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1 Introduction

It is by now well recognized that holographic AdS/CFT duality [1] can provide valuable

insights into the physics of strongly coupled systems which may not be amenable to a

perturbative analysis. This duality, which relates a classical theory of AdS gravity to a

conformal field theory in one lower dimension (living on the boundary of the AdS space)

has in particular found important applications in the study of strongly coupled condensed

matter systems. Although it is fair to say that connections to realistic condensed matter

physics via the holographic correspondence has so far remained elusive, it is important to

explore this line of research and further our understanding towards the ultimate goal of

connecting to experimental results.

Two of the most important aspects that have received wide attention in the context

of the AdS/CFT correspondence are holographic superconductors, initiated by the works

of [2–4] and holographic entanglement entropy (HEE), introduced in [5]. While we ex-

pect that the former might capture important physical effects in realistic superconducting

systems, the latter should be of importance in, for example, areas related to information

theory. Several authors have, in the recent past, studied various aspects of holographic

superconductors and in particular, HEE in that setting [6].

In a previous work [7], we had built a model of a generalized holographic supercon-

ductor, with a generalized form of higher derivative couplings, following the work of [8, 9].

To our knowledge this is the most general phenomenological model of a holographic super-

conductor constructed till date, and shows rich phase structure compared to other models

considered in the literature. We call such a model (to be elaborated upon in sequel) a very
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general holographic superconductor (VGHS). The work of [7] dealt with such models in the

background of an AdS-Schwarzschild black hole. One of the main purposes of the present

paper is to construct such models of holographic superconductors in the background of

planar single R-charged black hole solutions including backreaction, and to study features

of their HEE. In this introductory section, we will provide a brief overview of the topics to

be covered in the rest of the paper and then proceed to summarize our main results.

In the simplest realization of a holographic superconductor, it was shown in [10] that

AdS black holes with Abelian Higgs matter become unstable to forming scalar hair near

the horizon, below a certain critical temperature Tc. The main reason for this instability

is the presence of a minimal coupling between the scalar and the gauge field, which can

make the effective mass term of the scalar field sufficiently negative near the horizon. In

the dual boundary field theory, this complex scalar field instability corresponds to a non

zero vacuum expectation value (VEV) of the charged scalar operator which is dual to

the scalar field in the bulk [2]. The non zero VEV of the scalar operator corresponds

to a spontaneous breaking of the U(1) gauge symmetry and therefore indicates a phase

transition from a normal to a superconducting phase, with the scalar operator playing

the role of an order parameter. Strictly speaking, at the boundary, it is a global U(1)

symmetry which is broken spontaneously and therefore these models more properly describe

a holographic charged superfluid. However, one can weakly gauge this symmetry and can

still describe superconductivity [4]. Indeed, it was shown explicitly in [2] that the DC

conductivity is infinite in these models, which is one of the main characteristic properties of

superconductors. Other important features of superconductivity, such as the the existence

of an energy gap can also be shown in the context of holographic superconductors [4].

Specifically, in [11], a universal ratio of ωg/Tc ∼ 8, where ωg is the gap in the frequency

dependent conductivity and Tc the critical temperature, was found. A gap in the optical

conductivity implies an energy gap in the charge spectrum, which is, as mentioned before,

an essential feature of superconductivity. In the weakly coupled BCS theory, ωg can also

be thought as the energy required to break a Cooper pair into its constitutive electrons.

Prediction of this ratio from holography, which is twice compared to the BCS theory,

indicates the strongly interacting nature of the boundary theory, although by now a large

number of exceptions to this result are also known [12, 13]. Also, Meissner type effects can

be shown to exist in holographic superconductors [3, 4].

The original model of holographic superconductors was subsequently generalised in [4]

to include the effects of backreaction of the Abelian Higgs matter fields on gravity. Here,

it was argued that effects of backreaction do not change the physics too much, and that

essentially all the main results are captured by the probe limit. However, there are a few

differences and in particular, it was found that the effects of backreaction generally make

the condensation harder to form.

An important generalization of the original model of holographic superconductors was

considered in [8], where the U(1) symmetry in the boundary is broken by a Stückelberg

mechanism. These models have subsequently been called generalized holographic super-

conductors in the literature. The essential idea here is to consider a non-minimal coupling

between the scalar and the gauge field in a gauge invariant way. The importance of this
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models lies in the fact that one can tune the order of the phase transition by introducing

additional parameters in the theory, which might be important in realistic systems. With

one such parameter, interestingly, several authors found the existence of a first order phase

transition from the normal to the superconducting phase, and a metastable region in the

superconducting phase [14, 15].1 This is phenomenologically important, since there are a

number of superconductors which show first order phase transitions [17, 18]. We should of

course emphasize that the first order phase transitions in holographic superconductors are

typically studied in the absence of external magnetic fields, unlike real superconductors.

However, the issue of of phase transitions in superconductors continue to be an important

topic for research in condensed matter physics, and first order transitions inside the super-

conducting phase at zero magnetic field have seen some interesting development of late [19].

As of now, it is possibly fair to say that predictions from holographic superconductors via

AdS/CFT are still far from being tested in the laboratory.

The models mentioned in the previous paragraph are phenomenological in nature, in

which the fields and the interactions between them are put in by hand, without actually de-

riving them from consistent truncations of a string theory, i.e this is a bottom-up approach.

In such an approach, the full microscopic discerption of holographic superconductors (like

we have for BCS superconductors) are not known. To have such a microscopic descrip-

tion, one has to embed the theory in a string theory, i.e follow a top-down approach (see

e.g [20]), which might be substantially more complicated than a bottom-up one, which is

the viewpoint we take in this paper. In this bottom-up description, a model with higher

derivative interactions of the the scalar and the gauge field via a coupling constant η was

proposed in [9]. These authors analysed the formation of droplets in an external mag-

netic field in the probe limit and subsequently also found some signature of the “proximity

effect” [21]. A non-trivial generalization of the model of [9] was considered in [7], by intro-

ducing two analytical functions of the scalar field in a gauge invariant way. The usefulness

of this latter model, which we have called a very general holographic superconductor, lies

in the fact that one has multiple tunable parameters in the theory, which provides a far

richer phase structure compared to minimally coupled holographic superconductors. For

two such parameters, an exotic “window” of first order phase transitions from the normal

to the superconducting phase was found in [7]. It is certainly not clear how this might be

related to current experimental observations, but if in future, evidence for existence of such

systems are found, the VGHS might provide a strong coupling realization of the same.

Now we turn to the concept of entanglement entropy, which has also received a lot of

attention of late, and is considered in the later part of this paper. Qualitatively speaking,

if a quantum system is divided into two subsystems A and B, measurements on A will

affect those on B, if the two subsystems are entangled. Entanglement entropy (EE) is a

quantitative measure which tells us how strongly these two subsystems are entangled or

correlated. Since EE is related to the degrees of freedom of the system, in condensed matter

physics it is an important tool to quantify the appearance of a phase transition, as well

as its order. However, it is difficult to calculate the EE of a quantum field theory beyond

1See [16] for a treatment of generalized superconductor with backreaction effects.
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1 + 1 dimensions. This problem was bypassed by Ryu and Takayanagi [5], who proposed a

simple formula to calculate the EE in the holographic scenario, which is now referred to as

the holographic entanglement entropy. Several computations of the HEE have been done

using the Ryu-Takayanagi prescription in different contexts, and the results are in good

agreement with the standard CFT results.

Recently, [6] used this prescription to study HEE for a “strip geometry” (to be elabo-

rated upon later in this paper) in the context of holographic metal-superconductor phase

transitions, and showed that the HEE not only captures the appearance of the phase

transition but also its order. The results of this paper also show that for a fixed strip

geometry, the HEE in the superconducting phase is always less than that in the normal

phase. Naively, this might be thought of as an indicator to the fact that some of the de-

grees of freedom condense below the transition temperature, but we have to be careful with

such a statement. The relationship between the entanglement entropy and the number of

the degrees of freedom is subtle. Recently, in the important work of [22], the notion of a

“renormalized entanglement entropy,” was put forward. For any renormalizable quantum

field theory in any dimension, this is defined via the entanglement entropy across a smooth

surface characterized by a size, and interpolates between values at the UV and IR fixed

points, as the scale size is varied. As shown in [22], for a CFT in any dimension, when

the entangling surface is spherical, this is given by the central charge, and thus may be an

indicator of the number of the degrees of freedom of the system. In this work, since we

compute the HEE using a strip geometry as the entangling surface, we can not obviously

relate this to the number of degrees of freedom of the system.2 Nevertheless, in this ge-

ometry also, the HEE naturally captures the physics of phase transitions as we will show

later on in this work.

