.A]° is precisely the
collection of all bounded .A-measurable functions.

Lemma 3.17 Let A C P(X) be an algebra of subsets of a set X. Suppose that (g,),eN
is a sequence in [A)° for which g, | 0 pointwise. Then there exists a sequence (j,)neN
in [A] with j, > g, and j, | 0 pointwise.

Proof Foralln € Nthere exists a sequence (s,x)xen in [A] with s, > g, forallk € N
and s,x |k gn pointwise. Since (g,),cN 1s a decreasing sequence, we have s,k > gn

for all m < n and all k € N. Hence j,, := inf,, x<; sk is an element in [.4] with
Jn = gn. Clearly j, | and inf,cy ju = inf,eninfy, k<p Smx = inf, ey infren spx =
inf,en g7 = 0. O

The following lemma is a consequence of Lemma 3.9.

Lemma 3.18 Define the algebra
A={ACX: flaeTl for f eT}. (13)
If o(T") is mediated in E, then
flaely (fely,AeA). (14)

Definition 3.19 E is called Archimedean® (see Peressini [8]) if for all @, b € E the
following holds: if na < b foralln € N, thena < 0.

3 In some places, e.g., Birkhoff [7], the term ‘integrally closed’ is used.
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Definition 3.20 A sequence (ay),cN in E is called order convergent to an element
a € E if there exists a sequence (h,),ecn in E* with h, | Oand —h, < a —a, < h,.

. o
Notation: a,, — a.

Theorem 3.21 Let A be as in (13). Suppose that E is Archimedean, U is directed and
¢(I) is mediated in E. Furthermore assume ¢ has the following continuity property.

IfAy, Ay, ...in A are such thatA] D Ay D --- and ﬂ A, =0,
neN
then o(f14,) | O forall f € r+. (15)

(a) gf €Ty forall g € [A]° and all f € Ty.
(b) Let g € [A]° and let (gn),eN be a sequence in [A]° for which there is a sequence
Unnen in [AI°T with —j, < g, — g < ju and j, | 0 pointwise. Then

ov(gnf) > ov(gf) (f €T). (16)

(Order convergence in the sense of E.)

Proof We first prove the following:
(x) Let f € F‘J;. Let (g,),en be a sequence in [A]° for which g, f € 'y for all
n € Nand g, | 0 pointwise. Then

pv(gnf) 1 0. (17)

Leto € T'T, o > f. It follows from Lemma 3.17 that we may assume g, € [A]
foralln € N. For all n € N we have 0 < ¢y (g, f) < ¢v(g,0), so we are done if
pv(gno) | 0.

Leth € E, h < ¢y(g,0) for all n € N; we prove h < 0.

Take ¢ > 0. Foreachn € N,set A, = {x € X : g,(x) > ¢}. Then A, € A for
neNand Ay D Ay D --- and ﬂneN A, = 0. Putting M = ||g1|lcc We see that

gn <elx +Mly, (ne€N), (18)
whence
h < oy(gno) <ep(o) + Mp(la,0) (ne€N). (19)

By the continuity property of ¢, i < g¢(0). As this is true for each ¢ > 0 and E is
Archimedean, we obtain 2 < 0.

(a) Since I'y is directed (see 3.11) it is sufficient to consider [ € F‘J;. Letg € [A]°.
There are sequences of step functions (/,),en and (j,),en for which h, 1 g, ju | g
and thus j, — h, | 0. By Lemma 3.18 &, f, j,f € 'y foralln € N. Then h, f <
gf < jnf forn € N and inf, cn @y ((jn — hn) f) = 0 by (»). By Lemmas 3.7 and
3.5(c) we obtain that gf € I'y.
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(b) It is sufficient to consider f € F‘J;. By (a) we may also assume g = 0. But then
(b) follows from (x). O

Remark 3.22 Consider the situation in Theorem 3.21. Suppose 5 C A is a o -algebra.
Then all bounded B-measurable functions lie in [LA]°. If (g,,) . <y is abounded sequence
of bounded B-measurable functions that converges pointwise to a function g, then the
condition of Theorem 3.21(b) is satisfied.

Remark 3.23 In the next section we will consider a situation similar to the one of
Theorem 3.21, in which A is replaced by a subset Z that is closed under taking finite
intersections. We will also adapt the continuity property on ¢ (see 4.3).

4 The lateral extension

The construction described in Definition 3.3 is reminiscent of the Riemann integral
and, indeed, the Riemann integral is a special case (see Example 3.4).

In the present section we consider a type of extension, analogous to the improper
Riemann integral. One usually defines the improper integral of a function f on [0, co)
to be

N

lim f(x) dx, (20)
0

§—>00

approximating the domain, not the values of f.
For our purposes a more convenient description of the same integral would be

o0 An+1
> / f() dx, @1)
n=1"4n

where 0 = a; < ay < -+ and a, — o0. Here the domain is split up into manageable
pieces.

Splitting up the domain is the basic idea we develop in this section. (This may
explain our use of the terms “vertical” and “lateral”.)

Throughout this section, X is a set, E and F are partially ordered vector spaces,
T is a directed” linear subspace of FX, and ¢ is a linear order preserving map
I' > E.(With @ = FX, all considerations of Sect. 3 are applicable.)

rcrX

g

E

Furthermore, 7 is a collection of subsets of X, closed under taking finite inter-
sections. See Definitions4.1 and 4.2 for two more assumptions.

4 For the construction of the lateral extension, one does not need to assume that I' is directed. However, as
one can see later on in the construction, the only part of I" that matters for the extension is It — 't
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As a shorthand notation, if (a,),cn is a sequence in E™ and {Z,]yzl a, : N € N}
has a supremum, we denote this supremum by

S an. (22)

Definition 4.1 A disjoint sequence (A,),eN of elements in Z whose union is X is
called a partition If (A;),en and (By),cn are partitions and for all n € N there exists
an m € N for which B, C A, then (By),cn is called a refinement of (A,),eN-
Note that if (A,),en and (By,), N are partitions then there exists a refinement of both
(Ap)nen and (By),eN (e.g., a partition that consists of all sets of the form A, N By,
with n, m € N). We assume that there exists at least one partition.

Definition 4.2 We call a linear subspace A of FX stable (under T) if
flae A (feA Aed). (23)

If A is a stable space, then a linear and order preserving map w : A — E is said to be
laterally extendable if for all partitions (A,),eN

o(f) =D o(fla,) (see(22)) (f€AT). (24)

We assume T is stable and ¢ is laterally extendable.

4.3 In the situation of Theorem 3.21 we can choose Z = A; then (15) is precisely
the lateral extendability of ¢.

Example 4.4 For any partially ordered vector space F and a linear subspace E C F,
the following choices lead to a system fulfilling all of our assumptions: X = N,
Z=PMN), T =colE] (see Sect.2), o(f) = >, cn f(n) for f € T.

Definition 4.5 Let A be a stable subspace of FX and let w : A — E be a laterally
extendable linear order preserving map. Let (A,),cN be a partition, and f : X — F.
We call (A,),eN a partition for f (occasionally A-partition for f) if

fla, € A (neN). (25)

A function f : X — F is said to be a partially in A if there exists a partition for f.
For f : X — FT, (Ap),en is called a w-partition for f if it is a partition for f and if

> w(f1a,) exists. (26)

A function f : X — F7 that is partially in A is called laterally w-integrable if there
exists a w-partition for f.
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Example 4.6 Consider the situation of Example 4.4. A functionx : N — F is partially
in I if and only if x,, € E for every n € N. If x > 0, then x is laterally integrable if
x, € E foreveryn € Nand >, x, exists in E.

4.7 Naturally, we wish to use (26) to define an integral for f. For that we have to
show the supremum to be independent of the choice of the partition (A,),eN-

Lemma 4.8 (a) Let f : X — F and let (Ay),eN be a partition for f. If (By)yeN IS
a partition that is a refinement of (A,),eN, then (By)qeN is a partition for f.
(b) Let f : X — F*andlet (Ap),en and (By)men be partitions for f. Then the sets

N M
{Zcp(fILAn):NeN} and {Z(p(flgm):MeN] (27)

n=1 m=1

have the same upper bounds in E.

Proof We leave the proof of (a) to the reader. Let u be an upper bound for the
set {Z,llvzl ©(f1la,) : N € N}; it suffices to prove that u is an upper bound for
{Z;/ZI:] o(flp,) : M € N}. Take M € N; we are done if u > znﬂle o(f1g,),
ie,ifu > ¢o(f1lp) where B = By U---U By. But flp € T so ¢(flp) =
S o(flpla,) =supyeny S, @(f1p14,), whereas, for each N € N

N N
> e(flpla,) < D @(fla,) <u. (28)

n=1 n=1
O

Theorem 4.9 Let f : X — F7 be laterally g-integrable. Then every partition for f
is a @-partition for f. There exists an a € E™ such that for every partition (Ap),eN

for f,
a=>Y ¢(fla,). (29)

If f €T, thena = ¢(f).
Proof This is a consequence of Lemma 4.8(b). O

Definition 4.10 For alaterally g-integrable f : X — FT wecall the elementa € E™
for which (29) holds its ¢y -integral and denote it by ¢y ( f). For the moment, denote
by (I't) . the set of all laterally @-integrable functions f : X — F*. We proceed to
extend ¢y, to a linear function defined on the linear hull of (I'*), see Definition 4.14.

4.11 The assumptions that I' is stable and ¢ is laterally extendable are crucial for
the fact that the ¢ -integral of a laterally ¢-integrable function is independent of the
choice of a g-partition (see Lemma 4.8(b)).



Integrals for functions with values in a partially ordered vector space 887

4.12 We will use the following rules for a partially ordered vector space E:

apta,by,tb—=—a,+b,a+b (ay,by,a,bekE), (30
an t, byt b, ay+b,ta+b=—a, ta (an,by,a,b e E). (31)

4.13 (Extending ¢;) Define 'y ={f1 — f>o: f1, o€ T}
Step 1 Let f, g € (I'") . There exists an (A,),cn that is a @-partition for f and for
¢. By definingay = 3N o(f14,) and by = SV ¢(gla,) for N € N, by (30)
we obtain f 4 g € (I'") with o1 (f + g) = ¢r.(f) + ¢L(g).

Consequently, I'y is a vector space, containing (I'") .
Step 21f g1, g2, h1,hy € (") and g1 — g2 = hy — ho, then g1 + hy = g2 + hy so
that, by the above, ¢1.(g1) — ¢ (h1) = ¢L(g2) — ¢L(h2).

