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1 Introduction

Supersymmetric field theories on curved backgrounds with rigid supersymmetries are in an

intermediate position between locally supersymmetric field theories coupled to supergravity

and those in flat space. Although these theories describe field dynamics in curved space-

time, they share many properties of corresponding field theories in flat space, in particular,

when the theory is (super)conformal and the background is conformally flat. In such

cases results of quantum computations performed in curved (compact) backgrounds can

be extrapolated to the flat-space field theory.

For field theories on curved backgrounds with rigid supersymmetry there is a special

tool which allows one to compute quantum objects, such as the partition function, cor-

relators or Wilson loops exactly, beyond the perturbation theory. This is the so-called

localization method (see e.g. [1] for a review and references) whose efficiency was exploited

by Pestun [2] for studying non-perturbative aspects of four-dimensional superconformal

field theories on S4. Subsequently, this technique was extended to field theories in diverse

dimensions and to other interesting curved supersymmetric backgrounds. It has proved to

be one of the most powerful approaches to study quantum dynamics of supersymmetric

field theories non-perturbatively.

These developments brought into the foreground the problem of a systematic construc-

tion of classical actions for field models on curved backgrounds with rigid supersymmetry,

which until recently was mainly of an academic interest. Within the component field for-

mulation, the systematic approach for solving this problem was developed in [3–6]. The

prescription is to couple a supersymmetric field model to off-shell supergravity (which re-

quires the presence of auxiliary fields) and then to ‘freeze’ a supergravity background such

that it preserves some number of supersymmetries. In the limit of large Plank mass the

gravity fluctuations decouple and one is left with the field theory model on the fixed curved

background which, by construction, respects the supersymmetries of the background.

Within the superfield formulation of supergravity and supersymmetric field theories

(see, e.g., [7, 8]) the prescription of [3] is carried out straightforwardly, since the superfield

formulations include all the necessary auxiliary fields which automatically receive correct

values when one fixes the superfield background. So, in superspace one can, in principle,

construct any field theory on curved background with rigid supersymmetries when the cor-

responding superfield actions in flat superspace are available and a curved superbackground

possessing superisometries is chosen.

The problem is to solve superfield supergravity constraints for a given superbackground

and to find an explicit form of the superfield objects, such as supervielbeins and super-

connections, which encode its geometry. This problem is drastically simplified when the

background superspace has the structure of a supercoset manifold G/H (as e.g. a super-

sphere, or an AdS superspace) with G being the isometry supergroup and H being its

stability subgroup. In these cases the superbackground geometry is described by Cartan

superforms on G/H, which satisfy corresponding Maurer-Cartan equations. The deriva-

tion of an explicit form of the G/H Cartan superforms as series expansions in powers

of Grassmann-odd coordinates is carried out by conventional group-theoretical methods.
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Once this is done, it is straightforward to consider field models in such a curved superspace.

We will follow exactly this strategy and develop basic methods for studying some classical

and quantum aspects of such theories.

We will mainly consider three-dimensional gauge and matter field theories with N = 2

supersymmetry, i.e. with four supercharges, on the round S3 sphere, but will also discuss

N = 2 superfield formulations of N = 4, 6 and 8 supersymmetric theories. The appro-

priate superspace with four Grassmann-odd directions, whose bosonic subspace is S3, is

the supercoset SU(2|1)/U(1). For this supercoset we construct explicitly all the basic geo-

metric objects such as supervielbeins, superconnection, supertorsion and supersymmetric

covariant derivatives. We consider superfield actions on SU(2|1)/U(1) which are, in fact,

Euclidean counterparts of superfield models in an AdS3 superspace considered in [9–12].

Next, we develop methods of quantum one-loop computations for such superfield theories

and show how to apply the localization technique to the Chern-Simons theory in N = 2

superspace which was considered originally in [13, 14] employing conventional component

fields.

The superspace and superfield techniques allow us to make several simple observations

about field theories on S3 with rigid supersymmetries. For instance, we find that the

supervolume of SU(2|1)/U(1) vanishes,∫
d3xd2θd2θ̄ E = 0 , (1.1)

where E = BerEM
A is the Berezinian of the SU(2|1)/U(1) supervielbein. In particular,

for the N = 2 super-Yang-Mills theory this fact trivializes the problem of finding critical

points, i.e. the values of (super)fields for which the SYM action vanishes,

0 = SSYM ∝ tr

∫
d3xd2θd2θ̄ E G2 ⇒ G = const. (1.2)

Here G is the superfield strength of the N = 2 gauge superfield V (x, θ, θ̄). In components

this superfield starts with the scalar σ(x) which is part of the N = 2, d = 3 gauge

supermultiplet. As we will show, in a certain supersymmetric gauge the vanishing of the

SU(2|1)/U(1) supervolume also trivializes the contribution of the gauge supermultiplet into

the SYM partition function which acquires non-trivial structure due to Faddeev-Popov and

Nielsen-Kallosh ghosts.

We will also show that the geometry of the supercoset SU(2|1)/U(1) is superconfor-

mally flat. This property is useful for extending quantum superfield methods from flat

superspace to SU(2|1)/U(1).

When constructing an N = 4 supersymmetric extension of the N = 2 SYM theory on

S3 by adding to the latter a chiral matter superfield, we come across the fact that when

the chiral superfield carries a non-zero N = 2 R-charge, the invariance of the SYM action

under N = 4 supersymmetry, in general, requires the presence of a Chern-Simons term

(see section 4.1 for details). In the component formulation this fact was first noticed in [15]

using SU(2)R symmetry arguments. In this paper we will present an explicit form of the

N = 4 supersymmetry transformations on S3, which to the best of our knowledge have

not been given in the literature before.
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Finally, we point out that the superfield approach is quite useful at the quantum

level. The localization method effectively reduces functional integrals to the problem of

computing one-loop determinants of operators of quadratic fluctuations of bosonic and

fermionic fields around critical points (see, e.g., [16] for a review). As a rule, these one-loop

determinants are given by simple elementary functions since many bosonic and fermionic

modes cancel against each other due to supersymmetry. As we will show, in the superfield

gauge theories on S3 the one-loop determinants correspond to supersymmetric operators

acting on superfields propagating on the coset SU(2|1)/U(1). For such operators the pairing

of bosonic and fermionic modes is automatic, since the gauge fixing is supersymmetric. This

is a useful feature of the superspace approach.

The main part of this paper is organized as follow. In section 2 we consider the geom-

etry of the supercoset SU(2|1)/U(1). In particular, we construct in a suitable chiral basis

the supervielbeins, supercurvature, supercovariant derivatives and the Killing supervector.

The geometry of SU(2|1)/U(1) is shown to be superconformally flat. In section 3 we in-

troduce classical N = 2 superfield actions for gauge and matter fields on SU(2|1)/U(1).

Section 4 is devoted to constructing N = 2 superfield actions for models with extended

supersymmetry, such as N = 4 SYM and Gaiotto-Witten theories, N = 8 SYM and N = 6

ABJM theory. In section 5 we develop superfield methods of one-loop quantum computa-

tions inN = 2 SYM and chiral matter models on SU(2|1)/U(1) and use them, in particular,

for computing one-loop partition functions. In section 6 we consider how the localization

techniques works for the N = 2 Chern-Simons theory in the superfield form. Section 7 is

devoted to discussions of the results and perspectives. In appendices we collect details of

direct computations of determinants of supersymmetric operators and revisit component

field calculations of the SYM partition function.

2 SU(2|1)/U(1) supergeometry

2.1 su(2|1) superalgebra

We are interested in field theories on S3 which are invariant under the SU(2|1) supergroup.

We would like to describe these theories in a superspace whose isometries include SU(2|1).1

So, we need a superspace with three bosonic variables xm, m = 1, 2, 3 and four Grassmann-

odd variables θµ, θ̄µ, µ = 1, 2 such that its bosonic body is the sphere S3. The SU(2)×SU(2)

isometry of S3 naturally embeds into the supergroup SU(2|1) × SU(2), so one can realize

the superspace in question as the supercoset

SU(2|1)× SU(2)

U(1)× SU(2)
. (2.1)

Formally, the SU(2) factors cancel against each other. Hence, we can obtain the same

superspace by considering a simpler coset

SU(2|1)

U(1)
. (2.2)

1For the construction of quantum mechanical models on different cosets of SU(2|1) see e.g. [17, 18] and

references therein.
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The only price for this is that not all the SU(2) × SU(2) isometries of S3 are explicit

in this case. However, the second SU(2) symmetry is realized as the group of external

automorphisms of the su(2|1) algebra and, hence, can be easily included in the construction.

The su(2|1) (anti)commutation relations are

[Ma,Mb] =
2i

r
εabcMc ,

[Ma, Qα] = −1

r
(γa)

β
αQβ , [Ma, Q̄α] = −1

r
(γa)

β
αQ̄β ,

{Qα, Q̄β} = γaαβMa +
1

r
εαβR , [R,Qα] = −Qα , [R, Q̄α] = Q̄α (2.3)

(all other (anti)commutators vanish.) Here Ma, (a = 1, 2, 3) are three generators of the

SU(2) subgroup, while R is the U(1) R-symmetry generator and Qα and Q̄α, (α = 1, 2)

are the Grassmann-odd supersymmetry generators. The parameter r is the radius of the

sphere and (γa)βα are the Pauli matrices. For the details on our notation and conventions

see appendix A.

The group of the external SU(2) automorphisms of the su(2) algebra is generated by

an independent set of three generators La

[La, Lb] = 2iεabcLc , (2.4)

whose commutation relations with the SU(2|1) generators are

[La,Mb] = 2iεabcMc , [La, Qα] = −(γa)
β
αQβ , [La, Q̄α] = −(γa)

β
αQ̄β [La, R] = 0 .

(2.5)

The generators Ma and La form the SO(4) ∼ SU(2) × SU(2) isometry of S3 with the

two SU(2)’s being generated by Ma and (La −
√
rMa), respectively. Note that the latter

commute with the whole SU(2|1).

In the limit r → ∞ the algebra (2.3), (2.4) and (2.5) reduces to the standard three-

dimensional Euclidean “Poincaré” superalgebra in which Ma play the role of commuting

momenta operators and La generate the SO(3) ∼ SU(2) rotations in flat 3d space.

The superalgebra (2.3) is invariant under the following Hermitian conjugation of the

generators

(Ma)
† = Ma , R† = R , (Qα)† = Q̄α . (2.6)

Note that the spinor index changes its position under the conjugation since the spinor

group is SU(2).

In the rest of this section we will derive, using the superalgebra (2.3), an explicit form

of supersymmetric vielbeins, connections, torsion, curvature and covariant derivatives on

the supercoset SU(2|1)/U(1) with the aim of using them afterwards for the construction of

superfield actions.

2.2 Supervielbein

Let zM = (xm, θµ, θ̄µ) be local coordinates parametrizing the supercoset SU(2|1)/U(1). In

principle, the coordinates θµ and θ̄µ can be related to each other by complex conjugation,
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(θµ)∗ = θ̄µ, in accordance with the conjugation rules (2.6) of the operators Qα and Q̄α.

However, in a d = 3 superspace with the metric of Lorentzian signature the spinor group

is SL(2,R) and the spinor index does not change its position under conjugation. We wish

to consider superfield models on SU(2|1)/U(1) which are related by Wick rotation to the

corresponding models in the AdS3 superspace, considered, e.g., in [9–12]. Clearly, such

Wick-rotated models are not necessary real under the conjugation (2.6). Therefore, in

what follows we will treat the complex coordinates θµ and θ̄µ as independent ones, i.e. not

related to each other by the complex conjugation.

The SU(2|1)/U(1) supervielbein is given by the set of one-forms,

EA = dzMEM
A(z) , EA = (Ea, Eα, Ēα) . (2.7)

They are components of the SU(2|1) Cartan form

G−1dG = iEaMa + iEαQα + iĒαQ̄α + iΩ(R)R ≡ ω , (2.8)

where G(zM ) is a representative of the supercoset SU(2|1)/U(1) and Ω(R) is the U(1)-

connection. In particular, one can consider the following coset representative

G = b(x)f(θ, θ̄) , b(x) = eix
mMm , f(θ, θ̄) = eiθ

αQαeiθ̄
βQ̄β , (2.9)

such that

G−1dG = f−1(d+ iea(x)Ma)f , (2.10)

where ea(x) = dxmeam(x) is the bosonic vielbein on S3 ∼ SU(2). Applying the algebra (2.3)

we find the components of the supervielbein in the decomposition (2.8) explicitly,2

Eα = dθα ,

Ēα = dθ̄α − 1

r
dθα θ̄2 ,

Ea = ea − idθαγaαβ θ̄β , (2.11)

where d is the Killing-spinor covariant differential,

dθα = dθα − i

r
ea(γa)

α
βθ

β , d2 = 0 . (2.12)

The U(1)-connection of the R-symmetry has also very simple form,

Ω(R) = − i
r
dθαθ̄α = − i

r
Eαθ̄α . (2.13)

It is easy to see that the SU(2|1)/U(1) supergeometry constructed in this way has

a smooth flat limit at r → ∞. Note that the components Eα and Ēα enter in (2.11)

asymmetrically. Therefore we refer to the basis defined by the coset representative (2.9)

as the chiral basis.

2We use the following conventions for the contractions of spinor indices: θ2 = θαθα, θ̄2 = θ̄αθ̄α. The

spinor indices are raised and lowered by the rules θα = εαβθ
β , θα = εαβθβ , ε12 = −ε12 = 1, see appendix A.

– 6 –



J
H
E
P
0
4
(
2
0
1
4
)
1
0
2

Consider now the inverse supervielbein, i.e. the differential operator of the form

EA = EA
M∂M , EA

MEM
B = δBA . (2.14)

In the chiral coordinates corresponding to the choice of the coset representative (2.9) its

components have the following explicit form

Ea = ∂a +
i

r
(γa)

α
βθ

β∂α +
i

r
(γa)

α
β θ̄

β ∂̄α ,

Eα = ∂α + iγaαβ θ̄
β∂a −

1

r
θβ θ̄β∂α +

1

r
θαθ̄

β∂β −
1

2r
θ̄2∂̄α ,

Ēα = ∂̄α . (2.15)

Here ∂a = ema (x)∂m is the differential operator on S3 with the commutation relations

[∂a, ∂b] = −2
rεabc∂c. The differential operators (2.15) obey the following algebra

{Eα, Ēβ} = iγaαβEa +
1

r
θ̄αĒβ , {Eα, Eβ} = −2

r
θ̄(αEβ) ,

[Ea, Ēα] = − i
r

(γa)
β
αĒβ , [Ea, Eα] = − i

r
(γa)

β
αEβ ,

[Ea, Eb] = −2

r
εabcEc . (2.16)

It is interesting to note that the Berezinian of the supervielbein is independent of the

Grassmann variables,

E ≡ BerEM
A = det eam(x) =

√
h(x) , (2.17)

where h(x) = dethmn(x) and hmn(x) is a purely bosonic metric on S3. The expres-

sion (2.17) is obtained for a particular choice of the coset representative (2.9), i.e. it cor-

responds to the chiral coordinates on SU(2|1)/U(1). However, the coordinate-independent

consequence of (2.17) is the fact that the supervolume of the supercoset SU(2|1)/U(1)

vanishes ∫
d3xd2θd2θ̄ E = 0 . (2.18)

In section 2.5 this property will also be checked in a different (superconformally flat) basis.

