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Abstract. We define tropical Psi-classes on M0,n(R
2, d) and consider intersection prod-

ucts of Psi-classes and pull-backs of evaluations on this space. We show a certain WDVV
equation which is sufficient to prove that tropical numbers of curves satisfying certain Psi-
and evaluation conditions are equal to the corresponding classical numbers. We present
an algorithm that generalizes Mikhalkin’s lattice path algorithm and counts rational plane
tropical curves satisfying certain Psi- and evaluation conditions.

1. Introduction

Psi-classes ψi are certain divisor classes on spaces of stable curves or stable maps,
Mg,n or Mg,n(P

r , d), which arise as the first Chern class of the line bundle whose
fiber over a point (C, x1, . . . , xn) (or (C, x1, . . . , xn, f )) is the cotangent space of
C at xi . They are for example useful to count curves with tangency conditions.
To count curves that satisfy incidence conditions (e.g. pass through given points),
one defines evaluation maps on the space of stable maps, evi : Mg,n(P

r , d) → P
r

that send a stable map (C, x1, . . . , xn, f ) to the image f (xi ) of the marked point i .
Then we can pullback the conditions via the evaluation map. Finally, we can inter-
sect pullbacks of evaluation maps and Psi-classes on Mg,n(P

r , d). The degrees of
such top-dimensional intersection products are called descendant Gromov-Witten
invariants and have been studied in Gromov-Witten theory.

The aim of this paper is to define tropical analogues of rational descendant
Gromov-Witten invariants in the plane and to show that, under certain assumptions
on the distribution of the Psi- and evaluation conditions, they coincide with their
conventional counterparts.

To do so, we use the constructions of moduli spaces of abstract and parame-
terized rational tropical curves as tropical varieties and the definition of evaluation
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maps on the latter ones [4,12,14]. Moreover, [12] already defines Psi-classes on
the space of abstract tropical curves M0,n and [7] deals with their intersections.
In this paper, we define Psi-classes on the space of parameterized tropical curves.
Together with the intersection theory of [1] and [11], we have all tools to define
descendant Gromov-Witten invariants. We show that these invariants are indepen-
dent of the position and “type” of the evaluation conditions and that they fulfill the
string and divisor equation. Then we show that the invariants also fulfill a certain
WDVV equation which can be used to determine the numbers recursively. As the
classical numbers fulfill the same equations, it remains to compare the initial num-
bers appearing in the recursion to show that the classical and tropical invariants
coincide.

These results can only be achieved for invariants such that the Psi-conditions
come together with point conditions, and not alone or with line conditions. Note
that one should expect such restrictions as we work with a non-compact moduli
space that does not parameterize curves with components in the “boundary” of
R

n . Hence the tropical descendant Gromov-Witten invariants are different from
the classical ones in some cases, namely whenever tropical curves are “missing”
in the corresponding tropical count. However, we show that this does not happen
when Psi-conditions always come together with point conditions.

To prove the WDVV equation we show that the weight of a curve in an intersec-
tion product can be computed locally as the determinant of a map (which basically
collects all evaluation maps) and then proceed similarly to [5]. Finally, we present
a tropical algorithm similar to Mikhalkin’s lattice path count [10] to determine the
numbers of rational plane tropical curves passing through points and satisfying
Psi-conditions.

Our definition of tropical descendant invariants partly agrees with Mark Gross’
definition which was found independently in his study of mirror symmetry [3].

The paper is organized as follows. In Sect. 2, we recall some facts about trop-
ical moduli spaces and tropical intersection theory that we need. Then we define
Psi-classes on the space of parameterized tropical curves and tropical descendant
invariants. In Sect. 3 we define what it means for incidence conditions to be general
and what consequences arise for our tropical descendant invariants if we choose
the conditions to be general. In Sect. 4, we show that every tropical curve in an
intersection product of Psi-classes, point and line evaluations and the pullback of a
point with a large coordinate in M0,4 under the forgetful map contains a contracted
bounded edge. Thus the tropical curve can be interpreted as a reducible curve by
cutting it along this contracted bounded edge. In Sect. 5 we show that the weight of
a tropical curve in a zero-dimensional intersection product can be computed using
a determinant of a linear matrix. We use this in Sect. 6 to show that the weight
of tropical curves with a contracted bounded edge can be (almost) split into two
factors corresponding to the irreducible components. In Sect. 7, we show the string
equation and the divisor equation for our tropical descendant invariants. In Sect. 8
finally, we collect our results to prove that our tropical descendant invariants satisfy
a certain WDVV equation, and we conclude that the tropical invariants are equal
to the corresponding classical invariants that satisfy the same recursion. In Sect. 9,
we describe an algorithm similar to the lattice path count that determines tropical
descendant invariants.

We would like to thank A. Gathmann and M. Kerber for useful discussions.



Tropical descendant Gromov–Witten invariants 295

2. Defining the invariants

First of all, let us briefly recall the constructions from [1] that we need here:
A cycle X is a balanced (weighted, pure-dimensional, rational and polyhedral)

complex (resp. fan) in R
n . The top-dimensional polyhedra (resp. cones) in X are

called facets, the codimension one polyhedra (resp. cones) are called ridges. The
integer weights assigned to each facet σ are denoted byω(σ). Balanced means that
the weighted sum of the primitive vectors of the facets σ around a ridge τ ∈ X

∑

σ∈X (dim(X))
τ<σ

ω(σ)vσ/τ

vanishes “modulo τ”, or, precisely, lies in the linear vector space spanned by τ ,
denoted by Vτ . Here, a primitive vector vσ/τ of σ modulo τ is a integer vector
in Z

n that points from τ towards σ and fulfills the primitive condition: The lattice
Zvσ/τ+(Vτ ∩Z

n)must be equal to the lattice Vσ ∩Z
n . Slightly differently, in [1] the

class of vσ/τ modulo Vτ is called primitive vector and vσ/τ is just a representative
of it.

For us, a polyhedron σ is always understood to be closed. The (relative) interior
Int(σ ) is the topological interior of σ in its affine span (e.g. Int({P}) = {P}). The
support of X , denoted by |X |, is the union of all facets in X with non-zero weight.

A (non-zero) rational function on X is a function ϕ : |X | → R that is affine
(resp. linear) with rational slope on each polyhedron (resp. cone). The divisor of ϕ,
denoted by div(ϕ) = ϕ · X , is the balanced subcomplex (resp. subfan) of X con-
structed in [1, 3.3], namely the codimension one skeleton X\X (dim X) together with
the weights ωϕ(τ) for each ridge τ ∈ X . These weights are given by the formula

ωϕ(τ) =
∑

σ∈X (dim(X))
τ<σ

ω(σ)ϕσ (vσ/τ )− ϕτ

⎛

⎜⎜⎝
∑

σ∈X (dim(X))
τ<σ

ω(σ)vσ/τ

⎞

⎟⎟⎠ ,

where ϕσ : Vσ → R denotes the linear part of the affine function ϕ|σ . Note that
the balancing condition of X around τ ensures that the argument of ϕτ is an ele-
ment of Vτ . If ϕ is globally affine (resp. linear), all weights are zero, which we
denote by ϕ · X = 0. Let the support of ϕ, denoted by |ϕ|, be the subcomplex of
X containing the points where ϕ is not locally affine. Then we have |ϕ · X | ⊆ |ϕ|.
Furthermore, the intersection product is bilinear (see [1, 3.6]). As the restriction
of a rational function to a subcycle is again a rational function, we can also form
multiple intersection productsϕ1 . . . ϕl ·X . In this case we will sometimes omit “·X”
to keep formulas shorter. Note that multiple intersection products are commutative
(see [1, 3.7]).

By abuse of notation, a cycle is also a class of balanced fans with common
refinement and agreeing weights. A rational function ϕ on such a class is just a
rational function on a fan X contained in the class. We can generalize our inter-
section product to such classes of fans [X ] by defining ϕ · [X ] := [ϕ · X ]. In the
following, we try to avoid these technical aspects whenever possible. We will also
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omit the brackets distinguishing between fans and their classes, hoping that no
confusion arises.

A morphism of cycles X ⊆ R
n and Y ⊆ R

m is a map f : |X | → |Y | that
comes from a linear map from Z

n to Z
m and that maps each polyhedron (resp.

cone) of X into one of Y . Such a morphism pulls back rational functions ϕ on Y
to rational functions f ∗(ϕ) = ϕ ◦ f on X . Note that the second condition of a
morphism, which is not required in [1], makes sure that we do not have to refine
X further. f ∗(ϕ) is already affine (resp. linear) on each cone. Furthermore, we can
push forward subcycles Z of X to subcycles f∗(Z) of Y . This is due to [4, 2.24 and
2.25] in the case of fans and can easily be generalized to complexes. We can omit
further refinements here if we assume that f (σ ) ∈ Y for all σ ∈ X . The projection
formula (see [1, 4.8]) connects all the above constructions via

f∗( f ∗(ϕ) · X) = ϕ · f∗(X).

Moreover, let us recall the basic facts of rational equivalence introduced in
[1, Section 8]. The degree of a zero-dimensional cycle Z is just the sum of all
weights. Hence the push-forward of a zero-dimensional cycle preserves degree. If X
is a one-dimensional cycle, andϕ is a bounded rational function, then deg(ϕ·X) = 0
(see [1, 8.3]). The pull-back of a bounded rational function is again bounded. Two
functions are called rationally equivalent if they differ by the sum of a bounded
and a globally linear function. Hence (and by linearity of the pull-back) rational
equivalence is preserved when pulled back.

An example for functions that are rationally equivalent is given by translations
of functions on R

n .

Lemma 2.1. (Translations are rationally equivalent) Let h be a rational function
on R

n, choose v ∈ R
n and consider h′ with h′(x) := h(x + v). Then h and h′ are

rationally equivalent.

Proof. Let X be a subdivision of R
n on which h is a rational function. For each

cone σ ∈ X , let hσ be the linear part of the affine function h|σ . Take the maximum
of the finitely many hσ (v), σ ∈ X and call it c. Now, X subdivides the line segment
x + λv, λ ∈ [0, 1] into q line segments of length λi contained in some polyhedron
σi . This means h(x + v) can be expressed as h(x) + hσ1(λ1v) + · · · + hσq (λrv),
where

∑
i λi = 1. This implies

h(x + v)− h(x) ≤ c,

which proves that h′ − h is bounded. 	

In the following, we will apply these constructions and results to the case of

Psi- and evaluation classes on the space of rational plane curves.
The tropical analogue M0,n of the space of stable n-marked curves is the space

of trees, or (a quotient of) the tropical Grassmanian [4,12,14]. Thus an abstract trop-
ical curve is just a tree with n marked ends and whose bounded edges e are equipped
with a length l(e) ∈ R>0. The fan M0,n is stratified by cones corresponding to
combinatorial types of trees. The facets correspond to 3-valent trees.
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The tropical analogue M0,n(R
2, d) of the space of stable maps has been stud-

ied in [4]. An element of M0,n(R
2, d) is an abstract tropical curve � (i.e. a tree)

together with a map h : � → R
2 such that the image satisfies the balancing

condition and marked ends are contracted to a point. An important feature of this
definition is that it also allows to contract bounded edges, as it will happen in
Sects. 4 and 6. If we furthermore also label the non-contracted ends, we obtain the
space Mlab

0,n(R
2, d). The advantage of this space is that, after choosing the vertex

of one marked end as root vertex, we can identify Mlab
0,n(R

2, d)with Mn+3d ×R
2,

where the second factor describes the position of the root vertex in R
2 (cf. [4]).

In particular, in this sense Mlab
0,n(R

2, d) is a tropical variety. For enumerative pur-
poses, its difference to M0,n(R

2, d) cumulates in nothing but a factor (d!)3 by
which each invariant in Mlab

0,n(R
2, d) must be divided to get the corresponding

one in M0,n(R
2, d). Note that, independent of the choice of a root vertex, there

exists a forgetful map ft′ : Mlab
0,n(R

2, d) → Mn+3d forgetting just the position of

the image of a curve in R
2. This forgetful map ft′ : Mlab

0,n(R
2, d) → Mn+3d

is a morphism of tropical varieties, as after choosing a root vertex and iden-
tifying Mlab

0,n(R
2, d) with Mn+3d × R

2, ft′ is just the projection onto the first
factor.

Analogues of Psi-classes on tropical M0,n have been defined recently [12]. ψi

with i = 1, . . . , n is the codimension one subcycle that consists of cones corre-
sponding to trees where the marked end i is at a 4- or higher-valent vertex. How
such Psi-classes intersect is discussed in [7]. To do so, Psi-classes ψi , i = 1, . . . , n
are defined as divisors of rational functions fi on M0,n cf. [7, proposition 3.5]. As
M0,n is simplicial, the function fi can be defined by specifying its values on the
primitive vectors of the rays contained in M0,n . These rays are given by curves
with only one bounded edge splitting up the marked ends into two sets I ·∪J = [n].
Let vI |J be the corresponding primitive vector and assume w.l.o.g i ∈ I , then fi is
define by

fi (vI |J ) = |J | (|J | − 1)

(n − 1)(n − 2)
.

Note that we denote by fi a multiple of what is called fi in [7], such that we obtain
div( fi ) = ψi . We use these functions to pull back Psi-classes to Mlab

0,n(R
2, d).

Definition 2.2. (Psi-classes for parameterized curves) For i = 1, . . . , n we define
the i th Psi-class on Mlab

0,n(R
2, d) to be ψi := div(ft′∗( fi )).