Hence, ¢; extends to a linear function I'; — E (also denoted by ¢y ).
Step 3 Let f,g € ("), and f < g. By defining ay and by as in step 1 and
cy = by —ay, by (31) we infer that g — f € (I'M) ..

Thus, if f € T, and f > 0, then f € (') .. Briefly: (T'") is FZ’, the positive
partof I'z.

Definition 4.14 A function f : X — F is called laterally ¢-integrable if f € 'L
(see 4.13), i.e., if there exist f1, f» € (I'"), for which f = f| — f>. The ¢, -integral
of such a function is defined by ¢, (f) = ¢ (f1) — oL (f2).

¢r isafunction 'y — FE and is called the lateral extension of ¢. The set of laterally
@-integrable functions, 'z, is called the lateral extension of I' under ¢.

Note that, thanks to Step 3 of 4.13, this definition of “laterally ¢-integrable” does
not conflict with the one given in Definition 4.10.

4.15 Like for the vertical extension, we have the following elementary observations:

(@ "' c Iy’ and @ (7) = @(t) forall T e T.

(b) I'p is a directed partially ordered vector space and ¢, is a linear order preserving
function on I'z.

(c) If I is a directed linear subspace of FX and IT C T, then [T, C I';.

(') is not so easy. See Theorem 4.18 and Example 4.19.)

In case E is a Banach lattice with o-order continuous norm, for T‘L+ we have an
analogue of Theorem 3.13.

Lemma 4.16 Suppose E is a Banach lattice with o -order continuous norm. Let f :
X — FT. Then f lies in F;f if and only if there exists a I'-partition (A,),eN for f
such that the sequence (¢(f14,))neN has a sum in the sense of the norm, in which
case o (f) is this sum.

Proof The “only if” part follows by definition of I'y and the o -order continuity of the
norm. For the “if” part; this follows from the fact that if a,, 1 and ||, — a|| — O for
a,ay,az,... € E, thena, 1 a. O

5 Note that for this inclusion it is necessary that I" be directed.
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We will now investigate conditions under which ¢y and ¢y themselves are laterally
extendable. (For that, their domains have to be able to play the role of I, so they have
to be stable.) First a useful lemma:

Lemma 4.17 Let f € I'. Then there exists a partition (A,)neN for f such that every
refinement (By,)meN of it (is a partition for f and) has this property:

M
heE, h=Y o(flp,)foralM eN = h=gL(f). (32)

m=1

Proof Write f = f1 — f with f1, f» € Fzr. Let (A;),cN be a partition for f1 and f>,
and let (B;;) e be a refinement of (A, ),eN. Note that (B;,) N 1S a partition for fi
and f>. Let i be an upper bound for {Z,Ale o(flp,) : M eN}in E.Forall M € N,

M M M M

h+ > ¢(f2lg,) = D @(flg,)+ D e(fl,) =D e(filg,). (33)
m=1 m=1 m=1 m=1

Taking the supremum over M yields & + ¢, (f2) > ¢ (f1),1.e., h > or(f). O

Theorem 4.18 (a) Suppose Iy is stable. Then ¢, is laterally extendable, i.e.,

oL(f) =D ¢L(f1a,) (34)

n

forevery f € Fzr and every @ -partition (A,)uen for f. Therefore (I'p); =T

and (L)L = ¢L-
(b) Suppose Ty is stable. Then @y is laterally extendable. (For (I'y) [ see Sect.5.)

Proof (a) Let f € FZL and let (By),cN be a ¢y -partition for f. Let (A,),N be the
partition for f as in Lemma 4.17. Then form a common refinement of (B),),eN
and (A,),en and apply Lemma 4.17.

(b) Let f € 1";,r and let (A,),cN be a partition. Leth € E, h > 2111\1:1 oy (f1,,) for
every N € N. We wish to prove i > ¢y (f), which will be the case if & > ¢ (o)
for every o € I' with 0 < f. For that apply Lemma 4.17 to o.

O

The following shows that I';, may not be stable, in which case there is no (I'y) .
(However, see Theorem 4.25(a).)

Example 4.19 Consider the situation in Example 4.4 and assume thereisana : N —
E™T such that 3", a, exists in F and Y, ap, does not (e.g. E = F = ¢ and q, =
ep = 1y,)). By Example 4.6 a lies in 'y, but b = (0, a2, 0, as, ...) does not; but
b=alpae, .yand{2,4,6,...} € I.(Actually, the existence of suchana : N — ET
is equivalent to E not being “splitting” in F'; see Definition 4.21 and (36).)

Remark 4.20 T'y may not be stable either. With E = ¢, F = £, X = {1,2},
I' =c x cand ¢(f, g) = f + g (as in Example 3.8), the space I'y is not stable for
7 ="PX).
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Definition 4.21 Let D be a linear subspace of E. D is called splitting in E if the
following is true:

If(an),en and (by,), N are sequences in D with0 < a, < b, forn e N

and Zn b, exists in E, then so does Zn a. (35)
It is not difficult to see that D is splitting in E if and only if

If(a,),en is a sequence in DT and Z a, exists in E,
n

then so does Z 1a(n)a, forall A C N. (36)
n

If D is splitting in E, then so is every linear subspace of D. If E is o-Dedekind
complete, then E is also splitting. More generally, D is splitting in E if every bounded
increasing sequence in D has a supremum in E. Also, R? with the lexicographical
ordering is splitting.

In Theorem 4.25 we will see what is the use of this concept. First, we have a look
at the connection between “splitting” and “mediated”.

Lemma 4.22 Suppose D is a linear subspace of E. Consider the condition:

For all sequences(an)nen, (bn)neNninD :
an 4, by 1, inlfwan —b, =0 = inf a, = supb,. 37
ne

neN neN

(The infima and suprema in (37) are to be taken in E.) If D is either splitting or
mediated in E, then (37) holds. Conversely, (37) implies that D is splitting if D = E,
whereas (37) implies that D is mediated in E if E is a Riesz space and D is a Riesz
subspace of E.

Proof Tt will be clear that mediatedness implies (37) and vice versa if E is a Riesz
space and D a Riesz subspace of E.

If D is splitting in £ and a, |, b, 1 and infa, — b, = 0, then >, b,11 — b, +
an — ay+1 = a1 — by. Hence (37) holds.

Suppose D = E and (37) holds. Let (a,),en and (by,),cN be sequences in D with
0 < a, < by forn € N such that >, b, exists. Let z = >, by, Ay = >'_, ai,
C, = Z?:l b; —a; forn € N. Then A, 1,C, t and z — C, — A, | O (note that
z — C, € D). Hence sup,,.y Ay, = >, a, exists. ]

4.23 (a) If E is a Riesz space, then every splitting Riesz subspace is mediated in E.

(b) If E is mediated, then it is splitting. The converse is also true if E is a Riesz space.

(c) coo is mediated in ¢, not splitting in ¢ (with D = E = ¢ also (37) is not satisfied).

(d) If D is the space of all polynomial functions on [0, 1] with degree at most 2 and
E = CJ[0, 1], then D is splitting in E, but not mediated in E. (Actually, D is
splitting, but not mediated.)



890 A. C. M. van Rooij, W. B. van Zuijlen

D is splitting (and satisfies (37) with E = D): ifu, € E*, u, ? and u, < 1,
then |u,(x) — u,(y)| < 4|x — y| as can be concluded from the postscript in
Example 5.15. Therefore the pointwise supremum is continuous. It is even in D
since u,(x) = anx® + byx + ¢,, where ay,, by, ¢, are linear combinations of
u,(0), un(%), u, (1) (see also the postscript in Example 5.15).

D is not mediated: for example one can find countable A, B C E for which 11[ 1
is pointwise the infimum of A and 1 1 is pointwise the supremum of B, then
inf A— B =0, butthereisnoh € E with B < h < A.

Theorem 4.24 Let E be a Banach lattice with o -order continuous norm. Then E is
both mediated and splitting.

Proof Suppose ay, b, € E with 0 < a, < b, for n € N. Suppose that {2111\]:1 by :
N e N} has a supremum s in E. We prove that {Z,]ZVII a, : N € N} has a supremum in
E. Since the norm is o -order continuous, we have ||s — Zfl\’:l b,|| — 0. In particular
we get that for all ¢ > 0 there exists an N € N such that for all n,m > N with
m > n we have | > b;|| < ¢ and thus || >_/_, a;|| < . From this we infer that

(Zfl\’:l an) NeN converges in norm. Therefore it has a supremum in E. Thus E is
splitting. By Lemma 4.22 E is mediated. O

Theorem 4.25 (a) ¢(I") splitting in E = ' is stable and ¢ is laterally extendable.

(b) (") mediated in E = T'y is stable and ¢y is laterally extendable.

(c) (') splitting in E and ¢ (') mediated in E = (I'y) v is stable and (¢r)y is
laterally extendable.

Proof (a) Let f € ', B € Z; we prove f1p € I'r. (This is sufficient by Theorem
4.18(a).) Without loss of generality, assume f > 0. Choose a p-partition (A, ), cN
for f. Now apply (35) to

an = @(fla,nB), bn:=¢(fla,) (neN). (38)

(b) follows from Lemma 3.18 and Theorem 4.18(b).
(c) By (a) I'g is stable and ¢ is laterally extendable. Hence we can apply (b) to I'g,
and ¢, (instead of I and ¢) and obtain (c).
O

4.26 To some extent, the assumption of Theorem 4.25(a) is minimal.
Indeed, in the situation of Example 4.4, we see that ['; is stable if and only if £
(which is ¢(I")) is splitting in F (see (36)).

In Theorem 4.25(c) we assumed that @7 (I'z) (and thus also ¢(I")) was mediated
in E. It may happen that ¢(I") is mediated in E, but ¢, (I'1) is not, as Example 4.27
illustrates. However, splitting is preserved under the lateral extension and mediation
is preserved under the vertical extension, see Theorem 4.28.

Example 4.27 Let X =N, 7 =P(N), E = F = c.LetI" = cgo[coo] (see Sect.2) and
¢ : ' — Ebegivenby ¢(f) = >,y f(n). Then ¢(I') = coo, which is mediated in
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c. A function f : N — c is partially in " if and only if f(N) C cgo. For x € ¢ the
function given by f(n) = x(n)1y,) forn € Nliesin I', and ¢ (f) = x. It follows
that ¢, (I'z) is ¢, which is not mediated in c.

Theorem 4.28 (a) If (') is splitting in E, then so is ¢ (I'L).
(b) If (') is mediated in E, then so is oy (I'y).

Proof (a) Suppose a, € ¢ (I'1)" forn € N and Zn a, exists. Let A C N. For all
n € N there exist by, by, ... € ()" witha, = Y, buyn. Hence >, a, =
2 nmbnmandso > LN, m)byy = 3., La(n)ay exists in E.

