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1 Introduction and preliminaries
A Banach space X is said to be strictly convex if || % | <1lforallx,y € X with x| =|y| =1

and x # y. A Banach space is said to be uniformly convex if lim,_, » ||%, — y,| = O for any

two sequences {x,}, {y,} C X with [x,[| = [ly,] =1 and lim,_, o [| 522 = 0.
The norm of Banach space X is said to be Gateaux differentiable, if, for each x,y € S(x),
the limit
t —
oo 1+ = ] W
t—0 t

exists, where S(x) = {x : ||x|| = 1,x € X}. In this case, X is said to be smooth. The norm of
Banach space X is said to be Fréchet differentiable, if, for each x € S(x), the limit (1.1) is
attained uniformly for y € S(x) and the norm is uniformly Fréchet differentiable if the limit
(1.1) is attained uniformly for x,y € S(x). In this case, X is said to be uniformly smooth.

Let D be a nonempty closed subset of a real Banach space X. A mapping T : D — D is
said to be nonexpansive if || 7x — Ty|| < ||x —y| for allx,y € D. An element p € D is called a
fixed point of a nonself multi-valued mapping T': D — X if p € Tp. The set of fixed points
of T is represented by F(T).
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A subset D of X is said to be retract of X, if there exists a continuous mapping P: X — D
such that Px = x, for all x € X. It is well known that every nonempty, closed, convex subset
of a uniformly convex Banach space X is a retract of X. A mapping P: X — D is said to
be a retraction, if P> = P. It follows that if a mapping P is a retraction, then Py = y for all
y in the range of P. A mapping P: X — D is said to be a nonexpansive retraction, if it is
nonexpansive and it is a retraction from X to D.

Assume that X is a real Banach space with the dual X*, D is a nonempty, closed, convex
subset of X. We also denote by J the normalized duality mapping from X to 2X" which is
defined by

J) = {f* e X" fnf) = s = [}, xex,

where (-, -) denotes the generalized duality pairing.

Next we assume that X is a smooth, strictly convex and reflexive Banach space and D is
a nonempty, closed, convex subset of X. In the sequel, we always use ¢ : X x X — R* to
denote the Lyapunov functional defined by

o, y) = llxl* = 20, Jy) + Iyl% % yeX. 1.2)

It is obvious from the definition of the function ¢ that

(Il - IIJ/II)2 <o@x,y) < (llxll + ||y||)2, (1.3)

d0,x) = ¢, 2) + p(z,%) + 2(z -y, Jx - Jz), xy,z€X, (1.4)
and

P(x ] (My+ (1=W]z)) < rop(x,y) + (1 - 1) (x,2) (1.5)

forall A € [0,1] and x,y,z € X.
Following Alber [2], the generalized projection I1p : X — D is defined by

[p(x) = arg inlgq&(y,x), Vx € X. (1.6)
ye

Lemma 1.1 (see [3]) Let X be a uniformly convex and smooth Banach space and let {x,}
and {y,} be two sequences of X such that {x,} and {y,} is bounded, if $(x,,y,) — O, then
”xn _.yn” — 0.

Many problems in nonlinear analysis can be reformulated as a problem of finding a fixed
point of a nonexpansive mapping.
In the sequel, we denote the strong convergence and weak convergence of the sequence

{x,} by x, — x and x,, — x, respectively.

Lemma 1.2 (see [2]) Let X be a smooth, strictly convex, and reflexive Banach space and D
be a nonempty, closed, convex subset of X. Then the following conclusions hold:

(a) ¢(x,y)=0ifand only if x = y;

(b) ¢(x, Tpy) + ¢(Tpy,y) < ¢(x,), Y,y € D;

(c) ifxe X and z € D, then z = Tpx if and only if (z—y,Jx — Jz) > 0,Vy € D.
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Remark 1.1 (see [4]) Let I1p be the generalized projection from a smooth, reflexive and
strictly convex Banach space X onto a nonempty, closed, convex subset D of X. Then Ip

is a closed and quasi-¢-nonexpansive from X onto D.

Remark 1.2 (see [4]) If H is a real Hilbert space, then ¢(x,7) = |x — y||?, and Tp, is the

metric projection of H onto D.