Remark 2.3. It can be shown that two rational functions on Mlab
0,n(R

2, d) (or M0,n)
defining the same divisor cycle only differ by the restriction of a globally linear
function. Hence, the choice of the functions defining our Psi-classes is not really
important for intersection-theoretic purposes. This justifies that throughout our
paper we use the specific function ft∗( fi ) to describe ψi and in particular define

ψi · Y := ft′∗( fi ) · Y,

where Y is an arbitrary subcycle of Mlab
0,n(R

2, d). Note also that for our purposes
we do not really need that the function describing ψi is (nearly) unique. The only
thing we need to know is contained in the following lemma.



298 H. Markwig, J. Rau

Lemma 2.4. (Products of Psi-classes) Let r1, . . . , rn be positive integers and let

X =
n∏

k=1

ψ
rk
k · Mlab

0,n(R
2, d)

be a product of Psi-classes. Then X is the codimension-
∑

k rk-subfan of
Mlab

0,n(R
2, d) consisting of cones σ corresponding to trees such that for each vertex

V we have val(V ) = K (IV )+ 3, where IV denotes the set

IV = {k ∈ [n] : end xk is adjacent to V } ⊂ [n]
and K (I ) is a short notation for K (I ) = ∑

k∈I rk . The weight of σ equals

ω(σ) =
∏

V K (IV )!∏n
k=1 rk ! .

Proof. Choose a root vertex and identify Mlab
0,n(R

2, d) with M0,n+3d × R
2. Then

ft′ is just the projection on the first factor and we can apply [1, 9.6], i.e. instead of
intersecting the pull-backs of the fk on the product, we can just intersect the fk on
the first factor and then multiply with R

2. Thus,

X =
(

n∏

k=1

ψ
rk
k · M0,n+3d

)
× R

2,

where here ψk denotes a Psi-class in M0,n+3d . But in the case of non-parameter-
ized curves, it is proved in [7, 4.1] that the valence of the vertices and the weights
of the facets satisfy the formulas of the statement. Multiplying with R

2 does not
disturb this, as the weight of R

2 is one and as the combinatorics of a curve remain
unchanged under ft′. 	

Remark 2.5. In particular the preceding lemma says thatψi consists of those curves
whose marked end i is adjacent to an at least 4-valent vertex (where bounded edges
as well as marked ends and non-contracted ends count towards the valence).

Later on, we will also use the forgetful map

ft : Mlab
0,n(R

2, d) → M0,4,

which forgets the map of a given curve C to R
2 and all its ends but the first four

marked ends (it also “stabilizes”, which means that, after forgetting one marked
end, it replaces all two-valent vertices by straight edges while adding up lengths).

Lemma 2.6. The forgetful map ft : Mlab
0,n(R

2, d) → M0,4 is a morphism of cycles.

Proof. Let ftn : M0,n → M0,n−1 be the forgetful map that just forgets the i th
end of an i-marked non-parameterized curve. It is shown in [4, 3.9] that ftn is a
morphism for all integers n ≥ 4. As mentioned above, the map ft′ is a morphism,
too. Thus, the statement follows from the formula ft = ft5 ◦ · · · ◦ ftn ◦ ft′. 	
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Moreover, we use the evaluation maps

evi : Mlab
0,n(R

2, d) → R
2

assigning to a curve C the position of its i th marked end. It is shown in [4, 4.8]
that these maps are also morphisms of cycles. Along these morphisms we will pull
back lines and points.

Definition 2.7. (Lines) A line G is a one-dimensional cycle in R
2 that is the divi-

sor of a tropical polynomial of degree one. In other words, lines are divisors of
translations of the functions max{x, y, 0}, max{x, 0}, max{y, 0} or max{x, y}.

Lines of type max{x, y, 0} are also called non-degenerated.

We would like to pull back lines and points along an evaluation map evi . How-
ever, up to now, pull backs are only defined for functions, not for cycles. Of course,
we can choose rational functions cutting out the line resp. point in question and pull
them back instead. In the following lemma, we will show that, for our purposes,
the choice of describing functions plays no role.

Notation 2.8. We use the following notation: We have a total number of l + m + n
marked ends, which are subdivided into the three sets L ·∪ M ·∪ N = {1, . . . , l +
m + n}, such that |L| = l, |M | = m and |N | = n. In the following, the ends i ∈ L
are unrestricted, the ends j ∈ M are restricted by lines G j (see 2.7) and the ends
k ∈ N have to meet points Pk . Furthermore we fix numbers rk, k ∈ N describing
how many Psi-classes we require at k ∈ N .

Lemma 2.9. Consider the intersection product

Z :=
∏

j∈M

ev∗
j (G j )

∏

k∈N

ev∗
k(Pk)ψ

rk
k · Mlab

0,l+m+n(R
2, d),

where ev∗
j (G j ) stands for ev∗

j (h) with a function h cutting out G j and ev∗
k(Pk)

stands for ev∗
k(h1) · ev∗

k(h2) with function h1, h2 cutting out Pk. Then Z is well-
defined, i.e. it does not depend on the chosen rational functions.

Proof. Let ev := evi be an evaluation map and G be a line. First we check that the
intersection product ev∗(G) · Mlab

0,l+m+n(R
2, d) does not depend on the rational

function describing G: Choose the vertex of the end i as root vertex and identify
Mlab

0,l+m+n(R
2, d)with M0,l+m+n+3d ×R

2. Then ev is just the projection onto the
second factor. By [1, 9.6] we deduce
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ev∗(G) ·
(
M0,l+m+n+3d × R

2
)

= M0,l+m+n+3d × G,

which shows independence of the describing function.
Now let X = ϕ1 . . . ϕr ·Mlab

0,l+m+n(R
2, d) be a cycle given by arbitrary rational

functions ϕ1, . . . , ϕr . Then, by commutativity of the intersection product, the cycle

ev∗(G) · X = ϕ1 . . . ϕr · ev∗(G) · Mlab
0,l+m+n(R

2, d)

is also well-defined. The same arguments work if we consider a point P instead
of G. But this suffices to conclude inductively that the big intersection product
Z is also well-defined. Moreover note that the same argument also shows that
our choice of the function fi describing ψi does not matter in this intersection
product. 	


We are now ready to define our tropical descendant Gromov-Witten invariants.

Proposition and Definition 2.10. Let d, l,m, n and rk, k ∈ N be positive integers
such that

l + m + n + 3d − 3 + 2 = m + 2n +
∑

k∈N

rk . (1)

Then we define the tropical descendant Gromov-Witten invariant 〈τ0(0)lτ0(1)m∏
k∈N τrk (2)〉d to be the number

〈τ0(0)
lτ0(1)

m
∏

k∈N

τrk (2)〉d : = 1

(d!)3 deg

⎛

⎝
∏

j∈M

ev∗
j (G j )

×
∏

k∈N

ev∗
k(Pk)ψ

rk
k · Mlab

0,l+m+n(R
2, d)

⎞

⎠ .

As indicated by the notation, this number only depends on d, l,m, n, rk, k ∈ N,
but not on the lines G j and the points Pk.

Proof. Lemma 2.1 says that we can move around our points and lines arbitrarily,
namely by translating the describing functions, without changing the degree. It
remains to show that the type of the lines does not matter, for example the type of
G1. We will show that ev∗

1(G1) · F does not depend on the choice of the line G1
for a one-dimensional cycle F , where

F =
∏

j∈M\{1}
ev∗

j (G j )
∏

k∈N

ev∗
k(Pk)ψ

rk
k · Mlab

0,l+m+n(R
2, d)

To see this, we have to use lemma 3.7 which requires general conditions and there-
fore is stated and proven in the next section of this article. It states that ev1∗(F) has
only standard outer directions −e1,−e2 and e1 + e2. Knowing this, we push for-
ward ev∗

1(G1) · F via ev1, which does not change the degree and use the projection
formula [1]. It tells us that ev1∗(ev∗

1(G1) · F) = G1 · ev1∗(F). Now, as ev1∗(F)
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has only standard outer directions (at least for general conditions, which we can
assume), any line intersects ev1∗(F) in the same number of points, not depending
on the type. Note that Lemma 3.7 does not care about the types of the lines appear-
ing in the product of F . Thus we can apply the above argument inductively and
see that the types of all lines G j can be changed arbitrarily without changing the
degree of the intersection product. 	

Remark 2.11. The dimension of the space Mlab

0,l+m+n(R
2, d) = M0,m+n+l+3d ×

R
2 is l + m + n + 3d − 3 + 2 since a 3-valent tree with m + l + n + 3d ends has

l + m + n + 3d − 3 bounded edges. The codimension of the intersection of Psi-
classes is

∑
k∈N rk . The pullback of a line has codimension 1 and the pullback of

a point codimension 2. Hence the requirement (1) is equivalent to a 0-dimensional
expected dimension of the intersection.

Notation 2.12. We will use the τ -notation in a more general meaning: A product
(

∏

i∈I

τri (ci )

)

d

(with round brackets) stands for a cycle in Mlab
0,|I |(R2, d), obtained as the inter-

section product where we replace the i th factor τri (ci ) by ψri
i ev∗(Ci ). Here, Ci

is some point Pi if ci = 2, some line Gi (of some type) if ci = 1 and the
whole space R

2 (which means you can omit this pull-back) if ci = 0; thus ci

describes the codimension of Ci . If
(∏

i∈I τri (ci )
)

d is zero-dimensional, we denote,
as before, by

〈
∏

i∈I

τri (ci )

〉

d

= 1

(d!)3 deg

(
∏

i∈I

τri (ci )

)

d

the degree of the product above divided by (d!)3. Note that a factor τ0(0) cannot
be dropped in this notation as it stands for a marked end that does not have to meet
any condition at all.

Remark 2.13. Later on, we will also allow the factor ft∗(λ) in this notation, where
λ is an element in M0,4 and ft∗(λ) stands for the pull-back of a rational func-
tion on M0,4 describing λ. Two such functions differ by an affine one, and so do
the pull-backs. Hence, the intersection product containing ft∗(λ) as factor is still
well-defined.

3. General incidence conditions

The invariants defined in 2.10 are well-defined also for “special” incidence con-
ditions, e.g. if we choose all points Pi to coincide. In this case the set of curves
fulfilling the conditions is of too big dimension, but our intersection theory ensures
that the corresponding intersection product still has the correct dimension and
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degree. However, many of the following arguments still require a notion of “gen-
eral incidence conditions” that ensures that our intersection product equals the
set-theoretical count of curves fulfilling the incidence conditions (up to weights).

Let us start with the case of pulling back a single line in R
2. Let X be a subcom-

plex of Mlab
0,n(R

2, d), let f : X → R
2 be a map that is the restriction of a linear

map (e.g. morphisms like f = evi ) and let G be a line in R
2. Let f −1(G) be the

subcomplex of X containing all polyhedra σ ∩ f −1(δ) for all σ ∈ X and δ ∈ G
(where δ denotes a cone in the polyhedral complex G). Recall that the interior of a
polyhedron Int(σ ) denotes its topological interior in its affine span.

Lemma 3.1. There exists a open dense subset U ⊂ R
2 such that for v ∈ U and a

translation G ′ := G + v of G, it holds:

(a) The subcomplex f −1(G ′) is either empty or of pure codimension 1 in X.
(b) The interior of a facet of f −1(G ′) is contained in the interior of a facet of X.
(c) For an element C in the interior of a facet of f −1(G ′), the image f (C) lies in

the interior of a facet of G.

Proof. Let σ be a facet of X and δ a one-dimensional polyhedron of G. Con-
sider the map q ◦ fσ , where fσ : Vσ → R

2 is the extension of f |σ to Vσ and
q : R

2 → R
2/Vδ is the quotient map. This composition has either rank 1 (in which

case ker(q ◦ fσ ) has codimension one in Vσ ; hence, for a general translation δ′ of
δ, the polyhedron σ ∩ f −1(δ′) is either empty or of codimension 1 and intersecting
the interior of σ ) or has rank 0 (then σ ∩ f −1(δ′) is empty for a general translation
of δ′ of δ). As there are only finitely many pairs σ, δ, the set of vectors v ∈ R

2 such
that these statements are true simultaneously is still open and dense. But note that
all facets of f −1(G ′) can be obtained in this way for some pair σ, δ. This shows
part (a) and (b).

Furthermore, let V ∈ R
2 be the vertex of G (if G is of type max{x, y, 0}).

Applying the same argument to V shows that for a general translation V ′ := V +v,
the preimage f −1(V ′) has at least codimension 2, which proves part (c). 	

Definition 3.2. Let Z be an intersection product of the form (

∏
i∈I τri (ci ))d with

incidence conditions Ci . Define X := ∏
i∈I ψ

ri
i · Mlab

0,|I |(R2, d). We call the con-
ditions general if the following holds:

(a) The subcomplex S of X containing all points C ∈ X fulfilling evi (C) ∈ Ci

has dimension dim(S) = dim(Z).
(b) The interior of a facet of S is contained in the interior of a facet of X .
(c) The interior of a facet σ of S maps to the interior of a facet of Ci under evi .
(d) Any intersection Ci ∩ C j , i, j ∈ I has expected codimension ci + c j .