Subsequent to the work of [6], in [14] and [24], analysis of the behavior of the HEE in

the context of holographic insulator-superconductor phase transitions was done. In [21], a

holographic superconductor with higher derivative couplings is considered, and these au-

thors calculate the entanglement entropy to study the proximity effect in superconductors.

Another recent development in the context of HEE is the interesting notion of the entan-

gling temperature, which first appeared in [25]. In this paper, it was shown that there

exists an analogue of the first law of thermodynamics with the HEE playing the role of the

usual entropy. For a small subsystem, the change in HEE is proportional to the change in

the energy of the subsystem and the proportionality constant, which is given by the size

of the entangling region, is interpreted as the inverse of the entangling temperature.

Having briefly reviewed known literature on the topic, we now state our intent. The

purpose of the present paper is to extend and complete the study of the VGHS in R-charged

backgrounds, in lines with the discussion above. The organization of this paper and the

main results contained herein are summarized below.

• In section 2, we construct the VGHS in four dimensional planar R-charged black hole

2We thank the anonymous referee for pointing this out. It would be interesting to compute the HEE

and characterize the phase transition using a spherical geometry as the entangling surface, which might

then make its relation to the degrees of freedom clearer. We will however leave this for a future issue.
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Figure 1. Qualitative phase diagram of the VGHS in the parameter space in the probe limit.

backgrounds, including back reaction effects. We show that in these backgrounds

also, there is a window of first order metal - superconductor phase transitions, i.e

these first order transitions appear when one appropriately tunes the parameters of

the theory in a certain range. We check this result by establishing the nature of

the difference in the free energy between the superconductor and the normal phases.

This is done for R-charged black hole backgrounds in four and five dimensions. A

qualitative phase diagram for our VGHS in the probe limit is shown in figure 1.

• Section 3 is devoted to the study of the VGHS in five dimensional planar R-charged

backgrounds. Since the analysis is qualitatively similar to the one carried out in

section 2, we relegate the details of calculation in this section to appendix A. Here also

we find a window of first order phase transitions within a certain range of parameters

of the theory. Again, this is validated by calculating the free energy.

• Next, in section 4, we study holographic entanglement entropy for the R-charged

backgrounds studied above. As a warm up exercise, we first calculate the HEE for

the VGHS in an AdS Schwarzschild background, and show that the HEE correctly

captures the information about the window of first order phase transitions that we

have mentioned. (The details of the gravity side of this calculation are relegated

to appendix B). We then perform the analysis for R-charged backgrounds and show

that the HEE is again an effective tool to pinpoint the window of first order phase

transitions in these cases. However, unlike other cases studied in the literature, we

find that the HEE for four dimensional R-charged background actually seems to

increases in the superconducting phases (compared to the normal phase) whereas the

free energy shows expected behavior. Currently, we do not have a proper physical

explanation for this, nevertheless, we will provide some discussions towards the end

of this section. This feature is absent in five dimensional backgrounds.

• In section 5, we study the entangling temperature for the VGHS, to look for relations
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similar to the first law of thermodynamics with HEE. Our method here is numerical,

and we fit the metric and the backreaction parameter with appropriate polynomial

functions and extract the entangling temperature. We find some expected varia-

tions from the results obtained in [25]. In this section, we confine ourselves to AdS-

Schwarzschild backgrounds, and point out some difficulties of a similar calculation

in R-charged examples. Our results broadly indicate the need to understand better

aspects of the entangling temperature for the VGHS in R-charged backgrounds.

• Finally, section 6 ends this paper with a summary of our results and possible direc-

tions for future research.

2 4-D R-charged black hole backgrounds

In this section we will set up a model for the VGHS in four dimensional R-charged back-

grounds. This will also serve to illustrate the basic notations and conventions used in the

rest of the paper. We mention in the outset that we will deal with planar R-charged back-

grounds with a single charge turned on. With multiple chemical potentials, the solution

seems to be intractable.

Recall that R-charged black holes form the gravity duals to rotating branes in various

dimensions. As an example, while the gravity dual to a D3-brane configuration is AdS5×S5,

adding spin to the D3-brane configuration in directions orthogonal to its world volume

amounts to adding rotations that correspond to a global SO(6) R-symmetry of the N = 4

conformal field theory that resides on the brane and is related to the SO(6) symmetry

of the D = 5, N = 8 gauged supergravity that arises upon a Kaluza Klein reduction

of the spinning brane configuration on S5. The three U(1) gauge charges in the AdS5

supergravity are thus related to the spins on the brane world volume, and give rise to

three chemical potentials. In a similar manner, black holes in four dimensional N = 8 AdS

supergravity contains four R-charges that correspond to an SO(8) gauge symmetry arising

out of a Kaluza Klein reduction of spinning M2-brane configurations on S7. Holographic

superconductors can be built by considering an Abelian Higgs model in these geometries.

For the four dimensional single R-charged black hole, we start with the following action

S =

∫
d4x
√
−g
[

1

2κ2

(
R+

3

L2

(
H1/2 +H−1/2

))
− L2H3/2

8
FµνFµν − 3

8

(∂H)2

H2

−1

2
|DΨ̃|2 − 1

2
m2|Ψ̃|2 − η

2
|FµνDνΨ̃|2

]
(2.1)

Here, κ is related to the four dimensional Newton’s constant, L is the AdS length scale and

Ψ̃ is a complex scalar field with charge q and mass m. Also, F = dA and Dµ = ∂µ− iqAµ.

For Ψ̃ = 0, the above action reduces to that of the single R-charged black hole background

(see e.g [28]) with H(r) = 1+krh/r, rh being the horizon radius, and k a charge parameter.

Also, the last term in eq. (2.1) describes the higher derivative interaction between the scalar

field and the field strength tensor. The form of the interaction can be motivated from a

Landau-Ginzburg analysis, but we will prefer to study this from a phenomenological point
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of view. Rewriting the charged scalar field Ψ̃ = Ψeiα, the action can be cast as

S =

∫
d4x
√
−g
[

1

2κ2

(
R+

3

L2

(
H1/2 +H−1/2

))
− L2H3/2

8
FµνFµν − 3

8

(∂H)2

H2

−(∂µΨ)2

2
− m2Ψ2

2
− η

2
Fµν∂

νΨFµσ∂σΨ− Ψ2(∂α− qA)2

2

−η
2

Ψ2

(
Fµν(∂να− qAν)

)2]
(2.2)

The U(1) symmetry in the above action is now given by α→ α+ qλ and Aµ → Aµ + ∂µλ.

Following [7, 8], the above action can be generalized in gauge invariant way

S =

∫
d4x
√
−g
[

1

2κ2

(
R+

3

L2

(
H1/2 +H−1/2

))
− L2H3/2

8
FµνFµν − 3

8

(∂H)2

H2

−(∂µΨ)2

2
− η

2
Fµν∂

νΨFµσ∂σΨ− m2Ψ2

2
− |G(Ψ)|(∂α− qA)2

2

−η
2
|K(Ψ)|

(
Fµν(∂να− qAν)

)2]
(2.3)

here G(Ψ) and K(Ψ) are two analytic functions of Ψ whose general form will be specified in

subsequent text. Eq. (2.3) defines the VGHS. If K(Ψ) = Ψ2, we will obtain the generalized

holographic superconductor of [8] along with a higher derivative coupling. However, as we

show in sequel, more general forms of K(Ψ) leads to a rich phase structure in the theory.3

Now for hairy black hole like solutions with backreaction, we consider the following

ansatz4

ds2 = −g(r)H(r)−1/2e−χ(r)dt2 +H(r)1/2r2(dx2 + dy2) +H(r)1/2 dr
2

g(r)
(2.4)

Ψ = Ψ(r), A = Φ(r)dt (2.5)

We will henceforth consider a particular gauge where α = 0. In this gauge, the equation

of motion for the scalar field Ψ can be obtained as

Ψ′′
(
1− ηeχΦ′2

)
+
HeχΦ2

2g2

dG(Ψ)

dΨ
− ηHe2χΦ2Φ′2

2g2

dK(Ψ)

dΨ
+ Ψ′

(
2

r
+
g′

g
− χ′

2

)
−m

2H1/2Ψ

g
− ηΨ′

(
eχg′Φ′2

g
+
eχΦ′2χ′

2
+

2eχΦ′2

r
+ 2eχΦ′Φ′′

)
= 0 (2.6)

Similarly, we get the equation of motion for the zeroth component of the gauge field as

Φ′′
(

1− 2ηeχΦ2K(Ψ)

gH
+

2ηgΨ′2

H2

)
− Φ

(
2G(Ψ)

gH
+

2ηeχΦ′2K(Ψ)

gH

)
+Φ′

(
2ηg′Ψ′2

H2
+
ηgχ′Ψ′2

H2
+

4ηgΨ′2

rH2
+

4ηgΨ′Ψ′′

H2
+

2

r
+

2H ′

H
+
χ′

2

)
+2ηK(Ψ)Φ2Φ′

(
eχg′

g2H
− eχK(Ψ)′

gHK(Ψ)
− 3eχχ′

2gH
− 2eχ

rgH
− eχH ′

gH2

)
= 0 (2.7)