(b) Suppose A, B C ¢y (I'y) are countable sets withinf A— B = 0.Foralla € A and
b € B there exist countable sets Y, Ap C I' witha = inf ¢(Y,), b = sup ¢(Ap).
Then inf o(J,cp Yo — Upep Ap) = 0 and thus inf A = info(J,c4 Ya) =
sup @(Upep Ap) = sup B.

acA

O

4.29 For a Riesz space F we will now investigate under which conditions the space
I'; is a Riesz subspace of FX. The next example shows that even if E is a Riesz space
and I" is a Riesz subspace of F X, may not be one. However, see Theorem 4.32.

Example 4.30 Let a, b be as in Example 4.19; this time put d = (0, a; 4+ a2, 0, a3 +
as,...). Thena,d e 'y butand =b ¢TI

Hence, in Example 4.4, if F is a Riesz space and E is not splitting in F, then I'y, is
not a Riesz subspace of FX. As we will see in Theorem 4.32, considering the situation
of Example 4.4: 'y is a Riesz subspace of FX if and only if E is splitting in F.

Lemma 4.31 Let f : X — F be partially in T.

@ If fisinTLy, then f € T'L.
(b) Suppose o(I') is splittingin E. If g < f < h forcertaing,h € I'r, then f € I'[.

Proof (a) By the definition of 'y there exists a p € I'y with p < f. Then f — p
is partially in I', f — p € 'Ly, and we are done if f — p € I'.. Hence we may
assume f > 0.

Let (An)nen be a partition for f; we prove > ¢(f1a,) = @rv(f). It will be
clear that Zflvzl o(fla,) < orv(f) for N € N. For the reverse inequality let
h € E be an upper bound for {Zf)’:1 @(f1la,) : N € N}. It suffices to show that
h must be an upper bound for {¢y(c) : 0 € 'L, 0 < f}.

Takeao € I'y witho < f.If (B,),enN is any refinement of (A,),cn thatis a ¢-
partition for o, then forall M € Nthereexistsan N € Nwith BjU---UBy C A1U
UAy,sothath > Y00 @(f1a,) = S0 0(f1s,) = S0 ¢(olp,). It
follows from Lemma 4.17, applied to o, that the partition (B,;,),,<N can be chosen
so that this implies & > ¢r (0).

(b) Ash—gel'pand0 < f — g < h — g, we may (and do) assume g = 0. Let
(An)nen be a partition for f that is also a g-partition for 4. Now just apply (35) to

ap = @(f1la,), by, :=¢@hly,) (neN). (39)

O
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As a consequence of Lemma 4.31:

Theorem 4.32 Let F be a Riesz space and T be a Riesz subspace of FX. The functions
X — F that are partially in I" form a Riesz space, E. If ¢(I") is splitting in E, then
I’y is a Riesz ideal in E, in particular, I'y is a Riesz space.

In the classical integration theory and the Bochner integration theory one starts
with considering a measure space (X, A, 1) and simple functions on X with values
in R or in a Banach space. One defines an integral on these simple functions using the
measure and extends this integral to a larger class of integrable functions. In 4.33 we
will follow a similar procedure, replacing R or the Banach space with E and applying
the lateral extension. In Sect. 8 we will treat such extensions in more detail.

4.33 Suppose (X, A, ) is a o-finite complete measure space and suppose E is
directed. Let F = E. For Z we choose {A € A : u(A) < oo}. The o-finiteness of
guarantees the existence of a partition (and vice versa).

We say that a function f : X — E is simple if thereexist N € N, ay,...,ay € E,
Ay, ..., Ay € 7 for which

N
f=> anla,. (40)
n=1

The simple functions form a stable directed linear subspace S of E X which is a Riesz
subspace of EX in case E is a Riesz space.

Foragiven f in S one can choose arepresentation (40) in whichthe sets Ay, ..., Ay
are pairwise disjoint; thanks to the o-finiteness of p one can choose them in such a
way that they occur in a partition (A,),eN-

This S is going to be our I'. We define ¢ : S — E by

N
o(f) =D u(An)ay, (41)
n=1

where f, N, A,, a, are as in (40). The o-additivity of u is (necessary and) sufficient
to show that S is laterally extendable.

A function f : X — E ispartially in S if and only if there exist a partition (A,),eN
and a sequence (a,),cN in E for which

f= anly,. (42)

neN

An f as in (42) with f > O that is partially in S is an element of Sy, if and only if
> (Ap)ay exists in E. (See Theorem 4.9.)

5 Combining vertical and lateral extensions

In this section E, F, X, Z, T', ¢ are as in Sect. 4.
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As we have seen, the lateral extension differs from the vertical extension in the
sense that the vertical extensions of I" and ¢ can always be made, but for lateral
extension we had to assume the space I' to be stable and ¢ to be laterally extendable
(see 4.11). In this section we investigate when one can make a lateral extension of
another (say vertical) extension. Furthermore we will compare different extensions
and combinations of extensions.

Instead of (I'y)y and ((I'z)v)r we write 'Ly and 'z yp; similarly ory = (¢r)v
etc.

5.1 By Theorem 4.18 the following holds for a stable directed linear subspace A of
FX and a laterally extendable order preserving linear map @ : A — E: If Ay is
stable, then wy, is laterally extendable (and so Ay, exists). If Ay is stable, then wy
is laterally extendable (and so Ay exists). We will use these facts without explicit
mention.

5.2 The following statements follow from the definitions and theorems we have:

(@ 'y CT'ry and gy =@y only.
(b) ' CTpyand oy = ¢@ponI'g.
() oy =@ onT'y NTy.

For (d), (e) and (f) let Iy be stable.
(d 'y CTyry andgyry =gy onTpy.
(e 'yy CTlyry andgyry =¢@yronlyL.
(0 ¢rv =¢pyronlpy Ny,

Observe that as a consequence of (a) and (b): if f e 'y andg € 'y and f < g (or
f > g),then o (f) < @y (g) (or 1 (f) > @y (g)). Moreover, as a consequence of
(c)and (d); if I'y is stable: if f e 'y and g € T'ypy and f < g (or f > g), then
eLv(f) < evrv(g) (oroLv(f) = gvirv(g)).

5.3 Note that if T" is stable and ¢ is laterally extendable, then we can extend I" to
I'y, I’y and T'zy. If, moreover, I'y is stable, then we can also extend I" to I'yyz and
I'vv. However, “more stability” will not give us larger extensions than Iy 7 v . Indeed,
if 'y is stable then 'y C 'y = Iy (see Theorem 5.8). If moreover 'y y is
stable, theneven I'yrpyr =Tyry =Ty,

Lemmas54 (a) If f € FZ“V, then there exists a countable A C T" with A < f and
@Ly (f) = sup p(A).

(b) If Ty is stable and f € F"',’L, then there exists a countable A C I" with A < f
and gy (f) = sup ().

Proof (a) There exist o1,07,... in 'y with 0, < f for all n € N and
sup,cn ¢L(0x) = @rv (f). Hence, we are done if for every o in I'y, witho < f
there is a countable set A, C {p € I' : p < f} such that every upper bound
for ¢(Ay) majorizes ¢y (o). But that is not hard to prove. For such a o, by
Lemma 4.17 there exists a partition (By;),en for which (32) holds. Now let A,
be (>M_ 61p,: M €N}

(b) Suppose I'y is stable. Let (A,),cN be a gy -partition for f. Then the set Ay =
{Z,]ZVII f1la, : N € N}is a countable subset of I'y and sup oy (A f) = @y (f).
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Moreover, for every N € N there is a countable set Ay C {0 e ' : 0 <

SN f1a,) for which supp(An) = oy (N, f1a,). Take A = yoy An-
O

Theorem 5.5 For (b), (c), (d) and (e) let I'y be stable and f be partially in T'y.
(@) If f e Ty, then®

fely < thereexistm,p e U withn < f <p.
(b) If f € Tyy, then
fely <— thereexistn,pel"withn§f§p6.

() fel'y < felypandthereexistm,p € 'y withm < f < p.
(d) If ov (I'y) is splitting in E, then

felyy < thereexistm,p € Typ withm < f < p.
(e) If oy (I'y) is splitting in E, then
felyrNTy < thereexistm,p € 'y withm < f < p.

Proof The proofs of (a) and (b) are similar to the proof of (c) and therefore omitted.

(c) «<: By Lemma 5.4 (b) there exist countable sets A, Y C I with A < f — m and
Y < p — f for which supp(A) = @y, (f — ) and sup (Y) = gvr(p — f).
Then A + m and p — Y are countable subsets of 'y, with A+7 < f <p -7
and supor (A + ) = @yr(f) =inf @ (p — Y). Hence f € I'Ly.
=: Let f € 'Ly and be partially in I'y. There exists a 7 € 'y for which
f—me FZFV, hence we may assume f > 0. Let (A,),en be a I'y-partition
for f,ie., fl1a, € 'y and thus ¢ v (f1la,) = @v(fla,) forall n € N (see
5.2(a)). Then ¢y (f) > Zflvzl @y (fly,) forall N € N. Let h € E be such that
h> Zle oy (fly,) forall N € N. From Lemma 4.17 we infer that h > ¢y (o)
for every o € I'p, with 0 < f. We conclude that Zn ov(fla,) =eLv(f),ie,
felyyL.

(d) <=: We may assume & = 0. Let (A,),eN be a gy -partition for p with f1,4, € I'y
foralln € N.Then0 < ¢y (f1la,) < @v(ply,) foralln € Nand >, ¢v(pla,)
exists in E. Hence, so does Zn oy (fla,),ie., felyL.

(e) is a consequence of (c) and (d).

In the following example all functions in Iy y are partially in I'y.

6 By the definition of ideal in [9] or [10] (note that I'y is directed) this means that I'y is the smallest ideal
in 'z y (and for (b); in 'y ) that contains I.
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Example 5.6 Consider X = N,Z = P(N), E = F; let D be a linear subspace of E
and let Dy be the vertical extension of D with respect to the inclusion map D — E.
LetI' = cpo[D]and ¢ : ' — E be ¢(f) = ZnEN f(n). Then I'y = coo[Dv].
Let f € I'Ly. We will show that f (k) € Dy and thus that f is partially in I'y. Let
on, T, € I'p be such that 0, < f < 7, and inf, N @(7,) = sup,cn ¢(0,). Then
inf,en (T, (k) — 0, (k) < inf,cNy (T, — 0,) = 0. Since o, (k), 7,(k) € D for all
n € N, we have f (k) € Dy.