Remark 3.3. Let S be the subcomplex of X containing all the curves C ∈ X fulfill-
ing evi (C) ∈ Ci . Note that Z is a subcomplex of S. This follows from the facts that
the support of an intersection product is contained in the support of the intersecting
rational function and that the support of a pull-back is contained in the preimage
of the support of the pulled-back function. Note that in general we have S = Z (as
sets) if dim(S) = dim(Z) is satisfied, the only thing that can happen in principle
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is that there are facets of Z which get 0 as a weight in the intersection product,
although they are facets of S. For the intersection products we work with, this cannot
happen though, since we only have a weight of 0 if the set S is of higher dimension
(see Sect. 5). Hence for us the incidence conditions being general implies that |Z |
equals the set of curves satisfying the incidence conditions, and deg(Z) equals the
number of curves satisfying the conditions, counted with weight.

Lemma 3.4. The set of general conditions in the space of all conditions (which can
be identified with some big R

N collecting all the translation vectors) is open and
dense.

Proof. The set of conditions fulfilling 3.2 (d) is obviously open and dense. The
remaining follows from recursively applying 3.1 to X and ev1, then X ∩ ev−1

1 (C1)

and ev2, and so on. More precisely, if ci = 0 we have nothing to do in this step,
if Ci is a line, we apply 3.1, and if Ci is a point, we apply 3.1 twice for two lines
intersecting set-theoretically in the single point Ci . 	

Remark 3.5. We also consider the following case: Let X be a 1-dimensional sub-
cycle of Mlab

0,n(R
2, d) and consider the forgetful map ft : Mlab

0,n(R
2, d) → M0,4.

We call λ ∈ M0,4 general, if λ /∈ ft(X (0))∪M(0)
0,4, where X (0) denotes the vertices

of X and M(0)
0,4 denotes the single vertex of M0,4. This ensures that all points in

ft |−1
X (λ) lie in the interior of a one-dimensional polyhedron of X .

The following lemma describes the combinatorial type of the curves which
satisfy general incidence conditions.

Lemma 3.6. Let Z be an intersection product of the form (τ0(0)lτ0(1)m
∏

k∈N
τrk (2))d with general conditions. Then

(b′) For a curve C in the interior of a facet the following holds: All ends k ∈ M ∪ N
lie at different vertices and the valence of a vertex is rk +3 if k ∈ N is adjacent
to it and 3 otherwise.

Proof. Because of Remark 3.3 we know that Z ⊂ S. In addition, condition 3.2 (a)
says that Z and S have the same dimension and therefore (b) and (c) also hold for
curves in the interior of a facet of Z .

Let C be in the interior of a facet of Z . Condition 3.2 (d) implies that evi (C) �=
ev j (C) for all i ∈ M ∪ N , j ∈ N , as in this case Ci ∩ Pj is empty. If i, j ∈ M would
lie at the same vertex this would induce either a contracted bounded edge [which
contradicts 3.2 (a)] or valence greater than 3 of this vertex [which contradicts 3.2
(b)]. Hence all ends in M ∪ N must lie at different vertices. The statement about
the valence of the vertices follows from 3.2 (b) and the description of X in 2.4. 	


As a first application of our notion of general conditions we can now prove the
lemma which we promised and needed in the independence statement 2.10.

Lemma 3.7. Let F be a one-dimensional cycle of the form (τ0(0)τ0(0)lτ0(1)m∏
k∈N τrk (2))d with general conditions. Let x denote the marked end correspond-

ing to the first factor τ0(0). Then all of the unbounded rays of the push-forward
evx∗(F) have standard directions −e1,−e2 and e1 + e2.
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Proof. Let σ be a facet of F . For a curve in the interior of σ two possibilities can
occur: Either x is adjacent to a higher-valent vertex. Then by 3.6 also an end k ∈ N
interpolating the point Pk lies at this vertex. Therefore, evx (σ ) = evk(σ ) = {Pk}.

Secondly, x might be adjacent to a 3-valent vertex. Since x itself is contracted,
the two other edges which are adjacent are mapped to lines with opposite direc-
tion (because of the balancing condition). That means locally the image looks like
a straight line with the marked point h(x) on it. We can deform a curve in σ in
a one-dimensional family (thus covering σ ) by changing the length of the two
adjacent edges and thus making the point h(x)move on the line. This movement is
unbounded if and only if one of these two edges is an end. But then evx (σ ) points to
the same direction as this end, which is by definition one of the standard directions
or 0. 	


4. Contracted edges

Let F be a one-dimensional cycle of the form (τ0(0)lτ0(1)m
∏

k∈N τrk (2))d with
general conditions. Remember that this implies that |F | equals the set of curves
satisfying the conditions.

Notation 4.1. We fix the type of the first four ends in the sense that we assume
from now on 1 ∈ L , 2 ∈ M and 3, 4 ∈ N .

As before we denote by ft the forgetful map ft : Mlab
0,l+m+n(R

2, d) → M0,4,
which forgets the embedding and all ends but the first four marked ends. It is the
aim of this section to show that for a very large M0,4-coordinate λ, the curves in
ft−1(λ) ∩ F (i.e. curves with such a large M0,4-coordinate) must contain a con-
tracted bounded edge. We will use the contracted bounded edge in Sect. 6 to split
such curves into two components.

Definition 4.2. Let C be a curve in Mlab
0,l+m+n(R

2, d). For two different marked
ends i1, i2, we denote by S(i1, i2) the smallest connected subgraph of C containing
i1 and i2 and call it the string of i1 and i2. Such a string S(i1, i2) is called movable
if i1, i2 ∈ L ∪ E , where E denotes the set of non-contracted ends, and if S(i1, i2)

does not intersect (the closure) of any k for k ∈ N .

Lemma 4.3. Let C be a curve in the interior of a facet of F. Then C contains a
movable string S.

Proof. We know dim(F) = 1, codim(F) = m + 2n + ∑
k∈N rk and dim

(Mlab
0,l+m+n(R

2, d)) = l + m + n + 3d − 3 + 2. Plugging in all this in dim(F)+
codim(F) = dim(Mlab

0,l+m+n(R
2, d)) leads to

l + 3d = n +
∑

k∈N

rk + 2.

On the other hand we can compute the number of connected components of
�\∪k∈N k̄: Removing k increases the number of connected components by rk +1 as
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the valence of the adjacent vertex is rk +3 by 3.6. So, after removing all n ends, we
arrive at 1 + n + ∑

k∈N rk connected components. The above equation tells us that
there is one more end in L ∪ E then there are connected components and therefore
at least two ends i1, i2 ∈ L ∪ E lie in the same component. Hence S(i1, i2) is a
movable string. 	


By construction all vertices of a movable string are 3-valent.

Lemma 4.4. Let σ be a facet of F such that the corresponding interior curves do
not contain a contracted bounded edge. Then the image of σ under ft is bounded.

Proof. Let C be a curve in the interior of σ . We will deform C in a one-dimen-
sional family inside σ . Since σ is one-dimensional itself, this family covers σ . By
Lemma 4.3 there exists a movable string S in C . In the following, we show that
either σ is bounded (i.e. the deformation of C is bounded) or ft is constant on σ
(i.e. the deformation of C does not affect ft).

Let V be a vertex in S. We call V degenerated if we can deform C one-dimen-
sionally locally around V , i.e. if

(a) either one of the adjacent edges is a marked end i ∈ L ,
(b) or one of the adjacent edges is a marked end j ∈ M and the linear spans of

the corresponding line G j at ev j (C) and of the other two edges adjacent to
V coincide (i.e. if the curve C and the line G do not intersect transversally at
ev j (C)),

(c) or all edges adjacent to V are non-contracted, but their span near V is still
only one-dimensional; w.l.o.g. we denote the edge alone on one side of V by
v and the two edges on the other side by v1, v2.

(a) (b) (c)

If such a degenerated vertex exists, the 1-dimensional deformation of the curves
inside σ is given by moving this vertex and changing the lengths of the adjacent
edges accordingly. We show that this movement is either bounded or, if not, the
changed lengths do not influence ft.

Consider the cases (a) and (b) and let v1, v2 be the two other edges adjacent
to V . At least one of the two edges, say v1, is bounded. Then the movement is
unbounded only if v2 is unbounded. But v2 cannot be contracted, as then v1 would
also be contracted (and bounded). But this means that ft forgets v2 and therefore
also the length of v1.

Now consider the case (c). The balancing condition says v = v1 +v2 (by abuse
of notation we denote the direction vectors by the same letters as the edges), which
in particular implies that v is not primitive and hence the edge v has to be bounded.
Now again, if we require the movement of V to be unbounded, v1 and v2 must be
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unbounded. But they are also non-contracted which means that ft forgets them and
the length of v.

So we are left with the case that all vertices of S are non-degenerated. We can
still describe the deformation of the curves inside σ using the movement of the
string: Take one of the ends of the string (which is necessarily non-contracted) and
move it slightly in a non-zero direction modulo its linear span. Consider the next
vertex V and let v be the adjacent edge not contained in the string. Then two things
can happen:

If v is non-contracted (case A), our moved end will meet the affine span of v
at some point P (as V is non-degenerated). So we change the length of v such that
it ends at P (while keeping the position of its second vertex fixed). Then we also
move the second edge of the string to P and go on to the next vertex.

If v is contracted (case B), our assumptions ensure that it is a marked end j ∈ M
and that the corresponding line G j intersects our curve transversally at V . Thus
our moved edge will again meet G j at some point and by changing the lengths of
the adjacent edges appropriately, the obtained curve will still meet G j .

In this way we can make our way through the string and finally obtain a defor-
mation of the whole curve. Note that the non-degeneracy of all the vertices ensures
that all edges of the string must change their positions modulo their linear span
and, hence, that all edges adjacent to, but not contained in the string must change
their length. In particular this means we cannot have more non-contracted ends
adjacent to our string: Then we would have two different strings providing two
independent deformations of the curves inside σ , which is a contradiction as σ is
one-dimensional.

Let us summarize: Our string S is generated by two unique non-contracted ends
i1, i2, all of its vertices are 3-valent and the adjacent edges not contained in the string
are either bounded or marked ends in M , where the corresponding line G j inter-
sects transversally. The deformation only moves the string S; the adjacent edges
are shortened or elongated and the other parts of the curve remain fixed. We want
to show that, even if the movement is unbounded, the considered M0,4-coordinate
is bounded.

If there are bounded edges adjacent to S to both sides of S as in picture (a)
below then the movement of the string is bounded. (This is true because if we move
the string to either side, we can only move until the length of one of the adjacent
bounded edges shrinks to 0.) So we only have to consider the case when all adjacent
bounded edges of S are on the same side of S, say on the right side as in picture
(b) below. Label the edges of S (respectively, their direction vectors) by v1, . . . , vk

and the adjacent bounded edges of the curve by w1, . . . , wk−1 as in the picture. As
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above the movement of the string to the right is bounded. If one of the directions
wi+1 is obtained from wi by a left turn (as it is the case for i = 1 in the picture)
then the edges wi and wi+1 meet on the left of S. This restricts the movement
of the string to the left, too, since the corresponding edge vi+1 then shrinks to
length 0.

(a) (b) (c) (d) (e)

So we can assume that for all i the direction wi+1 is either the same as
wi or obtained from wi by a right turn as in picture (c). The balancing con-
dition then shows that for all i both the directions vi+1 and −wi+1 lie in the
angle between vi and −wi (shaded in the picture above). Therefore, all direc-
tions vi and −wi lie within the angle between v1 and −w1. In particular, the
image of the string S cannot have any self-intersections in R

2. We can therefore
pass to the (local) dual picture (d) where the edges dual to wi correspond to a
concave side of the polygon whose other two edges are the ones dual to v1
and vk .

But note that there are no such concave polygons with integer vertices if the two
outer edges (dual to v1 and vk) are two of the vectors ±(1, 0), ±(0, 1), ±(1,−1)
that can occur as dual edges of an end of a plane tropical curve of degree d. There-
fore the string can consist at most of the two ends i1 and i2 that are connected to
the rest of the curve by exactly one bounded edge w1. This situation is shown in
picture (e).

In this case the movement of the string is indeed not bounded to the left. Note
that then w1 is the only internal edge whose length is not bounded. But by our
assumptions 1, 3 and 4 cannot lie on S but must lie on the other side of w1; hence
its length does not influence ft. This finishes the proof. 	


5. Computing weights

In this section, we prove that the weight of a curve in a zero-dimensional inter-
section product can be computed as the (absolute value of a) determinant of the
linear map that basically collects all the evaluation morphisms (and forgetful mor-
phism if present). We will use this to express the weight of a reducible curve (in
the sense that it contains a contracted bounded edge) in terms of the weights of the
two components.
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The following statement connects intersection products with determinants.
Let V = R ⊗	 be a real vector space of dimension n with underlying lattice

	 and let h1, . . . , hn ∈ 	∨ be linear functions on 	 resp. V . By H : V → R
n we

denote the linear map given by x �→ (h1(x), . . . , hn(x)). Choose lattice bases of
	 and Z

n and consider the matrix representation of H with respect to these bases.
Obviously, the absolute value of the determinant of this matrix is independent of
the choice of bases; hence we denote it by | det(H)|.

On the other hand, we can consider the rational functions ϕi = max{hi , 0}
on V . To do so, we give V the fan structure consisting of all cones on which each hi

is either positive or zero or negative. These rational functions form a zero-dimen-
sional intersection product, which obviously consists of only {0} with a certain
weight.

Lemma 5.1. The weight of {0} appearing in ϕn . . . ϕ1 · V is equal to | det(H)|.
Proof. Let us first assume that h1, . . . , hn form a lattice basis of	∨ with dual basis
h̃1, . . . , h̃n .