3In the rest of this paper, we perform the computations by setting L = 1 and q = 1.
4All numerical calculations in this paper are performed using MATHEMATICA routines. We find that in

some situations, a conformally equivalent metric ansatz ds2 = −g(r)e−ξ(r)dt2 +r2(dx2 +dy2)+ dr2

g(r)
reduces

the computation time considerably, while giving the same numerical results as when one uses eq. (2.4).
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Also, the equation of motion for the H field is given by

H ′′ +H ′
(

2

r
+
g′

g
− χ′

2
− H ′

H

)
+
eχH3Φ′2

2g
+

2H

2κ2g
(H − 1) = 0 (2.8)

Finally, the rr and the (tt− rr) components of Einstein equation give

g′ − gχ′ + g

r
− 3r

2
(H + 1) +

rgH ′

4H

(
g′

g
− H ′

4H
− χ′

)
+2κ2r

(
−He

χΦ2G(Ψ)

4g
+
H1/2m2Ψ2

4
− 3gH ′2

16H2
+

3ηgeχΦ′2Ψ′2

4

+
eχH2Φ′2

8
− ηHe2χΦ2Φ′2K(Ψ)

4g
− gΨ′2

4

)
= 0 (2.9)

2κ2r

(
HeχΦ2G(Ψ)

2g2
+

3H ′2

8H2
− ηHe2χΦ2Φ′2K(Ψ)

2g2
+

Ψ′2

2
− ηeχΦ′2Ψ′2

2

)
χ′ +

H ′

H
− 3rH ′2

8H2
+
rH ′χ′

4H
+
rH ′′

2H
= 0 (2.10)

In the above equations, we have explicitly suppressed the radial dependence of our vari-

ables, and the prime denotes a derivative with respect to the radial coordinate r. Let us

record the expression for the Hawking temperature of the black hole with the geometry in

equation (2.4), which is given by

TH =
g′(r)e−χ(r)/2

4π
√
H(r)

|r=rh (2.11)

where rh, the radius of the event horizon, is given by the solution of g(rh) = 0. Finally

therefore, we have five coupled differential equations which need to be solved with ap-

propriate boundary conditions. We impose the regularity conditions for Φ and Ψ at the

horizon

Φ(rh) = 0, Ψ′(rh) =
m2
√
H(rh)Ψ(rh)

g′(rh)
(
1− ηeχ(rh)Φ′2(rh)

) . (2.12)

Near the boundary these fields asymptote to the following expressions

Φ = µ− ρ

r
+ . . . , Ψ =

Ψ−
rλ−

+
Ψ+

rλ+
+ . . . χ→ 0, g → r2 + . . . , H → 1 + . . . (2.13)

where µ and ρ are interpreted as the the chemical potential and the charge density of the

boundary theory respectively, and λ± = 3±
√

9+4m2

2 . In this paper we consider a special

case with m2 = −2 which also implies λ± = 2, 1. Although m2 is negative but it is

above the Breitenlohner-Freedman (BF) bound m2 = −9/4 in four spacetime dimensions.

Now some interpretation of the boundary parameters in eq. (2.13) are in order. We will

interpret the leading falloff Ψ− as the source term and the subleading term Ψ+ ∼ O2 as

the VEV of the dual scalar operator. With m2 = −2, the meaning of Ψ− and Ψ+ can

also be interchangeable though this scenario is not considered in this paper. Since we want
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Figure 2. Variation of the condensate for

different values of η with fixed Σ = 10 and

2κ2 = 0.3 for 4D R-charged black hole back-

ground.
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Figure 3. Variation of the condensate for

different values of η with fixed Σ = 15 and

2κ2 = 0.3 for 4D R-charged black hole back-

ground.
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Figure 4. Variation of the condensate for dif-

ferent values of η with fixed Σ = 10 and 2κ2 = 0

for 4D R-charged black hole background.
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Figure 5. Variation of the condensate for dif-

ferent values of η with fixed Σ = 15 and 2κ2 = 0

for 4D R-charged black hole background.

to break the U(1) symmetry spontaneously, we will set the source term Ψ− = 0 as the

boundary condition.

In the equations of motion (2.6)–(2.10), we will consider particular forms of G(Ψ) and

K(Ψ):

G(Ψ) = Ψ2 + ξΨθ, K(Ψ) = Ψ2 + ΣΨγ (2.14)

As in [7], we are mostly interested in examining the phase structure of the boundary

superconductors with respect to η and Σ. For this reason we will set the other parameters

to a fixed value, in particular ξ = 0 and γ = 4, but we have checked for several examples

that a non zero value of ξ and different values of γ do not change the results qualitatively.

Now we present numerical results on the VGHS.5 In figures 2 and 3, we show the plots

of the condensate
√
〈O2〉 with a back reaction parameter 2κ2 = 0.3, for various values of

5For numerical convenience, we use the z = rh/r coordinate.
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η, with Σ = 10 and 15 respectively. In these figures, the red, green, blue, brown, orange,

magenta and cyan curves corresponds to η=0.01, −0.01, −0.1, −0.5, −1, −2 and −3,

respectively. One can notice the non zero value of the condensate below a certain critical

T/µ which indicates the onset of the superconducting phase. Above this T/µ, the system

is in the normal phase where the condensate is zero. We see from figures 2 and 3 that

there is an interesting window of first order phase transitions: as we decrease the higher

derivative coupling parameter η, the transition - which was of second order for positive

values of η - changes order, and it remains first order within a range of η. This range

appears to increase with an increase of the value of Σ. This is qualitatively indicated in

figures 2 and 3, where “transition A” refers to the order of the phase transition changing

from second to first, and the reverse for “transition B.”

In figures 4 and 5, we have also shown the condensate calculations for 2κ2 = 0, which

corresponds to the probe limit in our model. Analysis of these results indicate that the

backreaction parameter for the VGHS in R-charged black hole backgrounds makes the win-

dow in η, with in which the transition from normal to superconducting phase is first order,

narrower compared to the probe limit. This is in stark contrast with the results obtained

with the AdS-Schwarzschild black hole background, where increase in backreaction param-

eter makes the window in η wider compared to the probe limit [7]. This is a non-trivial

effect of the spin of the brane configuration.

In the same spirit, figures 6 and 7 show the condensate values for the VGHS, for the

same back reaction parameter, for various values of Σ, with η fixed at −0.1 and −3 respec-

tively. For both these graphs, the red, green, blue, brown and orange curves corresponds to

Σ=1, 5, 7, 10 and 15, respectively. We find that for a fixed value of η, the transition from

the normal to the superconductor phase does not have a window (where the transition is of

first order), contrary to the case of fixed Σ. In the present case, for small negative values

of η, the order of the transition changes from second to first, as one increases Σ. This

suggest the existence of a lower cutoff in Σ (Σc) above which the phase transition from the

normal to the superconducting phase is of first order. For further lower values of η, in the

range of Σ considered here, the normal to superconductor transition is always of second

order. Qualitatively, this was the behavior alluded to in the introduction, in figure 1. For

the sake of comparison with the VGHS in AdS-Schwarzschild black hole backgrounds, we

also note that the value of the cutoff Σc is larger for our R-charged background.

A word about the magnitude of the critical T/µ is in order. Normally, higher back-

reaction parameter makes the critical T/µ smaller, which generally implies that the back-

reaction makes the scalar condensation harder to form. This is also the case here. In a

similar manner, the critical value of T/µ also decreases for higher values of η but, on the

other hand, does not depends on Σ. This is expected from a physical ground in eq. (2.14),

since at the phase transition point Ψ is negligible and therefore Σ which comes with higher

powers of Ψ does not have any effect on critical T/µ. We mention here the overall behavior

of critical T/µ in R-charged black hole backgrounds for different value of κ and η, is the

same as in AdS-Schwarzschild black hole background but with higher magnitude. This

indicates that the scalar field instability is easier to form in a VGHS for spinning brane

configurations.
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Figure 6. Variation of condensate for different

values of Σ with fixed η = −0.1 and 2κ2 = 0.3

for 4D R-charged black hole background.
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Figure 7. Variation of condensate for different

values of Σ with fixed η = −3 and 2κ2 = 0.3 for

4D R-charged black hole background.

To check the validity of this result, it is worthwhile to understand the behavior of

the free energy in these cases. To highlight the essential physics, it is enough to consider

the probe limit, with κ2 = 0 and compute the Gibbs free energy of the boundary thermal

state by identifying the latter with the bulk on-shell action. As usual, one has to add a

boundary counter term to the on-shell action, and calculate the renormalized free energy.