Thus every f € I'py is partially in I'y. Since I'y is stable, by Theorem 5.5(c) we
conclude that 'z y C Ty .

Lemma 5.7 Suppose that 'y is stable. Then every f € I'py is partially in T'y.

Proof Let f e 'y andlet mr, p € I'r be such that w < f < p. Let (A,),cn be a
@-partition for both 7 and p. Then f14, € I'ry and wlys, < fla, < ply, forall
n € N. By Theorem 5.5(a) we conclude that f14, € I'y. O

Theorem 5.8 Suppose that T'y and Ty are stable. Then 'y C Typ = T'ryp.
Write T = Ty andw = @yL. IfF is stable, then T; = T and @ 9L = @ IfFv is
stable, thenTy =T and @ oy = 0.

In particular, if o1 (I'y) is mediated in E and ¢y (T'y) is spltttzng in E, then FV,
Cry and Ty are stable (see Theorem 4.25) and thus Ty ¢ T, T =Ty = I'z,

§=9y =L 50T =T (@dG =7).

Proof The inclusion 'ty C Ty follows by Theorem 5.5(c) and Lemma 5.7. We
prove 'ryrp C T'yp. For f € FZFVL there is a ¢ y-partition for f and since 'Ly C
'y this is also a gy -partition for f, hence there exists a ¢y -partition for f, i.e.,
felve. _ B

Suppose I' is stable. Then I'y, = (I'yy)r, = I'vy = T' and 9; = @ by Theorem
4.18(a).

Suppose I'y to be stable. As I'y is stable we can apply the first part of the theorem
to I'y instead of I'. Indeed, (I'y)y and (I'y)py are stable, since (I'y)y = I'y and
(T'v)v =Ty. Hence, T'v) v C (T'v)vy =Typ,ie, Ty C T (and gy = ).

Suppose ¢, (I'z) is mediated in E and ¢y (I'y) is splitting in E. Then 'y, 'y
and 'y y are stable by Theorem 4.25(a),(b) and (c). Consequently, again by Theorem
4.25(b) 'y is stable. O

Corollary 5.9 Suppose E is mediated (and thus splitting), T =Tyr. ThenT =
Ty=T7,50T =T (and ¢ = ).

At the end of Sect.5 we will show that sometimes I'y;, € I'ry (Example 5.14)
and sometimes 'Ly € I'yz (Example 5.15). Note that this implies that 'y 7y can be
strictly larger then either 'y or I'py.

Theorem 5.8 raises the question whether stability of I'y entails 'y, C I'zy. In
general the answer is negative; see Example 5.15. In Theorem 5.10 we give conditions
sufficient for the inclusion.

Theorem 5.10 Suppose 'y is stable. Consider these two statements.

(a) Forevery f € F;L there is a p in FZ‘ with f < p.
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(b) E satisfies:

If Y1, Y2, ... C E are nonempty countable with inf Y,y = 0 foralln € N,
then there exist yy € Y1, y2 € Ya, ... such that z vy exists in E. 43)

n
If (a) is satisfied, then Ty, C I'Ly. (b) implies (a).

Proof If (a) is satisfied, then by Theorem 5.5(c) follows that I'yy, C I'y.
Suppose (b). Let f € F;;L. Let (Ap),eN be a gy -partition for f. For n € N, let
Y, C I' be a countable set with f14, < Y, and

ov (f1la,) =inf @(Ty). (44)

We may assume o1l,, = o for all 0 € Y,. Choose 0, € T, for n € N such that

> 2 (@(04) —@v(f1la,)) and thus >, ¢(0,) existin E. Then p := >, _y0n isin 1"2'
with f < p. O

5.11 We will discuss examples of spaces E for which (43) holds.

(I) If E is a Banach lattice with o -order continuous norm, then E satisfies (43) (one
can find y, € Y, with | y,|| <277").

(II) Let (X, A, ) be acomplete o -finite measure space and assume there existsa g €
L'(1) with g > 0 p-a.e. Then the space E of equivalence classes of measurable
functions X — R satisfies (43): It is sufficient to prove that if Z;, Z>,... C E
are nonempty countable with inf Z, = O for all n € N, then there exists z; €
Zi1,22 € Zp,...and az € E such that z, < z for all n € N (for Z, take
2"Y,). One can prove that such a z exists by mapping the equivalence classes of
measurable functions into L' (x) by the order isomorphism f > (arctano f)g.

(IID) RN s a special case of (II), therefore satisfies (43).

Theorem 5.12 Let E be mediated and splitting and satisfy (43) (e.g. E be a Banach
lattice with o -order continuous norm (Theorem 4.24), or E is the space mentioned in
5.11(I)). Then Ty is stable and Ty =Ty, ovi = ¢Lv.

Proof This is a consequence of Theorems 5.8 and 5.10. O

For a Riesz space F and a Riesz subspace I" of FX we will now investigate under
which conditions on ¢(I"), ¢ (I'r) and ¢y (I'y) the spaces 'Ly and 'y, are Riesz
subspaces of FX.

Theorem 5.13 Suppose F is a Riesz space and T is a Riesz subspace of FX. If p(T")
is splitting in E and ¢y (I'1) is mediated in E, then Ty is a Riesz subspace of F¥.
If (') is mediated in E and @y (I'y) is splitting in E, then Uy is a Riesz subspace
of FX.

In particular, if E is mediated (and thus splitting), then both T'ry and Ty are
Riesz subspaces of FX.
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Proof Note first that if ¢(I") is mediated in E, then I'y is stable by Theorem 4.25(b).
For a proof, combine Theorem 4.32 and Corollary 3.10. O

The next example illustrates that I'; y is not always included in T'y 7, (given that 'y
is stable) even if E and F are Riesz spaces and I', 'y, 'y Riesz subspaces of F X

Example 5.14 [T'yy € I'y = 'yry] For an element b = (B4, B2, ...) of RN we

=

write b = >, .y Bren.
Consider X = {0,1,2,...}andZ = P(X).Let E = ¢, F = RN, @ = FX. We
view the elements of 2 as sequences (a, b1, ba, ...) witha, by, by, ... € RN.
DefinesetsI' C® C Qandamap P : ©® — ]Rbe

@:{(a,ﬂlel,ﬂzez,...):aEC,,Bl,,Bz,...GR}, (45)

@ (a, Bre1, prez,...) =a+ Z,Bnen (aec, Bi,p, ... €R), (46)
neN

I' =A{(a, Bie1, prea,...) ta €c, (Bi, B2,...) € coo}- 47)

Then ®(I') = ¢ = E;let ¢ = ®@|r. From the definition it is easy to see that I is stable
and g is laterally extendable. We leave it to the reader to verify that 'y =T,

'y = {(a, Bie1, Brez,...):acc, (B1,B2,...) €c} (48)

and oy = donTly.
Itfollowsthat 'y isstableand 'y, =Ty C 'y = Typy.Weprove 'y # 'y
To this end, define & € Q by

h(n) = (D", (n=1,2,..)),
49
[mm=—zﬁww:—z%MAWm @)

Ash(0) ¢ cwehave hlo ¢ I';inparticular, hisnotpartiallyinI',soh ¢ I'y, =T’y .
It remains to prove h € 'y
For k € N, define 14, 01 : X — RN:

[((0) = — 3K (= 1)en + 32141 e

w(n) =h(n) = (—1e, n=1,...,k), (50)
| Tk (n) = en m=k+1,k+2,..),

(01(0) = — 35 (= 1)"en — 22 is1 €ns

or(n) = hn) = (—1)"e, n=1,...,k), (@28
_Uk(n)z_eiz m=k+1,k+2,..)).

Then w0 € T, e = h = ok, or(m) = O() = 2D, pen, ¢r(0k) =
—2> ok en, 80 infren o1 (1) = supgey @r(ox) =0,and h € T'ry.
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n—1

Fig.1 Graphof f;

The next example illustrates that I'y 7, is not always included in I'y y ; it provides an
example of an f € F‘\*,' ; for which there exist no p € 1"'L|r with f < p (see Theorem
5.5(c)).

Example 5.15 [I'ry € I'yp] Let E = C[0, 1] and let D C C[O0, 1] be the set of
polynomials of degree < 2. The set D is order dense’ in C[0, 1] (see [11, Example4.4]).
Hence, for all f € E there exist (g,)neN, (Mn)nen in D with f = inf,cngn =
Sup,.enN hn. Therefore E is the vertical extension of D with respect to the inclusion
map D — E.

Take X = N,Z = P(N), F = E = C[0,1],T = coo[D] c FN = EN and let
¢ : ' — E be given by ¢(f) = >, f(n). Since this situation is the same as in
Example 5.6 with Dy = E, we have 'y = coo[E] and 'y C Ty

Furthermore (see 4.6)

rf = [f e (DHN D" f(n) exists in E} , (52)
ry, = [f e (EDHN: Zf(n) exists in E] (53)

We construct an f € F‘\*,' ; thatis notin I'zy. For n € N let f,, be the ‘tent’ function
defined by (Fig. 1)

L@ =0 fi)=1 fi(})=0 ifieNi#n;
fn is affine on the interval [1 il ] foralli € N. (54)

Then > 22, fu = 1.1 pointwise, so >, f = 1 in C[0,1]. Hence f =
(fi, fos f3--) €Ty

We will prove that f ¢ I'1y; by showing there exists no p € I'y, for which f < p.

Suppose p € ', and f < p. Then p = (p1, p2, . ..) where p1, p2, ... are elements
of D" and j = >, py existsin E = C|0, 1]. Let M be the largest value of j. Every pj,
is a quadratic function that maps [0, 1] into [0, M]. Consequently (see the postscript)

lon(x) — pn(V)| = 4M|x — y| (x,y €[0,1],n € N). (55)

TA subspace D of a partially ordered vector space E is called order dense in E if x = sup{d € D : d < x}
(and thus x = inf{d € D :d > x}) forallx € E.
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In particular, p, (0) > py (1) —4M L > f,(3y —aml =1-aml > Lforn > 8M.
As j(0) > Zn> y Pn(0) forall N € N, this is a contradiction.

Postscript Let h : x +— ax? + bx + c be a quadratic function on [0, 1] and 0 <
h(x) < M for all x; we prove |h'(x)| < 4M for all x € [0, 1]. Since the derivative is
either decreasing or increasing, we have |h'(x)| < max{|h’(0)], |A'(1)|}. Now h’(0) =
b = 4h(%) — h(1) — 3h(0) and h'(1) = 2a + b = 3h(1) + h(0) — 4h(%). Since
|h(x) — h(y)] < M for all x,y € [0, 1], we get the bounds |#'(0)] < 4M and
|h'(1)| < 4M as desired.