We compute ϕ1 · V : For each ridge τ of V (with the fan structure described
above) there exists a unique j such that τ ⊆ h⊥

j . Then there are two facets contain-
ing τ (where h j is positive resp. negative) and the corresponding (representatives of
the) primitive vectors are h̃ j resp. −h̃ j . Therefore the weight of τ in the intersection
product ϕ1 · V can be computed as

ωϕ1(τ ) = max
{

h1(h̃ j ), 0
}

+ max
{

h1(−h̃ j ), 0
}

= h1(h̃ j )+ 0 = h1(h̃ j ).

Hence, when omitting cones with weight 0, ϕ1 · V consists of all cones contained
in h⊥

1 and all weights are 1. Now we can apply induction on h2|h⊥
1
, . . . , hn|h⊥

1
and

conclude that ϕn . . . ϕ1 · V produces {0} with weight 1.
On the other hand, the matrix representation of H with respect to the basis

h̃1, . . . , h̃n for 	 and the standard basis for Z
n is just the unit matrix. Hence,

| det(H)| = 1, which proves the statement in the special case.
General case: For general h1, . . . , hn we can choose a lattice basis l1, . . . , ln of

	∨ such that

h1 = a1,1l1,
h2 = a2,1l1 + a2,2l2,

...

hn = an,1l1 + · · · + an,nln,

where the ai, j are integers. Then we get | det(H)| = | det((ai, j ))| = |a1,1 . . . an,n|.
On the other hand, let us compute that ϕn . . . ϕ1 · V produces {0} with weight

|a1,1 . . . an,n|. We saw in the special case that max{l1, 0}·V is l⊥1 with weight 1. The
above equations tell us that max{h1, 0} = |a1,1| · max{l1, 0}. Using the linearity of
the intersection product, we deduce thatϕ1·V is l⊥1 with weight |a1,1|. Now we apply
induction on n again: After restricting all functions to l⊥1 , we can omit all terms
ai,1l1 in the above equations (in particular we can omit the first equation). Hence
we can apply our induction hypothesis and conclude that ϕn . . . ϕ2 · l⊥1 produces {0}
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with weight |a2,2 . . . an,n|. Hence, ϕn . . . ϕ2 · (ϕ1 · V ) = |a1,1| ·ϕn . . . ϕ2 · l⊥1 = {0}
with weight |a1,1 . . . an,n|. 	


With this tool we can express all weights occurring in a zero-dimensional inter-
section product in terms of absolute values of determinants.

Notation 5.2. Let Z be a zero-dimensional intersection product of the form (τ0(0)l

τ0(1)m
∏

k∈N τrk (2))d or of the form (ft∗(λ) · τ0(0)lτ0(1)m
∏

k∈N τrk (2))d with
general condition G j and Pk (and λ, resp.). The set of curves S that fulfill the
incidence conditions set-theoretically is finite by 3.2 (a). For simplicity, let us
furthermore assume that all points Pk = (p1, p2) are described by the rational
functions max{x, p1} and max{y, p2} on R

2 and that all lines G j are vertical, i.e. of
type max{x, 0} (i.e. are given by a rational function max{x, c j }). λ can be described
by max{x, λ}, where x is the coordinate of the ray in whose interior λ lies (see 3.5).

Denote X := ∏
k∈N ψ

rk
k · Mlab

0,n(R
2, d). We then consider the morphisms

ev : X → R
m × (R2)n,

C �→
((

ev j (C)x
)

j∈M , (evk(C))k∈N

)
,

respectively

ft × ev : X → M0,4 × R
m × (R2)n,

C �→
(
(ft(C),

(
ev j (C)x

)
j∈M , (evk(C))k∈N

)
,

where ev j (C)x denotes the first coordinate of the point ev j C ∈ R
2. Thus, these

morphisms evaluate at each end i ∈ M ·∪ N and keep all coordinates if i ∈ N and
only the first coordinate if i ∈ M .

Let C be a curve in the interior of a facet σ of X (and with ft(C) not being the
vertex of M0,4). Then ev (resp. ft × ev) is affine in a neighborhood of C and we
define |detC (ev)| (resp. | detC (ft × ev)|) to be | det(H)|, where H is the linear part
of ev (resp. ft × ev) at C .

Theorem 5.3. The zero-dimensional intersection product Z (as in notation 5.2)
can be computed as

Z =
∑

C∈S

|detC (ev)| · C,

resp.

Z =
∑

C∈S

|detC (ft × ev)| · C,

i.e. the weight of a curve C ∈ Z is just |detC (ev)| (resp. | detC (ft × ev)|).
Proof. Each C ∈ Z is contained in the interior of a facet σ of X (see 3.2 (a)). In
2.4 the weight of σ in X was computed to be

ω(σ) =
∏

V K (IV )!∏n
k=1 rk ! .
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But we know from 3.6 that no two marked ends lie at a common vertex and hence

K (IV ) =
{

rk if k is adjacent to V ,
0 otherwise.

Therefore we can cancel the fraction defining ω(σ) down to 1.
As the computation of the weight of C is local, we can replace X by V := R ·σ .

On the other hand, locally around C , all the pull backs along ev and ft are of the
form max{a, c}, where a is an affine function on V and c is a constant. To be more
precise, a is exactly one of the coordinate functions of ev (resp. ft × ev). Now, up
to translations and subtracting constant terms, we are in the situation of 5.1: The
weight of C equals the absolute value of the determinant of linear map H whose
coordinate functions are the linear parts of the affine functions a. Thus H is the
linear part of ev (resp. ft × ev) on V , and we can conclude that the weight of C in
Z is precisely | det(H)| = | detC (ev)| (resp. = | detC (ft × ev)|). 	

Remark 5.4. If we dropped the requirement that Psi-conditions are only allowed
at marked ends that are also restricted by a point condition, we could still prove
a formula similar to the above one: For a zero-dimensional intersection product
of arbitrary Psi- and evaluation classes, the weights can still be computed as the
absolute value of an appropriate determinant times the weight of the corresponding
facet in X . In particular, this shows that such weights are always positive, as well as
the degree of the product. Hence, whenever classical descendant Gromov-Witten
invariants are negative (e.g. 〈τ1(1)τ0(2)〉alg

1 = −1), we have an example of classical
invariants that do not coincide with their tropical counterparts as we define them.

6. Splitting curves

Now we want to think of curves with a contracted bounded edge as reducible
curves. We do that basically by cutting the contracted bounded edge. We have to
show that the weight of the curve C is (almost) the product of the two weights of
the two curves that arise after cutting. We use the description of weight in terms of
determinants from Sect. 5.

Notation 6.1. As in Sect. 4, we assume 1 ∈ L , 2 ∈ M and 3, 4 ∈ N . Additionally
we require from now on L = {1} (i.e. the marked end 1 is the only “free” end) and
r3 ≥ 1 (i.e. the marked end is restricted by at least one Psi-class).

Let Z be a zero-dimensional cycle of the form (ft∗(λ) · τ0(0)τ0(1)m
∏

k∈N
τrk (2))d with general condition G j and Pk and λ, as in 5.2. Let C ∈ Z .

Construction 6.2. Assume C satisfying | detC (ev × ft)| �= 0 has a contracted
bounded edge e. Cut the bounded edge e, thus producing two marked ends. In
this way we get two curves C1 and C2 that both have a new marked end in the place
of e. Let Li , Mi and Ni be the subsets of L , M and N of marked ends in Ci . Let li ,
mi and ni be the sizes of these subsets. Let di be the degree of Ci . Denote by

evMi ∪Ni :
∏

j∈Ni

ψ
r j
j ·

[
Mlab

0,li +ni +mi +1(R
2, di )

]
→ R

mi +2ni
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the map that evaluates the first coordinate for the points in Mi and both coordinates
for the ends in Ni (as in 5.2). Denote by

eve :
∏

j∈Ni

ψ
r j
j ·

[
Mlab

0,li +ni +mi +1(R
2, di )

]
→ R

2

the evaluation at e at both coordinates, and by (eve)x the evaluation at the first
coordinate. Denote by C̃i the curve Ci where we remove the marked end e and
straighten the 2-valent vertex which appears. Let

Zi :=
∏

j∈Mi

ev∗
j (G j ) ·

∏

k∈Ni

ev∗
k(Pk) · ψrk

k ·
[
Mlab

0,li +ni +mi +1(R
2, di )

]

denote the corresponding intersection products.

Notation 6.3. We pullback a general point λ ∈ M0,4 (i.e. not the vertex) via the
forgetful map ft : Mlab

0,1+m+n(R
2, d) → M0,4. There are 3 types of such general

points, corresponding to the 3 types of abstract tropical curves with 4 marked ends.
The ends 1 and 2 can be together at a vertex, or the ends 1 and 3, or the ends 1 and 4.
We use the following short notation: if ft(C) is in the ray corresponding to the type
where 1 and 2 are together at a vertex, we say ft(C) = 12/34 (and analogously in
the other cases).

Lemma 6.4. Let C be as in construction 6.2 and stick to the notations from there.
If ft(C) = 12/34 (then {1} = L1, so l1 = 1 and l2 = 0), then either d1 = 0 and
L1 ∪ M1 ∪ N1 = {1, 2}, or d1, d2 > 0 and there are 3 cases to distinguish (of which
the first and last are symmetric):
(a) dim(Z1) = 0 and dim(Z2) = 2,
(b) dim(Z1) = 1 and dim(Z2) = 1, or
(c) dim(Z1) = 2 and dim(Z2) = 0.

If ft(C) = 13/24 then d1, d2 > 0 and the analogous 3 cases are to distinguish.

Proof. If there were two contracted edges, then all evaluations (i.e. 2n + m coor-
dinates) would depend only on 1 + m + n + 3d − 3 − ∑

ri = m + 2n − 1
coordinates, so we get | detC (ev × ft)| = 0. So we can assume now there is only
one contracted bounded edge e. Since e has to count towards the M0,4-coordinate
to satisfy | detC (ev × ft)| �= 0, 1, j ⊂ L1 ∪ M1 ∪ N1 and k, l ⊂ L2 ∪ M2 ∪ N2 if
ft(C) = 1 j/kl.

Let us first consider the case where one of the di ’s is zero. This implies that
all edges of the corresponding curve Ci are contracted. As we cannot have more
contracted bounded edges, Ci is a star-shaped curve containing only a single vertex
V . But 3.6 states that the ends 2, 3, 4 ∈ M ∪ N all lie at different vertices. Thus the
cases d1 = 0, ft(C) = 13/24 and d2 = 0 cannot occur, whereas in the remaining
case d1 = 0, ft(C) = 12/34 the single vertex V must be 3-valent which is the same
as L1 ∪ M1 ∪ N1 = {1, 2}.



312 H. Markwig, J. Rau

Let us now assume d1, d2 > 0. It remains to show that dim(Z1)+dim(Z2) = 2
which follows since

dim(Z1)+ dim(Z2) = 3d1 −
∑

k∈N1

rk − m1 − 2n1 + 3d2 −
∑

k∈N2

rk − m2 − 2n2

= 3d −
∑

k∈N

rk − m − 2n = 2

where the last equality follows since Z is zero-dimensional and thus 3d−∑
k∈N rk−

1 = m + 2n + 1. 	


Remark 6.5. In the following, we will choose bases in order to write down an explicit
matrix representation for the map ev × ft or ev locally on a cone. For a cone σ of
Mlab

0,n(R
2, d) corresponding to a combinatorial type (i.e. an abstract graph � (with-

out length) together with all direction vectors) we pick a root vertex V of � and
choose the coordinates of the point h(V ) ∈ R

2 to which this vertex is mapped
as two coordinates. The remaining coordinates of σ are given by the lengths of
the bounded edges. For the spaces R

2 or R that describe our incidence conditions
locally, we choose the standard basis vectors. It follows from remark 3.2 of [5] that
the absolute value of the determinant does not depend on any of the choices we
make.

Lemma 6.6. Let C be as in construction 6.2 and stick to the notations from there.
If ft(C) = 12/34 and d1 = 0 we want to show | detC (ev × ft)| = (G2 · C̃2)h(e) ·
| detC̃2

(evM2∪N2)|. For the other three cases from Lemma 6.4 we want to show:
(a) | detC (ev × ft)| = ∣∣detC1

(
evM1∪N1

)∣∣ · ∣∣detC2

(
evM2∪N2 × eve

)∣∣,
(b) | detC (ev × ft)| =

(
C̃1 · C̃2

)

h(e)
·
∣∣∣detC̃1

(
evM1∪N1

)∣∣∣ ·
∣∣∣detC̃2

(
evM2∪N2

)∣∣∣, or

(c) | detC (ev × ft)| = ∣∣detC1

(
evM1∪N1 × eve

)∣∣ · ∣∣detC2

(
evM2∪N2

)∣∣.

Proof. For all cases, note first that the matrix of | detC (ev × ft)| has a column with
only zeros except one 1. This is the column corresponding to e. Since e is contracted,
it is not needed for any evaluation. But it is needed for the M0,4-coordinate, so
it has zeros except a 1 in the ft-row. We can delete this row and column without
changing the absolute value of the determinant. Call the matrix with the deleted
row and column A. Then | det(A)| = | detC (ev × ft)|.