2.3 Connection, torsion and curvature

By construction, the differential form ω given in (2.8) obeys the Maurer-Cartan equation,

dω +
1

2
[ω, ω] = 0 . (2.19)

The corresponding equations for the components of the supervielbein EA and the U(1)

connection Ω(R) are

dEa − 1

r
εabcEb ∧ Ec − iEα ∧ Ēβγaαβ = 0 ,

dEα − iΩ(R) ∧ Eα −
i

r
Ea ∧ Eβ(γa)

α
β = 0 ,

dĒα + iΩ(R) ∧ Ēα −
i

r
Ea ∧ Eβ(γa)

α
β = 0 ,

dΩ(R) −
i

r
εαβE

α ∧ Ēβ = 0 . (2.20)

– 7 –
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Let us introduce the superconnection ΩAB with the following non-vanishing compo-

nents Ωab, Ωα
β and Ω̄α

β :

Ωab =
1

r
εabcEc ,

Ωα
β = − i

2r
(γa)αβE

a − iδαβΩ(R) ,

Ω̄α
β = − i

2r
(γa)αβE

a + iδαβΩ(R) . (2.21)

The superconnestion Ω appears in the covariant differential,

D = d+ Ω . (2.22)

In particular, the equations (2.20) take the form

DEA = dEA + ΩAB ∧ EB = TA , (2.23)

where the supertorsion TA has the following components

T a = iγaαβE
α ∧ Ēβ ,

Tα =
i

2r
(γa)

α
βE

a ∧ Eβ ,

T̄α =
i

2r
(γa)

α
βE

a ∧ Ēβ . (2.24)

Given the superconnection ΩAB we construct the supercurvature,

RAB = dΩAB + ΩAC ∧ ΩCB , (2.25)

or, explicitly,

Rab = dΩab + Ωac ∧ Ωcb =
1

r2
Ea ∧ Eb +

i

r
εabcγcαβE

α ∧ Ēβ ,

Rαβ = dΩα
β + Ωα

γ ∧ Ωγ
β

= − i

4r2
εabc(γc)αβE

a ∧ Eb − 1

2r
(δαρ εβσ + δασεβρ − 2δαβ ερσ)Eρ ∧ Ēσ ,

R̄αβ = dΩ̄α
β + Ω̄α

γ ∧ Ω̄γ
β

= − i

4r2
εabc(γc)αβE

a ∧ Eb − 1

2r
(δαρ εβσ + δασεβρ + 2δαβ ερσ)Eρ ∧ Ēσ . (2.26)

These equations can be rewritten in one line,

R = − i

4r
MabEa ∧ Eb +

(
1

2
Maγaαβ −Rεαβ

)
Eα ∧ Ēβ , (2.27)

where we assume that the momentum operator Mab acts on the tangent space vectors va

and spinors ψα by the rule

Mavb =
2i

r
εabcvc , Maψα =

1

r
(γa)αβψ

β . (2.28)

The R-symmetry generator acts on a complex superfield Φ as follows

RΦ = −qΦ , RΦ̄ = qΦ̄ , (2.29)

where q is the R-charge of the field.

– 8 –
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2.4 Covariant derivatives

Consider the covariant derivatives on the supercoset SU(2|1)/U(1),

DA = EA + ΩA = (Da,Dα, D̄α) . (2.30)

They appear in the decomposition of the covariant differential (2.22) in the tangent-space

basis formed by the supervielbein,

D = d+ Ω = EADA = EaDa + EαDα + ĒαD̄α . (2.31)

To find the algebra of the covariant derivatives we use the fact that the covariant

differential squares to the curvature, D2 = R. This implies that

TADA − EA ∧ EBDBDA = R . (2.32)

We plug the explicit expressions for the supercurvature (2.27) and supertorsion (2.24) into

this equation and obtain the SU(2|1) (anti)commutation relations,

[Da,Db] = − i

2r
Mab , [Da,Dα] = − i

2r
(γa)

β
αDβ , [Da, D̄α] = − i

2r
(γa)

β
αD̄β ,

{Dα, D̄β} = iγaαβDa −
1

2
γaαβMa +

1

r
εαβR ,

{Dα,Dβ} = {D̄α, D̄β} = 0 . (2.33)

The generators Mab and R have the following commutators with DA

[Mab,Dc] =
2i

r
(δacDb − δbcDa) ,

[Mab,Dα] = −1

r
εabc(γ

c)βαDβ , [Mab, D̄α] = −1

r
εabc(γ

c)βαD̄β ,

[R,Dα] = Dα , [R, D̄α] = −D̄α . (2.34)

The covariant derivatives DA = EA + ΩA can be written explicitly in the chiral coor-

dinates corresponding to the coset representative (2.9). To this end, we need to find the

form of the superconnection ΩA in these coordinates,

ΩA = iΩ(R)AR+
i

2
ΩabAMab , (2.35)

where the components of Ω(R)A and ΩabA read

Ω(R)a = 0 , Ω(R)α = − i
r
θ̄α , Ω̄(R)α = 0 ,

Ωab c = −1

2
εabc , Ωabα = Ω̄abα = 0 . (2.36)

Now recall that the supervielbein in these coordinates is given in (2.15), so combining the

above expressions with (2.15) we get

Da = ∂a −
i

2
Ma +

i

r
(γa)

α
βθ

β∂α +
i

r
(γa)

α
β θ̄

β ∂̄α ,

Dα = ∂α + iγaαβ θ̄
β∂a −

1

r
θβ θ̄β∂α +

1

r
θαθ̄

β∂β −
1

2r
θ̄2∂̄α +

1

r
θ̄αR ,

D̄α = ∂̄α . (2.37)
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One can check that these differential operators obey the algebra (2.33) and (2.34). Note

that the covariant derivative D̄α is short as it should be in the chiral coordinate basis.

2.5 Superconformal flatness

On general grounds [19], it is natural to expect that the supercoset SU(2|1)/U(1) should

be superconformally flat, since SU(2|1)/U(1) is an Euclidean counterpart of the AdS3

superspace OSp(2|2)×Sp(2)
SO(2)×Sp(2) which was demonstrated to be superconformally flat in [10, 11].

Here we prove this explicitly by showing that the covariant derivatives on SU(2|1)/U(1)

are related to flat superspace derivatives by means of a super Weyl transformation.

Let zm = (xm, θα, θ̄α) be the coordinates on the flat EuclidianN = 2, d = 3 superspace.

In the flat case there is no difference between the indices of the local coordinates xm and

tangent space, xa, i.e., ∂a = ∂m = ∂
∂xm . The flat covariant spinor derivatives in the chiral

basis are given by DM = (∂m, Dα, D̄α),

Dα = ∂α + iγaαβ θ̄
β∂a , D̄α = ∂̄α , {Dα, D̄β} = iγaαβ∂a . (2.38)

Following [10, 19], we construct the operators

Dα = e
1
2
ρ(Dα +

r

2
(Dβρ)γaαβMa − (Dαρ)R) ,

D̄α = e
1
2
ρ(D̄α +

r

2
(D̄βρ)γaαβMa + (D̄αρ)R) ,

Da = eρ
(
∂a + iγαβa (Dαρ)D̄β + iγαβa (D̄αρ)Dβ

+
ir

2
(Dαρ)(D̄αρ)Ma +

ir

2
εabc∂

bρM c + iγαβa (D(αρ)(D̄β)ρ)R
)
, (2.39)

with ρ(x, θ, θ̄) being a scalar superfield. These operators happen to obey the algebra (2.33)

of covariant derivatives of the supercoset SU(2|1)/U(1) under the condition that the su-

perfield ρ solves for the following equations

D2e−ρ = D̄2e−ρ = 0 , (2.40)

[D(α, D̄β)]e
ρ = 0 , (2.41)

eρDαD̄αρ =
1

r
. (2.42)

The equation (2.40) is nothing but the linearity condition for the superfield e−ρ. Note that

eq. (2.40) is not independent but appears as a differential consequence of (2.42).

The equations (2.39) allow us to expand the differential operator (2.14) in the basis of

the covariant derivatives DM (2.38),

EA = (Ea, Eα, Ēα) = EA
M∂M = ẼA

MDM . (2.43)

The supermatrix ẼA
M has the following explicit form

ẼA
MDM =

 eρδma ieργα
′β

a (D̄βρ) ieργα
′β

a (Dβρ)

0 δα
′

α e
1
2
ρ 0

0 0 δα
′

α e
1
2
ρ


 ∂m
Dα′

D̄α′

 . (2.44)
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The Berezinian of the inverse of this matrix reads

E = BerEM
A = BerẼM

A = e−ρ . (2.45)

An important consequence of this equation is the vanishing of the volume of the SU(2|1)/U(1)

superspace (already observed in the chiral basis in section 2.2)∫
d3xd2θd2θ̄ E =

∫
d3xd2θd2θ̄ e−ρ = −1

4

∫
d3xd2θ D̄2e−ρ = 0 . (2.46)

The integral is zero owing to the linearity of e−ρ, eq. (2.40).

2.6 Killing supervector

Let us consider how the SU(2|1) transformations act on the superfields. These are generated

by the Killing supervector defined as follows.

Let us take a local supervector ξA(z) = (ξa, ξα, ξ̄α), and construct an operator

K = ξaDa + ξαDα + ξ̄αD̄α − iLab(z)Mab − il(z)R , (2.47)

where Lab(z) and l(z) are local SU(2)×U(1) parameters. ξA is said to be a Killing super-

vector if the operator K associated with ξA commutes with all the covariant derivatives [7]

[K,DA] = 0 . (2.48)

This equation defines the components of the supervector ξA(z) as well as the superfunctions

Lab(z) and l(z) in (2.47).

The Killing supervector generates the isometries of the superspace and the correspond-

ing symmetries of a dynamical system. In the case under consideration, it is responsible

for the supersymmetries generated by Qα and Q̄α, the SU(2)-rotations Ma and the R-

symmetry of the SU(2|1) algebra (2.3). The SU(2|1) variation of a given superfield Φ on

SU(2|1)/U(1) is

δΦ = KΦ . (2.49)

It is worth noticing that the sphere S3 has isometry SU(2)× SU(2), but only one of these

SU(2)’s is taken into account by K. To manifestly represent the full isometry group of S3

one should start with the supercoset (2.1) rather than (2.2).

The equation (2.48) leads to a number of differential equations for the components of

ξA, Lab(z) and l(z)

[Da,K] = 0 ⇒

D(aξb) = 0 , D[aξb] =
4

r
Lab , (2.50a)

DaLbc =
1

4r
(δacξb − δabξc) , (2.50b)

Daξα =
i

2r
(γa)

α
βξ

β , Daξ̄α =
i

2r
(γa)

α
β ξ̄

β , (2.50c)

Dal = 0 ; (2.50d)
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[Dα,K] = 0 ⇒

Dαξa = iξ̄βγaαβ , DαLab = − i
4
εabc(γc)αβ ξ̄

β , (2.51a)

Dαξα = −2il , Dαl =
i

r
ξ̄α , (2.51b)

D(αξβ) = − i

2r
ξa(γa)αβ +

i

r
Labεabc(γ

c)αβ , (2.51c)

Dαξ̄β = 0 ; (2.51d)

[D̄α,K] = 0 ⇒

D̄αξa = iξβγaαβ , D̄αLab = − i
4
εabcγ

c
αβξ

β , (2.52a)

D̄αξ̄α = 2il , D̄αl = − i
r
ξα , (2.52b)

D̄(αξ̄β) = − i

2r
ξa(γa)αβ +

i

r
Labεabcγ

c
αβ , (2.52c)

D̄αξβ = 0 . (2.52d)

The relations (2.50)–(2.52) are analogous to those for the (2,0) AdS3 superspace derived

in [10–12].

The equations (2.51d) and (2.52d) show that ξα(z) is chiral while ξ̄α(z) is antichiral.

All the other paramters are linear as a consequence of (2.51a), (2.51b), (2.52a) and (2.52b),

D2ξa = D̄2ξa = 0 , D2Lab = D̄2Lab = 0 , D2l = D̄2l = 0 . (2.53)

The parameters Lab and l are not independent as they can be expressed in terms of

components of ξA. Indeed, from (2.51b) and (2.52b) we have

l =
i

2
Dαξα = − i

2
D̄αξ̄α . (2.54)

The second equation in (2.50a) implies

Lab = −1

4
εabcξc . (2.55)

Hence, the operator (2.47) is completely specified by the components of the supervector

ξA which obey (2.50)–(2.52).

The general solution of (2.50)–(2.52) is

ξα = D̄2Dαζ , ξ̄α = −D2D̄αζ ,
ξa = −2iγaαβD̄αDβζ ,

Lab =
i

2
εabcγ

c
αβD̄αDβζ , l =

2i

r
D̄αDαζ , (2.56)

where ζ is a covariantly constant superparameter with zero R-charge defined modulo gauge

transformations,

Daζ = 0 , Rζ = 0 , ζ ∼ ζ − iΛ + iΛ̄ , (2.57)
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with Λ being a chiral and covariantly constant superfunction, D̄αΛ = 0, DaΛ = 0. In

particular, with the use of ζ(z) the transformation of a chiral scalar superfield Φ, D̄αΦ = 0,

can be written as

δΦ = D̄2[(Dαζ)(DαΦ)] . (2.58)

Indeed, using the algebra of the covariant derivatives (2.33) the variation (2.58) can be

rewritten in the form (2.49) in which the components of the Killing supervector are given

by (2.56). The Killing vector in the form (2.56) and the corresponding superfield trans-

formations (2.58) derived above will be applied in section 4 where superfield models with

extended supersymmetry are considered.

In conclusion of this section we present an explicit expression for the operator K in

chiral coordinates in which the covariant derivatives have the form (2.37):

K = baMa + εαQα + ε̄αQ̄α + tR , (2.59)

where

Ma = −iΛab∂b ,
Qα = −iΛαβ∂β ,

Q̄α = −iΛαβ[∂̄β − iγaβγθγ∂a +
1

2r
θ2∂β −

1

r
θβ θ̄

γ ∂̄γ +
1

r
θβR] ,

R = θ̄α∂̄α − θα∂α −R . (2.60)

Here Λa
b and Λα

β are purely bosonic local SO(3) ∼ SU(2) matrices which obey the relations

∂dΛab(x) =
2

r
εdcbΛac(x) , ∂aΛα

β =
i

r
Λα

γ(γa)
β
γ , Λα

δγbδρΛβ
ρΛb

a = γaαβ . (2.61)

Using these properties one can check that each of the operators (2.60) independently

obeys (2.48). The operator Ma corresponds to the SU(2) rotations on the sphere, Qα

and Q̄α are the generators of supersymmetries, and R is the R-symmetry generator. The

expression (2.59) is just a linear combination of these operators with the corresponding

constant parameters ba, εα, ε̄α and t.