Following this procedure, we find that the difference of free energy between the normal and

the superconducting phase is given by the expression

∆Ω = ΩSuperconductor − ΩNormal

= −µρ
4

+
1

2

∫ 1

0
dz

Φ(z)2Ψ(z)2

z4g(z)
+
η

2

∫ 1

0
dzz4g(z)Φ′(z)2Ψ′(z)2

−η
2

∫ 1

0
dz

Φ(z)2Φ′(z)2Ψ(z)2

g(z)

(
2 + 3ΣΨ(z)2

)
+
µ2

4

This difference of the free energy is plotted in figures 8 and 9 which use the same colour

coding as figure 2 and figure 7, respectively. The result is exactly as we expect. For fixed Σ,

we find a window of first order phase transitions, which is absent in the analysis with fixed

η. A similar result was obtained in [7] for VGHS in the AdS-Schwarzschild background.

We now proceed to calculate the optical conductivity of our boundary superconducting

system. We work with vector type perturbations in the metric and in the gauge field, with

gxt 6= 0, gxy 6= 0 and Ax 6= 0. The computation is standard: we assume the spatial and

time dependence of the perturbations to be of the form eiky−iωt, and work at the linearized

level. In this perturbation there are four independent equations. However in the limit

k → 0, which is appropriate to compute the optical conductivity, two of these independent

equations - namely the xt and the xy components of the Einstein equations - decouple.

After rearranging the other two equations, we find a second order differential equation for
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Figure 8. Difference in free energy between

the superconducting and normal phase in 4D R

charged background for fixed Σ = 10 and 2κ2 = 0

for different values of η. Here we have used the

same color coding as in figure 2.
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Figure 9. Difference in free energy between

the superconducting and normal phase in 4D

R charged background for fixed η = −0.1 and

2κ2 = 0 for different values of Σ. Here we have

used the same color coding as in figure 6.
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Figure 10. Real (solid lines) and imaginary

(dotted lines) part of conductivity for different

values of Σ with fixed η = −0.1 and 2κ2 = 0 for

4D R-charged black hole background.

5 10 15 20 25 30

Ω

Tc

-0.5

0.0

0.5

1.0

ΣHΩL

Figure 11. Real (solid lines) and imaginary

(dotted lines) part of conductivity for different

values of Σ with fixed η = −0.1 and 2κ2 = 0.3

for 4D R-charged black hole background.

Ax, which is given by

A′′x

(
1 +

2ηgψ′2

H2

)
+A′x

(
g′

g
+
H ′

H
− χ′

2

)
+
ηψ′2A′x
H2

(
4g′ − gχ′ + 4gψ′′

ψ′
− 2gH ′

H

)
+2κ2η2eχAx

(
−2e2χφ4φ′2K(Ψ)2

g3
+

4eχφ2φ′2ψ′2K(Ψ)

gH
− 2gφ′2ψ′4

H2

)
+Ax

(
eχHω2

g2
− 2G(Ψ)

gH
− 2κ2eχH2φ′2

2g

)
+ ηeχK(Ψ)Ax

(
−2eχω2φ2

g3

−2φφ′K(Ψ)′

gHK(Ψ)
− 2φ′2

gH
+

4κ2eχHφ2φ′2

g2
− φφ′χ′

gH
− 4κ2φ′2ψ′2

K(Ψ)
− 2φφ′′

gH

)
= 0

(2.15)
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where we have again suppressed the r-dependence. In order to solve this equation we

need to apply appropriate boundary conditions. At the horizon, we impose an infalling

boundary condition Ax α g(r)−iω/4πTh . At the asymptotic boundary, Ax behaves as

Ax = A(0)
x +

A
(1)
x

r
+ . . . (2.16)

Using the AdS/CFT prescription, one can identify the leading term A
(0)
x and the subleading

term A
(1)
x as the dual source and the expectation value of boundary current, respectively,

and the expression for the conductivity by calculating current-current correlator is given

by [26]

σ(ω) = − iA
(1)
x

ωA
(0)
x

The results are shown in figures 10 and 11, where we have fixed η = −0.1 and the red,

green, blue, brown and orange curves correspond to Σ=1, 5, 7, 10 and 15, respectively.

While figure 10 corresponds to the probe limit κ2 = 0, figure 11 is for a non-zero value of

the back reaction, 2κ2 = 0.3.6 From these figures, we can see the signature of the pole in

the imaginary part of the conductivity at ω = 0. It implies that, using Kramers-Kronig

relations which relate the real and imaginary part of the conductivity, the real part of the

conductivity has a delta function at ω = 0. However, this delta function is not visible

in the numerical calculations in figure 10 and 11 due to its infinitesimal width. Another

important observation from these figures is the magnitude of gap frequency to the critical

temperature, ωg/Tc ∼ 10, where ωg is defined as the frequency at which the imaginary

part of the conductivity is minimum. Interestingly, this ratio is relatively small compared

to the VGHS in AdS-Schwarzschild black hole background where ωg/Tc was found to be

nearly 20 [7]. This indicates that the boundary superconductor in an AdS-Schwarzschild

black hole background is more strongly coupled than its R-charged cousin. For different

value of η, the results for the conductivity are qualitatively similar.

3 5-D R-charged black hole backgrounds

For 5-D R-charged backgrounds, the procedure for constructing a VGHS is entirely similar

to what has been discussed in the previous section. We will relegate the details of the

computation here to appendix A, and simply present numerical results. Here we have

considered m2 = −15/4, which is again above the Breitenlohner-Freedman bound m2
BF =

−4 for the five dimensional AdS background.7

In figure 12, we have plotted the condensate as a function of the temperature for 5-

D R-charge backgrounds with a fixed values of Σ = 10 and the back reaction parameter

2κ2 = 0.3, for different values of the higher derivative coupling parameter η. Here, the

red, green, blue, brown, orange, magenta and cyan curves corresponds to η = 0.01, −0.01,

−0.1, −0.5, −1, −2 and −3, respectively. We again get a phase transition from normal

6Here the temperature is measured in units of ρ and we have chosen T = 0.2Tc.
7For the interpretation of various physical quantities, see appendix A.
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Figure 12. Variation of the condensate for dif-

ferent values of η with fixed Σ = 10 and 2κ2 = 0.3

for 5D R-charged black hole background.
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Figure 13. Variation of the condensate for

different values of Σ with fixed η = −0.1 and

2κ2 = 0 for 5D R-charged black hole background.
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Figure 14. Difference in free energy between

the superconducting and normal phase in 5-D R

charged background for fixed Σ = 10 and 2κ2 = 0

for different values of η.
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Figure 15. Difference in free energy between

the superconducting and normal phase in 5-D R

charged background for fixed η = −0.1 and 2κ2 =

0 for different values of Σ.

to superconducting phase below a critical T/µ and find a window in η for the first order

phase transitions. However, this window is relatively larger compared to the 4D R-charged

case (figure 2). The same scenario (not presented here) is observed in the probe limit also.

In the probe limit, the condensate is plotted for different values of Σ in figure 13,

where the red, green, blue, brown and orange curves correspond to Σ=1, 5, 7, 10 and 15,

respectively. We see that the results are qualitatively similar to our computation in the

4-D background with a lower cutoff parameter Σc, above which the transition is always of

first order.

These results were checked with the corresponding free energy calculations, which are

presented in figures 14 and 15. In both these figures, we have chosen the back reaction to

be zero, for illustration. In the former case, we get a window of first order phase transitions

which is absent in the latter thereby justifying the results we obtained by analysing the

condensate.
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4 HEE for very general holographic superconductors

In this section, we will compute the holographic entanglement entropy for very general

holographic superconductors. For the sake of completeness, we will first recapitulate a few

known facts. As mentioned in the introduction, entanglement entropy is a measure of the

correlation between two subsystems A and B of a given quantum system. Specifically, the

entanglement entropy of subsystem A is given by,

SA = −TrA(ρA ln ρA) . (4.1)

where ρA is the reduced density matrix of A, calculated by taking the trace over the degrees

of freedom of B, i.e, ρA = TrB(ρ), ρ being the density matrix of the full quantum system.

In a holographic setup, the Ryu-Takayanagi proposal states that the HEE of the subsystem

A living on the boundary of a (d+ 1) dimensional AdS space is given by,

SA =
Area(γA)

4GN
(4.2)

where GN is the gravitational constant in (d+1) dimension and γA is the (d−1) dimensional

minimal-area hypersuface which extends into the bulk and has the same boundary ∂A of

the subsystem A.

Several computations of the HEE has been performed using the Ryu-Takayanagi pre-

scription, and they are in good agreement with CFT results. For example, using standard

techniques, one can compute the EE for a subsystem of length l in a 2D CFT, which is

given by SA = c
3 ln l

ε where c is the central charge of the CFT and ε is an UV cut-off [23].