Definition 1.1 Let P: X — D be the nonexpansive retraction.
(1) A nonself multi-valued mapping 7' : D — X is said to be quasi-¢-nonexpansive, if
F(T)# ®, and

¢(p,z) < ¢(p,x), VxeD,peF(T),z,€ T(PT)" 'x,Yn>1; 1.7)

(2) A nonself multi-valued mapping T : D — X is said to be quasi-¢-asymptotically
nonexpansive, if F(T) # ® and there exists a real sequence k,, C [1,+00), k, — 1 (as
n — 00) such that

¢, 2,) < kudp(p,x), VxeD,peF(T),z, € T(PT)" 'x,Vn=>1; (1.8)

(3) A nonself multi-valued mapping 7 : D — X is said to be totally
quasi-¢-asymptotically nonexpansive, if F(T') # ® and there exist nonnegative real
sequences {v,}, {it,}, with v, u,, — 0 (as n — 00) and a strictly increasing
continuous function ¢ : R* — R* with £(0) = 0 such that

¢(19» zn) < q)(p,x) + Vn§[¢(10:x)] + Un»
VxeD,p € F(T),z, € T(PT)"'x,Yn > 1. (1.9)

Remark1.3 From the definitions, it is obvious that a quasi-¢-nonexpansive nonself multi-
valued mapping is a quasi-¢-asymptotically nonexpansive nonself multi-valued mapping,
and a quasi-¢-asymptotically nonexpansive nonself multi-valued mapping is a totally
quasi-¢-asymptotically nonexpansive nonself multi-valued mapping, but the converse is

not true.

Now, we give an example of totally quasi-¢-asymptotically nonexpansive nonself multi-

valued mapping.

Example 1.1 (see [4]) Let D be a unit ball in a real Hilbert space /2 and let T : D — 2 be

a nonself multi-valued mapping defined by
T :(x1,%9,...) = (0,9(3%,612962,6139(33,...) e, Y(xi,%,...) €D,

where {a;} is a sequence in (0,1) such that [, a; = %
It is proved in [5] that
(i) I1Tx - Tyl <2|lx - yl, Vx,y € D;
(i) |T"x-T"y|| <2 H;’zz a;,Vx,y €D, n>2.
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Let ki =2, /k, =2 ]_[;’:2 aj, n > 2. Thenlim,_, « k, = 1. Letting v, =k, -1 (n > 2),{(t) = ¢
(t > 0) and {u, } be a nonnegative real sequence with p,, — 0, then from (i) and (ii) we have

| 7% = T |* < 2 = 911 + vul (I = 11?) + sy Y,y € D.

Since D is a unit ball in a real Hilbert space /2, it follows from Remark 1.2 that ¢(x,y) =
lx — |2, Vx,y € D. The inequality above can be written as

¢(Tnx’ T"J’) <o)+ Vn§(¢(x:y)) +n Y%,y €D.

Again since 0 € D and 0 € F(T), this implies that F(T) # ®. From the inequality above, we
get

¢(P,Zn) < ¢(P,x) + Vn;(d)(p’x)) + Wy VPE F(T),xeD,z, € T(PT)H_lxr

where P is the nonexpansive retraction. This shows that the mapping T defined above is
a totally quasi-¢-asymptotically nonexpansive nonself multi-valued mapping.

Lemma 1.3 Let X be a smooth, strictly convex and reflexive Banach space and D be a
nonempty, closed, convex subset of X. Let T : D — X be a totally quasi-p-asymptotically
nonexpansive nonself multi-valued mapping with ju; = 0. Then F(T) is a closed and convex
subset of D.

Proof Let {x,} be a sequence in F(T) such that x, — p. Since T is a totally quasi-¢-
asymptotically nonexpansive nonself multi-valued mapping, we have

¢ (% 2) < (X, p) + 1 (9(xnsp)), z€ Tp,VnEN.

Therefore,

¢(p,2) = lim $(x,2) < lim $(x, p) + viZ (d(x, ) = P(p,p) = 0.