3 Superfield actions

The supergeometry of the SU(2|1)/U(1) supercoset elaborated in the previous section is

characterized by torsion and curvature that satisfy eqs. (2.24) and (2.27). Comparing these

equations with the supergeometry constraints to be satisfied by the (Euclidean version of)

N = 2, d = 3 dynamical supergravity (see e.g. [9–11, 20]), one can see that SU(2|1)/U(1)

geometry is a particular (vacuum) solution of the supergravity constraints. As such, we can

bypass the step of coupling the matter superfields to off-shell supergravity and construct

classical superfield actions directly on SU(2|1)/U(1) as easy as in flat superspace.
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3.1 Gauge supermultiplet

Let us take the covariant derivatives DA = (Da,Dα, D̄α) on SU(2|1)/U(1) and extend them

with a gauge superfield connection VA

∇A = DA + VA , VA = (Va, Vα, V̄α) . (3.1)

VA take values in the Lie algebra of a gauge group. Gauge superfield constraints are

imposed by requiring that the gauge-covariant derivatives obey the (anti)commutation

relations (2.33) deformed by gauge superfield strengths,

{∇α,∇β} = {∇̄α, ∇̄β} = 0 ,

{∇α, ∇̄β} = iγaαβ∇a −
1

2
γaαβMa +

1

r
εαβR+ iεαβG ,

[∇a,∇b] = − i

2r
Mab + iFab ,

[∇a,∇α] = − i

2r
(γa)

β
α∇β − (γa)

β
αW̄β , [∇a, ∇̄α] = − i

2r
(γa)

β
α∇̄β + (γa)

β
αWβ ,

[R,∇α] = ∇α , [R, ∇̄α] = −∇̄α ,

[Mab,∇α] = −1

r
εabc(γ

c)βα∇β , [Mab, ∇̄α] = −1

r
εabc(γ

c)βα∇̄β . (3.2)

Here G, Wα, W̄α and Fab are gauge superfield strengths subject to the Bianchi identities.

In particular, Wα is covariantly chiral and W̄α is covariantly antichiral,

∇̄αWβ = 0 , ∇αW̄β = 0 . (3.3)

These superfields obey ‘standard’ Bianchi identity

∇αWα = ∇̄αW̄α . (3.4)

The spinorial superfield strengths Wα and W̄α are expressed in terms of the scalar superfield

G as follows

W̄α = ∇αG , Wα = ∇̄αG . (3.5)

The latter is covariantly linear,

∇2G = ∇̄2G = 0 . (3.6)

The gauge connections VA in (3.1) can be expressed in terms of a single gauge prepo-

tential V . In particular, in the so-called chiral representation [7, 8] the covariant spinor

derivatives ∇α and ∇̄α are given by

∇α = e−VDαeV , ∇̄α = D̄α . (3.7)

As a consequence of the constraints (3.2), the superfield strengths are expressed in terms

of the prepotential V as follows

G =
i

2
D̄α(e−VDαeV ) , Wα = − i

4
D̄2(e−VDαeV ) , W̄α =

i

2
∇αD̄β(e−VDβeV ) . (3.8)
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The gauge transformation of V is

eV −→ eiΛ̄eV e−iΛ , (3.9)

where Λ and Λ̄ are covariantly (anti)chiral local gauge parameters

D̄αΛ = 0 , DαΛ̄ = 0 . (3.10)

The superfield strengths transform covariantly under the gauge transformations (3.9),

G→ eiΛGe−iΛ , Wα → eiΛWαe
−iΛ . (3.11)

The super Yang-Mills action can be equivalently written either in the full N = 2

superspace or in the chiral subspace,

SSYM = − 4

g2
tr

∫
d3xd2θd2θ̄ E G2 =

2

g2
tr

∫
d3xd2θ EWαWα , (3.12)

where g2 is the gauge coupling constant of mass dimension [g] = 1/2 and E is a chiral

density. The variation of the SYM action reads

δSSYM = − 4i

g2
tr

∫
d3xd2θd2θ̄ E∆V∇α∇̄αG , (3.13)

where ∆V is the gauge-covariant variation,

∆V = e−V δeV = δV +
1

2
[δV, V ] + . . . (3.14)

Hence, the SYM equation of motion is

0 =
δSSYM

∆V
= − 4i

g2
∇α∇̄αG = − 4i

g2
∇αWα . (3.15)

The Abelian Chern-Simons action is known to be

− k

π

∫
d3xd2θd2θ̄ E V G , (3.16)

where k is an integer. The non-Abelian generalization of this action requires the introduc-

tion of an auxiliary parameter t [21],

SCS = − ik
π

tr

∫ 1

0
dt

∫
d3xd2θd2θ̄ E D̄α(e−tVDαetV )e−tV ∂te

tV . (3.17)

However, the variation of the Chern-Simons action does not contain this parameter,

δSCS = −2k

π
tr

∫
d3xd2θd2θ̄ E G∆V . (3.18)

Finally, the Fayet-Iliopoulos term is given by

SFI = −4iξ

∫
d3xd2θd2θ̄ E V , (3.19)

where ξ is the coupling of mass dimension +1.
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3.1.1 Component structure

The vector supermultiplet consists of one scalar field σ(x) one vector Aa(x) = −iγαβa Aαβ,

spinors λα(x) and λ̄α(x) and one auxiliary field D(x). In the Wick-rotated (Euclidean)

SYM theory under consideration λα(x) and λ̄α(x) are regarded as independent fields, not

related to each other by complex conjugation, and also the bosonic fields σ and Aa are

assumed to be complex.

To derive the component structure in supersymmetric gauge theories it is convenient

to impose the Wess-Zumino gauge,

V | = 0 , DαV | = D̄αV | = 0 , D2V | = D̄2V | = 0 , (3.20)

where | denotes the component value of the superfields at θ = θ̄ = 0. The component fields

appear in the following derivatives of the gauge superfield

1

2
[Dα, D̄β]V | = 2iAαβ − εαβiσ ,
1

2
D̄2DαV | = iλα ,

1

2
D2D̄αV | = iλ̄α ,

1

8
{D2, D̄2}V | = iD . (3.21)

Using the algebra of the covariant derivatives (2.33) we find the components of the superfield

strengths (3.8) and their derivatives to be

G| = σ ,

Wα| =
1

2
λα , W̄α| =

1

2
λ̄α ,

DαWα| = D +
2σ

r
,

D(αWβ)| = − i
4
εabcγcαβFab +

i

2
γaαβ∇̂aσ ,

D2Wα| = iγaαβ∇̂aλ̄β + i[σ, λ̄α]− 1

2r
λ̄α , (3.22)

where

∇̂aλ̄β = D̂aλ̄β + i[Aa, λ̄
β] ,

∇̂aσ = D̂aσ + i[Aa, σ] , (∇̂αβ = − i
2
γaαβ∇̂a) ,

Fab = D̂aAb − D̂bAa + i[Aa, Ab] (3.23)

and D̂a = ∂a + ωa(x) is a covariant derivative on S3.

Consider now the SYM action (3.12) and replace the integration over d2θ by corre-

sponding spinor covariant derivatives

SSYM =
2

g2
tr

∫
d3xd2θ EWαWα

= − 1

g2
tr

∫
d3x
√
h

(
WαD2Wα −

1

2
DαWαDβWβ −D(αWβ)D(αW β)

) ∣∣∣∣ . (3.24)
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Substituting (3.22) into (3.24), we find the component structure of the classical SYM action

SSYM =
1

g2
tr

∫
d3x
√
h

[
1

4
F abFab +

1

2
∇̂aσ∇̂aσ +

1

2

(
D +

2σ

r

)2

+
i

2
λα(γa)βα∇̂aλ̄β −

i

2
λα[σ, λ̄α] +

1

4r
λαλ̄α

]
. (3.25)

Note that the terms containing the inverse radius of the three-sphere 1/r automatically

appear in this procedure and this action is N = 2 supersymmetric by construction.

In a similar way one recovers the component structure of the Chern-Simons (3.17) and

Fayet-Iliopoulos (3.19) superfield actions,

SCS =
ik

4π
tr

∫
d3x
√
h

[
εabc(AaD̂bAc +

2i

3
AaAbAc)− λ̄αλα − 2σD − 2σ2

r

]
, (3.26)

SFI = −4iξ

∫
d3xd2θd2θ̄ E V = ξ

∫
d3x
√
hD . (3.27)

The last term in the Chern-Simons action (3.26) can be eliminated by the shift of the

auxiliary field, D → D′ = D + σ
r . After such a shift the Chern-Simons action takes the

canonical form.

3.2 Chiral matter

Let us now consider a covariantly chiral superfield Φ and an anti-chiral superfield Φ̄ i.e.

the superfields that obey the constraints

D̄αΦ = 0 , DαΦ̄ = 0 . (3.28)

Again, as for the vector supermultiplet, we do not assume that Φ and Φ̄ are related by the

complex conjugation.

A general action for the chiral superfields interacting with the background gauge su-

perfield V is

S = 4

∫
d3xd2θd2θ̄ E Φ̄eV Φ + 2

∫
d3xd2θ EW (Φ) + 2

∫
d3xd2θ̄ Ē W̄ (Φ̄) , (3.29)

where W (Φ) is a superpotential. Here we assume that Φ transforms under the fundamental

representation of the gauge gorup. In the case of the adjoint representation the kinetic term

for Φ includes the trace of the matrix indices

4 tr

∫
d3xd2θd2θ̄ E e−V Φ̄eV Φ . (3.30)

The (anti)chiral superfield may carry an R-charge q, i.e.

RΦ = −qΦ , RΦ̄ = qΦ̄ . (3.31)

In principle, the R-charge of the chiral superfield can be arbitrary although its canonical

value for the chiral matter is q = 1/2. Note also that the R-charge of the superpotential
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W (Φ) should be −2 since the chiral measure d2θ has the R-charge +2. The latter follows

form the fact that dθα ∝ Dα and from the commutation relations (2.34).

The (anti)chiral multiplet consists of the complex scalar field φ (φ̄), the spinor ψα (ψ̄α)

and the auxiliary field F (F̄ ). These fields appear in the θ-decomposition of the superfields

Φ and Φ̄ as follows
φ(x) = Φ| φ̄(x) = Φ̄|

ψα(x) = DαΦ| ψ̄α(x) = D̄αΦ̄|
F (x) = −1

2D
2Φ| F̄ (x) = −1

2D̄
2Φ̄| .

(3.32)

Upon integrating out the Grassmann variables we find the component structure of the

action (3.29),

S =

∫
d3x
√
h

[
∇̂aφ̄∇̂aφ+ φ̄

(
σ2 +

q(2− q)
r2

+
2iq

r
σ + iD

)
φ+ F̄F

−iγaαβψ̄α∇̂aψβ + ψ̄α
(
iσ +

1− 2q

2r

)
ψα + iψ̄βλ̄αφ+ iφ̄λαψα

]
+

∫
d3x
√
h

(
W ′(φ)F +W ′(φ̄)F̄ − 1

2
W ′′(φ)ψαψα −

1

2
W ′′(φ̄)ψ̄αψ̄α

)
. (3.33)

Here ∇̂a is the gauge covariant derivative on S3 in the fundamental representation of the

gauge group

∇̂aφ = D̂aφ+ iAa(x)φ , ∇̂aφ̄ = D̂aφ̄− iAa(x)φ̄ , ∇̂aψα = D̂aψα + iAa(x)ψα . (3.34)

The generalization to any other representation of the gauge group is straightforward.

4 Superfield models with extended supersymmetry

In the previous section we constructed the superfield gauge and matter models on S3 with

minimal (N = 2) supersymmetry.3 This construction was very similar to the formulation

of superfield theories in a general curved superspace of Lorentz signature (see, e.g. [7]

for this topic in four dimensions or a series of papers [9–12, 22, 23] for relevant three-

dimensional supergravity-matter models in superspace). The classical actions introduced

in this section can be considered as the Wick-rotated gauge and matter superfield actions

in the (2,0) AdS3 superspace [10, 11].

In this section we will consider models with extended N > 2 supersymmetry on the

three-sphere. In particular, the classical actions of N = 4 and N = 8 SYM theories, as

well as the Gaiotto-Witten and ABJM models will be constructed. In principle, for these

models it would be natural to introduce curved superspaces with extended (N = 4, 6, 8)

supersymmetry and to construct the actions directly in these superspaces. However, even

in the flat space the use of the extended superspaces is not always convenient because

it usually employs special methods with harmonic or projective coordinates which help

to achieve unconstrained superfield formulations. So, we will avoid introducing extended

superspaces and continue to use the N = 2 superspace formalism.

3Recall that since on S3 the spinors are complex, S3 does not admit N = 1 supersymmetry which would

correspond to a single real 2-component spinor.
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The description of the models with extended supersymmetry in the N = 2 supercoset

SU(2|1)/U(1) mimics the construction of the classical actions of supersymmetric gauge and

matter models in the conventional component field formulation [13]. Let us recall that such

a construction is carried out in two steps. First, one couples the flat actions to the S3 back-

ground geometry and then one finds extra terms which come with inverse radius of S3 and

which are necessary for the invariance under the supersymmetry on the sphere generated

by S3 Killing spinors. Similarly, in the N = 2 superspace we will use the chiral matter and

gauge superfields for constructing actions with extra supersymmetries and will reveal new

terms of order 1
r required for the action to be invariant under extended supersymmetry for

superfields carrying a non-zero R-charge. As will be shown, the parameters of the extra

supersymmetries and their bosonic (R-symmetry) partners are encoded in N = 2 super-

field parameters which include, as their components, S3 Killing spinors corresponding to

the extra supersymmetries.

We will consider in detail the construction of the classical action for an N = 4 SYM

model and will shortly discuss actions for other models (N = 8 SYM, Gaiotto-Witten and

ABJM models).

To have a theory on S3-sphere with N = 4 supersymmetry we need one more copy

of the Killing spinors, in addition to those which have already appeared in SU(2|1)/U(1).

Recall that the Killing spinor equation reads

D̂aξα(x)± i

2r
(γa)

α
βξ

β(x) = 0 , (4.1)

where D̂a is purely bosonic covariant derivative on S3. The choice of the sign in (4.1)

can be arbitrary. In the N = 2 case we should have two spinors, ξα and ξ̄α, of the same

“chirality”4 with respect to the sign in (4.1), which is required by the SU(2|1) supergroup

structure (see eqs. (2.50c)). In the N = 4 case we need another copy of Killing spinors

associated with extra N = 2 supersymmetries, say ηα and η̄α the “chirality” of which can

either coincide with the one of ξα, or can be opposite. For instance, in the case of superfield

models in the AdS3 space [11, 24], the corresponding N = 4 superspaces are denoted as

(4,0) and (2,2), respectively. In this paper we will consider mainly the models with extended

supersymmetry associated with all the S3 Killing spinors of the same “chirality” and will

shortly describe the models with Killing spinors of different “chiralities” on the example of

N = 4 SYM model.

4.1 N = 4 SYM with SU(2)× SU(2) R-symmetry

N = 4 gauge supermultiplet is given by a pair (V,Φ), where V (x, θ, θ̄) is the N = 2 gauge

superfield and Φ(x, θ, θ̄) is a chiral superfield in the adjoint representation of the gauge

group. We start the construction by lifting the flat d = 3, N = 4 SYM action (written in

terms of the N = 2 superfields, see e.g. [25]) onto the SU(2|1)/U(1) background

S0 = − 4

g2
tr

∫
d3xd2θd2θ̄ E(G2 − e−V Φ̄eV Φ) . (4.2)

4We refer to the spinors obeying the equation (4.1) with different signs as the Killing spinors of different

“chirality”. We hope that this will not cause the confusion with the conventional notion of the chiral spinors

(which do not exist on S3).
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The superfields V and G are neutral under the U(1) R-transformations associated with the

manifest N = 2 SU(2|1) supersymmetry, while the R-charge of the chiral superfield Φ can

be, a priori, arbitrary

RΦ̄ = qΦ̄ , RΦ = −qΦ . (4.3)

For further convenience, it is useful to introduce the gauge-covariant chiral superfields,

Φ = e−V Φ̄eV , Φ = Φ , ∇αΦ = 0 , ∇̄αΦ = 0 . (4.4)

In terms of these superfields the gauge transformations are given by

∆V = iΛ̄− iΛ , δΦ = i[Λ,Φ] , δΦ = i[Λ̄,Φ] , (4.5)

with Λ being a covariantly chiral gauge superfield parameter, ∇̄αΛ = 0. Recall that ∆V is

a gauge-covariant variation for the N = 2 gauge superfield (3.14).