5.16 Observe that I'y in Example 5.15 is not stable since ( f1, 0, f3,0,...) ¢ ['yr.

6 Embedding E in a (slightly) larger space

In this section E, F, X, Z, T', ¢ are as in Sect. 4.

Suppose E* is another partially ordered vector space and E C E*°. Consider ¢°® :
I' - E°, where ¢°*(f) = @(f) for f € T'.

Write I'}, for the vertical extension of I' with respect to ¢°®. If ¢° is laterally
extendable, write I'7 for the lateral extension of I" with respect to ¢°, Flv for the
vertical extension of I'; with respect to ¢7 . Similarly, if I'j, is stable, we introduce
the notations I'},; and I'Y,; /.

It is not generally the case that I'y C I'}, or 'y, C I'y, but a natural restriction on
E* helps; see Theorem 6.2.

For E* we can choose to be a Dedekind complete Riesz space in which countable
suprema of E are preserved, in case E is Archimedean and directed (see 6.3). In this
situation, in some sense, I'},; is the largest extension one can obtain.

Definition 6.1 Let D be a subspace of a partially ordered vector space P. Then we
say that countable suprema in D are preserved in P if the following implication holds
forall a € D and all countable A C D

A has supremum a in D = A has supremum a in P. (56)

Note that the reverse implication holds always.
The following theorem is a natural consequence.

Theorem 6.2 Suppose that countable suprema in E are preserved in E®. Then ¢° is
laterally extendable and

fely < feTlyandyy(f)€E, (57)
fel, < feljand;(f) €E, (58)
ey () =ov(f)for f €Ty, @i (f)=or(f)for fely, (59)

Ly CTry, orv(f) =eLv(f) for f epy. (60)
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Suppose I'y and T3, are stable. Then

Ty CTV., v (f) =evi(f) for f €Ty, (61)
Cyvey CTyrys @y (f) =evev(f) for f € Typy. (62)

6.3 Under the assumptions made in Sect.4 I' is directed, thus soare 'z, Iy (see 3.11)
and 'z y (etc.). Hence oy (T'v), o1 (I'1), ¢rv (U ry) (etc.) are all subsets of ET — E™T.
For this reason we may assume that E itself is directed.

Then under the (rather general) assumption that E is also Archimedean (see Defini-
tion 3.19), E can be embedded in a Dedekind complete Riesz space such that suprema
and infima in E are preserved, as we state in Theorem 6.4.

Consequently, choosing such a Dedekind complete Riesz space for E*® one has the
following: I',, T'$,, Ty, . T}, arestableand '}, C Ty, =T, T; =T} =T"
and g7 = @}, = ¢°, where 9° := ¢y, (see 5.8). Moreover, one has (60) and if I'y is
stable; (61) and (62). For this reason one may consider T° and @*® instead of 'y and
@Lv, instead of I'7 |, and @7 |, or instead of 'y vy and ¢y Ly, indeed T° contains all
of the other extensions and ¢*® agrees with all integrals.

Theorem 6.4 [8, Chapter 4, Theorem 1.19] Let E be an Archimedean directed par-
tially ordered vector space. Then E can be embedded in a Dedekind complete Riesz
space E:

There exists an injective linear y : E — E for which
(@ a=0 < y() =0,
(b) y(E)isorderdensein E (for the definition of order dense see the seventh footnote).

Consequently, suprema in y (E) are preserved in E.

7 Integration for functions with values in R

In this section (X,.4, i) is a complete o -finite measure space and E = F = R.

We write S for the vector space of simple functions from X to R (see 4.33). Since
R is a Banach lattice with o-order continuous norm, Sy is stable and S;y = Sy,
¢rv = v (by Theorem 5.12). We write § = Sy, andp = gyr.

Theorem 7.1 S = LY (w) and ¢g(f) = [ f duforall f €.

Proof We prove that Sy, C L'(u)™ C S/, and that ¢y (f) = [ f du for all
feLt(.
Sy consists of the bounded integrable functions f for which {x € X : f(x) # 0}
has finite measure. By monotone convergence, we have f € £ () forevery f € Sé,' Iz
Conversely, let f € L'(u)t; we prove f € SZ‘V and ¢y (f) = [ f du. Let
te(l,00).ForneZ,putA, ={xeX:t"< f(x) <t"T!}. Then (A,),cz forms
a partition. Define g := >, .7 1"14, and h :=tg; then g < f < h. Since

S w0 =3 [ i au= [ £ o (©3)

nez nez
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we have g € S and ¢ (g) < ff du. Also, h = tg € Sp, and @1 (h) — ¢r(g) =
(t—Der(g) <@ —-1) f f du. By this and Lemma 3.7 it follows that f € Syy and

orv(f) = [ f du. O

8 Extensions of integrals on simple functions

In this section E is a directed partially ordered vector space, (X,.A, w) is a com-
plete o -finite measure space and Z, S, ¢ are asin 4.33 (F = E)

In 8.1-8.8 for f in Spy or Syr we discuss the relation between f being almost
everywhere equal to zero and f having integral zero (i.e., either ¢ry(f) = 0 or
pvr(f) =0).

In 8.9 we show that under some conditions a function in Sy multiplied with an
integrable function with values in R is a function in Spy .

In 8.11-8.13 we investigate the relation between the “LV”-extension on simple
functions with respect to u and v, where v = hu for some measurable 4 : X —
[0, 00).

In 8.14 we discuss the relation between the “LV”-extension simple functions with
values in E or in another partially ordered vector space F, when one makes the
composition of a function in the extension with a o-order continuous linear map
E— F.

In 8.15-8.17 we will prove that under certain conditions on X the function x
F(x,-)isin Sy forall F € C(X x T) and we relate that to convolution of certain
finite measures with continuous functions on a topological group.

Theorem 8.1 Let f : X — Eand f =0a.e. If f € Spy, then ory (f) = 0. If Sy is
stable and f € Sypv, then pypy (f) = 0.

Proof Let B=1{x € X : f(x) #0}. Then B € A and u(B) = 0.

(I Assume f € Sy. Choose 0,7 € Switho < f < t.Thenolp,tlp € S,
olp < f <tlp,and¢(clp) =¢(rlp) =0.Hence py(f) =0.

(Il) Suppose o € SZ and (A,),eN 1S a g-partition for 0. Then ol 4,np € ST for
all n € N and Zn @(0la,ng) =0, 1e.,0lp € SZ with ¢ (c1lg) = 0. In
particular, if f € Sy then ¢ (f) = 0.

(III) Assume f € Spy. With (IT) one can repeat the argument of (I) with S replaced
by S;, and conclude ¢y (f) = 0.

(IV) Suppose Sy is stable and f € Sypy. One can repeat the argument in (IIT) with
S replaced by Sy and conclude ¢y v (f) = 0.

]

Definition 8.2 A subset D C E is called order bounded if there are a,b € E for
whicha < D < b.

Theorem 8.3 Let f € Spy or (assuming Sy is stable) f € Syrvy. Then there exists
a partition (Ay)neN such that each set f(Ay) is order bounded.

Proof There exists a partition (A,),eN such that for all n € N there exist i, g, € S
forwhichh, < f14, < gu.Choosea,, b, € E forwhicha, < h,(x)and g,(x) < b,

forallx € X. Thena, < f(x) <b, forn e N, x € A,. O
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Theorem 84 Let f : X — E and f = 0 a.e. Suppose there exists a partition
(Ap)neN such that for every n € N the subset f(Ay) of E is order bounded. Then
f € Spy and if Sy is stable then also f € T'yp.

Proof Choose aj, as,...and by, by, ... in E such that
an < f(x) <b, (neN,x € Ay). (64)

Let B ={x € X : f(x) # 0}. Then B € A and u(B) = 0. Hence g :=
Dnennla,np and h = > nbala,np are elements of S; with ¢(g) = 0 and
or(h) =0.As g < f <h,we get f € Sry and if Sy is stable also f € Sy. O

For a real valued function f : X — Rwith f > Oand [ f du = Owehave f =0
a.e. We will give an example of a f € S; with gy (f) = 0 but which is nowhere
zero (Example 8.8). On the positive side, in Theorem 8.7 we show that f = 0 a.e. if
fe SZFV and ¢ v (f) = 0 provided that E satisfies a certain separability condition.

Definition 8.5 We call a subset D of E*\{0} pervasive® in E if for all ¢ € E with
a > Othereexistsad € D suchthat 0 < d < a. We say that E possesses a pervasive
subset if there exists a pervasive D C ET\{0}.

Example 8.6 The Riesz spaces RN, £°°, ¢, co, ¢! and coo possess countable pervasive
subsets. Indeed, in each of them the set {Ae, : A € Q*, A > 0, n € N} is pervasive.

If X is a completely regular topological space, then C (X') has a countable pervasive
subset if and only if X has a countable base. (If D C E™\{0} is countable and
pervasive, then $f = {f~1(0,00) : f € D} is a countable base; vise versa if {l is a
countable base then with choosing an fy in C(X)™ for each U € i with fy = 0 on
U€ and fy(x) = 1 forsome x € U,theset D = {efy : ¢ € Q,e > 0,U € i} is
pervasive.)

L'(%) and L>(A) do not possess countable pervasive subsets, considering the
Lebesgue measure space (R, M, A). (Suppose one of them does. Then one can prove
the existence of non-negligible measurable sets Ay, Az, ... € M such that every
non-negligible measurable set contains an A,,, whereas A(A,) < 27" forall n € N.
Putting C = R\ |J,,c5y An We have a non-negligible measurable set that contains no
A, a contradiction.)

Theorem 8.7 Let E possess a countable pervasive subset D. Let f € Spy. Let
A, Y C Sp be countable sets such that A < f < Y and sup ¢ (A) = inf o1 (7).
Then for almost all x € X

sup g(x) = f(x) = inf h(x). (65)
gEA heY

Consequently, if € SZ'V and ory (f) =0, then f = 0 a.e. (However, see Example
8.8.)

8 Our use of the term is similar to the one of van Gaans and Kalauch in [12, Definition 2.3].
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Proof (1) First, as a special case (namely f = 0), let (t,),cn be a sequence in Sp
with 7, > Oforalln € Nand inf, <y ¢ () = 0. We prove that inf <N 7,,(x) = 0
for almost all x € X, by proving that ;t(A) = 0, where A is the complement of
the set {x € X :inf,cy 7, (x) = 0}. Indeed, for this A we have

A= A4 with Ag=(){xeX:d <) (66)
deD neN

Note that foralln € Nandd € D the set {x € X : d < 7,(x)} is measurable.
Furthermore, for all d € D we have:

du(Ag) = ¢(dla,) < ¢r(t) (n€N). (67)

Hence (Az) = 0 forall d € D and thus w(A) = 0.