Now let ft(C) = 12/34 and d1 = 0, it follows L1 ∪ M1 ∪ N1 = {1, 2}. We
want to show that the boundary vertex V of e in C2 is 3-valent, too. Assume it is
not, then there has to be a marked end with a Psi-condition adjacent to V . But this
marked end is in N and thus required to meet a point. This is a contradiction, since
the point is not on the line that 2 is required to meet (cf. 3.2 (d)). So let e1 and e2 be
the two other edges adjacent to V and assume first that both of them are bounded.
Denote their common direction vector (up to sign) by v = (v1, v2) and their lengths
by l(e1), l(e2). Assume that the root vertex is on the e1-side of e. Then the entries
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of the matrix A corresponding to l(e1) and l(e2) are

↓ evaluation at… l(e1) l(e2)

2 (1 row) v1 0
Points reached via e1 from 2 (1 or 2 rows) 0 0
Points reached via e2 from 2 (1 or 2 rows) v v

We see that after subtracting the l(e2)-column from the l(e1)-column we again get
one column with only one non-zero entry v1. So for the determinant we get v1 as a
factor, dropping the corresponding row and column (which means removing e and
straightening the 2-valent vertex), so we get | det(A)| = v1 · | detC̃2

(evM2∪N2)| =
(C̃2 · G2)h(e) · | detC̃2

(evM2∪N2)|. Essentially the same argument holds if one of the
adjacent edges — say e2 – is unbounded: in this case there is only an l(e1)-column
which has zeroes everywhere except in the one 2-row where the entry is v1.

Next, let dim(Z1) = 0 and dim(Z2) = 2. Denote by ai the dimension of

∏

k∈Ni

ψ
rk
k · Mlab

0+li +mi +ni +1(R
2, di ),

that is,

ai = 3di + li + mi + ni + 1 −
∑

k∈Ni

rk − 1.

Since dim(Z1) = 0 we have m1 + 2n1 = a1 and since dim(Z2) = 2 we have
m2 + 2n2 = a2 − 2. Let the boundary vertex V of e in C1 be the root vertex
for C . Choose the following order of coordinates: start with the root vertex, then
bounded edges in C1, next bounded edges in C2. Start with the marked ends in
C1 and then add the marked ends in C2. Then the matrix A is in block form:
because the points on C1 need only the root vertex and the bounded edges of C1,
they need the first a1 = m1 + 2n1 coordinates, and have 0 after that. So there is
a 0 block on the top right, and the top left is just the matrix of evM1∪N1 at C1.
So | det(A)| = | detC1(evM1∪N1)| · | det(B)| where B denotes the lower right box.
Consider the matrix of evM2∪N2 × eve at C2, and let the root vertex be the boundary
vertex of e in C2. Then this matrix has two more rows and columns than B, namely
the root vertex columns and the rows corresponding to eve. But since these two
rows start with a 2 × 2 unit matrix block and have zeros after that, we can see that
| det(B)| = | detC2(evM2∪N2 × eve)|.

The third case is symmetric. Finally, assume dim(Z1) = 1 and dim(Z2) = 1,
i.e. m1 + 2n1 = a1 − 1 and m2 + 2n2 = a2 − 1. First we want to show that the two
vertices of e are 3-valent. Assume the vertex in C1, V , is not 3-valent, then there
must be a marked end i with a Psi-class adjacent to V . But this end is in N then, so
it is required to meet a point Pi ∈ R

2. Since dim(Z1) = 1 we can move C1 locally
in a 1-dimensional family such that all incidence conditions are still defined. Let
C ′

1 be an element of this family. Since C ′
1 has to meet Pi as well, we can glue C ′

1
to C2 thus producing a curve C in Z . This is a contradiction since the dimension
of Z is 0.
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Since the argument is symmetric it follows that both vertices of e are 3-valent.
Denote the two edges adjacent to e in C1 by e1 and e2 and the two edges in C2
adjacent to e by e3 and e4. Assume first that all of those edges are bounded. Let the
boundary vertex V of e in C1 be the root vertex for C . Then the matrix A reads:

lengths in C1 lengths in C2
root (a1 − 4 cols) l(e1) l(e2) l(e3) l(e4) (a2 − 4 cols)

(2n1 + m1 ends behind e1 I2 ∗ v 0 0 0 0
rows) ends behind e2 I2 ∗ 0 −v 0 0 0

(2n2 + m2 ends behind e3 I2 0 0 0 w 0 ∗
rows) ends behind e4 I2 0 0 0 0 −w ∗

where I2 is the 2 × 2 unit matrix, and ∗ denotes arbitrary entries. Now add v times
the root columns to the l(e2)-column, subtract the l(e1)-column from the l(e2)-col-
umn and the l(e4)-column from the l(e3)-column to obtain the following matrix
with the same determinant:

lengths in C1 lengths in C2
root (a1 − 4 cols) l(e1) l(e2) l(e3) l(e4) (a2 − 4 cols)

(2n1 + m1 ends behind E1 I2 ∗ v 0 0 0 0
rows) ends behind E2 I2 ∗ 0 0 0 0 0

(2n2 + m2 ends behind E3 I2 0 0 v w 0 ∗
rows) ends behind E4 I2 0 0 v w −w ∗

Note that this matrix has a block form with a zero block at the top right. Denote
the top left block (of size 2n1 + m1 = 2 + a1 − 4 + 1) by A1 and the bottom right
(of size 2n2 + m2 = 3 + a2 − 4) by A2, then | det(A)| = | det A1 · det A2|.

The matrix A1 is precisely the matrix for the evaluation map evM1∪N1 of C̃1
(which arises from C1 after forgetting the marked end corresponding to e) if we
choose the other vertex of e2 as the root vertex. Hence | det A1| = | detC̃1

(evM1∪N1)|.
In the same way the matrix for the evaluation map evM2∪N2 of C̃2, if we again forget
the marked end corresponding to e and now choose the other vertex of e3 as the
root vertex, is the matrix A′

2 obtained from A2 by replacing v andw in the first two
columns by the first and second unit vector, respectively. But A2 is simply obtained
from A′

2 by right multiplication with the matrix
(
v w 0

0 0 I2n2+2

)

which has determinant det(v,w). So we conclude that

| det A2| = | det(v,w)| · | det A′
2| = (C1 · C2)h(e) · | detC̃2

(
evM2∪N2

) |.
	


Remark 6.7. The following “converse” of Lemmas 6.4 and 6.6 is also true: For each
choice of C̃2 satisfying all conditions but 2 and each choice of an intersection point
of C̃2 with G2 we can add a contracted bounded edge and the two marked ends
1, 2 on the other side to built exactly one possible C . The curve C then contributes
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(G2 · C̃2)h(e)| detC̃2
(evM2∪N2)| to the count. By Bézout’s theorem [13], each choice

of C̃2 contributes d2 · | detC̃2
(evM2∪N2)| = d · | detC̃2

(evM2∪N2)|.
For each choice of C1 satisfying the conditions in L1 ∪ M1 ∪ N1 and each

choice of C2 satisfying the conditions in L2∪M2∪N2 plus in addition the condition
h(e) = p we get exactly one possible C by gluing the two curves along e. This curve
C contributes to the count with weight | detC1(evM1∪N1)| · | detC2(evM2∪N2 × eve)|
(and the other way round).

For each choice of C̃1 and C̃2 satisfying the conditions in L1 ∪ M1 ∪ N1 and
L2 ∪ M2 ∪ N2 and for each choice of points P ∈ C̃1 and Q ∈ C̃2 that map to the
same image point in R

2 we can glue P and Q along a contracted bounded edge and
thus built exactly one possible C . The curve C contributes to the count with weight
(C1 · C2)h(e) · | detC̃1

(evM1∪N1)| · | detC̃2
(evM2∪N2)|. By Bézout’s theorem, each

choice of C̃1 and C̃2 thus contributes d1 ·d2 · | detC̃1
(evM1∪N1)| · | detC̃2

(evM2∪N2)|.

7. String and divisor equation

In this section, we prove two lemmas which deal with the case of an extra end in a
top-dimensional intersection product that is restricted either by no condition at all
(string equation) or by only a line condition (divisor equation).

Lemma 7.1. (String equation) For tropical descendant Gromov-Witten invariants
the following equality holds:

〈
τ0(0) · τ0(0)

l · τ0(1)
m ·

∏

k∈N

τrk (2)

〉

d

=
∑

k∈N
rk>0

〈
τ0(0)

l · τ0(1)
m · τrk−1(2) ·

∏

k �=k′∈N

τrk′ (2)

〉

d

Proof. Choose incidence conditions G j , Pk such that they are general for all the
derived intersection products

Z :=
(
τ0(0) · τ0(0)

l · τ0(1)
m ·

∏

k∈N

τrk (2)

)

d

,

Zk :=
⎛

⎝τ0(0)
l · τ0(1)

m · τrk−1(2) ·
∏

k �=k′∈N

τrk′ (2)

⎞

⎠

d

(note that Z lives inMlab
0,1+l+m+n(R

2, d), whereas the Zk lives inMlab
0,l+m+n(R

2, d)).
Then 3.2 (a) tells us that the products just consist of the set of curves fulfilling the
incidence conditions and having required valences, with the additional data of a
weight for each curve.

Let C ′ be a curve in Zk . Then we obtain a curve C ∈ Z by attaching the addi-
tional end, say x , to the vertex Vk at which the end k lies. Let us check that the
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weight of C ′ in Zk and C in Z coincide. As our conditions are general, C ′ lies in
a facet σ ′ of ψrk−1

k · ∏
k �=k′∈N ψ

rk′
k′ · Mlab

0,l+m+n(R
2, d) and C lies in a facet σ of∏

k∈N ψ
rk
k · Mlab

0,1+l+m+n(R
2, d)). Moreover, the map

ftx : Mlab
0,1+l+m+n(R

2, d) → Mlab
0,l+m+n(R

2, d)

forgetting the additional end x maps σ Z-isomorphically to σ ′ (the inverse is given
by adding 1 to Vk as above). The evaluation maps evk on σ are just obtained as
pull-backs ftx∗(ev′ k), where ev′ k denotes the corresponding evaluation map on
σ ′. Hence, the weights of C and C ′ coincide.

It remains to check that each C ∈ Z is obtained in the above way from C ′ ∈ Zk

for unique k ∈ N . Uniqueness is clear, as by 3.6 (b’) all ends k ∈ N lie at pairwise
different vertices and hence x cannot be adjacent to more than one end k ∈ N . On
the other hand, to show that it is adjacent to a k ∈ N with rk > 0, it suffices to
show that x cannot be adjacent to a 3-valent vertex. If it were, at least one of the
other two adjacent edges, say E would be bounded (otherwise the abstract graph
were not connected). But then, we could change the length of E (and accordingly
the length of the other edge if necessary) without changing the coordinates of the
marked ends, which contradicts the fact that the set of curves fulfilling our given
conditions is finite by 3.2 (a). 	


Lemma 7.2. (Divisor equation). For tropical descendant Gromov-Witten invariants
the following equality holds:

〈τ0(1) · τ0(0)
l · τ0(1)

m ·
∏

k∈N

τrk (2)〉d = d ·
〈
τ0(0)

l · τ0(1)
m ·

∏

k∈N

τrk (2)

〉

d

Proof. First we choose general incidence conditions. Because of 2.10 we can as-
sume that the line conditions are all vertical lines, i.e. of type max{x, 0}. Then
for all curves C in (τ0(1) · τ0(0)l · τ0(1)m · ∏

k∈N τrk (2))d we know that their
weight is equal to | detC (ev)|, where ev denotes the product of all evaluation
maps (evaluation of the x-coordinate for all lines, both coordinates for all points)
(Theorem 5.3). Assume x is the additional marked end with line condition G
(but without Psi-condition). x has to be adjacent to a 3-valent vertex (see 3.6).
Exactly as in Lemma 6.6 we can see that | detC (ev)| = (G · C̃)h(x) · | detC̃ (evx )|
where C̃ is the curve we get when forgetting x (i.e. removing it from C and
straightening the 2-valent vertex) and evx is the product of all other evaluations.
Thus any curve in (τ0(1) · τ0(0)l · τ0(1)m · ∏

k∈N τrk (2))d gives us a curve in
(τ0(0)l · τ0(1)m · ∏k∈N τrk (2))d by removing the marked end x . Conversely, given
a curve C̃ in (τ0(0)l · τ0(1)m · ∏k∈N τrk (2))d we can pick a point p ∈ (G · C̃) and
attach a marked end to get a curve C ∈ (τ0(1) · τ0(0)l · τ0(1)m · ∏

k∈N τrk (2))d .
Since (G ·C̃) = ∑

p(G ·C̃)p = d by tropical Bézout’s Theorem [13], the statement
follows. 	
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8. Recursion

Now we sum up the results of the preceding sections to a certain WDVV equa-
tion. We also show in this section that this WDVV equation together with the
string and the divisor equation are sufficient to show that the tropical invariants
coincide with the classical ones. To distinguish our tropical invariants that we
denote by 〈τ0(0)lτ0(1)m

∏
k∈N τrk (2)〉d from the classical ones, we use the nota-

tion 〈τ0(0)lτ0(1)m
∏

k∈N τrk (2)〉alg
d for the classical invariants.