The general variation of the action (4.2) reads

δS0 = − 4

g2
tr

∫
d3xd2θd2θ̄ E(i∆V ∇̄α∇αG− δΦΦ − ΦδΦ −∆V [Φ,Φ]) . (4.6)

We now assume that the hidden N = 2 supersymmetry and its bosonic partners

encoded in (anti)chiral superfield parameters Υ(z) and Ῡ(z) transform the superfields V

and Φ into each other as follows

∆ΥV = i(ΥΦ − ῩΦ) , δΥΦ = ∇̄αGDαΥ +
q

r
GΥ , δΥΦ = −∇αGD̄αῩ− q

r
GῩ . (4.7)

In addition to be (anti)chiral

D̄αΥ = 0 , DαῩ = 0 , (4.8)

Υ and Ῡ are also subject to the constraints

DaΥ = 0 , DaῩ = 0 . (4.9)

The above constraints are required for the superfields Φ and Φ to remain (anti)chiral upon

the extra supersymmetry transformations, i.e.

∇̄αδΥΦ = 0 , ∇αδΥΦ = 0 . (4.10)

Note that V and Φ are non-Abelian superfields in the adjoint representation of the

gauge group, while Υ does not carry the gauge group indices, so ∇AΥ = DAΥ. Note also

that Υ(z) should have the same R-charge as the superfield Φ (4.3), namely

RῩ = qῩ , RΥ = −qΥ . (4.11)

In comparison with the flat case, the transformations (4.7) involve additional terms with

the inverse radius of the sphere. These extra terms are necessary to preserve the covariant

chirality of the variation of the chiral superfield (4.10).
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Off the mass shell, the commutator of two transformations (4.7) closes on the SU(2|1)

transformations considered in section 2.6

[δΥ2 , δΥ1 ]Φ = ∇̄2[(Dαζ)(∇αΦ)] , [δΥ2 , δΥ1 ]Φ = −∇2[(D̄αζ)(∇̄αΦ)] ,

[δΥ2 , δΥ1 ]G = −2iγaαβ(D̄αDβζ)∇aG+ (D̄2Dαζ)∇αG− (D2D̄αζ)∇̄αG , (4.12)

where

ζ =
1

4
(Ῡ1Υ2 − Ῡ2Υ1) . (4.13)

Indeed, the transformation of the chiral superfield in (4.12) has exactly the same form

as (2.58) while the transformation of G has the general form (2.49) with the parameters

given by (2.56).

Let us consider the commutator of the transformations (4.7) with the SU(2|1) trans-

formations (2.49). Using the fact that the operator K (2.47) commutes with the covariant

derivatives (2.48) we have

[δΥ, δK]V = δΥ′V , [δΥ, δK]Φ = δΥ′Φ , [δΥ, δK]Φ = δΥ′Φ , (4.14)

where

Υ′ = KΥ . (4.15)

Thus the commutator of (4.7) and (2.49) is again of the form (4.7). Therefore, the SU(2|1)

transformations and the extra N = 2 supertransformations (4.7) form an N = 4 su-

peralgebra. Though we do not have a clear understanding of algebraic stricture of the

transformations (4.7) for generic values of q, for q = 0 the form of the supersymmetry

transformations suggests that this superalgebra is su(2|2)× su(2).

To show this, consider the component structure of the chiral superfield parameter Υ.

In the chiral superspace coordinates its θ-decomposition is

Υ = a+ θαηα + θ2b . (4.16)

Using the explicit form of the superspace derivatives (2.37) one can easily check that the

equation (4.9) implies that the components a and b are constant

a = const , b = const , (4.17)

while ηα, associated with the extra N = 2 supersymmetry, obeys the Killing spinor equa-

tion similar to (2.50c) satisfied by the supersymmetry parameters of the manifest SU(2|1)

supersymmetry

D̂aηα −
i

2r
(γa)

α
βη

β = 0 . (4.18)

The lowest component a in Υ, and its conjugate ā appearing in Ῡ, are the parameters

of the coset elements SU(2)R/U(1), where SU(2)R is part of the R-symmetry group in

the N = 4 SYM theory. This indicates that the transformations (4.7) together with the

SU(2|1) symmetry generate the supergroup SU(2|2). One can also verify that the highest

component b in Υ, and its conjugate b̄ in Ῡ, are the parameters of another SU(2) which

rotates a triplet of auxiliary fields in the N = 4 gauge supermultiplet.
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One-line computations show that the naive action (4.6) is not invariant under the

Υ-transformations (4.7) for q 6= 0,

δΥS0 = − 4q

rg2
tr

∫
d3xd2θd2θ̄ E G(ῩΦ −ΥΦ) . (4.19)

Surprisingly, the non-invariance of S0 cancels against the variation of the following Chern-

Simons term

SCS = − 2q

rg2
tr

∫ 1

0
dt

∫
d3xd2θd2θ̄ E D̄α(e−tVDαetV )e−tV ∂te

tV . (4.20)

This action differs from (3.17) only by the overall real coefficient in front of the superspace

integral. Indeed, using (3.18) it is easy to find the variation of (4.20) under (4.7),

δΥSCS =
4iq

rg2
tr

∫
d3xd2θd2θ̄ E G∆ΥV =

4q

rg2
tr

∫
d3xd2θd2θ̄ E G(ῩΦ −ΥΦ) . (4.21)

Thus, we conclude that the action of the N = 4 SYM model on the three-sphere is

given by the sum of the action (4.2) and the Chern-Simons term (4.20),

SN=4
SYM = − 4

g2
tr

∫
d3xd2θd2θ̄ E

[
G2 − e−V Φ̄eV Φ +

q

2r

∫ 1

0
dtD̄α(e−tVDαetV )e−tV ∂te

tV

]
.

(4.22)

This action is manifestly invariant under SU(2|1) and under the hidden N = 2 transfor-

mations (4.7),

δΥS
N=4
SYM = 0 . (4.23)

The requirement to have the Chern-Simons term (for q 6= 0) together with the YM

term in the SYM action (4.22) to make it N = 4 supersymmetric is a somewhat unexpected

feature of this model.5 The Chern-Simons term disappears in the flat limit as it comes

about with the inverse radius of the sphere. The Chern-Simons term is also absent for q = 0,

but we stress that the action (4.22) is consistent also for q 6= 0. However, as we will show

in the next section, there is a natural bound on the values of this parameter 0 ≤ q ≤ 2

which originates from the requirement of the absence of negative energy states in the

spectrum of the model (4.22). Note that, the choice of q = 1 is the most natural since this

value of the R-charge coincides with the conformal dimension of the chiral supermultiplet

which has applications in studying various aspects of dualities of three-dimensional gauge

theories [14].

The term (4.20) comes with a real coefficient in front of the integral, in contrast to

the Chern-Simons action (3.17) which appears with the imaginary unit factor since it was

obtained by Wick rotating the Chern-Simons term in space-time of Lorentz signature.

This has two consequences: (i) The non-invariance of the Chern-Simons term (4.20) under

topologically non-trivial large gauge transformations will result in the large gauge non-

invariance of the partition function unless q=0.6 (ii) The term (4.20) produces a negative

5When gauge supermultiplets are part of supergravity supermultiplets, it is well known that the invari-

ance of the supergravity action under supersymmetry may require the presence of Chern-Simons terms, as

e.g. in the case of D = 11 supergravity [26] or N = 4, d = 3 supergravity [27, 28]. The necessity to add

the Chern-Simons term to the SYM action coupled to the chiral supermultiplet with the R-charge q = 1

for getting the N = 4 SYM theory on S3 was noticed in [15].
6We thank referee for drawing our attention to this issue.
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topological mass squared for the gauge field and can, in principle, cause the states with

negative energies. To find the allowed values of q for which these states are absent we will

consider the component form of the action (4.22).

4.1.1 Component form of the N = 4 SYM action on S3

The action (4.22) consists of the pure N = 2 SYM term, the (anti)chiral superfield part

and the N = 2 Chern-Simons term. Component structure of all these three terms is given

by (3.25), (3.33) and (3.26), respectively. Putting these expressions together, we get

SN=4
SYM =

1

g2
tr

∫
d3x
√
h

[
1

4
F abFab +

1

2
∇̂aσ∇̂aσ +

1

2

(
D +

2σ

r

)2

+
i

2
λα(γa)βα∇̂aλ̄β −

i

2
λα[σ, λ̄α] +

1

4r
λαλ̄α

+∇̂aφ̄∇̂aφ+
q(2− q)
r2

φ̄φ+ φ̄[σ, [σ, φ]] +
2iq

r
φ̄[σ, φ] + iφ̄[D,φ] + F̄F

+i(γa)βαψ̄
α∇̂aψβ +

1− 2q

2r
ψ̄αψα + iψ̄α[σ, ψα] + iψ̄β[λ̄α, φ] + i[φ̄, λα]ψα

+
q

2r
εabc(AaD̂bAc +

2i

3
AaAbAc)−

q

2r
λ̄αλα −

q

r
σD − qσ2

r2

]
. (4.24)

For q = 1 the action (4.24) coincides with that of [15] upon a suitable redefinition of the

auxiliary field D, D = F3 + q−2
r σ − i[φ, φ̄]. The auxiliary fields

F3 , F =
1√
2

(F1 − iF2) , F̄ =
1√
2

(F1 + iF2) (4.25)

completely decouple from the physical sector and form an SO(3) ∼ SU(2) triplet contribut-

ing to the action (4.24) with the term 1
2F

AFA, where FA = (F1, F2, F3).

Analogously, let us decompose the physical scalars φ and φ̄ into their real and imaginary

parts

φ =
1√
2

(φ1 − iφ2) , φ̄ =
1√
2

(φ1 + iφ2) . (4.26)

The three scalars φ1, φ2 and σ form the triplet of another SO(3) ∼ SU(2)R

φI = (φ1, φ2, σ) , I = 1, 2, 3 . (4.27)

It is important to note that the physical scalars φI and the auxiliary fields FA transform

under different SU(2) groups which together form the SU(2) × SU(2) R-symmetry of the

N = 4 SYM model.

Finally, we introduce the SU(2)R doublets of spinors ψiα, ψ̄iα, i = 1, 2. These spinors

are related to the ones in (4.24) as follows

ψ̄1α =
1√
2
λ̄α , ψ1α =

1√
2
λα , ψ2α = ψ̄α , ψ̄2α = ψα . (4.28)
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Eliminating the auxiliary fields and using the fields (4.27) and (4.28) we recast the ac-

tion (4.24) in the manifestly SU(2)R invariant form

SN=4
SYM =

1

g2
tr

∫
d3x
√
h
(
Lgauge + Lscalar + Lspinor

)
, (4.29)

Lgauge =
1

4
F abFab +

q

2r
εabc(AaD̂bAc +

2i

3
AaAbAc) , (4.30)

Lscalar =
1

2
∇̂aφI∇̂aφI +

q(2− q)
2r2

φIφI

−3q − 2

6r
εIJKφI [φJ , φK ]− 1

4
[φI , φJ ][φI , φJ ] , (4.31)

Lspinor = i(γa)βαψ̄
iα∇̂aψiβ +

1− 2q

2r
ψ̄iαψiα + iψ̄iα(γI)ji [φI , ψjα] . (4.32)

Here (γI)ji are SO(3) ∼ SU(2)R gamma-matrices similar to (A.1). It is straightforward to

check that (4.29) is invariant under the following N = 4 supersymmetry transformations

δAa = i(γa)
β
α(η̄iαψiβ + ηiβψ̄

iα) ,

δφI = (γI)ij(η̄
jαψiα + ηiαψ̄

jα) ,

δψ̄iα =
i

2
εabc(γc)

α
β η̄

iβFab + i(γa)αβ(γI)ij∇̂aφI η̄jβ

−q
r
φI(γI)

i
j η̄
jα − 1

2
εIJK(γK)ij [φI , φJ ]η̄jα ,

δψiα = − i
2
εabc(γc)

β
αηiβFab + i(γa)βα(γI)ji ∇̂aφ

Iηjβ

+
q

r
φI(γI)

j
iηjα +

1

2
εIJK(γK)ji [φI , φJ ]ηjα , (4.33)

where ηiα and η̄iα are SU(2)-doublets of Killing spinors obeying standard equation (4.18).

For q = 0 these transformations close according to the (anti)commutation relations in the

su(2|2) superalgebra. The algebraic properties of these transformations for generic values

of q should still be understood.7

Let us consider the gauge field equations of motion which follow from the Lagrangian (4.30),

for simplicity, in the Abelian case

δ

δAa

∫
d3x
√
hLgauge = 0 ⇒ D̂bFab +

q

2r
εabcF

bc = 0 . (4.34)

It is convenient to introduce the dual field strength

F̃a =
1

2
εabcF

bc , (4.35)

which obeys the Bianchi identity

D̂aF̃a = 0 . (4.36)

7Note that an N = 4 superfield description of a similar model in an AdS3 superspace with OSp(4|2)×
SL(2,R) as its symmetry group was developed in a recent paper [24].
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From equation (4.34) it follows that the dual field strength satisfies the massive “Klein-

Gordon” equation

(−D̂aD̂a +
2

r2
)F̃b −

q2

r2
F̃b = 0 . (4.37)

Note that the Laplacian operator acting in the space of divergenceless vector fields on

S3 is given by

∆ = −D̂aD̂a +
2

r2
. (4.38)

Its spectrum is given in (B.7). In particular, its lowest eigenvalue is 4
r2

. Hence, to avoid

negative energy states in the solution of eq. (4.37) we should impose the bound q ≤ 2.

Similarly, the absence of negative energy states for the scalar field in (4.31) requires q ≥ 0.

Hence, the allowed values of the parameter q are

0 ≤ q ≤ 2 . (4.39)

The situation here is analogous to the Breitelohner-Freedman bound [29] on the negative

mass square of fields in AdS.

4.2 N = 4 SYM with U(1)×U(1) R-supersymmetry

The authors of [14] considered an N = 4 SYM model which consists of one N = 2 gauge

multiplet and one chiral multiplet with the unite R-charge q = 1. In contrast with (4.22)

the classical action of this model is given simply by (4.2) with no extra Chern-Simons term.

In this section we demonstrate that this model is invariant under theN = 4 supersymmetry

which has two Killing spinors with positive “chirality” and other two with the negative one.