(IT) Suppose that A, Y C I'z are countable sets such that A < f < T, supor(A) =
inf ¢z (7). Then inf @7 (Y — A) = 0, so by (I) inf ey en (g(x) — h(x)) = 0 for
almost all x € X.

O

Example 8.8 We give an example of a f € S; with oy (f) = 0, where f # 0
everywhere. Let ([0, 1), M, 1) be the Lebesgue measure space with underlying set
[0, 1). Let E = £°°([0, 1)) (see Sect.2). Let f : R — E™ be defined by f (1) = 1y,
fort € [0, 1). Note that f is not partially in S. We will show f € Sy. Forn € N make
T, €S

T() =11 i) ifiefl,....n}re (=15, (68)
Then ¢(7;) = 1101y and 0 < f < 7, forn € N, so f € Sy and gy (f) = 0. But
f(t) # 0 forall .

Theorem 8.9 Let E be Archimedean and mediated. Let f : X — Eand g : X — R.
We write gf for the function x — g(x) f(x). Then

(a) f € Sy and g is bounded and measurable —> gf € Sy.

(b) f is partially in Sy and g is measurable = gf is partially in Sy.
(c) feSyandg e L'(u) = gf € Spv.

(d) f € Sy and g is bounded and measurable —> gf € Sy.

(e) f € Sy, f(X) is order bounded and g € L' (n) => gf € Syr.

Proof E is splitting (see 4.23(b)).

(a) is a consequence of Theorem 3.21(a) (see also Remark 3.22).

(b) Let (A,)nen be a partition such that f14, € Sy and gl,, is bounded for all
n € N. By (a) every gf 14, liesin Sy. Then gf is partially in Sy.

(c) Assume f > 0 and g > 0. Choose (see the proof of Theorem 7.1) a partition
(Ap)nen and numbers Aq, Ao, ... in [0, 00) with

7= Z)‘n]lAn > g, Z)Ln,u(An) < 00. (69)
neN neN
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Then s € Sy forall s € S. Choose s € S withs > f. Then 0 < gf < ts. From
Theorem 5.5(e) and (b) it follows that gf € Spy.

(d) Assume f > 0 and 0 < g < 1. Using (b), choose a partition (A,),eN With
fla, € Sy and gfla, € Sy forall n € N. Then

0<ov(gfla,) =ev(fla,) (meN). (70)

Since >, ¢y (f1a,) exists and E is splitting, >, v (gf1a,) exists.
(e) Assume f > 0and g > 0. Choose a € E™ with f(x) < a forall x € X. Choose
a partition (A,),eN and Aq, A2, ... € [0, 0o0) with

gfla, €Sy (meN), (71)
g =< Z)\’]]‘An’ an,u(An) < 0o (seethe proof of Theorem7.1). (72)
neN neN
Then
gfla, < Ayaly, (neN), (73)
pv(dnala,) = p(Anala,) = Apu(Ap)a (n € N), (74)

s0 >, ¢v(Asaly,) exists and so does D°, v (gf1a,).

O

8.10 In Lemma 8.11, Theorems 8.12 and 8.13 we investigate the relation between
the extensions Spy generated by two different measures, namely p and Ay for a
measurable function 2 : X — [0, 00).

Note that for such a function 4 and all s € (1, co) there exists a j : X — [0, 00)
that is partially in the space of simple functions X — [0, 00), i.e., j = >, .y la,
for a partition (A, ),en and (&), cn in [0, 00) (or in the language of 3.16 j is partially
in [A]) for which j < h < sj. In the following (8.11, 8.12 and 8.13) we will write
I, S* and p* instead of Z, S and ¢ and, similarly for another measure v on (X, A),
we write ZV, S” and ¢" according to 4.33 with v instead of u.

Lemma 8.11 Suppose E is splitting. Let h : X — [0, 00) be measurable, v := hu.
Lets € (1,00) and let j : X — [0, 00) be partially in [A] and such that j < h < sJ.
Let f € S, Then jf € S) and ¢ (jf) < ¢ (f) < s (if).

Proof Assume (A,),cN is a partition for j and a ¢/ -partition for f (so (A,),eN 1S
inZ" NIH, ie., u(Ay),v(A,) < oo forall n € N). Choose (&), in [0, 00) and
(bu)nen in ET such that

J=2 anla,, f=D byla, (75)

neN neN
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Then jf =, cn @nbnla, and thus isin S} if 3", (A, )an By exists in E. For each
neN

0= utnay = [ 14, du < [, du=viay). (76)

whence 0 < w(Ay)a,b, < v(A,)b,. Because f € sut, Zn v(A,)b, exists in E.
Since E is splitting also >, u(A,)anb, exists in E, ie., jf € S}

Furthermore, gof () =2, n(Apapb, < >, v(A)b, = @] (f). On the other
hand, we get (Ao, = [ jla, du > %fhﬂA,, dp = %v(An) for each n € N: it
follows that ¢} (jf) = L} (f). O
Theorem 8.12 Let E be Archimedean and splitting. Let h : X — [0, 00) be measur-
able, v .= hu.

(@) feS)y = hf €Sy op, (hf)=9]y(f),
(b) fe S\U/L = hf € SgL, ¢§/L(hf) = ¢"U/L(f)

Proof Since both S}, and Sy, are directed, we assume f > 0.

(a) Let f € S¥T,.Forn € Nlet j, be partially in [.A] and such that j,, < h < (1+l)jn.
LV p y n
Let A, Y C S) be countable sets with A < f < Y be such that sup ¢} (A) =
L L
@}, (f) =inf ¢} (T). Then forall o € A (note thato € S;" —5;%), 7 € T and

n € Nwehave j,0 < hf < (l—i-%)jn‘t andby Lemma8.11 j,o and(l—i—%)jnt are
in S;f. Therefore we are done if both inf,eN sep rex @’L‘((l + %)j,ﬂ' — jno) =0
and ¢} (juo) < @)y (f) < @) (1 + 1) j,v) foralln e Nandallo € A, 7 € T.
By Lemma 8.11 applied repeatedly we have
0 < @ (14 )T = jn0) = @1 (nT = jn0) + 5901 (nT)
< i —0)+ 591 (0), (77)

which has infimum O since E is Archimedean and inf ey sen (pz (t —0o) =0.
On the other hand, by Lemma 8.11,

" (jno) < @) (0) < @y (f) < @) (1) < (14 Dl (jat)
meN,oeA 1e). (78)

(b) Let f € S‘”/JI" Choose a partition (A,),en With f14, € S}, for n € N. By (a),
hfla, € S}y forn € N; by Lemma 5.7 hf 14, is partially in S},.
Therefore we can choose a partition (B;,),cN With

flg, €Sy, hflp, €St (neN). (79)

By (a), ¢}, (f1p,) = ¢}, (hf1p,) foralln € N. But f € S;;7, so
ovL(f) =D oy (flp) =D @l (hflp,). (80)

Then iif € S}, and i, (hf) = ¢}, (f). =
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Theorem 8.13 Let E be Archimedean and splitting. Let h : X — [0, 00) be measur-
able, v :=hu, A ={x € X :h(x) > 0}. Let f : X — E be such that hf € SZV.
Then fla € S} y.

Proof Define h* : X — [0, 00) by

1 .
h = (T e (81)
0 ifx ¢ A

Then h™* is measurable and hh™* = 14 and 14 = 1 v-ae.

hf isin S} and thus in S]LIA“, and since 14 = h*v, also if € S¥V. By Theorem
8.12, applied to h*, h*v, v, hf instead of h, v, u, f, the function h*Af is an element
of S}y . Buth*hf =1af. O

In Theorem 8.14 we show that extensions of simple functions with values in E
composed with a o-order continuous linear map £ — F are extensions of simple
functions with values in F (where E and F are Riesz spaces).

Theorem 8.14 Let E and F be Riesz spaces. Let ST and ¢ be as in 4.33, and let S*
and ¢F be defined analogously. Let L.(E, F) denote the set of o-order continuous
linear functions E — F and E7 = L (E, R) (definition and notation as in Zaanen
[13, Chapter 12,§84]). Let f € SE,. Thena o f € S¥\, foralla € L(E, F) and

o (¢fy (D) =efy(@o ). (82)

In particular, o o f is integrable for all @ € E_, and a((pfv(f)) = [ao fdu.

Proof Suppose @ € L.(E,F)*. Let t € Sf+. Suppose T = >, . nanla,
for some partition (A,),cy and a sequence (a,),ey in ET. Then a((pf(r)) =
a (D, n(Anay) =2, n(Apa(a,). Thusaort isin S{V withot(gaf(t)) = (p{(ozot).
Let (0n)neN, (Ta)nen be sequences in S witho, < f < ty,00 1,7, Landgfy (f) =
SUpeN @1 (0n) = infen @7 (T4). Then we have (¢ (f)) = sup,ey &(¢f () =
sup,en @7 (¢ 0 0) and a (7, () = infen a(gf (ta)) = inf,en ¢f (@ 0 7). Since
oo, <aof <aot,foralln € N, we conclude that o f € (S¥),y (see Theorem
7.1) with a(efy () = o[y (). 0

Theorem 8.14 will be used in Sect.9 to compare the integrals ¢y and @y with
the Pettis integral.

Before proving Theorem 8.16 we state (in Theorem 8.15) that there is an equivalent
formulation for a function F to be in C (X x T') whenever X, T are topological spaces
and X is compact.

Theorem 8.15 ([14, Theorem 7.7.5]) Let X be a compact and let T be a topological
space. Let F : X x T — R be such that F(-,t) € C(X) forallt € T. Then
F e C(X xT)ifandonly ift — F (-, t) is continuous, where C(X) is equipped with
the supremum norm. Consequently, if A C X is a compact set, thent — sup F (A, t)
and t — inf F (A, t) are continuous.



Integrals for functions with values in a partially ordered vector space 907

Theorem 8.16 Ler (X, d, 1) be a compact metric probability space. Let T be a
topological space and F € C(X x T). The function H : X — C(T) given by
H(x) = F(x,-) is an element of Sy. Furthermore, fort € T, x — F(x,t) is inte-
grable and

lov (H)] (1) Z/F(x,t) du(x) (eT). (83)

Proof Fork € Nlet Agy, ..., Ak, be a partition of X with diam A; < k~!. Define

Ar(t) = sup |F(x,t) = F(y,0)| (t€T). (84)
x,yeX,d(x,y)<k~!