By Lemma 1.2, we obtain p = z € Tp. So we have p € F(T). This implies that F(T') is closed.
Letp,q € F(T) and ¢t € (0,1), and put w = tp + (1 - £)q. We prove that w € F(T). Indeed, in
view of the definition of ¢, let {1, } be a sequence generated by u; € Tw,u, € T(PT)w, us3 €
T(PT)*w,...,u, € T(PT)"'w C TPu,_,, we have
(W) = |W* = 2(w, Ju) + || |*
= Iwli* = 2(tp + (1 = £)q, Ju) + ]|

= lwli? + td(p, uy) + (L - (g, u) — tllpll* — (L - Dllql* (1.10)

Since

tp(p,un) + (1 - )P (q, u)
= t[d’(p’ w) + Vn§[¢(p’ W)] + /Ln] +(1- t)[‘ﬁ(% w) + Vni[‘ﬁ(% W)] + ,LL,,,]
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=t{lpI* = 2(p.Jw) + [WI* + vag [0 W)] + 120}
+ @ =0){lgh* = 2(g.Jw) + IWlI* + vt [¢(q, w)] + )
=tlpl* + A= 0)lgll® - Iwll* + tvug [plo, w)] + A = vt [d(g, W)] + pan- (1.11)

Substituting (1.11) into (1.10) and simplifying it, we have

Sw,u,) < tv,¢ [B(p,W)] + (U= v, L [B(g )] + ptn — O (as 1 — o0).

Hence, u,, — w holds, which yields u,.; — w. Since TP is closed and u,,; € T(PT)"w C
TPu,, we have w € TPw. It follows from w € D that w € Tw, i.e., w € F(T). This implies
that F(T) is convex. This completes the proof of Lemma 1.3. |

Definition 1.2 (see [1]) A nonself mapping T : D — X is said to be uniformly L-Lipschitz

continuous, if there exists a constant L > 0, such that
|T(PT)" "%~ T(PT)"'y| <Llx-yl, Vx,yeD,¥n>1 (1.12)

Definition 1.3 A nonself multi-valued mapping T : D — X is said to be uniformly L-

Lipschitz continuous, if there exists a constant L > 0, such that
d(T(PT)" ', T(PT)"'y) <Llx-yl, VxyeD,Vn=>1, (1.13)
where d(-, -) is Hausdorff metric.

Strong and weak convergence of asymptotically nonexpansive self or nonself mappings,
relatively nonexpansive, quasi-¢-nonexpansive and quasi-¢-asymptotically nonexpansive
self or nonself mappings have been considered extensively by several authors in the setting
of Hilbert or Banach spaces (see [1-4, 6—24]). In recent years, by hybrid projection meth-
ods, strong and weak convergence problems for totally quasi-¢ quasi-¢-asymptotically
nonexpansive nonself and multi-valued mapping, respectively, was also studied by Kim et
al. (see [6,7]), Liet al. (see [8]), Chang et al. (see [9]) and Yang et al. (see [10]).

Inspired by specialists above, the purpose of this paper is to modify the Halpern-Mann’s
mixed type iteration algorithm for a totally quasi-¢-asymptotically nonexpansive nonself
multi-valued mapping, which has the strong convergence under a limit condition only in
the framework of Banach spaces. As an application, we utilize our results to study the
approximation problem of solution to a system of equilibrium problems. The results pre-
sented in the paper improve and extend the corresponding results of Chang et al. [1, 11-
13], Hao et al. [14], Guo et al. [15], Yildirim et al. [16], Thianwan [17], Nilsrakoo et al. [18],
Pathak et al. [19], Qin et al. [20], Su et al. [21], Wang [22, 23], Yang et al. [24] and others.

2 Main results
Theorem 2.1 Let X be a real uniformly smooth and uniformly convex Banach space, D be

a nonempty, closed, convex subset of X. Let P : X — D be the nonexpansive retraction. Let
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T :D — X be a totally quasi-$-asymptotically nonexpansive nonself multi-valued map-
ping with sequence {v,,}, {it,,} (1 = 0), with v,, i, — 0 (as n — o0) and a strictly increasing
continuous function ¢ : R* — R* with £(0) = 0 such that T is uniformly L-Lipschitz contin-
uous. Let {o,,} be a sequence in [0,1] and {B,} be a sequence in (0,1) satisfying the following
conditions:

(1) lim,,_, o @y = 0;

(i) 0 <lim,_ o inf B, <lim,_ . sup B, < 1.