Recall that the isometries of the SU(2|1)/U(1) supercoset are generated by the oper-

ator K given by (2.47) which includes the Killing spinors of the positive “chirality”, see

eq. (2.50c). Consider now the Killing spinors on S3 of the opposite “chirality”,

D̂aηα +
i

2r
(γa)

α
βη

β = 0 . (4.40)

On S3 one can choose such a gauge for the Lorentz connection in which the covariant

derivative acts on spinors as

D̂aηα = ∂aη
α − i

2r
(γa)

α
βη

β , (4.41)

where ∂a = ema (x)∂m is purely bosonic. Hence, in this gauge the Killing spinor equa-

tion (4.40) is simply

∂aη
α = 0 . (4.42)

Moreover, we require that ηα is neutral under the action of the U(1) R-symmetry of the

manifest SU(2|1) supersymmetry

Rηα = 0 . (4.43)

In this case, using (2.37), it is straightforward to check that ηα is annihilated by the

covariant spinor derivatives,

Dαηβ = D̄αηβ = 0 . (4.44)
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Given a pair of Killing spinors ηα and η̄α with the properties described above one can

construct an analog of superfield transformations (4.7)

∆ηV = ΘαηαΦ − θ̄αη̄αΦ ,

δηΦ = −iηα∇̄αG , δηΦ = iη̄α∇αG , (4.45)

where we have introduced the object

Θα = θα − 1

r
θ2θ̄α , (4.46)

which has an important property

DαΘβ = δβα . (4.47)

Using this property one can also find the transformation of the superfield strength G,

δηG =
i

2
ηα∇̄αΦ − i

2
η̄α∇αΦ − θ̄αη̄α[G,Φ] . (4.48)

Note that, because of (4.43), the R-charge of the chiral superfield is fixed as

RΦ = −Φ , RΦ = Φ . (4.49)

The general variation of the action (4.2) is given by (4.6). It is a simple exercise to

check that this variation vanishes for the transformations of the fields (4.45), δηS0 = 0.

So, this action is manifestly invariant under the N = 2 supersymmetry and respects also

the hidden N = 2 supersymmetries (4.45). By construction, these supersymmetries are

generated by the Killing spinors of opposite “chiralities”.

It is instructive to find the closure of the transformations (4.45). For instance, with

the use of (4.48) one can easily find the commutator of two transformations (4.45) for the

chiral superfield

[δη2 , δη1 ]Φ = iζαβγaαβ∇aΦ +
ζ

r
Φ + iζ[G,Φ] + 2iζαβ θ̄β[Wα,Φ] , (4.50)

where

ζαβ =
1

2
(ηα1 η̄

β
2 − η

α
2 η̄

β
1 ) , ζ = ζαα . (4.51)

The first term in the r.h.s. of (4.50) is the bosonic translation while the second one is a

U(1) transformation. The terms with commutators in (4.50) provide the covariant chirality

of the superfield expression in the r.h.s. These terms are required in the non-Abelian case

only.

The relation (4.50) suggests that the transformations (4.45) close according to the com-

mutation relations of the super Lie algebra of the group SU(2|1). However, this SU(2|1)

group is different from the one generated by the Killing supervector considered in sec-

tion 2.6. Indeed, using the equations (4.42)–(4.44) one can verify that the Killing spinor

ηα (as well as η̄α) defined by (4.40) is annihilated by the operator (2.47),

Kηα = Kη̄α = 0 . (4.52)
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As a consequence, the transformations (4.45) commute with the SU(2|1) ones, up to a field

dependent gauge transformation,

[δη, δK]Φ = 0 , [δη, δK]Φ = 0 , [δη, δK]G = [(Kθ̄αη̄α)Φ, G] . (4.53)

Note that the expression (Kθ̄αη̄α) in the last commutator is chiral, D̄α(Kθ̄αη̄α) = 0. This

can be verified, e.g. using the explicit form of the operator K in the chiral coordinates given

in (2.59) and (2.60). In the Abelian case the superfield strength is gauge invariant and the

last commutator (4.53) vanishes identically. So, the full symmetry group of the model (4.2)

is SU(2|1)× SU(2|1). A similar model in the AdS3 space was considered recently [24].

For completeness, in this section we present the component structure of the action (4.2),

S0 =
1

g2
tr

∫
d3x
√
h

[
1

4
F abFab +

1

2
∇̂aσ∇̂aσ + ∇̂aφ̄∇̂aφ+

1

r2
φ̄φ

−[σ, φ][σ, φ̄] +
1

2
[φ, φ̄]2 + F̄F +

1

2

(
D +

2σ

r
+ i[φ, φ̄]

)2

+
i

2
λα(γa)βα∇̂aλ̄β −

i

2
λα[σ, λ̄α] +

1

4r
λαλ̄α

+i(γa)βαψ̄
α∇̂aψβ −

1

2r
ψ̄αψα + iψ̄α[σ, ψα] + iψ̄β[λ̄α, φ] + i[φ̄, λα]ψα

]
. (4.54)

In contrast with (4.29), the scalars φ, φ̄ and σ have different masses and do not form an

SU(2) triplet. The full R-symmetry of this model is U(1) × U(1) because the complex

scalars φ, φ̄ and the auxiliary fields F , F̄ transform independently under two different U(1)

groups.

4.3 N = 8 SYM

In the N = 2 superfield description of N = 8, d = 3 SYM theory its multiplet consists of

the gauge superfield V and an SU(3)-triplet of chiral superfields Φi, i = 1, 2, 3 in the adjoint

representation. The generalization of the flat N = 8, d = 3 SYM classical action [30] to

the supercoset SU(2|1) is

SN=8
SYM = SYM + SCS + Spot , (4.55)

SYM = − 4

g2
tr

∫
d3xd2θd2θ̄ E(G2 − e−V Φ̄ieV Φi) , (4.56)

SCS = − 4

3rg2
tr

∫ 1

0
dt

∫
d3xd2θd2θ̄ E D̄α(e−tVDαetV )e−tV ∂te

tV , (4.57)

Spot = − i
√

2

3g2
tr

∫
d3xd2θ E εijkΦi[Φj ,Φk] +

i
√

2

3g2
tr

∫
d3xd2θ̄ Ē εijkΦ̄i[Φ̄j , Φ̄k]. (4.58)

This action is invariant under the following transformations which include hidden N = 6

supersymmetry,

δΥV = iΥiΦ
i − iῩiΦi ,

δΥΦi = ∇̄αGDαΥi +
2

3r
GΥi +

1

2
√

2
εijk∇̄2(ῩjΦ

k
) ,

δΥΦ
i

= −∇αGD̄αῩi − 2

3r
GῩi − 1

2
√

2
εijk∇2(ΥjΦk) , (4.59)
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where Υi is a triplet of chiral superfield parameters, D̄αΥi = 0, subject to

DaΥi = 0 . (4.60)

Similarly to (4.16), the superparameters Υi contain three Killing spinors ηiα, each of which

obeys (4.18). In (4.59) we use covariantly chiral superfields Φi , Φ
i

defined as in (4.4).

The form of the superpotential (4.58) fixes the R-charges of the chiral superfields to be

RΦi = −2

3
Φi , RΦ̄i =

2

3
Φ̄i . (4.61)

This R-charge differs from the scaling dimension of the chiral superfields. As a consequence,

the localization methods cannot be directly applied to the N = 8 SYM theory, see [14] for

a discussion of this issue.

Clearly, the superparameters Υi should have the same charges as Φi

RΥi = −2

3
Υi , RῩi =

2

3
Ῡi . (4.62)

Taking these values of the R-charges into account, it is straightforward to check that the

transformations of the (anti)chiral superfields in (4.59) preserve the chirality

∇̄αδΥΦi = 0 , ∇αδΥΦ
i

= 0 . (4.63)

It is also rather straightforward but a bit lengthy to check, using the identities

∇̄2∇αΦi = 4i[Wα,Φi] , ∇2∇̄αΦ
i

= −4i[W̄α,Φ
i
] , (4.64)

that (4.55) is invariant under (4.59), δΥS
N=8
SYM = 0. In this procedure, the cancelation of

some terms becomes evident only after passing to the (anti)chiral subspace.

The action (4.55) contains the real Chern-Simons term similar to that in the N = 4

SYM model (4.22). However, in contrast to the N = 4 case the value of the R-charge of the

chiral superfields is now fixed (4.61) by the presence of the superpotential. This value is

within the bound (4.39), hence, although the Chern-Simons term in (4.55) gives a negative

topological mass squared, there are no negative energy states in the theory.

In this section we considered the N = 8 SYM model with Killing spinors of the same

“chirality” (obeying the equation (4.1) with minus sign). Similar to section 4.2, it is

straightforward to construct an N = 8 SYM action invariant under supersymmetry with

Killing spinors of different “chiralities”. For instance, one can check that the action (4.55)

with vanishing Chern-Simons term is still invariant under hidden N = 6 supersymmetry,

but which is associated with six Killing spinors obeying (4.40) rather than (4.18). The

transformations of these hidden supersymmetries are a simple generalization of (4.45).

There is also a possibility of constructing an N = 8 SYM model with four Killing spinors

of positive “chirality” and four extra ones of the negative “chirality”. It would be of inter-

est to study all these cases in detail and determine corresponding underlying supergroup

structures.

– 28 –



J
H
E
P
0
4
(
2
0
1
4
)
1
0
2

4.4 Gaiotto-Witten theory

In this section we construct a classical action of the Gaiotto-Witten model [31] on S3.

This is a superconformal Chern-Simons-matter model with N = 4 supersymmetry which

consists of two N = 2 gauge superfields V and Ṽ corresponding to two different gauge

groups and two chiral superfields (a hypermultiplet), X+ and X−, in the bi-fundamental

representation. We find the classical action of this model in the form

SGW = SCS[V ]− SCS[Ṽ ] + SX , (4.65)

SX = 4 tr

∫
d3xd2θd2θ̄ E(X̄+e

VX+e
−Ṽ +X−e

−V X̄−e
Ṽ ) , (4.66)

where SCS[V ] and SCS[Ṽ ] are two Chern-Simons terms for left and right gauge superfields

each of which has the form (3.17). The action SX is the standard action for the chiral su-

perfields minimally interacting with gauge superfields in the bi-fundamental representation

and carrying R-charge q. It is straightforward to check that the action (4.65) is invariant

under the following superfield transformation

∆V = Σ̄X+X− + ΣX̄−X̄+ , ∆Ṽ = Σ̄X−X+ + ΣX̄+X̄− ,
δX± = ±∇̄2(ῩX̄∓) , δX̄± = ±∇2(ΥX∓) . (4.67)

Here X± and X̄± are covariantly (anti)chiral superfields,

X̄+ = e−Ṽ X̄+e
V , X+ = X+ , X̄− = e−V X̄−e

Ṽ , X− = X− , (4.68)

and Υ is a chiral superfield parameter subject to the constraint (4.9). As is shown in (4.16),

in components it contains the Killing spinor ηα and a parameter of the SU(2)R symmetry

group. Hence, the variations (4.67) include transformations of the hidden N = 2 super-

symmetry as well as part of the SU(2)R R-symmetry.

The superfields Υ and Σ possess the following U(1) R-charges associated with the

manifest N = 2 SU(2|1) supersymmetry

RΥ = 2(q − 1)Υ , RΣ = −2qΣ , RῩ = 2(1− q)Ῡ , RΣ̄ = 2qΣ̄ . (4.69)

We stress that the (anti)chiral superfields Σ and Σ̄ in (4.67) are not independent. They

are related to Υ and Ῡ as follows

DαΣ = −8iπ

k
D̄αῩ , D̄αΣ̄ = −8iπ

k
DαΥ . (4.70)

These equations define Σ and Σ̄ in terms of Υ and Ῡ uniquely. For instance, for the

chiral superfield parameter Υ in the form (4.16) we find the following component field

decomposition of Σ̄ in the chiral basis

Σ̄ = −8iπ

k

(
q − 1

r
θ̄2b+ θ̄αηα +

q − 1

r
θ̄2θαηα + 2θαθ̄αa+

q − 1

r
θ2θ̄2a− r

q
a

)
. (4.71)
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4.4.1 Component form of the Gaiotto-Witten action on S3

Let us denote the components of the N = 2 superfieds in the Gaiotto-Witten model as

follows

V : {σ,Aa, λα, λ̄α, D} , Ṽ : {σ̃, Ãa, λ̃α, ˜̄λα, D̃} , X± : {φ±, ψα±, F±} . (4.72)

These components are defined in accordance with the rules (3.21) and (3.32).

The action (4.65) contains Chern-Simons terms for the gauge superfields V and Ṽ each

of which has the component structure (3.26) as well as the matter superfields part SX the

component structure of which can be read from (3.33). We thus get

SGW = tr

∫
d3x
√
h(LCS + LX+ + LX−) , (4.73)

LCS =
ik

4π

[
εabc(AaD̂bAc +

2i

3
AaAbAc)− λ̄αλα − 2σD − 2σ2

r

]
− ik

4π

[
εabc(ÃaD̂bÃc +

2i

3
ÃaÃbÃc)− ˜̄λαλ̃α − 2σ̃D̃ − 2σ̃2

r

]
, (4.74)

LX+ =

[
∇̂aφ̄+∇̂aφ+ +

q(2− q)
r2

φ̄+φ+ − (σφ+ − φ+σ̃)(σ̃φ̄+ − φ̄+σ)

+
2iq

r
φ̄+(σφ+ − φ+σ̃) + iφ̄+(Dφ+ − φ+D̃) + F+F̄+

+i(γa)βαψ̄
α
+∇̂aψ+β +

1− 2q

2r
ψ̄α+ψ+α + iψ̄α+(σψ+α − ψ+ασ̃)

+iψ̄α+(λ̄αφ+ − φ+
˜̄λα)− i(λ̃αφ̄+ − φ̄+λ

α)ψ+α

]
, (4.75)

LX− =

[
∇̂aφ̄−∇̂aφ− +

q(2− q)
r2

φ̄−φ− − (σ̃φ− − φ−σ)(σφ̄− − φ̄−σ̃)

+
2iq

r
φ̄−(σ̃φ− − φ−σ̃) + iφ̄−(D̃φ− − φ−D) + F−F̄−

+i(γa)βαψ̄
α
−∇̂aψ−β +

1− 2q

2r
ψ̄α−ψ−α + iψ̄α−(σ̃ψ−α − ψ−ασ)

+iψ̄α−(˜̄λαφ− − φ−λ̄α)− i(λαφ̄− − φ̄−λ̃α)ψ−α

]
. (4.76)

The component fields F±, F̄±, D, D̃, σ, σ̃, λα, λ̃α, λ̄α, ˜̄λα enter the action SGW

algebraically. They can be eliminated using their equations of motion,

F± = F̄± = 0 ,

σ =
2π

k
(φ+φ̄+ − φ̄−φ−) , σ̃ =

2π

k
(φ̄+φ+ − φ−φ̄−) ,

λα =
4π

k
(φ+ψ̄+α − ψ̄−αφ−) , λ̄α =

4π

k
(ψ+αφ̄+ − φ̄−ψ−α) ,

λ̃α =
4π

k
(ψ̄+αφ+ − φ−ψ̄−α) , ˜̄λα =

4π

k
(φ̄+ψ+α − ψ−αφ̄−) . (4.77)

Next, we combine the scalar and spinor fields into SU(2) doublets as follows

φi = (φ1, φ2) = (φ+, φ̄−) , φ̄i = (φ̄1, φ̄2) = (φ̄+, φ−) ,

ψiα = (ψ1
α, ψ

2
α) = (ψ+α, ψ̄−α) , ψ̄iα = (ψ̄1α, ψ̄2α) = (ψ̄+α, ψ−α) . (4.78)
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As a result, we get the component form of the Gaiotto-Witten action on S3 in the form

SGW = SCS + S2 + Sint , (4.79)

SCS =
ik

4π
tr

∫
d3x
√
h εabc(AaD̂bAc +

2i

3
AaAbAc − ÃaD̂bÃc −

2i

3
ÃaÃbÃc) , (4.80)

S2 = tr

∫
d3x
√
h
[
∇̂aφi∇̂aφ̄i +

q(2− q)
r2

φiφ̄i + i(γa)βαψ̄
α
i ∇̂aψiβ +

1− 2q

2r
ψ̄αi ψ

i
α

]
,(4.81)

Sint =
2π

k
tr

∫
d3x
√
h
[ i
r

(1− 2q)φiφ̄jφiφ̄j +
2π

k
(φiφ̄iφ

jφ̄kφjφ̄k + φ̄iφ
iφ̄jφkφ̄jφk)

−iψiαψ̄iαφjφ̄j + iψ̄αi ψ
i
αφ̄jφ

j + iφiψ̄αj φiψ̄
j
α − iφ̄iψαj φ̄iψjα

]
. (4.82)

Here the gauge-covariant derivative ∇̂ acts on the matter fields in the bi-fundamental

representation by the rule ∇̂φi = D̂aφi + iAaφ
i − iφiÃa.