Since x — F(x, t) is uniformly continuous forallt € T, Ai(¢) | Oforallt € T. By
Theorem 8.15 ¢ +— sup F (A, t) and ¢t — inf F(Ag;, t) are continuous for all k € N
andi € {1,...,n}. Fork € Nlet hy,l; : X — C(T) be given by

hi(x) = t > sup F(Agi, 1) (x € Api),
L(x) = t > inf F(Agi, 1) (x € Ag). (85)

Then hy, Iy € S and (hr(x))(t) > F(x,t) = (x(x))() forallx € X,t € T. For
X € Api N Ay andreT

(hi(x) — ln(x))(t) = sup F(Ai, t) — inf F(Ap;, 1)
<sup{F(u,t) — F(v,t) :u,v € Ag; U Apj} < Apam(t). (86)

Let ar = @(hy) and by = @(ly) for k € N. Then 0 < ay(t) — by, (t) < Agam(t) for
all k,m € N and infy eNax(t) — b, (1) < infreny Ax(t) = 0. Since ai, by € C(T)
and sup, .y bn(t) = inf,eNa,(¢) for all t € T, the function ¢ — inf ey a,(?) is
continuous, i.e., x — F(x, -) is an element of Sy . Furthermore, we conclude that the
function x +— F(x, t) is integrable (by Theorem 7.1) and conclude (83). O

Example 8.17 Consider a metrisable locally compact group G. Let X C G be a
compact set and p be a finite (positive) measure on B(X), the Borel-o-algebra of X.
Let g € C(G). Define the convolution of g and u to be the function g« : G - R
given by g x u(t) = fg(tx_l) du(x)fort € G.Forx € X,let Lyg € C(G) be the
function 7 — g(tx~!). Then by Theorem 8.16, the function f : X — C(G) given by
f(x)=Lygisin Sy and g x u = gy (f) € C(G).

9 Comparison with Bochner- and Pettis integral

We consider the situation of Sect. 8, with an E that has the structure of a Banach
lattice. We write || - || for the norm on E and E’ for the dual of E. Then, next to our
¢rv (and other extensions) there are the Bochner and the Pettis integrals. (We refer
the reader to Hille and Phillips [3, Section 3.7] for background on both integrals.)
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We denote the set of Bochner (Pettis) integrable functions from the measure space
(X, A, ) into the Banach lattice E by % (3) and the Bochner (Pettis) integral of an
integrable function f by b(f) (p(f)).

9.1 By definition of the Bochner integral, where one also starts with defining the
integral on simple functions: S C B and ¢ = bon S. Since B C P and b = p on B
we also have S C B withgp =pon S.

9.2 The following is used in this section. The Banach dual of E is equal to the order
dual,i.e., E’ = E~.Moreover, for x, y € E (see de Jonge and van Rooij [15, Theorem
10.2])

x<y <= ak) <a(y) foralla e E~T. (87)
This implies that for a sequence (y,),cn and x, y in E:

inf a(y,) =0foralla € E°F = inf y, =0. (88)
neN neN

Theorem 9.3 Let f € B+ and f be partially in S. Then f € Sz_ and p(f) = oL (f).

Proof Let (Ap),en be apartition for which f,, := f14, € S.Thenforeverya € E~F

aw(f) = [aosdn=3 [aofdu=Dawh). 9

neN neN

Hence inf e a(p(f) — S0 ¢(fu)) = 0 and thus p(f) = 3, ¢(fy) (see (88)). O
Theorem 9.4 Let f € B. Then the following holds.

(@) Ifg € Spy and f < g, then p(f) < oLy (g).
(b) If Sy is stable, g € Sy v and f < g, then p(f) < oyvLv(g).

Consequently, p = ory on BN Spy, and p = pyry on PN Syry if Sy is stable.
The statements in (a) and (b) remain valid by replacing all “<” by “>".

Proof 1t will be clear thatif g € S and f < g, then g € 3 and hence p(f) < p(g) =
®(8).

If g € Sy and f < g, then there exists an ¥ C S with g < Y and ¢y(g) =
inf (1) = inf p(1) = p(f).

Let g € S; and assume f < g.Let g1, 82 € Szr be such that g = g1 — g». Let
(Bi)ieN be a g-partition for both g and g». Write A, = (J!_; B; forn € N. Let
a € E”T.ao(fly) = (o f)l, forevery A € A, sothat o o (f1,) is integrable.
Thus, for n € N we have
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J@o s, du=[aotria) dus [aols) du

=/aog1]lAn du—/aogz]lAn du

=a(p(g1la,)) —al(p(gala,))
<alp(gila,)) —alp(gly)) (k,meNk<n<m). (90)

Which implies that f(a o f)la, du+a(p(g2la,)) < alpr(g1)) assoon as k < n.
By letting 7 tend to 0o (as [(a o f)1a, du — [ao f du = a(p(f))), for each
k € N we obtain

a(f) <aler(g1) —e(g2la,)). On

This holds for all e € E~7, so

p(f) <oL(g) —e(gala,). (92)

This, in term is true for every k, so p(f)) < ¢r(g).
We leave it to check that the preceding lines can be repeated with Sy, Sp or Sy
instead of S. O

Theorem 9.5 Suppose || - || is o-order continuous. Write S = Spy = Syr and
9 = @Lv = gy (see Theorem 5.12).

(@) Then S C B. Consequently, if f is essentially separably valued and in S, then
f € *B. In particular, Sp C *B.

(b) Suppose there exists an « € E."" with the property that if b € E and b > 0, then
a(b) > 0. Then By C B. Consequently, S C B.

Proof (a) Because || - || is o-order continuous, E’ = E_ . Therefore Theorem 8.14

implies that S C .
Note that Sz C ®B. Since ‘B is a Riesz ideal in the space of strongly measurable
functions X — E, an f € S is an element of B if it is essentially separably
valued, since there are elements 0,7 € Sy witho < f < t and f is weakly
measurable since f € L.

(b) Suppose f € By andoy,, 1, € Baresuchthato, < f < t,forn e N,o, 1, 1, |
and sup,,cy b(0,) = by (f) = inf,en b(7,). Then inf, cN fa o(ty —op) du =
o(inf N b(T, —0p,)) = 0 and therefore « (inf,, ey (T, —07,)) = inf,, ey @o (T, —0y)
is integrable with integral equal to zero. Therefore inf,,cn(7,;, —05,) = 0 a.e., hence
1, — f a.e. Therefore f is strongly measurable and thus f € B by (a). By (a)
S C B, hence S = S;y C B.

O

9.6 For the next theorem we write Sg for the space of simple functions X — R.
Note that if « € E*1 and 7 is an element of (SR)ZZ thus of £! (), then umr € Sy and
er(un) =u [ dpu.
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Theorem 9.7 Let Y be a compact Hausdorff space and let E = C(Y) be equipped
with the supremum norm, || - ||co. Then B C Spy and oy = b on 8.

Proof Let f € B and (s,),eN be a sequence of simple functions X — E such that
f If —snlloo dp < ﬁ for all n. Then there exists an integrable function g : X —
[0, 00) with g > > .yl f — Sulleo p-a.e., and thus g > n|| f — s,/ p-a.e. By
Theorem 7.1 there exists a w € (SR)Z (see 9.6) with & > g. Then, let Z € A with
u(A) = 0 be such that || f(x) — 5, () oo < %n(x) for all x € X\Z. We may, by
replacing s, by s,1x\z, assume thats, = Oon Z. WithZ; = {x € Z : k-1 <
Il f(X)loo < k} and p the element in Szr with p(x) = 0forx ¢ Z and p(x) = kly
for x € Z;, we have

si—Yym—p<f<si+ilym+p (neN). ©3)

Because ¢1(p) = 0, 9L (11ym) — 0, 9L (sx) = b(sy) and b(s,) — b(f), both
or(Sp — %Ilyrr — p) and @ (s, + %]ly?‘[ + p) converge to b(f). Whence

b(f) = sup ¢r (s, — %]ly]'[ —p) = inf ¢r (s, + %]lyn + p). (94)
neN neN
Thus f € Spy and @ry (f) = b(f). =

By the Yosida Representation Theorem the following is an immediate consequence.

Corollary 9.8 Let E be a Archimedean Riesz space with strong unit u and assume
E is uniformly complete, i.e., E is a Banach lattice under the norm || - ||, given by
lx|l, = inf{X € [0, 00) : |x| < Au}. Then B C Sy and ¢ v = b on *B.

Example 9.9 (I) Take X = N, A = P(N), and let u be the counting measure. We
have S = coo[E]; Sy = coolE]; all functions N — E are partially in S; S :=
Srv = Syr = St (see Theorem 5.5(c)) and §+ consists precisely of the functions
f N — E* forwhich >, f(n) exists in the sense of the ordering. On the other
hand, f : N — E is Bochner integrable if and only if Z:OZI I f@m)] < oo.

e If || - || is a o-order continuous norm, then B C S.

e Moreover | - || is equivalent to an abstract L-norm if and only if 8 = S (since,
if B = S, the following holds: if x1, x2,... € ET and Zn X, exists, then
2 nen Ixall < 00, see Theorem 12.1).

e For E = ¢y there exists an f € P that is not in S. For example f : N — ¢q
given by

f=1(e1,—e1,e2, —e2, €3, —e3,...) 95)

is Pettis integrable since c6 = ¢! has basis {6, : n € N} where §,(x) = x(n)
and >’ N8, (f(m)) = O for all m € N. ¢g is o-Dedekind complete and
thus by Theorem 4.32 the set S is a Riesz space. However, | f| is not in S and
therefore neither f is.
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e For E = c there exists an f € S that is not in 8 and not in 93: Consider
for example f : n > e,. It is an element of S but not of B. It is not even
Pettis integrable. (Suppose it is, and its integral is a. Then for all u € ¢’ we
have u(a) = [uo fdu = D02 ,u(f(n) = X2 ule,). Letting u be
the coordinate functions, we see that a(n) = 1 for all n € N; letting u be
X — lim,_, o x(n) we have a contradiction.)

) B ¢ Syrv. Let (R, M, 1) be the Lebesgue measure space. Let E be the o-
Dedekind complete Riesz space L'(1). Let g € L' () be the equivalence class
of the function that equals t’% for 0 < ¢t < 1 and equals O for other . Let
L.g(t) = g(t — x) for x € R. Then the function f : R — L!(%) for which
f(x) = 1j0,11(x)Lyg is Bochner integrable (f is continuous in the || - ||{ norm
(because [[Leg — gl = 24/e for e > 0)and [[|f(x)ll1 dA(x) = [ [|g( —
x)| dA(t) dA(x) = ||gll1 < oo) but no element of Syry (by Theorem 8.3).

10 Extensions of Bochner integrable functions

Consider the situation of Sect. 9.