Instead, using AdS3/CFT2, if we apply the Ryu-Takayanagi formula for the HEE, we get

the same result, with c = 3R/2G
(3)
N , where R is radius of curvature of AdS3 and G

(3)
N is

the three dimensional gravitational constant.

Now we calculate the entanglement entropy of the VGHS and study the effect of

the higher derivative coupling term η and the model parameter Σ on its HEE. First,

as a warm up exercise, we calculate the HEE for the VGHS in an AdS-Schwarzschild

background. Since the necessary formulas were worked out in [7], we do not show them

here, but for completeness reproduce them in appendix B. The strategy of the computation

is standard. Having solved the coupled equations in the bulk and thus having found the

gravity solution both in the superconducting phase as well as in the normal phase, we

use the Ryu-Takayanagi prescription to determine the HEE for both the normal and the

superconducting phases. For this we consider our subsystem A to be a straight strip

residing on the boundary. The domain − l
2 ≤ x ≤ l

2 and 0 ≤ y ≤ L0, defines the strip

geometry on the boundary, where l is the size of region A and L0 is a regulator which

we can later set to infinity. Now we parameterize the minimal surface γA, which extends

in the bulk, by x = x(z) and calculate the area of this hypersurface using the metric of

eq. (B.4). This is given as

Area(γA) = L0

∫ l/2

−l/2

dx

z2

√
1 +

z′(x)2

f(z)
. (4.3)
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Minimization of this area functional yields,

1

z2

1√
1 + z′(x)2

f(z)

=
1

z2
∗

(4.4)

where z∗ is the turning point of the minimal area such that z′(x)|z=z∗ = 0. Finally, one

can obtain the entanglement entropy [5] as

S =
Area(γA)

4G4
=

2L0

4G4

∫ z∗

ε
dz
z2
∗
z2

1√
(z4
∗ − z4)f(z)

=
2L0

4G4
(s+

1

ε
) , (4.5)

with
l

2
=

∫ z∗

ε
dz

z2√
(z4
∗ − z4)f(z)

(4.6)

where in eq. (4.5) the first term s is the finite part of entanglement entropy. We also see

that the second term in this equation diverges as ε → 0 and z = ε defines the UV cutoff.

Since the finite part s does not depend on any cutoff, it is the quantity which is physically

important. So in the rest of our calculations, we will only deal with the finite part of the

entanglement entropy.

For comparison, We will first show the results for the condensate for AdS-Schwarzschild

black hole background, using the formulas presented in appendix B. Figure 16 shows how

the condensate grows as one decreases the temperature below the critical value of T/µ for

Σ = 5, where the red, green, blue, brown, orange, pink and cyan curves correspond to η =

0.01, -0.01, -0.1, -0.5, -1, -3, and -5 respectively. Figure 17 shows the behavior of condensate

as a function of temperature for η = −0.1 where the red, green, blue, brown and orange

curves correspond to Σ = 0, 1, 3, 5 and 7 respectively. For detail on the analysis of this

model, see [7].

Keeping in mind that the dimensionless quantities here are T
µ , s

µ and lµ, we first

examine how the HEE changes when we vary the temperature, while keeping the strip

width fixed. We set l
2µ = 1, Σ = 5, 2κ2 = 0.5 and consider different values of η. The

results are shown in figure 18 where the same color coding as figure 16 has been used,

and the solid black curve denotes the HEE for the normal phase. For η = 0.01, there is

a discontinuity in the slope of s at the critical value of T
µ , which indicates a second order

phase transition from normal to superconducting phase [6, 21].

As we decrease the value of η from 0.01 we see that s becomes multivalued near

the critical value of T/µ and that there is a discontinuous jump in the value of s at the

transition point, which indicates a first order phase transition [6]. If we continue to decrease

the value of η the transition again becomes of second order. Indeed, from figure 18 we see

that η = −0.1,−0.5,−1 give first order phase transitions, while η = −5 gives second order

phase transition. Thus, like the free energy calculations, the HEE in the VGHS also tells

us that for a fixed value of Σ and κ there exists a window in η where the transition from

the normal phase to the superconducting phase is of first order, but outside this window

the transition is of second order. This agrees perfectly with our result on condensate as a

function of temperature which is shown in figure 16. We notice that for a fixed value of
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Figure 16. Variation of the condensate for dif-

ferent values of η with fixed Σ = 5 and 2κ2 =

0.5 for 4D AdS-Schwarzschild black hole back-

grounds.
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Figure 17. Variation of the condensate for

different values of Σ with fixed η = −0.1 and

2κ2 = 0.5 for 4D AdS-Schwarzschild black hole

backgrounds.
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Figure 18. HEE for fixed l
2µ = 1, Σ = 5 and

2κ2 = 0.5 for different values of η.
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Figure 19. HEE for fixed l
2µ = 1, η = −0.1,

2κ2 = 0.5 for different values of Σ.

the strip width, the superconducting solution always has lower entanglement entropy than

the normal solution, consistent with our previous discussion. However for the VGHS in

R-charged black hole backgrounds, which we momentarily turn to, we will find that this

result can change, namely the HEE in the superconducting phase can be higher than that

in the normal phase.

Now we will analyze the HEE as a function of Σ, for fixed η. This is shown in figure 19,

where we have set l
2µ = 1 and 2κ2 = 0.5. In figure 19, the same color coding as in figure 17

has been used. We see that for Σ = 0 and 1, the transition is second order, but if we

increase the value of Σ, there is a discontinuous jump in s after a certain value of Σ,

indicating a first order transition. This implies that, for a fixed value of η and κ, there

exists a lower cut-off Σc above which the phase transition is always of first order. This

again agrees with our earlier findings. We have checked for a number of cases that as η

becomes more and more negative, the cut-off value Σc increases.
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Figure 20. HEE for T = 0.5 Tc, Σ = 5 and

2κ2 = 0.5 for different values of η.
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Figure 21. HEE for T = 0.5 Tc, η = −0.1 and

2κ2 = 0.5 for different values of Σ.

We record a further observation regarding the magnitudes of the entanglement entropy

s. At a fixed temperature as we increase Σ, s first decreases but if we continue to increase

the value of Σ, at a certain point s starts to increase. However, this behavior depends on

temperature. For example, at T
µ = 0.030 the entanglement entropy for Σ = 0 is greater than

that for Σ = 3. But at T
µ = 0.020 which is a relatively low temperature, the entanglement

entropy for Σ = 0 becomes less than that for Σ = 3. However, we mention here that for

very low temperatures, numerical calculations are not very trustworthy and therefore we

refrain from making any exact statement here.

To complete the analysis, we have also calculated the behavior of the entanglement

entropy s as a function of strip width l, at a fixed temperature. This is shown in figures 20

and 21, where we have set T = 0.5 Tc and 2κ2 = 0.5. The solid black line denotes the HEE

for normal phase. We see that for each case as we increase l, s monotonically increases

from a negative value and attains a positive value for large l.

We now turn to the computation of HEE in the VGHS in 4-D R-charged backgrounds,

considered in section 2. We take the same metric ansatz with back reaction as in eq. (2.4)

which we reproduce here for convenience

ds2 = −g(r)H(r)−1/2e−χ(r)dt2 +
H(r)1/2

g(r)
dr2 +H(r)1/2r2(dx2 + dy2) (4.7)

Now introducing z = 1/r, the above metric can be written as

ds2 = −g(z)H(z)−1/2e−χ(z)dt2 +
H(z)1/2

z4g(z)
dz2 +

H(z)1/2

z2
(dx2 + dy2) (4.8)

Here, z = 1 corresponds to the the horizon and z = 0 to the boundary. We can calculate

the HEE for the superconducting and the normal phase in the same way as we did with

the AdS-Schwarzschild background. For this we again take our subsystem A, residing on

the boundary, to be a straight strip and define its domain by − l
2 ≤ x ≤

l
2 and 0 ≤ y ≤ L0.

Parameterizing the minimal surface γA by x = x(z), we first calculate the area of this

– 18 –



J
H
E
P
1
2
(
2
0
1
4
)
1
3
5

hypersurface,

Area(γA) = L0

∫ l/2

−l/2

dx

z2

√
H(z)

(
1 +

z′(x)2

z2g(z)

)
. (4.9)

When we minimize the above area functional, we get the equation for the minimal surface√
H(z)

z2
√

1 + z′(x)2

z2g(z)

=

√
H(z∗)

z2
∗

(4.10)

where, as before, z∗ represents the turning point of the minimal surface such that

z′(x)|z=z∗ = 0. Finally, one can write down the entanglement entropy [5] as

S =
Area(γA)

4G4
=

2L0

4G4

∫ z∗

ε
dz
z2
∗
z3

H(z)√
(z4
∗H(z)− z4H(z∗))g(z)

=
2L0

4G4
(s+

1

ε
) , (4.11)

with
l

2
=

∫ z∗

ε
dz

z
√
H(z∗)√

(z4
∗H(z)− z4H(z∗))g(z)

(4.12)

In eq. (4.11) the first term s represents the finite part of the EE. Like our previous case

with the AdS Schwarzschild background, we will only concentrate on the computation of

the physically relevant finite part s of the EE.