Although the canonical value of the N = 2 supersymmetry R-charge of the chiral

matter is q = 1
2 , the action (4.79) is explicitly SU(2) invariant for arbitrary value of the

R-charge, thus manifesting the presence of the extended N = 4 supersymmetry. The

natural bound for this parameter q is (4.39) for which the mass square of the scalar fields

is positive.

4.5 ABJ(M) model

Finally, let us construct the classical action of the ABJ(M) theory [32–34] on S3. This

model can be considered as an N = 6 supersymmetric generalization of the Gaoitto-Witten

theory [31] which involves two hypermultiplets, (X+i, X
i
−), i = 1, 2, where X+i and Xi

−
are chiral superfields in the bi-fundamental representation of the gauge group. Each of

these two chiral superfields can be rotated independently by its own SU(2) group which

make part of the full SU(4) R-symmetry group of the ABJM model. The action of the

ABJM model involves a superpotential which is consistent with this symmetry. We find

the following generalization of this action on S3:

SABJM = SCS[V ]− SCS[Ṽ ] + SX + Spot , (4.83)

SX = 4tr

∫
d3xd2θd2θ̄ E

(
X̄i

+e
VX+ie

−Ṽ +Xi
−e
−V X̄−ie

Ṽ
)
, (4.84)

Spot = −4πi

k
tr

∫
d3xd2θ E

(
X+iX

i
−X+jX

j
− −Xi

−X+iX
j
−X+j

)
−4πi

k
tr

∫
d3xd2θ̄ Ē

(
X̄−iX̄

i
+X̄−jX̄

j
+ − X̄i

+X̄−iX̄
j
+X̄−j

)
. (4.85)

Similar to the Gaiotto-Witten model (4.65), this action has two Chern-Simons terms SCS[V ]

and SCS[Ṽ ] for the two gauge superfields and the standard kinetic term SX for the chiral

superfields minimally interacting with the gauge superfields. The superpotential Spot has

the standard ABJM form which is fixed by the requirement that the action (4.83) be
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invariant under the following superfield transformations

∆V = −8iπ

k
(Ῡi

jX+iX j− + Υi
jX̄−jX̄ i+) ,

∆Ṽ = −8iπ

k
(Ῡj

iX i−X+j + Υi
jX̄ i+X̄−j) , (4.86)

δX+i = ∇̄2(Ῡi
jX̄−j) , δX j− = −∇̄2(Ῡi

jX̄ i+) , (4.87)

δX̄ i+ = ∇2(Υi
jX j−) , δX̄−j = −∇2(Υi

jX+i) . (4.88)

Here X±i and X̄±i are covariantly (anti)chiral superfields defined similarly to (4.68) and

Υi
j is a quartet of chiral superfield parameters each of which is constrained by (4.9). In

components, it involves four Killing spinors (ηij)α (their conjugate are present in Ῡi
j)

which, together with the manifest supersymmetry, form the N = 6 supersymmetry of the

ABJ(M) model.

To summarize, in this section we have constructed N = 2 superfield actions for the

models with extended supersymmetry, namely, forN = 4 andN = 8 SYM, Gaiotto-Witten

and ABJ(M) theories. For these models we have derived the transformations of N = 2

superfields under the hidden supersymmetries. Although these transformations are the

generalization to SU(2|1)/U(1) superspace of the corresponding flat-space supersymme-

tries, to the best of our knowledge, their explicit form has not been given in the literature

before. The extended N = 4 and N = 8 supersymmetry, associated with the S3 Killing

spinors of the same “chirality”, requires the extension of the SYM actions on S3 with the

Chern-Simons terms. It would be of interest to understand the nature of these terms from

the point of view of N = 4 superfield formulations of these theories and coupling these

models to the extended three-dimensional supergravities considered e.g. in [9, 11, 23, 24].

5 One-loop partition functions

We will now compute one-loop effective actions and corresponding partition functions for

superfield theories on SU(2|1)/U(1) discussed in the previous section.

5.1 Chiral superfield on the gauge superfield background

Let us consider a pair of chiral superfields Φ and Φ̃ interacting with an Abelian external

background gauge superfield V

S = 4

∫
d3xd2θd2θ̄ E (ΦeV Φ + Φ̃e−V Φ̃) . (5.1)

A reason why we consider the pair of the chiral fields is because they carry opposite charges

with respect to the U(1) gauge group. Hence, there is no parity anomaly and the Chern-

Simons term is not generated at one loop [35–38].

The problem of computing the partition function of the chiral supermultiplet on S3

with an arbitrary R-charge was considered in [13–15, 39, 40] using component field calcu-

lations. Here we will derive similar results using superfield methods. Note also that the

problem of low-energy effective action of the model (5.1) in flat space-time was considered

in [43].
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As we have already done in the previous section, it is convenient to introduce gauge-

covariant (anti)chiral superfields

Φ = ΦeV , Φ = Φ , Φ̃ = Φ̃e−V , Φ̃ = Φ̃ , (5.2)

such that ∇αΦ = 0 and ∇̄αΦ = 0. In terms of these superfields the classical action (5.1)

is simply

S = 4

∫
d3xd2θd2θ̄ E (ΦΦ + Φ̃Φ̃) . (5.3)

Since the background gauge field is non-propagating, the effective action in this model

is one-loop exact,

Γ = −1

2
Tr lnH − 1

2
Tr ln H̃ , (5.4)

where H and H̃ are the operators acting in the space of the superfields (Φ,Φ) and (Φ̃, Φ̃),

respectively, i.e.

H =

(
0 −∇̄2

−∇2 0

)
. (5.5)

The operator H̃ differs from H only in the sign of the background gauge superfield V due to

the opposite U(1) charges of Φ and Φ̃. The standard procedure of computing the effective

action in the chiral superfield model is based on squaring the operators H and H̃ [7] and

rewriting (5.4) as follows

Γ = −1

4
Tr lnH2 − 1

4
Tr ln H̃2 . (5.6)

However, one should be careful with this squaring because some part of the effective action

can be lost.8 Therefore, we will avoid naive squaring like (5.6) and consider instead the

variation of the effective action with respect to the background gauge superfield V ,

δΓ =

∫
d3xd2θd2θ̄ E δV 〈J〉 , (5.7)

where 〈J〉 is an effective current which is expressed in terms of the Green’s functions of

the chiral superfields as follows

〈J〉 = 〈 δS
δV
〉 = 4〈ΦΦ〉 − 4〈Φ̃Φ̃〉 . (5.8)

Once the variation (5.7) is computed, its integration will give us the value of the effective

action.

To compute (5.8), consider the Green’s function 〈Φ(z)Φ(z′)〉 ≡ G−+(z, z′) which obeys

the equation

∇̄2G−+(z, z′) = δ+(z, z′) , (5.9)

where δ+(z, z′) is a chiral delta-function (∇̄αδ+(z, z′) = 0),

δ+(z, z′) = −1

4
∇̄2δ7(z, z′) , δ7(z, z′) =

1

E
δ3(x− x′)δ2(θ − θ′)δ2(θ̄ − θ̄′) . (5.10)

8This is similar to the case of the Dirac operator on S3 which has both positive and negative eigenvalues.

So, if one naively takes its square, the negative eigenvalues will not be counted.
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As a result, to obtain the variation of the effective action (5.7) we should find the Green’s

function G−+ at coincident superspace points.

As in the flat superspace [7], the Green’s function G−+ is related to the covariantly

chiral Green’s function G+,

G−+(z, z′) = −1

4
∇2G+(z, z′) , (5.11)

where G+ obeys

�+G+(z, z′) = −δ+(z, z′) , �+ ≡
1

4
∇̄2∇2 . (5.12)

Using the algebra (3.2), the operator �+ can be represented as

�+ = −∇a∇a + (G− i

r
R)2 + i(∇̄αW̄α) + 2iWα∇α +

1

r
[∇α, ∇̄α] . (5.13)

Let us take a very particular background gauge superfield V = V0 such that its super-

field strength G = G0 is constant,

G0 =
i

2
D̄αDαV0 = σ0 = cosnt , W0α = W0α = 0 . (5.14)

As will be discussed in the next section, exactly the background of this kind is interesting

from the point of view of the localization technique.

In the chiral coordinates, the background gauge superfield V0 corresponding to (5.14) is

V0 = iσ0(θθ̄ − 1

2r
θ2θ̄2) , (5.15)

and from (3.22) we see that the background values of the component fields are

σ = σ0 , D = −2σ0

r
, Fab = 0 , λα = λ̄α = 0 . (5.16)

For this background the spinorial components of the superfield strengths vanish (5.14), and

the form of the operator (5.13) simplifies to

�+ = −∇a∇a +m2 , m2 ≡ G2
0 +

2i

r
G0(q − 1) +

q(2− q)
r2

, (5.17)

where m is the effective mass. Here we have assumed that �+ acts on the covariantly chiral

scalar superfields of R-charge q.

For the gauge superfield background described above the chiral Green’s function G+ (5.12)

can be written as9

G+(z, z′) = −1

4
∇̄2Go(z, z′) = −1

4
∇̄′2Go(z, z′) , (5.18)

where ∇̄′ acts on z′ and Go(z, z′) solves for

�oGo(z, z′) = −δ7(z, z′) , �o = −∇a∇a +m2 . (5.19)

9Four-dimensional analogs of the relations (5.18) and (5.21) were first derived in [41, 42].
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The operator �o has the same expression as �+, eq. (5.17), but it acts on the superfields

defined in the full superspace rather than on the chiral superfields. To check that (5.18)

obeys (5.12) one should use the identities

[∇2,�o] = [∇̄2,�o] = 0 , (5.20)

which hold for the considered gauge superfield background.

Combining (5.11) with (5.18) we find

G−+(z, z′) =
1

16
∇2∇̄′2Go(z, z′) = − 1

16
∇2∇̄′2 1

−∇a∇a +m2
δ7(z, z′) . (5.21)

Next, using (5.20) we commute the operators ∇2 and ∇̄′2 with (−∇a∇a + m2)−1 and

consider the Green’s function (5.21) at coincident superspace points

G−+(z, z) = − 1

−∇a∇a +m2

1

16
∇2∇̄′2δ7(z, z′)|z=z′ = − 1

∆S3 +m2
δ3(x, x′)|x=x′ . (5.22)

Note that all the fermionic components of the superspace delta-function δ7(z, z′) should

be differentiated out by the operators ∇2 and ∇̄′2 to get the non-vanishing result. The

remaining expression is nothing but the trace of the inverse of the purely bosonic Laplace-

Beltrami operator ∆S3 acting on scalar fields on the S3-sphere

− tr
1

∆S3 +m2
∝ −

∞∑
j=0

dj
λj +m2

, (5.23)

where λj are the eigenvalues of the Laplace-Beltrami operator and dj are their degeneracies

λj =
1

r2
j (j + 2) , dj = (j + 1)2 , j = 0, 1, 2, . . . (5.24)

The sum (5.23) is divergent. Regularizing it in a standard way,
∑

1 = ζ(0) = −1
2 , we

find

G−+(z, z) =
cπr2

2

√
1−m2r2 cot

(
π
√

1−m2r2
)

=
cπr2

2
(irG0 + 1− q) cot

(
π (irG0 + 1− q)

)
. (5.25)

Here we used the explicit expression for the effective mass m2 given in (5.17). The constant

c can be fixed from the flat space limit which was studied in [43], namely

lim
r→∞

G−+ =
1

4π
G0 ⇒ c =

1

2π2r3
. (5.26)

The formula (5.25) is valid for the arbitrary value of the R-charge q. Let us consider

several particular values of q. q = 1
2 corresponds to the chiral matter fields with canonical

R-charge, q = 0 and q = 2 are carried by ghost superfields in the SYM theory (see next

subsection), and q = 1 is the value of R-charge of the adjoint chiral multiplet in the N = 4
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SYM action (4.22) which is singled out by its equality with the scale dimension of the chiral

superfield. For these particular cases the formula (5.25) reduces to

G−+|q= 1
2

=
1

4π
G0 tanhπrG0 −

i

8πr
tanhπrG0 , (5.27)

G−+|q=0 =
1

4π
G0 cothπrG0 −

i

4πr
cothπrG0 , (5.28)

G−+|q=1 =
1

4π
G0 cothπrG0 , (5.29)

G−+|q=2 =
1

4π
G0 cothπrG0 +

i

4πr
cothπrG0 . (5.30)

Let us now consider in detail the computation of the effective action for the chiral

superfield with the R-charge q = 1
2 . Recall that the Green’s function 〈Φ̃Φ̃〉 is obtained

from 〈ΦΦ〉 by changing the sign of the gauge superfield

〈ΦΦ〉 G→−G−−−−→ 〈Φ̃Φ̃〉 . (5.31)

As a result, the real part of the Green’s functions (5.27) cancel in the effective current (5.8)

〈J〉 = − i

πr
tanhπrG0 = − i

πr
tanhπrσ0 . (5.32)

Now, we substitute this expression for the effective current into (5.7) and compute the

superspace integral similarly to the Fayet-Iliopoulos term (3.27),

δΓ = − i

πr
tanh(πrσ0)

∫
d3xd2θd2θ̄ E δV =

1

4πr
tanh(πrσ0)

∫
d3x
√
h δD . (5.33)

Recall that for the considered background (5.16) the auxiliary field D is proportional to

the scalar σ, δD = −2
r δσ0. Taking into account that σ0 is a constant parameter, we obtain

δΓ = − 1

2πr2
δσ0 tanh(πrσ0)VolS3 = −πrδσ0 tanh(πrσ0) . (5.34)

Hence,

Γ = − ln (c1 cosh(πrσ0)) , (5.35)

where c1 is an integration constant. The corresponding partition function is

Z = eΓ =
1

c1 cosh(πrσ0)
. (5.36)

For σ0 = 0 the expression (5.36) should reproduce the partition function of a free chiral

supermultiplet on S3, [44]. This fixes the value of the integration constant c1,

c1 = 2 . (5.37)

Using the Green’s functions (5.28)–(5.30) in a similar way we find that the partition

functions of the chiral superfields with R-charges q = 0, q = 1 and q = 2 have the following

form

q = 0 : Z =
1

(2 sinhπrσ0)2
, (5.38)

q = 1 : Z = 1 , (5.39)

q = 2 : Z = (2 sinhπrσ0)2 . (5.40)
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The partition function of the chiral superfield with the R-charge q = 1 is equal to one

because the propagator (5.29) has no imaginary part which could contribute to the effective

current (5.8). The fact that this partition function is trivial was first noticed in [14].