Let {x,} be a sequence generated by

x1 €X isarbitrary; D, =D,
In :]_1 loJxr + (1~ an)(ﬂn]xn +(1- ﬁn)]zn)]; Zy € T(PT)n_l»’Cm
Dpa={z€D,: ¢(z,y,) < a,d(z,%1) + 1 — a,)p(z,%,) + £},

Xnel = 1_ID,,,,15'51 n=1,2,...),

where &, = v, SUP e p(T) s (p(p,xn)) + s Np,,, is the generalized projection of X onto Dy,;.
IfF(T) #0, then {x,} converges strongly to I1rr)x;.

Proof (1) First, we prove that D, are closed and convex subsets in D.
In fact, by Lemma 1.3, F(T) is closed and convex in D. By the assumption, D; = D is
closed and convex. Suppose that D, is closed and convex for some # > 1. In view of the

definition of ¢, we have

D1 = {2 € Dy : ¢(2,yn) < (2, %1) + (1 — o) (2, %) + €1}
= {Z eD: ¢(Z¢yn) < (xn¢(z¢x1) + (1 - an)¢(zrxn) + %-n} N Dn
= {z € D:2a,(z 1) + 201 — a,) (2, Jxn) = 2(2,yu)

< a1 ll* + (1 = ) [%4ll* = 11y ]1*} N D

This shows that D,,,; is closed and convex. The conclusions are proved.

(II) Next, we prove that F(T) C D,, for all n > 1.

It is obvious that F(T) C D;. Suppose that F(T) C D,,, w,, = ] "X(B.Jx, + 1 — B.)Jz,) and
z, € T(PT)" x,. Hence, for any u € F(T) C D,, by (1.5), we have

¢’(%J’n) = (]5(1/[,]71 (an]xl + (1 - an)]Wn))

=< Q’n‘;b(ur xl) + (1 - an)¢(u’ Wn)r (22)
and

Dt wn) = & (] (BuJen + (1= Bu)Jzn))
< B, 1) + (1 = B)p (s, 24)
< B, x,) + (L= B){ @1, %) + vl [(w,,)] + 11}
= (%) + (1= BV [P (1, 20)] + (1= B - (2.3)

Page 6 of 11
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Therefore, we have

(1, yn) < aup(u, 1) + (1 - an)[¢(urxn) +(1- ﬁn)Vn§[¢(ern)] +(1- ,Bn)ﬂn]
< a,$(u,x1) + (1= o) (1, %) + vy SUP C[(p(pvxn)]

peF(T)

= P (u,x1) + (1 - an)¢(urxn) +&,, (2.4)

where &, = v, SUP,er(T) ¢(@(p,x,)) + y. This shows that u € D,,;; and so F(T) C D,,. The
conclusion is proved.

(III) Now we prove that {x,} converges strongly to some point p*.

Since %, = I1p, %1, from Lemma 1.2(c), we have

(X =y, Jx1 = Jxy) 20, VyeD,.
Again since F(T) C D,, we have

(%, —u, Jxy — Jx,) >0, VYueF(T).

It follows from Lemma 1.2(b) that, for each u € F(T) and for each n > 1,

O X, x1) = (I p,x1,%1) < P, %1) — ¢(u, %) < P(u,%1). (2.5)

Therefore, {¢(x,,x1)} is bounded, and so is {x,}. Since x, = IIp,x; and x,,,; = Ip,, %1 €
D, C Dy, we have ¢(x,,,x1) < ¢(x,41,%1). This implies that {¢(x,,x1)} is nondecreasing.
Hence lim,,_, o ¢(x,,,%1) exists.

By the construction of {D,}, for any m > n, we have D,, C D, and x,, = IIp, %, € D,,.
This shows that

¢(xm7xn) = ¢(xm: HD,,xl) =< ({b(xm:xl) - ¢(xn:x1) -0 (as n— OO)

It follows from Lemma 1.1 that lim,,_, o [|% — %, || = 0. Hence {x,} is a Cauchy sequence
in D. Since D is complete, without loss of generality, we can assume that lim,_, o x, = p*
(some point in D).