First we study the behavior of the HEE with temperature, keeping the strip width fixed.

We set l
2µ = 1, η = −0.1, 2κ2 = 0.3 and take different values of Σ. The results are shown

in figure 22 where the black curve denotes the HEE for the normal phase. The curves with

red, green, blue, brown and orange color correspond to Σ = 1, 5, 7, 10 and 15 respectively.

The most important observation here is that the HEE in the superconducting phase is

greater than that for the normal phase, which seems to contradict expected behavior.

However, we remind the reader that as pointed out in the introduction, this may not have

anything to do with the number of degrees of freedom of the system. The issue needs

further understanding, and a computation in lines of [22] might be more helpful here,

but we do not undertake such an analysis in this paper. However, we point out that as

expected, a calculation of the free energy here shows that in the superconducting phase it

is smaller than that in the normal phase. This situation is not repeated in the VGHS in five

dimensional R-charged backgrounds, where we find the HEE in the superconducting phase

is smaller than the normal phase. Therefore, the higher magnitude of the HEE in our set

up seems to be a special property of four dimensional R-charged black hole background.

At this point we are unable to explain this behavior of HEE for the VGHS in four

dimensional R-charge backgrounds (as we elaborate shortly). However, the order of the

phase transition is clear from the figure and it is consistent with our previous result on

condensate as a function of temperature. For Σ = 1, 5 and 7, the slope in the HEE

shows a discontinuity at the critical value of T
µ , indicating a second order phase transition.

But as one increases the value of Σ from Σ = 7, the HEE becomes multivalued near the

critical value of T/µ, showing a discontinuous jump in s, which indicates a first order phase

transition.
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Figure 22. HEE for fixed l
2µ = 1, η = −0.1 and

2κ2 = 0.3 for different Σ.
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Figure 23. HEE for fixed l
2µ = 1, Σ = 15 and

2κ2 = 0.3 for different values of η.
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Figure 24. HEE for T = 0.5 Tc, η = −0.1

and 2κ2 = 0.3 for different values of Σ. Red,

green, blue and orange colors correspond to Σ =

1, 5, 7 and 15 respectively.
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Figure 25. HEE for T = 0.5 Tc, Σ = 15

and 2κ2 = 0.3 for different values of η. Green,

brown, orange and magenta correspond to η =

−0.01,−0.5,−1 and − 2 respectively.

Now taking η as the varying parameter, and fixing Σ, we show the HEE in figure 23,

where the black curve represent the HEE in the normal phase. Here we set l
2µ = 1,

Σ = 15, 2κ2 = 0.3. The curves with green, blue and cyan colors correspond to η =

−0.01,−0.1 and − 3 respectively. The window of first order transitions should be obvious,

but again, the HEE in the superconducting phase seems to be greater than that in the

normal phase.

It is difficult to pinpoint the physical reason for this behavior as the computations are

entirely numerical. If we set H = 1 in the 4-D R-charged background, we recover the usual

behavior for the HEE, as in AdS-Schwarzschild examples. Although this would suggest

that the difference in the R-charged background is due to the H(r) term in the metric, one

has to be careful before drawing any conclusion. This is because we have checked that the

nature of the functions g(r), H(r) and χ(r) are all qualitatively similar in the VGHS in
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four as well as five dimensional R-charged backgrounds. The fact that the HEE behaves

differently only in four dimensions is possibly due to the different nature of the coupled

differential equations in these systems. We do not have a better understanding of this as

of now.

We have also studied the behavior of entanglement entropy as a function of the strip

width l at a fixed temperature. The results are shown in figure 24 and 25 where we have

set T = 0.5 Tc and 2κ2 = 0.3. The behavior of the HEE with l is qualitatively similar to

that with the AdS-Schwarzschild background we have just studied. We find that for each

case as we increase l, s monotonically increases from negative values and attains a positive

values for large l.

5 Entangling temperature of holographic superconductors

While discussing HEE, it is very interesting to ask whether there exists here a “first law

of thermodynamics.” Recently, this question has been discussed in [25], where it is shown

that for a small subsystem, the change of the entanglement entropy is proportional to the

change of the energy of the subsystem and the proportionality constant, which is given by

the size of the entangling region, is interpreted as the inverse of the entangling temperature.

The procedure to establish this is to calculate the entanglement entropy and energy for

the excited state of a d-dimensional boundary CFT. The dual gravitational picture of

this excited state is the deformed AdS space. Since we want to calculate the entangling

temperature in our model of holographic superconductors, we will consider AdS black holes

with scalar hair as the deformed AdS space and as mentioned above this would correspond

to excited state of the boundary CFT. Then by calculating the change in entanglement

entropy (∆S) and the change in energy (∆E) of the boundary CFT due to this deformation,

one can calculate the entangling temperature.

The computation of entangling temperature in the context of holography involves a

number of steps. We will not mention the details here but refer the interested reader

to [27]. As considered in [25, 27], we choose our ground state in the CFT to be dual to

four dimensional pure AdS with metric

ds2 =
1

z2

(
−dt2 + dz2 + dx2 + dy2

)
(5.1)

and the entanglement entropy of the ground state with a subsystem of straight strip of

width (l) is given by

S
(0)
E =

2L0

4G4

[
1

ε
− 2π

l

(
Γ
(

3
4

)
Γ
(

1
4

))2 ]
(5.2)

The excited state of the boundary CFT (the superconducting phase) in our case will be

described by the following metric in the bulk,

ds2 =
1

z2

(
−f(z)e−χ(z)dt2 +

dz2

f(z)
+ dx2 + dy2

)
(5.3)
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Σ
∖
ai a3 a4 a5 a6 a7 a8 a9

0 -20.261 89.562 -166.732 148.364 -51.171 -7.991 7.229

1 -38.439 220.521 -524.026 639.927 -412.217 123.640 -10.404

3 -76.493 584.037 -1851.370 3124.140 -2967.180 1501.940 -316.077

5 -93.975 781.032 -2660.490 4786.60 -4814.06 2565.35 -565.479

7 -106.590 943.375 -3374.180 6321.33 -6578.09 3608.8 -815.656

Table 1. Coefficients of f(z), for fixed η = −0.1

The above metric can be considered as a thermal deformation of the pure AdS geome-

try (5.1) such that the boundary theory which now has a non-zero temperature corresponds

to an excited state. Our strategy here is to compute the form of f(z) and χ(z) numeri-

cally at a particular temperature (below Tc, so that we are in the superconductor phase)

and calculate the change in entanglement entropy caused by this deformation. In order

to calculate the change in energy of the subsystem, it is useful to cast the metric (5.3) in

Fefferman-Graham coordinates,

ds2 =
1

z2

(
dz2 + gµνdx

µdxν
)

(5.4)

where gµν = ηµν + hµν(x, z) with

hµν(x, z) = h(0)
µν (x) + z2h(2)

µν (x) + z3h(3)
µν (x) + · · · (5.5)

From the expansion it is clear that hµν(x, z) contains the information about the excited

state.

Now at a particular temperature, we fit the numerical solution of f(z) and χ(z) with

the polynomials

f(z) = 1 + a3z
3 + a4z

4 + · · ·
χ(z) = A2z

2 +A3z
3 +A4z

4 + · · · (5.6)

and calculate the coefficients ak and Ak for all k. Note that the form of f(z) and χ(z)

depend on the higher derivative coupling constant η, and that the model parameter Σ,

so the coefficients ak and Ak will also change accordingly. For example, for the AdS-

Schwarzchild black hole background, the polynomial coefficients that fit the curve f(z)

and χ(z) for T = 0.5Tc and η = −0.1, with the backreaction parameter 2κ2 = 0.5 are given

in tables (1) and (2).8

Similarly, the coefficients ai and Ai from polynomial fitting of f(z) and χ(z) at

T = 0.5 Tc, 2κ2 = 0.5, and Σ = 5, for different values of η, are shown in the following

tables (3) and (4):

8For ease of presentation, we have truncated some of the numbers that appear in the following tables.