Theorem 8.1. The tropical descendant invariants as defined in 2.10 satisfy the
following WDVV equation if r3 > 0:

〈
τ0(1)

m
∏

k∈N

τrk (2)

〉

d

+
∑

D ·
〈
τ0(0)τ0(1)τ0(1)

m1
∏

k∈N1

τrk (2)τ0(e)

〉

d1

·
〈
τr3(2)τr4(2)τ0(1)

m2
∏

k∈N2

τrk (2)τ0( f )

〉

d2

=
∑

D ·
〈
τ0(0)τr3(2)τ0(1)

m1
∏

k∈N1

τrk (2)τ0(e)

〉

d1

·
〈
τ0(1)τr4(2)τ0(1)

m2
∏

k∈N2

τrk (2)τ0( f )

〉

d2

where

D = (d1!)3 · (d2!)3
d!3

and the sums range over all

e + f = 2, e, f ≥ 0,

M1 ·∪ M2 = M\{2},
N1 ·∪ N2 = N\{3, 4} and

E1 ·∪ E2 = E, E1, E2 �= ∅.
Here, E denotes the set of non-contracted ends, and E1 is subset of non-contracted
ends such that each of the standard directions −e1,−e2, e1 + e2 appears d1 times.

The equation can be rewritten as
〈
τ0(1)

m
∏

k∈N

τrk (2)

〉

d

+
∑

〈
τ0(0)τ0(1)τ0(1)

m1
∏

k∈N1

τrk (2)τ0(e)

〉

d1

·
〈
τr3(2)τr4(2)τ0(1)

m2
∏

k∈N2

τrk (2)τ0( f )

〉

d2
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=
∑

〈
τ0(0)τr3(2)τ0(1)

m1
∏

k∈N1

τrk (2)τ0(e)

〉

d1

·
〈
τ0(1)τr4(2)τ0(1)

m2
∏

k∈N2

τrk (2)τ0( f )

〉

d2

where now the sums range over all

e + f = 2,

M1 ·∪ M2 = M\{2},
N1 ·∪ N2 = N\{3, 4} and

d1 + d2 = d, d1, d2 > 0.

Proof. It follows from rational equivalence that
〈
τ0(0)τ0(1)

m
∏

k∈N

τrk (2) ft∗(λ)
〉

d

= 1

(d!)3 deg

⎛

⎝
∏

j∈M

ev∗
j (G j )

∏

k∈N

ev∗
k(Pk)ψ

rk
k · ft∗(λ) · Mlab

0,1+m+n(R
2, d)

⎞

⎠

does not depend on the choice of λ ∈ M0,4. Thus we can pick a very large λ1 on
the ray 12/34 of M0,4 and a very large λ2 on the ray 13/24 and set the degree
equal for those two values. Denote by

Z := deg

⎛

⎝
∏

j∈M

ev∗
j (G j )

∏

k∈N

ev∗
k(Pk)ψ

rk
k · ft∗(λ1) · Mlab

0,1+m+n(R
2, d)

⎞

⎠ .

We show that the left hand side of the above sum equals 1
d!3 times the degree of Z .

Analogously one can show that the right hand side equals 1
d!3 times the degree of the

analogous intersection product with λ2, which finishes the proof. By Theorem 5.3
we know that

Z =
∑

C∈S

|detC (ft × ev)| · C,

where S is the set of curves in Mlab
0,1+m+n(R

2, d) satisfying the point and line con-
ditions and mapping to λ1 under ft. Let F = (τ0(0)τ0(1)m

∏
k∈N τrk (2))d , then F

is a one-dimensional cycle. Let σ be a cone of F corresponding to curves without
a contracted bounded edge. Then Lemma 4.4 says that the image of σ under ft is
bounded. Since we picked λ1 to be very large, we therefore know that σ cannot
contribute to the degree of Z . Hence all C ∈ S contain a contracted bounded edge.
Pick a curve C ∈ S, then we know by 6.4 that we can cut the contracted edge thus
producing two curves C1 and C2 with an extra marked end e.
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If the degree of C1, d1, equals 0 then we know by 6.6 that

|detC (ft × ev)| = (G2 · C̃2)h(e) · |detC̃2
(evM2∪N2)|,

where G2 denotes the line condition for the marked end 2 and C̃2 denotes the curve
that we get from C2 by forgetting the additional marked end e. By 6.7 we know that
each choice of C̃2 satisfying all conditions in L2 ∪ M2 ∪ N2 = L ∪ M ∪ N\{1, 2}
contributes d · |detC̃2

(evM2∪N2)| possible curves C (counted with weight). Thus the
contribution to Z from curves C such that d1 = 0 equals

d ·
∏

j∈M\{2}
ev∗

j (G j )
∏

k∈N

ev∗
k(Pk)ψ

rk
k · Mlab

0,m−1+n(R
2, d)

which by the divisor equation (7.2) equals
∏

j∈M

ev∗
j (G j )

∏

k∈N

ev∗
k(Pk)ψ

rk
k · Mlab

0,m+n(R
2, d).

Multiplying by the factor 1
d!3 , we can see that those curves contribute

〈
τ0(1)

m
∏

k∈N

τrk (2)

〉

d

to 1
d!3 deg Z .
Now assume that d1 > 0 and denote as in 6.2

Zi :=
∏

j∈Mi

ev∗
j (G j ) ·

∏

j∈Ni

ev∗
j (p j ) ·

∏

j∈Ni

ψ
r j
j ·

[
Mlab

0,li +ni +mi +1(R
2, di )

]
.

Then we know by 6.4 that one of the following three cases hold:

(a) dim(Z1) = 0 and dim(Z2) = 2 or
(b) dim(Z1) = 1 and dim(Z2) = 1 or
(c) dim(Z1) = 2 and dim(Z2) = 0.

We know by 6.6 that in the first case,

|detC (ev × ft)| = ∣∣detC1

(
evM1∪N1

)∣∣ · ∣∣detC2

(
evM2∪N2 × eve

)∣∣ ,

where eve now denotes the evaluation on both coordinates of the new marked end
e. By 6.7 we know that for each choice of C1 and C2 satisfying the conditions we
get exactly one possible C . But by 5.3 we know that

Z1 =
∑

C1

∣∣detC1

(
evM1∪N1

)∣∣ · C1,

and analogously

ev∗
e(P) · Z2 =

∑

C2

∣∣detC2

(
evL2∪M2∪N2 × eve

)∣∣ · C2,
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Thus we get a contribution of deg(Z1) · deg(ev∗
e(P) · Z2) to deg(Z), respectively

(d1!)3 · (d2!)3
d!3 〈τ0(0)τ0(1)τ0(1)

m1
∏

k∈N1

τrk (2)〉d1

· 〈τr3(2)τr4(2)τ0(1)
m2

∏

k∈N2

τrk (2)τ0(2)〉d2

to 1
d!3 deg Z .
Analogously, we get a contribution of

(d1!)3 · (d2!)3
d!3 〈τ0(0)τ0(1)τ0(1)

m1
∏

k∈N1

τrk (2)τ0(2)〉d1

· 〈τr3(2)τr4(2)τ0(1)
m2

∏

k∈N2

τrk (2)〉d2

in the last case.
In the second case, we know by 6.6 that

|detC (ev × ft)| =
(

C̃1 · C̃2

)

h(e)
·
∣∣∣detC̃1

(
evM1∪N1

)∣∣∣ ·
∣∣∣detC̃2

(
evM2∪N2

)∣∣∣

and by 6.7 we know that each choice of C̃1 and C̃2 satisfying the conditions gives
us

d1 · d2 ·
∣∣∣detC̃1

(
evM1∪N1

)∣∣∣ ·
∣∣∣detC̃2

(
evM2∪N2

)∣∣∣ .

Since

(fte)∗(Zi ) =
∑

C̃i

∣∣∣detC̃i

(
evMi ∪Ni

)∣∣∣ · C̃i

(where fte denotes the map which forgets the marked point e) and since

d1 ·
〈
τ0(0)τ0(1)τ0(1)

m1
∏

k∈N1

τrk (2)

〉

d1

=
〈
τ0(0)τ0(1)τ0(1)

m1
∏

k∈N1

τrk (2)τ0(1)

〉

d1

and

d2 ·
〈
τr3(2)τr4(2)τ0(1)

m2
∏

k∈N2

τrk (2)

〉

d2

=
〈
τr3(2)τr4(2)τ0(1)

m2
∏

k∈N2

τrk (2)τ0(1)

〉

d2

by the divisor equation we get a contribution of

(d1!)3 · (d2!)3
d!3

〈
τ0(0)τ0(1)τ0(1)

m1
∏

k∈N1

τrk (2)τ0(1)

〉

d1

·
〈
τr3(2)τr4(2)τ0(1)

m2
∏

k∈N2

τrk (2)τ0(1)

〉

d2

.

Finally, there are
( d

d1

)3
choices of the sets E1 and E2 if we fix d1 and d2. 	
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Lemma 8.2. Choose strictly positive integers r, d such that 1+3d −3+2 = 2+r .
Then the classical one-marked-point invariant 〈τr (2)〉alg

d equals

〈τr (2)〉alg
d = 1

(d!)3 .
Proof. We use two (classical) WDVV equations ([2] or, more detailed but unpub-
lished, [6]) with four marked points. If we compute 〈τ0(0)τ0(1)2τr (2) ft∗(λ)〉alg

d for
the two special points λ = 12/34 and λ = 13/24 on M0,4, then we get

〈τ0(1)
2τr (2)〉alg

d = 〈τ0(0)τr (2)τ0(2)〉alg
d

as illustrated by the following picture:

For 〈τ0(0)τ0(1)τ0(2)τr−1(2) ft∗(λ)〉alg
d we get

〈τ0(1)τr−1(2)τ0(2)〉alg
d = 〈τ0(0)

2τr−1(2)〉alg
d−1

as illustrated by

Now, applying string and divisor equation where possible and plugging in the
left hand side of the first equation in the right hand side of the second equation
produces

d3 · 〈τr (2)〉alg
d = 〈τr−3(2)〉alg

d−1.

Together with the initial invariant 〈τ0(0)2τ0(2)〉alg
0 = 1, this proves the lemma. 	


Lemma 8.3. Choose strictly positive integers r, d such that 1+3d −3+2 = 2+r .
Then the tropical one-marked-end invariant 〈τr (2)〉trop

d equals

〈τr (2)〉trop
d = 1

(d!)3 .

Proof. Choosing the single marked end e as root vertex, we get Mlab
0,1(R

2, d) =
M0,1+3d × R

2 and the two projections are ft′ and eve. Recall that Psi-classes for
parameterized curves are just pull-backs of Psi-classes along ft. Using [1, 9.6], we
get
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〈τr (2)〉trop
d = 1

(d!)3 deg
(
(ft′(ψe))

r · eve(P) ·
(
M0,1+3d × R

2
))

= 1

(d!)3 deg
((
ψr

e · M0,1+3d
) × (P · R

2)
)

= 1

(d!)3 ,

where in the last step we use deg(ψr
e · M0,1+3d) = 1 (cf. [7, 4.2]). 	


Theorem 8.4. Let d, l,m, n and rk, k ∈ N be positive integers with d > 0 such
that

l + m + n + 3d − 3 + 2 = m + 2n +
∑

k∈N

rk .

Then the corresponding tropical and classical descendant invariants coincide, i.e.

〈
τ0(0)

lτ0(1)
m

∏

k∈N

τrk (2)

〉trop

d

=
〈
τ0(0)

lτ0(1)
m

∏

k∈N

τrk (2)

〉alg

d

.

Proof. The tropical string, divisor and WDVV equations proved in the preceding
sections are also fulfilled by the corresponding classical invariants. Hence, we can
use these equations to reduce our invariants to such ones for which we know or can
prove that they coincide.

1. case: rk = 0 for all k ∈ N (i.e. no Psi-classes)
After applying string and divisor equation, we can assume that l = 0 = m.
Using 5.3, we see that the numbers I trop(d; 0, 0, n; 0) are equal to the numbers
Nd defined in [5, 3.4, 3.9]. It is well-known that these numbers coincide with
the classical ones (see [10] and [5, 5.6]).

2. case: exists k ∈ N with rk > 0 (i.e. at least one Psi-class)
subcase I: n = 1
After applying string and divisor equation, we can assume that l = 0 and
m = 0. The two last preceding lemmas show that in this case the classical and
tropical invariants coincide.
subcase II: n ≥ 2

After applying string and divisor equation, we can assume that l = 0 and m = 1. In
particular, if m = 0, we can use the divisor equation to add a line condition, which
introduces a factor 1

d and therefore leads to rational numbers. Then we can use both
the tropical (see Theorem 8.1) and the classical WDVV equation ([2] or [6]) and
express 〈τ0(1)

∏
k∈N τrk (2)〉d in terms of invariants 〈τ0(0)l

′
τ0(1)m

′ ∏
k∈N ′ τr ′

k
(2)〉d ′

with n′ + ∑
k∈N ′ r ′

k < n + ∑
k∈N rk . Repeating this procedure, we eventually end

up with n′ = 1 (subcase I) or r ′
k = 0 for all k ∈ N ′, which is the 1. case. 	
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9. Lattice paths

In this section, we present a lattice-paths algorithm to determine the numbers
〈

∏

k∈N

τrk (2)

〉

d

= 1

(d!)3 deg

(
∏

k∈N

ev∗
k(Pk)ψ

rk
k · Mlab

0,n(R
2, d)

)

i.e. numbers of curves with Psi- and point conditions (and no line conditions; all
other numbers can be easily computed using string and divisor equation). Note that
in this case we need

3d − 1 = n +
∑

k∈N

rk

to get a zero-dimensional cycle.
We use the fact that if we choose general point conditions, the intersection prod-

uct
∏

k∈N ev∗
k(Pk)ψ

rk
k · Mlab

0,n(R
2, d) equals set-theoretically the set of all points

corresponding to curves satisfying the Psi- and the point conditions (see 3.3). Each
such curve C has to be counted with weight, and it is counted with the weight

1
d!3 | detC (ev)| (see theorem 5.3), where ev denotes the product of all evaluation
maps (at both coordinates). Note that no such curve can have a string since this
would provide a deformation of the curve described in the proof of 4.4, which
contradicts 3.2 (a).