By the assumption, it is easy to see that

lim &, = lim |v, sup ¢(¢(@ %)) + ptu | =0. (2.6)

[ ]

(IV) Now we prove that p* € F(T).
Since x,,,1 € D,.;1, from (2.1) and (2.6), we have

¢(xn+1:yn) =< an¢(xn+1;x1) + (1 - arz)(pb(xnﬂ’xn) + En — 0. (27)

Since x,, — p*, it follows from (2.7) and Lemma 1.1 that

Yy —> p*. (2.8)
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Since {x,} is bounded and T is a totally quasi-¢-asymptotically nonexpansive nonself
multi-valued mapping, we have

DB 20) < W, %0) + Vil [0, %) + 1w, Vx €D, ¥m,i>1,p e F(T).

This implies that {z,} is also bounded.
By condition (ii), we have

lwnll = ”]_1 (:anxn +(1- ﬂn)]zn) ”
< Bullxall + @ = Bu) |zl

< lxull + lizull,

this implies that {w,} is also bounded.
In view of a;, — 0, from (2.1), we have

lim |[Jy, —Jwyll = lim o, |[Jx1 = Jwyl| = 0. (2.9)
n—00 n—00

Since /7! is uniformly continuous on each bounded subset of X*, it follows from (2.8)
and (2.9) that

w, — p*. (2.10)
Since J is uniformly continuous on each bounded subset of X, we have

0= lim |/, —Jp"|
= lim | (B, + (1= B)z) — 0|
= lim |, 00 = Jp") + (L= ) 20 = ") |

= lim (1- B,) |z ~Jp* . (2.11)
By condition (ii), we have
lim ||]zn -Jp* H =0.
n—00
Since J is uniformly continuous, this shows that

lim z, = p*. (2.12)

n—00

Again by the assumptions that 7': D — X be uniformly L-Lipschitz continuous, thus we
have

d(T(PT)" %, T(PT)" "%,
= d(T(PT)nxm T(PT)nanrl) + d(T(PT)nanrl,anrl)
+ %ne1 = %ull + d (0, T(PT)" )

< (LA DIt~ 5l + d(TPT) %1, 6011) + (3, TPT)" ). (213)
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We get lim,,_, o, d(T(PT)"x,,, T(PT)"x,) = 0, since lim,,_, o z, = p* and lim,,_, o, x,, = p*.

In view of the continuity of TP, it yields p* € TPp*. We have p* € C, which implies that
p* € Tp*. We have p* € F(T).

(V) Finally, we prove that p* = %) and so x,, — I = p*.

Let w = I p(ryx. Since w € F(T) C Dy, and x,, = I1p,x1, we have ¢(x,,, x1) < ¢(w,x;). This
implies that

¢(p"x1) = lim (s 21) < P(w,:1), (2.14)

which yields p* = w = I1r¢r;. Therefore, x,, — Ir(r)x1. The proof of Theorem 3.1 is com-
pleted. O

By Remark 1.3, the following corollary is obtained.

Corollary2.1 Let X, D, {«,}, {B8,} be the same asin Theorem2.1. Let T : D — X be a quasi-
¢-asymptotically nonexpansive nonself multi-valued mapping with sequence k,, C [1, +00),
ko — 1, T : D — X be uniformly L-Lipschitz continuous.

Suppose {x,} be a sequence generated by

x1 € X isarbitrary; D, =D,
yn =]_1 [an]xl + (1 - an)(ﬁn]xn + (1 - ,Bn)jzn)] (l 2 1)’ Zp S T(PT)n_lxm
D,,={zeD, :¢(z:yn) =< an¢(z:xl) +(1- 0ln)¢(2, Xn) + I

Xn+l = HDmlxl n=12,..),

(2.15)

where &, = (k, — 1) Sup,e(r) ¢, %), Np,,, is the generalized projection of X onto Dy.1. If
F(T) #0, then {x,} converges strongly to Ir(r)x;.