An exact fit obtained by using a standard MATHEMATICA routine provides slightly more precise values.
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Σ
∖
Ai A2 A3 A4 A5 A6 A7

0 -0.830 9.744 -0.151 -31.346 36.772 -12.844

1 -2.790 34.691 -68.335 46.345 -2.647 -5.802

3 -6.319 87.75 -262.584 353.392 -228.937 58.165

5 -7.019 106.638 -345.949 501.759 -348.364 94.374

7 -6.569 117.047 -405.317 617.857 -446.948 125.367

Table 2. Coefficients of χ(z), for fixed η = −0.1

η
∖
ai a3 a4 a5 a6 a7 a8 a9

−0.01 -48.4672 303.385 -781.153 1051.61 -778.868 296.878 -44.380

−0.1 -93.9752 781.032 -2660.49 4786.6 -4814.06 2565.35 -565.479

−0.5 -72.6527 585.099 -1970.95 3531.54 -3548.66 1892.4 -417.783

−1 -51.9212 373.551 -1157.72 1936.37 -1834.96 930.064 -196.39

Table 3. Coefficients of f(z), for fixed Σ = 5

η
∖
Ai A2 A3 A4 A5 A6 A7

−0.01 -3.997 49.748 -108.541 92.630 -27.095 -1.053

−0.1 -7.019 106.638 -345.949 501.759 -348.364 94.374

−0.5 -4.188 69.8242 -229.024 334.125 -233.174 63.484

−1 -2.842 43.6855 -131.069 176.526 -114.738 29.323

Table 4. Coefficients of χ(z), for fixed Σ = 5

Now by substituting the form of f(z) and χ(z) into (5.3), we can cast it into the form

of (5.4) and therefore can calculate the coefficients h
(0)
µν (x), h

(2)
µν (x), h

(3)
µν (x) etc. Assuming

that h
(n)
µν ln � 1 throughout our calculation and following [27], we find the increase in

entanglement entropy of the excited state with respect to the ground state as

∆SE =
1

4G4

∫ z∗

0
dz
(

Γ(0) + Γ(2)z2 + Γ(3)z3 + · · ·
)

(5.7)

where ∫ z∗

ε
Γ(n)rn =

1

(1− n)ε1−n

∫
dx
(

Tr(h
(n)
ab )− h(n)

11

)
−F (2, 2− n)

ln−1

2n−1an−1
ζ

∫
dx

(
Tr(h

(n)
ab )− 2

n+ 1
h

(n)
11

)
(5.8)

with

F (m,n) =
2F1(1

2 ,
1−n
2m , 2m+1−n

2m , 1)

n− 1
, aζ =

√
πΓ
(

3
4

)
Γ
(

1
4

)
Here 2F1 is the Hypergeometric function and z∗ is the turning point with pure AdS geom-

etry. Now, using the prescription of [29, 30], the energy momentum tensor of the excited
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Figure 26. Tent vs l at T = 0.5 Tc, Σ = 5 and

2κ2 = 0.5 for different values of η.
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Figure 27. Tent vs l at T = 0.5 Tc, η = −0.1

and 2κ2 = 0.5 for different Σ.

state in the dual CFT side is given as

〈Tµν〉 =
3

16πG4
h(3)
µν (5.9)

We use the above expression to calculate the increase in energy of the excited state as

∆E =

∫
d2x〈∆Ttt〉. (5.10)

From the above discussion, it is clear that ∆E is always proportional to l. Using (5.7)

and (5.10), we calculate the entangling temperature as Tent = ∆E
∆SE

. In figure 26 we

have shown the variation of entangling temperature Tent as a function of the strip width

l for different values of η. The green, blue, brown and orange curves correspond to η =

−0.01,−0.1,−0.5 and − 1, respectively. Here we have fixed T = 0.5 Tc, Σ = 5 and

2κ2 = 0.5. We note that as one decreases the strip width, Tent increases and diverges

as l → 0. Physically, this corresponds to the fact that at zero strip width, there is no

entanglement.

Qualitatively similar behavior for Tent was observed in [25], where the authors found

Tent ∝ 1/l for AdS-Schwarzschild black hole (without any scalar hair). In our case, there

are a few differences. First, for the case of the non-hairy AdS-Schwarzschild black hole, only

h
(3)
µν (x) is non zero and therefore Tent is always proportional to 1/l. For the VGHS, higher

order terms in eq. (5.5) can be nonzero and therefore can modify the Tent ∝ 1/l relation.

Indeed this is what we see in figure 26. We can also calculate the departure of Tent from the

1/l behavior that appear in the four dimensional non-hairy AdS-Schwarzschild black hole

case. This is calculated as
T

(1)
ent−T

(2)
ent

T
(1)
ent

, where T
(1)
ent and T

(2)
ent are the entangling temperatures

for the non-hairy AdS-Schwarzschild case and the VGHS in the AdS-Schwarzschild cases,

respectively. From eq. (5.7), one can see that there is a contribution to the entanglement

entropy not only from Γ(0), Γ(2) and Γ(3), but also from the higher order terms. This

is because while expanding hµν(x) in eqn (33), one needs to consider the terms beyond
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h
(3)
µν (x). The appearance of these extra terms is what modifies the behavior of Tent. For

η = −0.01, Σ = 5 and T = 0.5Tc we find a departure of around 17% for l = 0.05 and 37%

for l = 0.1. However, the departure from Tent ∝ 1/l is not very large near criticality. For

small value of l, say l v 0.25, we find a departure of around 3% and for l v 0.6 we find a

departure of around 15% near Tc for the same values of η and Σ.

We also extend the analysis for different values of Σ for fixed η and κ, at T = 0.5Tc.

This is shown in figure 27 where the red, green, blue, brown and orange curves correspond

to Σ=0, 1, 3, 5 and 7, respectively.

For the VGHS in R-charge backgrounds, we ran into some difficulties with the above

procedure. This is due to the fact that fitting polynomials for f(z) and χ(z) are difficult

to obtain very precisely. Due to this, the entangling temperature could not be calculated

properly. We will not discuss this issue further.

6 Conclusions and discussions

In this concluding section, we will summarize our main results. First, we have constructed

a very general class of phenomenological models for holographic superconductors in single

R-charged black hole backgrounds, in four and five dimensions, including back reaction ef-

fects. The VGHS models constructed in this paper correspond to supergravity backgrounds

of rotating brane configurations, and hence non-trivially extend the ones considered in [7]

for the AdS-Schwarzschild case. We find that our models predict a rich phase structure in

the parameter space, with a window of first order phase transitions.9 As pointed out in

the text, this might be phenomenologically important in the understanding of the strongly

coupled behavior of superconductors. In the probe limit, the phase diagram of our model

is qualitatively shown in figure 1. Admittedly, the results contained in this paper cannot

be used to understand realistic physical phenomena as of now, but these further our under-

standing of phase transitions in holographic scenarios, and we only hope that they should

be useful in future experiments.

Next, we studied holographic entanglement entropy for our model, and found that the

HEE precisely captures the information about the phase transitions alluded to above. In

the window of parameters where a first order phase transition is predicted by a calculation

of the free energy, the HEE for the superconducting phase is multi valued, and is single

valued outside. However we find that in the four dimensional example that we have worked

out, the HEE seems to be higher in the superconducting phase, contrary to results that

appear in the literature. Since the results are completely numerical, it is difficult to pinpoint

the exact reason for this.

Finally, we studied the entangling temperature for generalized holographic supercon-

ductors in the AdS Schwarzschild background. We found that the temperature shows

deviation from a pure AdS background, and that these are dependent on the model pa-

rameters. We were unable to perform this calculation in R-charged backgrounds, as it was

9For AdS-soliton backgrounds appropriate for studying insulator-superconductor phase transitions, we

find that the VGHS does not show any such window.
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difficult to obtain exact fits to the metric components here. This case needs to be further

investigated.