As we have seen in Examples 9.9, e.g., (95), the set of Pettis integrable functions
need not be stable. We show that %8 is stable and b is laterally extendable. Furthermore
we give an example of an f € By that is neither in Sy y, nor in B or By.

Theorem 10.1 B is stable and b is laterally extendable.
Proof Notethat fl1p € Bforall f € Band B € A(since f 15 is strongly measurable
and || f 1] is integrable), i.e., B is stable. Let (A,), N be a partition in A of X. Let

f : X — ET be a Bochner integrable function. Then f I fll du < oo and with
B, =A;U---UA, and Lebesgue’s Dominated Convergence Theorem we obtain

N
b(f -> fﬂAn)
n=l1

< / 1) = 1oy O dp(x) = 0. (96)

Thus
N
b(f)= 1 b(fla,) = b(fla,). 97
) Ni“oo; (f14,) Z (f14,) (97)
We conclude that b is laterally extendable. O

In the following situation we have ‘B; = B = By.

Lemma 10.2 Let E be a Banach lattice with an abstract L-norm (i.e., ||la + b|| =
lall + 161l for a, b € E™).

(a) Then

16CAII =/|If|| du (f €BM). (98)
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(b) B, =B.
(c) There existan a € ECN+ as in Theorem 9.5(b). Consequently By = B.

Proof (a) It is clear that [[b(f)|| = [|IfIl du for f € S, hence by limits for all
feBt.

(b) Suppose f € %z. Let (A,),eN be a b-partition for f, write f,, = f14,. Then
| z;\;l fn— fll = 0, hence f is strongly measurable. Moreover, since || - || is o -

order continuous || 3N, b(f,) — b (f)Il = 0,hence SN 6(f)] = bL(f).
Using (a) we obtain [ || fll dp = 2, en [ I fall dpe = 2 ey ll0(f)ll < oo,
ie., f € B.
(c) Extend o : ET — R given by a(b) = ||b|| to a linear map on E.
]

10.3 Consider the situation of Example 8.8. Since S C ‘B and ¢(h) = b(h) for
h € S: f € By. The function f is not essentially separably-valued (i.e., f(X\A) is
not separable for all null sets A € A), hence f (and thus g) is not strongly measurable
(see [3, Theorem3.5.2]). Hence f is not Bochner integrable, i.e., f € By but f ¢ ‘B.

In a similar way as has been shown in Example 8.8, one can show that g : R — E*
defined by g(t) = 1y fort e Risin S y. Then g € By but g ¢ By.

10.4 All f € B are strongly measurable. Therefore for f € B; we have f ¢ B if
and only if [ || f]l d u = oo.

The following example illustrates that by extending the Bochner integrable func-
tions one can obtain more than by extending the simple functions.

Example 10.5 [ € By, ¥ ¢ °B]

Let X = [2, 3], let A be the set of Lebesgue measurable subsets of X and u be the
Lebesgue measure on X. Let M denote the set of equivalence classes of measurable
functions R — R. Let

x+1 x+1
E= {feM:sup/ fl<oo), 11 E (0,00, If] =sup/ i
xeRJx xeRJx
(99)
Then E equipped with the norm || - || is a Banach lattice. E is an ideal in M and
therefore o-Dedekind complete (hence Sy is stable; 4.25). The norm || - || is not

o-order continuous.

Fora € R,c¢ > Odefine Sy : X — E1 by Su.c(x) = Ligtex.00)- If x, y € X with
y > x then ”Sa,c(x) - Sa,c(y)” = ||]l(a+cx,a+cy]|| <clx —yl, 80 Sq.c is continuous
and therefore strongly measurable. Furthermore || S, .(x)|| = 1 for all x € X, i.e.,
X > ||Sq.c(x)]| is integrable. Thus S, . is Bochner integrable. For d, e € R with
e>dthemap E - R, f — fd‘ f is a continuous linear functional. Therefore

/ “b(Su) = / / (Suc (@) di dx = / ) / (ScC)(@) dx di. (100)
d X Jd d X
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Since this holds for all d, ¢ € R with e > d, for t € R we have

3
(b(Sa,c))(1) = /X(Sa,c(X))(t) dx =/2 Liater,00) (1) dx = (54 A3 =2) V0.
(101)

For k € N define r¢, Ry : X — E by
Ri :==Sox, 71c:=3S0k— Stk (102)

Forx € X and k € N, ri(x) = L(kx kx+1] and kx + 1 < (k + 1)x. Define

n n

Y) = 1y, hekaert] = DTk, 0n = D 1k, Tai= D1k + Ruqi.
keN k=1 k=1

(103)

Note thato, < ¥ < 1, and oy, 7, € B all forn € N. Since E is o-Dedekind complete
and therefore mediated, from the fact that

inf b(t, — o) = inf b(Rys1) =0, (104)
neN neN

it follows that ¥ € By . However, ¥ ¢ B since ¥ is not essentially separably valued:
Letx,y € X,x < y.Weprove ||[(x) — ¥ (y)| > 1. Fork e N:

k—1<—<k=

) ’1+<k—1>yskx,
y—X

1+ kx < ky,

= (kx, kx + 110 |Gy, iy + 11 = 0. (105)
ieN

Hence || (x) — ¥ (y)|| = 1 forall x, y € X withx # y.
So i is an element of By but not of B (and neither of B ).

Example 10.6 [f € Brv, [ ¢ Br. [ ¢ By, f ¢ Svrv]
Let (X, A, n) be the Lebesgue measure space (R, M, A). Let E and ¥ be as in
Example 10.5. Define u : R — E by

) (106)
0 otherwise.

[w(x) x €[2.3],
u(x) =

Then u is an element of By and not of B . As we have seen in Examples 9.9(I) there
exists a g in L'()) and thus in E such that v : x Ljo,17(x)Lg is an element of B
that is not an element of Sy, y. Furthermore w : R — E given by w(x) = 1, 5+1]
for x € (n,n + 1] is an element of B} and not of By . Therefore f = u + v + w is
an element of By (and thus of By ; see Theorem 5.8) but is neither an element of
Sy Ly nor of By or By .
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11 Discussion

Of course, to some extent our approach is arbitrary. We mention some alternatives,
with comments.

11.1 The reader may have wondered why in our definition of the lateral extension
the sets A, are required not only to be disjoint but also to cover X (i.e., to form a
partition). Without the covering of X the definition remains perfectly meaningful, but
the sum of two positive laterally integrable functions need not be laterally integrable,
even in quite natural situations. (E.g., take £E = F = R and X = [0, 1]; let Z be the
ring generated by the open intervals, I' the space of all Riemann integrable functions
on [0, 1], and ¢ the Riemann integral. If f is the indicator of the Cantor set, then 1 — f
is laterally integrable but 21 — f is not.)

11.2 For the vertical extension we have, somewhat artificially, introduced a count-
ability restriction leading us from ¢,, to ¢y ; see Definition 3.3. In some sense, ¢, would
have served as well as ¢y . In order to get a non-void theory, however, we would need
a much stronger (but analogous) condition than “mediatedness”, restricting our world
drastically.

11.3 A different approach to both the vertical and the lateral extension, closer to
Daniell and Bourbaki, could run as follows. Starting from the situation of 3.14, call a
function X — F™T “integrable” if there exist fi, f>, ... € I'* such that

. FX
Sn B SES (107)
sup,,en ¢(fr) exists in E,
then define the “integral” @ (f) of f by
@(f) == sup p(fn). (108)
neN
This definition is meaningful only if, in the above situation
gelT g<f = (g <supe(fy) (109)

neN

which in a natural way leads to the requirement that I be a lattice and that ¢ be
continuous in the following sense:

hihy,...€eTT hy, L0 = @(hy) | 0. (110)

These conditions lead to a sensible theory, but again we consider them as too restrictive.
(See Example I1.2.4 in the thesis of Jeurnink [16] for an example of a I" that consists
of simple functions on a measure space with values in a C(X) for which (110) does
not hold for the standard integral on simple functions (see 4.33).)
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Appendix

Theorem 12.1 Let E be a Banach lattice with the property

Ifx1,x2,...€ EY and an exists, then Z X2 ]l < oo. (12.1)
n neN

Then the norm || - || is equivalent to an L-norm.

The proof uses the following lemma.

Lemma 12.2 Let E be a Banach lattice that satisfies (12.1). Then there existsa C > 0
such that

xl,xz,...eE+,2xn exists — Z||xn|| ECHan . 2)
n neN n
Proof Suppose not. Fori € Nletx;i, xj2,... € ET, > xip = b;jand >, . lIxinll >

2'|bi|| and ||b;|| = 27". Then X,y [Ibill < oo, s0 X b; exists. As >, b; =
> 2 Xin, by (12.1) we get 00 > > D e Ixinll > 2 20 1Bi || = oo O

Proof of Theorem 12.1 By Lemma 12.2 we can define p : E — [0, 00),

pe) =sup{ D lxall : x1,x2,... € EY, > x, < [x|{, 3)
neN n

obtaining p(x) = p(|x]), p(tx) = [t|p(x), x|l < p(x) < C|x| forallx € E, 1 € R
(with C as in Lemma 12.2) and p(x) < p(y) forx,y € ET withx < y.
Letx,y € ET; we prove p(x +y) = p(x) + p(y).

e For ¢ > 0 choose xi,x2,...,¥1,¥2,... € E*T, >, xs < x,2, 9 < ),
Donen IXall = px) — &, 2, ey llvnll = p(y) — e. Considering the sequence
X1, Y1, X2, ¥2, ... we find > (x|l + lyall) < p(x + y). Hence p(x + y) >
p(x) + p(y).

e On the other hand: Let z, z2,... € E1, >, 7z, < x + y; we prove > nen lznll <
p(x) + p(y). Define u,,, v, by

U+ Fu, =@+ F W AX, V=2, —uy (neN). 4
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Then (z1+- - -+z2)AX =2 = Q1+ -+ —2) AKX —2,) < (214 F2p—1)AX,
implying u, —z, < 0;and (z1 +--- +z,) Ax > (21 + -+ 2,—1) A x, implying
u, > 0. Thus

UnZOsUnZO (HEN), (5)

2oneN lunll < 2 en llznll < 00,50 3-, up exists; 3, up < x,and Y, llunll <
PX). D en lvnll < 2 en llznll < 00,50 >, vy exists. For every n € N, z1 +
cotzn (@t tY)AG+Y) = @@tz A Y = ui - Fupty,
s0v] + -4 v, < ysthen 30 v, < yand X, oy llvall < p(y).

Thus > oy lznll < 2 pen luall + 2 e lonll < p(x) + p(y). o
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