Corollary 2.2 Let X, D, {a,}, {B8,} be the same as in Theorem 2.1. Let T : D — X be a
quasi-$-nonexpansive nonself multi-valued mapping, T : D — X be uniformly L-Lipschitz
continuous.

Suppose {x,} is a sequence generated by

x1 € X s arbitrary; D; =D,
Vn =] Hawxr + (1= o) (Bufon + A= Bu)zn)] (i >1),2, € T(PT)" ',
Dy = {Z eD, :¢(Z’yn) =< an¢(z’xl) + (1 - an)¢(z;xn) + Sn})

Xn+l = HDmlxl (1’1 =12,...),

(2.16)

where &, = (k, — 1) SUP e p(T) o, x,), Mp,,, is the generalized projection of X onto Dy,1. If
F(T) #9, then {x,} converges strongly to I1rr)x;.

3 Application
First, we present an example of a quasi-¢-nonexpansive nonself multi-valued mapping.

Example 3.1 (see [4]) Let H be a real Hilbert space, D be a nonempty closed and convex
subset of H and f : D x D — R be a bifunction satisfying the conditions: (Al) f(x,x) = 0,
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Vx € D; (A2) f(x,9) +f(y,x) < 0,Vx,y € D; (A3) foreach x,y,z € D, lim;_, o f(tz+ (1 - t)x,y) <
f(x,9); (A4) for each given x € D, the function y — f(x,y) is convex and lower semicon-
tinuous. The ‘so-called’ equilibrium problem for f is to find a x* € D such that f(x*,y) > 0,
Vy € D. The set of its solutions is denoted by EP(f).

Let r > 0, x € H and define a mapping T, : D — D C H as follows:
1
T,(x) = {zeD,f(z,y) +-(y—z,z—x)> O,VyeD}, VxeDCH. (3.1)
r

Then (1) T, is single-valued, so z = T,(x); (2) T, is a relatively nonexpansive nonself map-
ping, therefore it is a closed quasi-¢p-nonexpansive nonself mapping; (3) F(7,) = EP(f)
and F(7,) is a nonempty and closed convex subset of D; (4) T, : D — D is a nonexpansive.
Since F(T,) nonempty, it is a quasi-¢-nonexpansive nonself mapping from D to H, where

¢(x,y) = ||x _y”zr x,) € H.

In this section we utilize Corollary 2.1 to study a modified Halpern iterative algorithm
for a system of equilibrium problems. We have the following result.

Theorem 3.1 Let H be a real Hilbert space, D be a nonempty closed and convex subset of
H, {a,}, {Bn} be the same as in Theorem 2.1. Let f : D x D — R be a bifunction satisfying
conditions (Al)-(A4) as given in Example 3.1. Let T, : D — D C H be mapping defined by
(3.1), i.e.,

1
T, (x) = {zeD,f(z,y)+ -(y-z,z—x) > O,VyeD}, VxeDCH.
r
Let {x,} be the sequence generated by

x1 € D s arbitrary; D, =D,
@ y) + 2y = thyy 1y —x4) 20, VyeD,r>0,
Y = X1 + (1= ) [Buxn + (1= B)un], 3.2)

Dy ={z €Dyt 2= ynill® < anllz =21l + (1= ) 1z = xull*},

X1 = [p,, %1 n=1,2,...).

If F(T,) # 9, then {x,} converges strongly to Ilrr,x1, which is a common solution of the
system of equilibrium problems for f.

Proof In Example 3.1, we have pointed out that u,, = T,(x,), F(T,) = EP(f) is nonempty and
convex, T, is a quasi-¢-nonexpansive nonself mapping. Since F(7,) is nonempty, and so
T, is a quasi-¢-nonexpansive mapping and 7 is uniformly 1-Lipschitzian mapping. Hence
(3.1) can be rewritten as follows:

x1 € H is arbitrary; D, =D,

Yn =0pX1 + (1 - an)[ﬂnxn + (1 - ,Bn)zn]’ Zy € Trxnr

" (3.3)

Dy ={z €Dy llz=yull® < aullz=21l* + 1= ay)llz = x4},

KXn+l = HD,Hlxl n=1,2,...).

Therefore, the conclusion of Theorem 3.1 can be obtained from Corollary 2.1. O
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