It will be interesting to calculate the optical response properties of the VGHS in R-

charge backgrounds, analogous to what was done in [7, 15]. It might also be useful to

consider different types of higher derivative couplings in holographic models. We leave

these issues for a future publication.
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A Details of 5-D single R-charged black hole backgrounds

In this appendix, we present the details of our calculations for holographic superconductors

in 5-D R-charged black hole backgrounds. We start with the action

S =

∫
d5x
√
−g
[

1

2κ2

(
R+ 4

(
H2/3 + 2H−1/3

))
− H4/3

8
FµνFµν − 1

3

(∂H)2

H2

−1

2
|DΨ̃|2 − 1

2
m2|Ψ̃|2 − η

2
|FµνDνΨ̃|2

]
(A.1)

Now writing the charged scalar field as Ψ̃ = Ψeiα and following section 2, the action of

eq. (A.1) can be generalized as

S =

∫
d5x
√
−g
[

1

2κ2

(
R+ 4

(
H2/3 + 2H−1/3

))
− H4/3

8
FµνFµν − 1

3

(∂H)2

H2

−(∂µΨ)2

2
− η

2
Fµν∂

νΨFµσ∂σΨ− m2Ψ2

2
− |G(Ψ)|(∂α− qA)2

2

−η
2
|K(Ψ)|

(
Fµν(∂να− qAν)

)2]
(A.2)

For 5-D background we will consider the following ansatz

ds2 = −g(r)H(r)−2/3e−χ(r)dt2 +H(r)1/3r2(dx2 + dy2 + dz2) +H(r)1/3 dr
2

g(r)
(A.3)

Equation of motion for the scalar field Ψ

Ψ′′
(

1− ηeχH1/3Φ′2
)

+
HeχΦ2

2g2

dG(Ψ)

dΨ
− ηH4/3e2χΦ2Φ′2

2g2

dK(Ψ)

dΨ

−ηH1/3eχΨ′
(
g′Φ′2

g
+
χ′Φ′2

2
+
H ′Φ′2

3H
+

3Φ′2

r
+ 2Φ′Φ′′

)
−m

2H1/3Ψ

g
+ Ψ′

(
3

r
+
g′

g
− χ′

2

)
= 0 (A.4)
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Equation of motion for the zeroth component of the gauge field

Φ′′
(

1− 2ηeχΦ2K(Ψ)

gH2/3
+

2ηgΨ′2

H5/3

)
− Φ

(
2G(Ψ)

gH
+

2ηeχΦ′2K(Ψ)

gH2/3

)
+

2ηgΨ′2Φ′

H5/3

(
g′

g
+
χ′

2
+
H ′

3H
+

3

r
+

2Ψ′′

Ψ′

)
+ Φ′

(
3

r
+

2H ′

H
+
χ′

2

)
+

2ηeχK(Ψ)Φ2Φ′

gH2/3

(
g′

g
− K(Ψ)′

K(Ψ)
− 3χ′

2
− 3

r
− 4H ′

3H

)
= 0 (A.5)

H-filed equation of motion

H ′′ +H ′
(

3

r
+
g′

g
− χ′

2
− H ′

H

)
+
eχH3Φ′2

2g
+

4H

2κ2g
(H − 1) = 0 (A.6)

Similarly the Einstein equations give

g′ +
2g

r
− 4r

3
(H + 2) +

rg′H ′

6H
+
gH ′

H
− 5rgH ′2

18H2
+
rgH ′′

3H

+2κ2r

(
HeχΦ2G(Ψ)

6g
+
H1/3m2Ψ2

6
+
gH ′2

9H2
+
ηgH1/3eχΦ′2Ψ′2

6
+
eχH2Φ′2

12

−ηH
4/3e2χΦ2Φ′2K(Ψ)

2g
+
gΨ′2

6

)
= 0 (A.7)

2κ2r

(
HeχΦ2G(Ψ)

3g2
+

2H ′2

9H2
− ηH4/3e2χΦ2Φ′2K(Ψ)

3g2
+

Ψ′2

3
− ηH1/3eχΦ′2Ψ′2

3

)
χ′
(

1 +
rH ′

6H

)
+
H ′

H
− 2rH ′2

9H2
+
rH ′′

3H
= 0 (A.8)

here again prime denotes a derivative with respect to r and also r dependence of each

variable is suppressed. The hawking temperature for background with the metric (A.3) is

given by

TH =
g′(r)e−χ(r)/2

4π
√
H(r)

|r=rh (A.9)

To solve these five coupled differential equations we impose the following boundary condi-

tions

Φ(rh) = 0, Ψ′(rh) =
m2H(rh)1/3Ψ(rh)

g′(rh)(1− ηH(rh)1/3eχ(rh)Φ′2(rh))
. (A.10)

Near the boundary these fields asymptote to the following expressions

Φ = µ− ρ

r2
+ . . . , Ψ =

Ψ−
rλ−

+
Ψ+

rλ+
+ . . . χ→ 0, g → r2 + . . . , H → 1 + . . . (A.11)

here λ± = 4±
√

16+4m2

2 .
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B Necessary formulas for the VGHS in 4-D AdS-Schwarzschild back-

grounds

We consider the following action

S =

∫
d4x
√
−g
[

1

2κ2

(
R+

6

L2

)
− 1

4
FµνFµν − 1

2
|DµΨ̃|2

−1

2
m2|Ψ̃|2 − η

2
|FµνDνΨ̃|2

]
(B.1)

As in section 2, we rewrite Ψ̃ = Ψeiα and the action becomes

S =

∫
d4x
√
−g
[

1

2κ2

(
R+

6

L2

)
− 1

4
FµνFµν − (∂µΨ)2

2
− m2Ψ2

2

−η
2

Fµν∂
νΨFµσ∂σΨ− Ψ2(∂α− qA)2

2
− η

2
Ψ2

(
Fµν(∂να− qAν)

)2]
(B.2)

Now we replace |Ψ|2 by two different analytic functions of Ψ, G(Ψ) and K(Ψ), keeping in

mind that the gauge invariance should be preserved. Thus we have our generalized action,

S =

∫
d4x
√
−g
[

1

2κ2

(
R+

6

L2

)
− 1

4
FµνFµν − (∂µΨ)2

2
− η

2
Fµν∂

νΨFµσ∂σΨ

−m
2Ψ2

2
− |G(Ψ)|(∂α− qA)2

2
− η

2
|K(Ψ)|

(
Fµν(∂να− qAν)

)2]
(B.3)

We take the background metric as,

ds2 = −r2f(r)e−χ(r)dt2 +
dr2

r2f(r)
+ r2(dx2 + dy2) (B.4)

with the following ansatz

Ψ = Ψ(r), A = Φ(r)dt . (B.5)

The Hawking temperature of the black hole is given by

TH =
r2f ′(r)e−χ(r)/2

4π
|r=rh (B.6)

where f(rh) = 0 defines the radius of the event horizon, rh.

The equations of motion for the scalar field Ψ(r) and the gauge field Φ(r) are,

Ψ′′
(

1− ηeχΦ′2
)

+ Ψ′
(4

r
+
f ′

f
− χ′

2
− ηeχf ′Φ′2

f
− η

2
eχΦ′2χ′ − 4ηeχΦ′2

r

−2ηeχΦ′Φ′′
)

+
Φ2eχ

2r4f2

dG(Ψ)

dΨ
− ηΦ2e2χΦ′2

2r4f2

dK(Ψ)

dΨ
− m2Ψ

r2f
= 0 (B.7)

Φ′′
(

1 + ηr2fΨ′2 − ηK(Ψ)Φ2eχ

r2f

)
+ Φ′

(
ηr2f ′Ψ′2 +

1

2
ηr2fχ′Ψ′2 + 4ηrfΨ′2

+2ηr2fΨ′Ψ′′ +
χ′

2
+

2

r

)
+ ηΦ2Φ′

(K(Ψ)eχf ′

r2f2
− eχK(Ψ)′

r2f
− 3K(Ψ)eχχ′

2r2f

)
−Φ
(G(Ψ)

r2f
+
ηK(Ψ)eχΦ′(r)2

r2f

)
= 0 (B.8)

– 28 –



J
H
E
P
1
2
(
2
0
1
4
)
1
3
5

Moreover, the (t, t) and (r, r) components of Einstein equation are

f ′ + 2κ2r

(
1

4

G(Ψ)Φ2eχ

r4f
− 3η

4

K(Ψ)Φ2e2χΦ′2

r4f
+

1

4
ηfeχΦ′2Ψ′2

+
1

4
fΨ′2 +

1

4

m2Ψ2

r2
+

1

4

eχΦ′2

r2

)
− 3

r
+

3f

r
= 0 (B.9)

χ′ + 2κ2r

(
G(Ψ)Φ2eχ

2r4f2
− ηK(Ψ)Φ2e2χΦ′2

2r4f2
− 1

2
ηeχΦ′2Ψ′2 +

1

2
Ψ′2
)

= 0 (B.10)

In the above equations again we have set q = 1 and chosen the gauge α = 0. Also, the

prime symbol indicates a derivative with respect to r.

We solve these four coupled differential equations using appropriate boundary condi-

tions. At r = rh, Φ = 0. Near the boundary they behave as

Φ = µ− ρ

r
+ . . . , Ψ =

Ψ−
rλ−

+
Ψ+

rλ+
+ . . . , χ→ 0, g → r2 + . . . (B.11)

We rewrite all the coupled equations in terms of z = rh/r and using the above boundary

conditions we solve them numerically. Also, we will take the same values of ξ, θ and γ as

in [7], i.e, ξ = 0, θ = 4, γ = 4. At high temperature the condensate will vanish, so Ψ = 0.

The solution becomes

Ψ = 0 , χ = 0 , Φ = µ(1− z) , f = 1− z3

(
1 +

κ2µ2

2

)
+
z4κ2µ2

2
(B.12)

The temperature is given by

T =
1

4π
(3− κ2µ2

2
) . (B.13)
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