5.2 N = 2 super Yang-Mills partition function

Let us now consider the N = 2 super Yang-Mills theory (3.12) with the gauge group

SU(N). We are interested in the one-loop partition function Z which is related to the

one-loop effective action Γ as

ZN=2
SYM = eΓ[V ] . (5.41)

To derive the effective action Γ we perform the standard background-quantum split-

ting [8] V → (V0, v) such that

eV = eΩ†egveΩ , (5.42)

where v is the Hermitian quantum gauge superfield and Ω is a complex unconstrained

prepotential which defines the Hermitian background gauge superfield V0 as follows

eV0 = eΩ†eΩ . (5.43)

With this splitting we acquire extra gauge symmetry which leaves eqs. (5.42) and (5.43)

invariant

eΩ → eiτeΩ , egv → eiτegve−iτ , (5.44)

where τ(z) is a real (Hermitian) superfield parameter. These transformations are called

the ‘background’ gauge transformations.

The so-called ‘quantum’ form of the original gauge transformation (3.9) is

eΩ → eiλeΩe−iλ , egv → eiλ̄egve−iλ , (5.45)

where λ(z) is a chiral superfield parameter. The basic idea of the background field method

is to fix the gauge symmetry corresponding to the parameter λ such that the effective action

remains invariant under the background gauge transformations (5.44) with arbitrary τ .

In general, it is a difficult problem to find the effective action Γ[V0] for an arbitrary

unconstrained background gauge superfield V0. To simplify the problem, we restrict ourself

to the consideration of the low-energy effective action for V0 taking vales in the Cartan

subalgebra of su(N),

V0 = diag(V1, V2, . . . VN ) ,
N∑
I=1

VI = 0 . (5.46)

Moreover, we assume that each of the superfields VI in (5.46) has a constant superfield

strength, GI = i
2D

αDαVI = σI = const, I = 1, . . . , N . In components, such a background

is given in (5.16). Although these restrictions may look too strong, as we will show in the

next section, they will allow us to compute the N = 2 Chern-Simons partition function

with the localization method applied to the superfield action.

– 37 –



J
H
E
P
0
4
(
2
0
1
4
)
1
0
2

One-loop partition function is defined by quadratic fluctuations of the quantum super-

field v around the classical gauge superfield background V0,10

S2 = −1

2
tr

∫
d7z E v(∇α∇̄2∇α − 4iWα∇α)v , (5.47)

where the superfield strength Wα and gauge-covariant derivatives ∇α and ∇̄α are con-

structed with the use of the background gauge superfield V0 by the rules (3.7) and (3.8).

These derivatives obey the (anti)commutation relations similar to (3.2). Note that V0

in (5.46) has a constant superfield strength G0. Hence, the superfield Wα vanishes, Wα = 0,

and the action for the quadratic fluctuations simplifies to

S2 = −1

2
tr

∫
d7z E v∇α∇̄2∇αv . (5.48)

The operator ∇α∇̄2∇α in (5.48) is degenerate and requires gauge fixing. Following

the conventional background field method in the N = 2, d = 3 superspace [30, 45], we fix

the gauge freedom for the quantum transformations (5.45) by imposing the conditions

i∇̄2v = f , i∇2v = f̄ , (5.49)

where f is a fixed covariantly chiral superfunction, ∇̄αf = 0. This gauge is manifestly

supersymmetric.

The corresponding ghost superfield action has the form

SFP = tr

∫
d7z E(b+ b̄)Lgv[c+ c̄+ coth(Lgv)(c− c̄)] = tr

∫
d7z E(b̄c− bc̄) +O(g) , (5.50)

where b and c are two covariantly chiral anticommuting ghost superfields and LgvX denotes

the commutator, LgvX = [g v,X]. As a result, the one-loop partition function in the SYM

theory is given by the following functional integral

ZN=2
SYM =

∫
DvDbDc δ(f − i∇̄2v)δ(f̄ − i∇2v)e−S2−SFP . (5.51)

To represent the delta-functions in (5.51) in the Gaussian form, we average this func-

tional integral with the weight

1 =

∫
DfDϕeαtr

∫
d7z E[f̄f+ϕ̄ϕ] , (5.52)

where α is a real parameter and ϕ is the Grassmann-odd Nielsen-Kallosh ghost. This yields

the following gauge-fixing and Nielsen-Kallosh ghost actions

Sgf = −α
2

tr

∫
d7z E v{∇2, ∇̄2}v , Sϕ = α tr

∫
d7z E ϕ̄ϕ . (5.53)

For α = 1/2 we have

S2 + Sgf = −tr

∫
d7z E v�vv , (5.54)

10The details of the background-quantum expansion of the SYM action in N = 1, d = 4 superspace can

be found in [8]. This procedure is also directly applied to the N = 2, d = 3 SYM model under consideration.
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where

�v =
1

4
{∇2, ∇̄2} − 1

2
∇α∇̄2∇α + 2iWα∇α (5.55)

is a covariant d’Alembertian operator in the space of real superfields v. With the use of

the algebra of the covariant derivatives (3.2), this operator can be represented as

�v = −∇a∇a + (G0 −
i

r
R)2 +

1

r
[∇α, ∇̄α]

+2iWα∇α − 2iW̄α∇̄α − i(∇αWα) . (5.56)

Since we consider the constant gauge superfield background G0 = const for which Wα = 0

and the gauge superfield v has vanishing R-charge, the form of the operator (5.56) gets

simplified to

�v = −∇a∇a +G2
0 +

1

r
[∇α, ∇̄α] . (5.57)

In the one-loop approximation the functional integrals in (5.51) for the gauge and ghost

superfields factorize and the partition function takes the form

ZN=2
SYM = Det−1/2�v · Zϕ · Zb,c . (5.58)

Here Zϕ and Zb,c are one-loop partition functions corresponding to the chiral ghost super-

fields ϕ and (b, c), repsectively. It is important to note that, as is seen from the action (5.50),

the b, c ghosts have vanishing R-charge while the Nielsen-Kallosh ghost ϕ has R-charge +2

as a consequence of the gauge-fixing (5.49),

q(b,c) = 0 , q(ϕ) = 2 . (5.59)

Let us consider the operator �v in (5.58). In general, as a consequence of the gauge

invariance of the effective action, the trace of the logarithm of this operator is given by a

functional of the gauge superfield strength G

− 1

2
Tr ln�v =

∫
d7z E L(G0) , (5.60)

with some effective Lagrangian L(G0). We stress that L explicitly depends on the superfield

strength G0, but not on the gauge field potential V0, since the Chern-Simons like terms

can be produced by chiral field loops only. So, since we consider the constant superfield

background, G0 = const, L(G0) is also a constant. Therefore, the full superspace integral

over this effective Lagrangian vanishes owing to (2.18). We conclude that11

Det−1/2�v = 1 , (5.61)

i.e. there are no contributions from the quantum superfield v to the partition function (5.58).

At first glance the result (5.61) might look strange, because the component field com-

putations of the N = 2 SYM partition function [13] show that the fields of the gauge

multiplet contribute non-trivially. In our case, the N = 2 SYM partition function is en-

tirely due to the chiral ghost superfields, while the gauge multiplet itself brings only trivial

11A direct proof of (5.61) based on the analysis of the spectrum of the operator �v is given in appendix B.2.
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contribution (5.61). In fact, this mismatch is not so surprising, since we use the super-

symmetric gauge (5.49) while in the component field computation [13] one imposes the

standard Lorentz gauge which is obviously non-supersymmetric. In different gauges the

modes giving non-trivial contributions to the partition function can be distributed differ-

ently among the gauge multiplet and ghosts, however the final result should be the same,

since the partition function is a gauge invariant object.

Consider now the contributions to the partition function (5.58) of the chiral ghost

superfields. For simplicity, let us look at the Nielsen-Kallosh ghost ϕ, the contributions

from b, c-ghosts can be analyzed in a similar way. Recall that ϕ is a covariantly chiral

superfield, ∇̄αϕ = 0, with the action

Sϕ =

∫
d3xd2θd2θ̄ E ϕ̄ϕ . (5.62)

These superfields are in the adjoint representation of SU(N). They can be expanded in the

basis elements eIJ
12

ϕ =

N∑
I 6=J

eIJϕIJ , ϕ̄ =

N∑
I 6=J

eJI ϕ̄IJ . (5.63)

where eIJ are N ×N matrices in gl(N) with the following matrix elements

(eIJ)KL = δIKδJL . (5.64)

Thus, the action (5.62) is given by the sum of actions for covariantly chiral superfields ϕIJ
which do not interact with each other

Sϕ =

N∑
I 6=J

∫
d3xd2θd2θ̄ E ϕ̄IJϕIJ . (5.65)

Each of the superfields ϕ̄IJ is covariantly antichiral,

e−VIJDαeVIJ ϕ̄IJ = 0 for I < J , eVIJDαe−VIJ ϕ̄IJ = 0 for I > J , (5.66)

where

VIJ = VI − VJ . (5.67)

The equations (5.66) show that the superfields ϕIJ appear in the action (5.65) in pairs

in which the two fields have opposite charges associated with the gauge superfield VIJ .

Hence, each of the terms in the sum (5.65) is equivalent to the chiral superfield action (5.3)

for which the partition function was given in (5.40). There are N(N − 1)/2 pairs of the

superfields ϕIJ , hence

Zϕ =

N∏
I<J

1

(2 sinhπrσIJ)2
. (5.68)

Note that the ghost ϕ has Grassmann-odd statistics and contributes as in (5.40), but in

the inverse power.

12Here we exclude the diagonal (Cartan) elements form the sum,
∑N
I=1 eIIϕII , as they do not interact

with the background gauge superfield (5.46).
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The ghost superfields b and c can be considered analogously, keeping in mind that they

have vanishing R-charges. So one uses the expression given in eq. (5.38), but in the inverse

power since the ghosts are Grassmann-odd,

Zb,c =
∏
I<J

(2 sinhπrσIJ)4 . (5.69)

We plug the equations (5.68) and (5.69) into (5.58) and obtain the one-loop partition

function of the SYM theory,

ZN=2
SYM =

∏
I<J

4 sinh2(πrσIJ) . (5.70)

This partition function differs from the one computed in [13] by the factor
∏
I<J(σI−σJ)2.

As we prove in appendix C, this mismatch is due to the fact that in (5.51) we perform

the functional integration over the unconstrained superfield v while in the calculations

of [13] the zero modes of the scalar field σ in the N = 2, d = 3 gauge multiplet are

effectively removed from the corresponding functional integration. In section 6 we will

demonstrate that the partition function (5.70) gives the correct result for the N = 2

Chern-Simons partition function calculated with the use of the superfield version of the

localization method.

5.3 N = 4 SYM partition function

In comparison to the N = 2 case (3.12), the classical action of N = 4 SYM theory on

S3 (4.22) has one extra chiral superfield and a Chern-Simons term which comes about with

a real parameter q. It is natural, from the point of view of the SU(2|2) group structure of

N = 4 supersymmetry, to consider two cases, q = 0 and q = 1, both of which are within

the bound (4.39). For q = 0 the action (4.22) has no Chern-Simons term and resembles

the N = 4 SYM action in flat space. The value q = 1 is interesting from the point of view

of applications of localization methods [14] because it coincides with the scaling dimension

of the chiral superfield Φ which constitutes part of the N = 4 gauge multiplet. Consider

one-loop partition functions in the model (4.22) for these two values of q separately.

For q = 0 the one-loop partition function in the N = 4 SYM model can be repre-

sented as

ZN=4
SYM = Det−1/2(�v) · Zϕ · Zb,c · ZΦ = ZN=2

SYM · ZΦ , (5.71)

where Det−1/2(�v) corresponds to the one-loop determinant for the gauge superfield, Zb,c
and Zϕ are contributions from the ghost superfields which are the same as for the N = 2

SYM while ZΦ takes into account the contribution from the chiral superfield Φ. For q = 0

the latter was computed in (5.38), namely

ZΦ =
∏
I<J

1

4 sinh2(πrσIJ)
. (5.72)

This expression is the inverse for (5.70). Thus, we conclude that for q = 0 the N = 4 SYM

one-loop partition function is

ZN=4
SYM = 1 . (5.73)
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Consider now the N = 4 SYM partition function for q = 1,

ZN=4
SYM = Det−1/2(�v −

1

2r
[∇α, ∇̄α]) · Zϕ · Zb,c · ZΦ . (5.74)

In contrast to the previous case, the quadratic operator for the quantum gauge superfield

�v gets shifted by the term − 1
2r [∇α, ∇̄α] which originates from the second variational

derivative of the Chern-Simons term in the N = 4 SYM action (4.22). The same arguments

as in eqs. (5.60) and (5.61) can be employed to show that

Det−1/2(�v −
1

2r
[∇α, ∇̄α]) = 1 . (5.75)

One can check this identity by analyzing the spectrum of this operator by the methods of

appendix C and to verify that this operator has equal numbers of bosonic and fermionic

states with the same eigenvalue. Note that for q = 1 the one-loop partition function of the

chiral superfield is trivial, (5.39).

The identities (5.39) and (5.75) show that the N = 4 SYM partition function (5.74)

receives non-trivial contributions only from the ghost superfields which have the same

structure as in the N = 2 SYM. Thus, we conclude that the partition functions of the

N = 4 and N = 2 SYM theories coincide

ZN=4
SYM = ZN=2

SYM =
∏
I<J

4 sinh2(πrσIJ) . (5.76)

This fact was first noticed in [14].

Naively, it is straightforward to extend the formula (5.74) to the case of the N = 8

SYM model (4.55), just by taking the factor ZΦ in eq. (5.74) three times, since there are

three chiral superfields in the game. However, in contrast to the N = 4 case, each of

these factors becomes non-trivial as soon as the R-charges of the chiral superfields are

fractional, eq. (4.61), and do not coincide with the scaling dimensions of these fields. As is

argued in [14], the naive computation of the partition function with the chiral superfields

having the fractional R-charge (4.61) does not give the partition function corresponding

to an infrared fixed point of the N = 8 supersymmetric gauge theory. The authors of [14]

showed that to get the relevant partition function one should consider a ‘mirror’ version

of the N = 8 SYM theory which consists of N = 4 SYM action supplemented with one

adjoint and one fundamental hypermultiplet. The partition function in the latter model

describes the N = 8 SYM theory in the infrared regime and agrees with the partition

function in the ABJM theory.

6 On localization in N = 2 Chern-Simons theory

Before gauge fixing, the path integral for the N = 2 Chern-Simons partition function is

given by

ZCS =

∫
DV e−SCS . (6.1)
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According to the localization method [2], one deforms this partition function by an opera-

tor X,

ZCS(t) =

∫
DV e−SCS−tX , (6.2)

which should be Q-exact, X = QY , with respect to a supersymmetry generator Q. This

guarantees that the partition function does not depend on the deformation parameter t

dZ(t)

dt
= 0 . (6.3)

The quantity X should obey some reasonable constraints. Namely, it should be given

by a local gauge-invariant functional of the gauge superfield V with a ‘good’ kinetic term.

The conventional choice of this operator is just the SYM action [13]

X = SSYM . (6.4)

The Lagrangian of the N = 2 SYM action is known to be Q-exact [13].