We pick a certain configuration of points and count dual Newton subdivisions
of curves passing through the points and satisfying the Psi-conditions. The dual
Newton subdivisions are in fact dual to the image h(�) ⊂ R

2 of the graph in the
plane. In particular, the labels of the non-contracted ends are lost. That means we
have to count tropical curves without labels on the non-contracted ends, and then
multiply with the number of possibilities to set labels.

There is a map c : Mlab
0,n(R

2, d) → M0,n(R
2, d) which forgets the labels of

the non-marked ends. This map is a cover, the number of preimages is the number
of ways to set labels. The biggest number of preimages is d!3. However, not every
point in a facet has this number of preimages: the curve in M0,0(R

2, 2) pictured
below has only 4 preimages, not 8, since the two ends in direction (−1, 0) are not
distinguishable.

Let C ′ ∈ ∏
k∈N ψ

rk
k · Mlab

0,n(R
2, d) and let C be the curve after forgetting the

labels of the non-contracted ends. Assume that the facet σ in M0,n(R
2, d) in which

C lies has s preimages under the cover above. Thus C has to be counted with
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s
d!3 | detC ′(ev)|. Assume that C has t vertices V1, . . . , Vt such that bi j non-con-
tracted ends of the same direction −e j are adjacent to Vi (where j goes from 0 to
2 and e0 := −e1 − e2). Then νC := ∏t

i=1
∏2

j=0
1

bi j ! = s
d!3 and we have to count

C with νC | detC ′(ev)|.
First, we want to understand this weight locally in terms of vertex multiplicities.

We define another weight that we denote by mult(C) and we show that it is equal
to νC | detC ′(ev)|.
Definition 9.1. Let C ′ ∈ ∏

k∈N ψ
rk
k ·Mlab

0,n(R
2, d) and let C be the curve after for-

getting the labels of the non-contracted ends. Define the weight mult(C) as νC times
the product of the multiplicities of those (necessarily 3-valent) vertices without any
marked ends on them (see [10, Definition 2.16]).

Example 9.2. Let C be the curve as in the picture below. (For this example, we
chose some other degree, not d, to keep the picture nice.) As in Remark 6.5 we
choose coordinates to write down an explicit matrix for ev. Choose V to be the root
vertex. Then the matrix of ev is

⎛

⎜⎜⎜⎝

1 0 v1,1 0

0 1 v1,2 0

1 0 0 v2,1

0 1 0 v2,2

⎞

⎟⎟⎟⎠ .

The absolute value of the determinant is equal to | det(v1, v2)|, which is the multi-
plicity of the 3-valent vertex V .

Lemma 9.3. Let C ′ ∈ ∏
k∈N ψ

rk
k · Mlab

0,n(R
2, d) and let C be the curve after for-

getting the labels of the non-contracted ends. Then νC | detC ′(ev)| = mult(C) if C
has no string.

Proof. We have to show that | detC ′(ev)| equals the product of multiplicities of all
3-valent vertices without marked end.
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This is an induction on the number of bounded edges. Curves with no bounded
edge satisfy | detC ′(ev)| = ∏

V mult(V ) = 1 (the product is empty). Curves with 2
bounded edges (as the one in the Example 9.2) need to have the two marked ends at
the two “outer” vertices, because otherwise there is a string. So as in the example,
there is one “interior” 3-valent vertex without a marked end, and | detC ′(ev)| is the
multiplicity of the vertex.

Now we can assume we have 4 or more bounded edges. (The number of bounded
edges is even, 2n − 2.) We choose one such that there are still bounded edges on
both sides of it. (If such an edge does not exist, it means we have a “star-shaped”
tropical curve with one vertex in the middle and all bounded edges around. If one
of those bounded edges was not adjacent to a marked end, C has a string, so we can
assume that all bounded edges are adjacent to a marked end. If there is no marked
end in the middle, we then have b + 2 = 2b where b is the number of bounded
edges, since b + 2 is the number of coordinates of this cone, and 2b is the number
of coordinates of the b marked ends. So b = 2 and we are in the situation of the
example. If there is a marked end in the middle, we have b + 2 = 2b + 2 so b = 0,
so this curve has no bounded edge and counts one. Now we can assume we do not
have a star-shaped curve, and there is in fact a bounded edge with bounded edges
on both sides.) Then we cut this edge to get two curves C1 and C2. Let Ii denote
the subset of marked ends on Ci and let ei be the number of non-contracted ends of
Ci . We make the cut edge a new non-contracted end of Ci , so Ci has in fact ei + 1
non-contracted ends, one of them the special new end. Assume

#I1 ≤ e1 − 2 −
∑

k∈I1

rk,

then if we remove all the closures of marked ends (as in Lemma 4.3) we get
∑

k∈I1

rk + #I1 + 1

connected components, which is less than or equal to
∑

k∈I1

rk + e1 − 2 −
∑

k∈I1

rk + 1 = e1 − 1.

So there must be a connected component which has two non-contracted ends of C
(not the new end of C1). Hence C has a string, which contradicts the assumption.
We have

#I1 + #I2 = n = 3d − 1 −
∑

rk = e1 + e2 − 1 −
∑

rk .

Therefore

#I1 = e1 −
∑

k∈I1

rk and #I2 = e2 − 1 −
∑

k∈I2

rk

without restriction. As in Remark 6.5, we pick coordinates to write down an explicit
matrix for ev. C1 has
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e1 + #I1 − 2 −
∑

k∈I1

rk = 2#I1 − 2

bounded edges. We pick the root vertex to be the boundary vertex of the cut edge
in C1. We order the basis elements such that the root vertex comes first, then the
bounded edges in C1, then the cut edge, then the bounded edges in C2. We order the
basis of R

2n such that the marked ends in C1 come first and then the marked ends
in C2. Then the matrix of ev for C is a block matrix. The block on the top left is just
the matrix of ev for C1—so by induction, the product of multiplicities of 3-valent
unmarked vertices of C1. The top right block is 0, because no marked end on C1
needs a bounded edge of C2. The bottom right block has the same determinant as
the matrix ev for C2, when we add a marked end on the cut edge and make its
end vertex the root vertex. So the determinant of this block is again by induction
the product of multiplicities of 3-valent unmarked vertices in C2. This proves the
claim. 	


Now we know that 1
(d!)3 deg(

∏
k∈N ev∗

k(Pk)ψ
rk
k ·Mlab

0,n(R
2, d)) equals the num-

ber of all curves C ∈ M0,n(R
2, d) satisfying the Psi- and the point conditions, each

counted with weight mult(C). We want to simplify this count even further: we do
not want to count parameterized tropical curves C = (�, xi , h), but we want to
count their images in R

2.

Definition 9.4. Let C = (�, xi , h) ⊂ ∏
k∈N ψ

rk
k ·Mlab

0,n(R
2, d). In the image h(�),

some edges may lie on top of each other. Mark each edge in the image h(�) by a
partition reflecting the weights of all edges which map onto this image edge. The
image h(�) together with those partitions is called the labelled image of C .

Example 9.5. The following picture shows a tropical curve and its labelled image.

Given a labelled image, there can be different possible parameterizations. Ambi-
guity may for example arise if the labelled image comes from a parametrization that
maps vertices on top of each other. We could then also parameterize this labelled
image with a graph where the two vertices are replaced by only one. To avoid this
ambiguity, we need a slightly more special notion of general conditions, which we
call restricted general conditions. This definition is cooked up in such a way that
we exactly avoid all ambiguity and make parameterizations unique.

Definition 9.6. A curve C = (�, xi , h) is called simple, if it satisfies:
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(a) the map h is injective on vertices,
(b) if h(V ) ∈ h(e) for a vertex V and an edge e then V is adjacent to an edge e′

which is mapped on top of e,
(c) if two edges e and e′ are mapped on top of each other, then they share a vertex,
(d) assume p ∈ R

2 is a point through which more than two edges pass. Divide the
edges into equivalence classes depending on the slope of the line to which they
are mapped. Then we have at most 2 equivalence classes.

Definition 9.7. The subset of R
2n of restricted general conditions is defined to

be the subset of the set of general conditions such that only simple curves C ∈∏
k∈N ψ

rk
k ·Mlab

0,n(R
2, d) pass through the points (i.e. satisfy ev(C)=(P1, . . . , Pn)).

Remark 9.8. It is easy to see that the subset of restricted general conditions is still
open and dense. Points which are not restricted general admit a non-simple curve.
Being not simple sums up to codimension 1 conditions, hence only the image
under ev of certain lower-dimensional subsets of

∏
k∈N ψ

rk
k · Mlab

0,n(R
2, d) is not

restricted general.

Lemma 9.9. Given a labelled image of a tropical curve through restricted gen-
eral conditions, there is exactly one abstract tropical curve (�, xi ) and one map h
parameterizing this labelled image and sending the marked ends to the Pi .

Proof. Clearly there is a parametrization C = (�, xi , h) of the labelled image,
we just need to show that it is unique. Since the Pi are general, C cannot have a
contracted bounded edge. If it had a contracted bounded edge, we could vary the
length of this edge without changing the image, in contradiction to 3.2(a). Hence
all edges can be seen in the image h(�). Due to the conditions for being simple,
we can also distinguish the images of vertices and the images of all edges in the
labelled image. Because of the labels we know whether edges lie on top of each
other. If there are edges lying on top of each other, then we know that they have to
share a vertex. If there is a vertex V with two edges of the same direction, it has
to be more than 3-valent. If it was 3-valent, then by the balancing condition the 3
edges would be mapped to a line. At least one of the 3 edges is bounded, and so
we could change the length of this edge (and accordingly the lengths of the other
two edges, if necessary) without changing the image of the curve. That contradicts
3.2(a). Since V is more than 3-valent, there must be a marked end adjacent to it. It
is not possible that 2 (or more) of the points Pi lie on a line with a direction that
can be the direction of an edge. Thus if we have two edges in the labelled image on
top of each other, there must be exactly one adjacent vertex which passes through
a point Pi . Thus we know that the edges have to be connected at that vertex when
we built the parametrization. 	

Definition 9.10. Let C be a curve in

∏
k∈N ψ

rk
k · Mlab

0,n(R
2, d) passing through

restricted general conditions. Draw a dual Newton subdivision to the image h(�)
and label the dual edges also with the partitions belonging to the edges of the
labelled image h(�). This is called a labelled dual Newton subdivision. Mark the
polygons dual to vertices which are adjacent to a marked end xi . Those marked
polygons in �d together with the partitions belonging to their boundary edges is
called the set of dual marked polygons of C .
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Example 9.11. The following picture shows the labelled dual Newton subdivision
to the labelled image from Example 9.5. Next to it, we can see the set of dual
marked polygons of C .

Our aim is to count dual marked polygons to curves in
∏

k∈N ψ
rk
k ·Mlab

0,n(R
2, d).

To do that, we have to choose a special point configuration P as our condition. This
configuration is chosen is such a way that the set of dual marked polygons can be
described as something like a generalized lattice path that we call a rag rug. We will
now first introduce labelled lattice paths and rag rugs, and then show that the count
of rag rugs equals the count of labelled images of curves in

∏
k∈N ψ

rk
k ·Mlab

0,n(R
2, d)

passing through P (with weight mult(C)).
Let �d be the triangle with endpoints (0, 0), (d, 0) and (0, d). Fix λ to be a

linear map of the form

λ : R
2 → R : (x, y) �→ x − εy,

where ε is a small irrational number. Recall that a path γ : [0, n] → R
2 is called

a lattice path if γ |[ j−1, j], j = 1, . . . , n is an affine-linear map and γ ( j) ∈ Z
2 for

all j = 0, . . . , n. For n = 1, . . . , n, we call γ |[ j−1, j]([ j − 1, j]) a step (the j th
step) of the lattice path γ . A lattice path is called λ-increasing if λ ◦ γ is strictly
increasing. Let p := (0, d) and q := (d, 0) be the points in � := �d where λ|�
reaches its minimum (resp. maximum). Let G be a line in R

2 orthogonal to ker(λ).
Then G divides the plane into two halfplanes. We will denote the upper one by H+
and the lower one by H−.

Definition 9.12. A labelled λ-increasing lattice path in � is a λ-increasing lat-
tice path from p to q such that the kth step is labelled by a partition αk =
((αk)1, . . . , (αk)rk ) of the integer length of this step, that is (αk)1 + · · · + (αk)rk =
#(Z2 ∩ γ ([k − 1, k]))− 1.

Remark 9.13. Let δ be a labelled λ-increasing lattice path from p to q whose image
is contained in the boundary ∂� and whose steps are labelled with partitions con-
sisting of only ones. All those paths will be possible end paths for the recursion
defining multiplicity. The following picture shows 3 examples for �3.
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Definition 9.14. We define the positive multiplicity µ+ (resp. negative multiplicity
µ−) of a labelled λ-increasing lattice path recursively as follows:

(a) For a possible end path δ as in Remark 9.13 going clockwise from p to q (resp.
counterclockwise) with n steps we defineµ±(δ) := ∏n

k=1 1/(|αk |!), where |αk |
denotes the size of the partition of the kth step (recall it has to be a partition
with only ones as entries).

(b) For a labelled λ-increasing lattice path γ which is not a possible end path,
assume that the kth and the k + 1th step form the first left (resp. right) corner
of the path γ . (If no such turn exists, we define µ±(γ ) := 0).
Define a finite set of lattice paths as follows:
• pick an integer r with 0 ≤ r ≤ min{|αk |, |αk+1|},
• pick a set S of r pairs

S = {[(αk)i1 , (αk+1) j1], . . . , [(αk)ir , (αk+1) jr ]
}

such that the multiset {(αk)i1 , . . . , (αk)ir } is a subset of the multiset {(αk)1,

. . . , (αk)rk } and the multiset {(αk+1) j1 , . . . , (αk+ j ) jr } is a subset of the mul-
tiset {(αk+1)1, . . . , (αk+1)rk+1}.

For each l = 1, . . . , r , build a triangle Tr,S,l with one edge of integer length
(αk)il and one edge of integer length (αk+1) jl (in the direction of the kth resp.
k + 1th step). Let Mr,S be the Minkowski sum of all triangles Tr,S,l for l =
1, . . . , r , and edges es in direction of the kth step of integer length (αk)s for all
s which are not one of the il and edges ft in direction of the k + 1th step of
integer length (αk+1)t for all t which are not one of the jl . Label each edge E
of Mr,S with a partition reflecting the integer lengths of edges es , ft , and edges
of triangles Tr,S,l that contribute to E . Think of the polygon Mr,S as sitting in
the corner built by step k and k +1 of γ , and define a new labelled λ-increasing
lattice path γr,S by going the other way around Mr,S . If Mr,S does not fit inside
the polygon �, we define µ±(γr,S) = 0. The positive multiplicity of this new
labelled λ-increasing lattice path is known recursively, because it includes a
smaller area with the possible end paths. We define

µ±(γ ) =
∑

r

∑

S

Area(Tr,S,1) . . .Area(Tr,S,r ) · µ±(γr,S),

(where Area(T ) is the normalized lattice area, i.e. the area of the simplex with
vertices (0, 0), (1, 0) and (0, 1) is defined to be 1).

Example 9.15. For the 3 possible end paths from Remark 9.13, we have multiplicity
µ−(γ1) = 1, µ−(γ2) = 1

4 and µ−(γ3) = 1
12 .

Example 9.16. The following picture shows an example of the recursion from Def-
inition 9.14 to compute the positive multiplicity of a labelled path γ in�3. The first
left turn is from step 2 to step 3. We have 3 choices for r : r = 0, r = 1 or r = 2,
since both the partition of step 2 as the partition of step 3 contain 2 elements. No
matter what we choose for r , there is just one choice for the set S (r pairs consisting
of all ones), since both partitions contain only ones.
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For r = 0 and S = ∅, M0,∅ is a square of size 2 which does not fit inside �3.
Therefore the multiplicity of γ0,∅ = 0.

For r = 1 and S = {(1, 1)}, M1,S is a pentagon. The integer length of each new
side is one. The new side of direction (0, 1) is labelled by the partition (1), because
it comes from the edge es in direction of the 2-nd step of integer length 1 which
is not one of the il in the set of pairs S. The new side of M1,S of direction (1,−1)
comes with label (1), because it comes from a side of the triangle T1,S,1 of integer
length 1. The side of direction (1, 0) comes from an edge of the 3rd step which is
not part of S, and gets label (1) as well. The area of T1,S,1 is one.

For r = 2, we have S = {(1, 1), (1, 1)}, and M2,S is a triangle of size 2 whose
new side gets the label (1, 1) because it comes from 2 sides of the two triangles
T2,S,1 and T2,S,2. The area of both triangles T2,S,1 and T2,S,2 is one.

The picture shows how the recursion goes on after the first step. The choices
where r = 0 for γ1,S or where r = 1 for γ2,S are left out because they yield to a path
of multiplicity 0. We end up with one path of multiplicity 1 and one of multiplicity
1
2 , so µ+(γ ) = 3

2 .

Definition 9.17. Let F be a set of n convex polytopes Q1, . . . ,Qn inside� whose
endpoints are lattice points of� and whose boundary edges e are labelled by parti-
tions. It is possible that a polygon Qi is 1-dimensional, i.e. just an edge itself, then
it has two partitions as labels, one for each outward pointing normal vector. We call
F a rag rug of the form (r1, . . . , rn) if the following conditions are satisfied:

(a) the (outside) label αe of an edge e in the boundary of�d is αe = (1, 1, . . . , 1),
(b) two polygons Qi and Q j intersect in at most one point,
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(c) boundary edges whose outward normal vector points into H+ (starting at G)
(with their corresponding labels) form a labelled λ-increasing lattice path from
p to q that we will denote by γ+,

(d) boundary edges whose outward normal vector points into H− (with their cor-
responding labels) form a labelled λ-increasing lattice path from p to q that we
will denote by γ−,

(e) the order of the polytopes Q1, . . . ,Qn agrees with the obvious order given by
the paths γ+ resp. γ−,

(f) the sum of the sizes of the partitions of the boundary edges of Qi is equal to
ri + 2,

∑

e|e edge of Qi

|αe| = ri + 2.

We define the multiplicity µ(F) to be µ+(γ+) · µ−(γ−).

Example 9.18. The following picture shows a rag rug F of the form (2, 2, 0, 0) in
�3, and the two labelled λ-increasing lattice paths γ+ and γ−. For all edges of
integer length one, the corresponding partitions are just (1) and we did not mark
this in the picture. We have µ+(γ+) = 3 and µ−(γ−) = 1

6 , so µ(F) = 1
2 .

Definition 9.19. Given d, n and numbers (r1, . . . , rn) we define Nrr(d, n,
(r1, . . . , rn)) to be the number of rag rugs of form (r1, . . . , rn), counted with mul-
tiplicity as defined in 9.17.

Remark 9.20. Note that this definition generalizes Mikhalkin’s lattice path count
(see [10]). A λ-increasing lattice path γ from p to q is a rag rug of form (0, . . . , 0).
We have to attach labels (1) to each edge. The two paths γ+ and γ− agree with γ .
In the recursion for the lattice path count, we define mult±(γ ) depending on the
multiplicity of two other paths γ ′ and γ ′′. γ ′ is the path that cuts the corner, and
γ ′′ is the path that completes the corner to a parallelogram. In our definition, we
can choose r = 0 or r = 1. For r = 0, we have S = ∅ as only choice. The polygon
M0,∅ is the parallelogram which is equal to the Minkowski sum of the two steps of
the corner. For r = 1, we have S = {(1, 1)} as only choice, and M1,S is the triangle
formed by the two steps of the corner. Since all partitions are just (1), also the end
paths have only those partitions, so that there is in fact only one end path, the path
δ±. It has multiplicity 1. Therefore our definition gives the same multiplicity in this
case.

It is not true that Nrr(d, n, (r1, . . . , rn)) = 1
(d!)3 deg(

∏
k ev∗

k(Pk)ψ
rk
k ·

Mlab
0,n(R

2, d)), since we count also reducible curves with the rag rugs.
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We therefore have to modify the count and throw away the dual subdivisions
corresponding to reducible tropical curves.

Definition 9.21. Given a rag rug γ and the two corresponding lattice paths γ+ and
γ−, perform the recursion to compute their multiplicity and keep track of the poly-
gons Mr,S that the new paths γr,S in the recursion enclose with γ±. This way we
end up with a set of labelled Newton subdivisions. We call this the set of possible
labelled Newton subdivisions for γ . The recursion allows us to assign a multiplicity
to a possible labelled Newton subdivision, so that the multiplicity of γ is equal to
the sum of the multiplicities of the possible labelled Newton subdivisions for γ .

Definition 9.22. Given a labelled Newton subdivision, draw a dual labelled image
and then the unique tropical curve mapping to this image. This is well-defined up
its position in R

2 and the lengths of its bounded edges. We say that the Newton
subdivision is reducible if the tropical curve mapping to a dual labelled image
is reducible (again, this does not depend on the choice of dual labelled image).
Otherwise, we say it is irreducible.

Remark 9.23. It is possible to express the reducibility condition in terms of the
Newton subdivision itself and not in terms of the dual tropical curve. A labelled
marked Newton subdivision is reducible if and only if it admits a mixed subdivision
where the marked polygons Qi remain unmixed (i.e. come from sums of the form
Qi +v1 +· · ·+vt , where the v j are vertices of the subdivision of the j th summand).
For details, see [8].

Definition 9.24. For a rag rug γ as defined in 9.17 define its irreducible mul-
tiplicity mult′(γ ) to be the multiplicity mult(γ ) minus the number of possible
reducible Newton subdivision (counted with multiplicity). Given d, n and numbers
(r1, . . . , rn) we say N ′

rr(d, n, (r1, . . . , rn)) is the number of rag rugs counted with
their irreducible multiplicity.

Definition 9.25. Let Pλ = (P1, . . . , Pn) denote n restricted general point condi-
tions on the line G orthogonal to ker(λ) such that the distance between Pi and Pi+1
is much bigger than the distance between Pi−1 and Pi .

Lemma 9.26. Let C ∈ ∏
k ψ

rk
k · Mlab

0,n(R
2, d) with ev(C) = Pλ. Then the set of

dual marked polygons of C is a rag rug of the form (r1, . . . , rn).

Proof. The polygon Qi dual to Pi is convex and has to satisfy
∑

e|e edge of Qi

|αe| = ri + 2,

where αe denotes the partition belonging to e. This is true since the marked end
xi ⊂ � is adjacent to a vertex of valence ri + 3 and we can see all edges (except
the contracted end xi ) in the labelled image (and thus in their labelled dual Newton
subdivision, too). (Outside) labels of edges in the boundary of �d have only ones
as entries, since the ends of C are all of weight 1. That the boundaries of those
polygons form labelled λ-increasing lattice paths follows analogously to [10, 8.27]
(or [9, 5.48] for more details). 	
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Theorem 9.27. The number N ′
rr(d, n, (r1, . . . , rn)) from Definition 9.24 equals the

intersection product 1
(d!)3 deg(

∏
k ev∗

k(Pk)ψ
rk
k · Mlab

0,n(R
2, d)) = 〈∏k τrk (2)〉.

Proof. To determine 1
(d!)3 deg(

∏
k ev∗

k(Pk)ψ
rk
k · Mlab

0,n(R
2, d)), we can draw all

labelled images of tropical curves that pass through Pλ and count them each with
their weight mult(C) which is νC times the product of the multiplicities of non-
marked vertices. We show that this count is equivalent to counting irreducible
possible labelled Newton subdivision for all rag rugs of the form (r1, . . . , rn).

The proof is a generalization of the proof of theorem 2 of [10]. We know
that each C leads to a rag rug γC as in Lemma 9.26. Each rag rug yields a set
of possible labelled Newton subdivision, with multiplicity. We will show that for
each such possible labelled Newton subdivision, there is a dual tropical curve
C through Pλ of the same weight. At the same time, we show that for each
curve C through Pλ, the dual labelled Newton subdivision is possible for the rag
rug γC .

Let γ be a rag rug. The recursion for γ+ yields possible subdivision of �d

above the polygons Qi . They correspond to the part of a tropical curve above G.
Analogously, possible subdivisions for γ− correspond to the parts of tropical curves
below G. From Lemma 9.3 it follows that weight of a tropical curve can be com-
puted locally, so the weight of C is equal to the weight of the part above G times
the weight of the part below G. The same is true for the multiplicity of the dual
Newton subdivision. Therefore it is enough to show that for each subdivision above
the Qi , there is a dual part of a tropical curve above G of the same weight, and
that each part of a tropical curve above G is dual to a possible subdivision above
the Qi . The corresponding statement for subdivisions below the Qi and parts of
tropical curves below G follows analogously, and thus the complete statement
follows.

For each point Pi ∈ Pλ, draw edges emanating from Pi of directions dual to
the boundary edges of Qi and with the same partitions as labels. Draw a line G ′ in
H+ parallel to G, such that the strip between G and G ′ encloses one intersection of
the edges we have drawn through the Pi . This intersection of edges corresponds to
the first left turn of the path γ+, since the distances between the Pi are increasing.
Let us determine the possibilities how the tropical curve can go on at this point. We
should think about both edges as a set of edges of weights given by the partition.
Edges can either meet in a 3-valent vertex, or intersect. First, we pick r less than
the smaller number of edges in a set to determine how many edges should meet
in a 3-valent vertex. Then we pick a set of r pairs of weights to determine which
edges should meet in a 3-valent vertex. The other edges intersect. The weight
locally in the strip between G and G ′ is equal to the product of areas of trian-
gles dual to the 3-valent vertices because of Lemma 9.3. The dual polygon is the
Minkowski sum of those triangles and the remaining edges which intersect. There-
fore the recursion for the multiplicity of γ+ corresponds to the possibilities for a
labelled image of a tropical curve in the strip between G and G ′ and keeps track
of the weight. The end paths which do not have zero multiplicity are exactly those
dual to ends of direction (1, 1) and weight one. The multiplicity of such an end path
corresponds to the correction factor νC with which we have to divide the weight
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of a tropical curve if more than one non-contracted end is adjacent to the same
vertex. 	

Example 9.28. The following picture shows how to count 〈τ2(2)2τ0(2)2〉3 using
rag rugs. The left column shows all rag rugs of the form (2, 0, 2, 0) in the trian-
gle �3. The middle column shows the possible Newton subdivisions for the rag
rugs and their multiplicity. The third column shows sketches of the dual tropical
curves.
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