In the functional integral (6.2) one performs the background-quantum splitting similar

to eq. (5.42), but with the parameter 1/
√
t instead of the gauge coupling constant g

eV = eΩ†e
1√
t
v′
eΩ , eV0 = eΩ†eΩ . (6.5)

Note that at this stage the background gauge field V0 is not restricted to be constant yet.

This generic background-quantum splitting should satisfy the following natural prop-

erty

{V } = {V0} ⊕ {v′} , (6.6)

i.e. the space of all the fields (trajectories) {V } is a direct sum of the spaces of the fields

{V0} and {v′}. Then, the integration measure factorizes

DV = DV0Dv′ . (6.7)

For instance, when all the fields are represented as series in spherical harmonics on S3

(modes) the decomposition (6.7) assumes that some of these modes (in particular zero

modes) are in DV0 and the others are accounted by Dv′. For different choices of V0 the

corresponding redistributions of the modes between the background and the quantum fields

are different. This will be important for the comparison of the superfield computations with

the component field ones.

The functional integration in (6.2) requires gauge fixing. We use the same gauge fixing

procedure as in section 5.2, by taking the gauge-fixing functions (5.49) and inserting them

into the functional integral in a standard way

ZCS(t) =

∫
DV0Dv′DbDc δ(f − i∇̄2v′)δ(f̄ − i∇2v′) e

−SCS[V0,
1√
t
v′]−tSSYM[V0,

1√
t
v′]−SFP . (6.8)

The Faddeev-Popov ghost action SFP has the form of eq. (5.50) but with the gauge coupling

constant g replaced with 1√
t
.
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The main idea of the localization method is to compute the functional integral (6.2)

at t → ∞. In this limit the contribution to the functional integral (6.2) is dominated by

quadratic fluctuations around the so-called critical points, i.e. the points for which X = 0.

In the case under consideration these are the values of the gauge superfield V for which

the classical SYM action vanishes

SSYM[V0] = 0 . (6.9)

According to the equation (3.24), the SYM action is equal to zero for the vanishing super-

field strength Wα,

SSYM = 0 ⇔ Wα = 0 , G = G0 = constant matrix . (6.10)

So, the functional integral over DV0 in (6.2) is localized to such gauge superfield config-

urations V0 which have a constant gauge superfield strength G0. Recall that the lowest

component of G is the scalar σ(x) which takes its values in the Lie algebra g of the gauge

group, hence,

G0 = σ0 ∈ g , V0 = iσ0(θθ̄ − 1

2r
θ2θ̄2) . (6.11)

As a result, the integration measure DV0 exactly corresponds to the integration over the

zero modes of the Lie-algebra-valued scalar σ(x). Therefore, according to (6.7), these zero

modes should be removed from the measure Dv′.
The actions SCS[V0,

1√
t
v′] and SSYM[V0,

1√
t
v′] in (6.8) should be expanded in series with

respect to v′ around the background field V0. It is easy to see that for large t only classical

part in the Chern-Simons action remains

SCS[V0, g v
′/
√
t] = SCS[V0] +O(1/

√
t) , (6.12)

while in the SYM action only the quadratic fluctuations survive,

− tSSYM[V0, g v
′/
√
t] = −S2[V0, v

′] +O(1/
√
t) , (6.13)

where S2[V0, v
′] is given by (5.48). Thus, the path integral defining the partition function

in the Chern-Simons theory takes the following form

ZCS =

∫
DV0 e

−SCS[V0] · Z ′SYM[V0] , (6.14)

where

Z ′SYM[V0] =

∫ ′
Dv′DbDc δ(f − i∇̄2v′)δ(f̄ − i∇2v′) e−S2[V0,v′]−SFP (6.15)

is the functional integral which has one important difference from the N = 2 SYM partition

function (5.51). In (6.15) the integration is over the fields v′ excluding their zero modes

because they are already taken into account by the measure DV0 in (6.14) while in (5.51)

there are no restrictions on the field v. The reason for this is that in (5.51) we computed

the partition function for the particular background in which the gauge field has vacuum

expectation values only in the Cartan subalgebra of the gauge group.
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Within the superfield methods considered in the previous section the computation

of the functional integral (6.15) in a generic Lie-algebra valued background V0 is much

more subtle as compared with (5.51) because it requires the separation of zero modes from

non-zero ones within superfields. Fortunately, it is possible to rearrange the integration

measures in (6.14) such that the N = 2 SYM one-loop partition function (5.51) can be

used instead of (6.15). To this end, let us separate the Cartan subalgebra directions of the

Lie-algebra-valued V0 from the rest,

V0 = V h
0 + V x

0 , V h
0 ∈ h , V x

0 ∈ x . (6.16)

Here h stands for the Cartan subalgebra of g and x labels the root space directions, g = h⊕x.
The integration measure DV0 decomposes as

DV0 = DV h
0 DV

x
0 . (6.17)

Now, let us combine the measure DV x
0 with Dv′

Dv = DV x
0Dv

′ . (6.18)

This new integration measure Dv includes zero modes (as well as all the non-zero ones)

which were missing in (6.15). As a result, we get

ZCS =

∫
DV h

0 e
−SCS[V h

0 ] · ZSYM[V h
0 ] , (6.19)

where ZSYM[V h
0 ] is exactly the N = 2 SYM partition function (5.51).

Let us consider now the gauge group U(N) with the Lie algebra g = u(N). In this case

V h
0 is a diagonal matrix

V h
0 = diag(V1, V2, . . . VN ) , (6.20)

where each of VI is as in (5.15), VI = iσI(θθ̄− 1
2rθ

2θ̄2), σI = const. Hence, the integration

measure DV h
0 reduces to

DV h
0 =

N∏
I=1

dσI . (6.21)

It is easy to compute the value of the Chern-Simons action (3.26) for the constant

gauge superfield background (5.16). One gets

SCS[V h
0 ] = iπkr2 trσ2

0 = iπkr2
N∑
L=1

σ2
L . (6.22)

Finally, we substitute (5.51), (6.22) and (6.21) into (6.19) and arrive at the well-known

expression for the partition function of the Chern-Simons theory [13],

ZCS =

∫ N∏
L=1

dσL e
−iπkr2σ2

L

N∏
I<J

(2 sinhπr(σI − σJ))2 . (6.23)
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We point out that the expression (6.23) of the partition function is exactly the same as

in [13], but the procedure of arriving at this result is different. Let us discuss this difference

in more detail.

The authors of [13] notice that the functional integral (6.14) has a residual symme-

try (5.44) which can be used to reduce the integration over the Lie-algebra-valued field V0

to the integration over its Cartan subalgebra values

DV0 →
N∏
I=1

dVI
∏
K<L

(VK − VL)2 =

N∏
I=1

dσI
∏
K<L

(σK − σL)2 , (6.24)

where VI parametrize the Cartan subalgebra as in (6.20). Here
∏
K<L(VK − VL)2, which

appears in the reduced measure, is the so-called Vandermonde (or Weyl) determinant

see, e.g. [1]. Next, one evaluates the factor Z ′SYM[V0] in (6.14) by computing one-loop

determinants for all the component fields in the N = 2 gauge multiplet with the following

outcome

Z ′SYM[V0] =
N∏
I<J

(
2 sinhπr(σI − σJ)

σI − σJ

)2

. (6.25)

The denominator in (6.25) exactly cancels the Vandermonde factor in (6.24) and one gets

the same result for the partition functions as the one obtained by the superfield computa-

tions, i.e. eq. (6.23).

In the superfield approach for computing the partition function we have effectively im-

posed an additional constraint that the critical points around which the theory is localized

are not generic constant scalars valued in the Lie algebra (6.11), but take values only in

the Cartan subalgebra. In this case there is no residual symmetry and the Vandermonde

factor does not appear. The ‘non-Cartan’ degrees of freedom are taken into account in the

factor ZSYM[V h
0 ] in (6.19).

Comparing (6.25) with (5.70) one can see that the one-loop partition function in the

N = 2 SYM differs from the one computed in [13] by the Vandermonde factor

ZSYM = Z ′SYM ·
∏
I<J

(σI − σJ)2 . (6.26)

This identity is proved explicitly in appendix C by comparing one-loop determinants con-

tributing to ZSYM and Z ′SYM within the component field approach. In appendix C we show

that the factor
∏
I<J(σI − σJ)2 in (6.26) appears due to the zero modes of the scalar field

which were systematically removed from the SYM partition function considered in [13].

To summarize, these two ways of computing the partition function are equivalent since

they differ only in the place where the zero modes of the scalars σ are accommodated, i.e.

either in the measure DV0 or in Dv. The latter option has turned out to be more convenient

in the superfield approach because it is easier to compute the one-loop superfield partition

function ZSYM[V h
0 ] with no restrictions on the integration measure (i.e. without separating

the zero modes).

In this section we considered the Coulomb branch localization formula only for the pure

N = 2 Chern-Simons theory.13 It is straightforward to generalize this procedure to models

13Higgs branch localization of variousN = 2 gauge theories on S3 have been considered recently in [46, 47].
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of major interest, such as the Gaiotto-Witten or ABJM theories. To this end one should

include into the consideration additional chiral matter fields taking values in appropriate

representations of the gauge group. Then the localization formula (6.19) just acquires

extra factors with one-loop partition functions of these additional matter superfields. In

the component field formulation many such examples were studied in [13, 14].

7 Discussion

In this paper, we have constructed the N = 2 superfield formulations of gauge and matter

field theories with rigid N = 2 supersymmetry on three-sphere S3. Our construction is

based on the supercoset SU(2|1)/U(1) which has S3 as its bosonic body. For this coset

we have derived an explicit form of the supervielbein, covariant derivatives and curvature

and used these objects to construct superfield actions for gauge and matter N = 2 su-

permultiplets. Upon the integration over the Grassmann-odd coordinates these actions

reduce to the known component field actions which contain terms with S3 curvature [13].

The N = 2 superfield actions on SU(2|1)
U(1) ∼ SU(2|1)L×SU(2)R

U(1)×SU(2) are Euclidean counterparts of

actions on the AdS3 supercoset OSp(2|2)L×Sp(2)R
SO(2)×Sp(2) constructed in [9–11] within the study of

three-dimensional superfield supergravities.

Using N = 2 superfields on SU(2|1)/U(1) we have also constructed superfield actions

with extended supersymmetry for N = 4 SYM and Gaiotto-Witten theories, N = 8 SYM,

and N = 6 ABJM theory. An interesting new feature of the N = 4 SYM action is that

it respects the N = 4 supersymmetry and SU(2) R-symmetry for arbitrary value of the

charge q of the chiral superfield Φ under the U(1)R subgroup of SU(2|1). This parameter q

appears explicitly both in the action and in the supersymmetry transformations. The value

q = 1 corresponds to the canonical scaling dimension of this superfield. To understand the

nature of generic values of q from the point of view of N = 4 superalgebra it would be

interesting to develop an N = 4 superfield formulation of this model. Analogously, the

extended supersymmetry does not impose constraints on the values of the U(1)R charge of

the chiral superfields in the Gaiotto-Witten theory and they may be, in principle, different

from the canonical one q = 1
2 .

As a further extension and application of the superfield methods it will be interesting

to consider superfield theories on the supercoset SU(2|1)/[U(1)×U(1)] which contains the

sphere S2 as its bosonic body. Gauge and matter multiplets on S2 were considered in com-

ponents in [48, 49] where their partition functions were studied with the localization tech-

nique. It would be also of interest to develop a superfield formulation for five-dimensional

gauge theories on curved backgrounds considered, e.g. in [50–53].

The localization method in supersymmetric field theories effectively reduces the com-

putation of the full partition functions to the calculation of one-loop partition functions

for quadratic fluctuations around critical points [1, 16]. As a rule, in the process of the

computation of these one-loop determinants many cancelations happen among bosonic

and fermionic eigenvalues due to supersymmetry. In superspace, these cancelations occur

automatically in the supersymmetric gauge in which the operators of the quadratic fluctu-

ations of the superfields in gauge theory are manifestly supersymmetric. In particular, in
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N = 2, d = 3 superspace the SYM partition function is represented as a product of one-

loop determinants for the gauge superfield v itself and the ghost superfield contributions.

Simple superspace arguments allowed us to conclude that the one-loop determinant of the

Laplace-like operator �v for the superfield v is equal to one and only the ghost superfields

contribute to the SYM partition function. The cancelation of the bosonic and fermionic

eigenvalues of this operator is verified also by explicit computations of its spectrum given

in appendix B.

In superspace, the problem of computing the one-loop partition functions of chiral

superfields reduces to finding the chiral superfield propagator at coincident superspace

points. We have obtained the result by analyzing the formal superspace expression for this

propagator and reducing the problem to the eigenvalue problem of usual bosonic Laplace

operator acting on scalar fields. However, it will be useful to derive exact expressions

for the chiral and gauge superfield propagators on curved supersymmetric backgrounds

such as AdS space or a sphere. Having at hand exact superfield propagators one could

compute one-loop partition functions in supersymmetric theories without appealing to the

eigenvalue problem for the component fields. Note that propagators of some superfields on

AdS5 × S5 superspace were studied in [54]. It would be useful to extend these results to

chiral and gauge superfields considered in the present paper.

The one-loop partition function in N = 2, d = 3 SYM theory computed in section 5.2

differs from the one obtained in [13] by the factor
∏
I<J(σI − σJ)2, where σI are vacuum

expectation values of the scalar σ(x) in the N = 2 gauge supermultiplet. This mismatch

is due to the fact that when computing the one-loop SYM partition function in the super-

field formulation we performed functional integration over unconstrained superfields, while

in [13] the zero modes of component fields are effectively removed from the functional in-

tegrals. Such a partition function with removed zero modes appeared in the localization

formula for the Chern-Simons partition function. In section 6 we have shown that the

N = 2 SYM partition function (5.70) which includes contributions of all the modes is

equally good for the localization formula of the Chern-Simons partition function. To this

end, one should take care that the scalar zero modes are not counted twice. With the use

of superfields, it is more natural to exclude the scalar zero modes from the measure in the

localization formula for the Chern-Simons partition function rather than from the one-loop

SYM partition function.

To conclude, we have demonstrated that the superfield methods not only simplify the

problem of the construction of classical actions for supersymmetric field theories on curved

backgrounds, but are also useful for studying their quantum aspects with the use of the

localization method. Although we have restricted ourselves to three-dimensional gauge and

matter theories, it is straightforward to extend these results to models in other space-time

dimensions in which superspace description is applicable.
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A Euclidian d = 3 gamma-matrices

The three-dimensional gamma-matrices, taken to be those of Pauli

(γ1)α
β =

(
0 1

1 0

)
, (γ2)α

β =

(
0 −i
i 0

)
, γ3 = −iγ1γ2 =

(
1 0

0 −1

)
(A.1)

obey the Clifford algebra

{γa, γb} = 2δab , a, b = 1, 2, 3 , (A.2)

and generate the spinor representation of SU(2)

[γa, γb] = iεabcγc . (A.3)

Basic gamma-matrix relations are

(γa)αβ(γa)
γδ = −(δγαδ

δ
β + δδαδ

γ
β) , tr γaγb = 2δab , (A.4)

where the spinorial indices are raised and lowered with the antisymmetric tensors εαβ and

εαβ ε12 = −ε12 = 1. Useful formulae for products of gamma-matrices:

γaγb = iεabcγc + δab1 , γaγbγc = iεabc1 + δabγc + δbcγa − δacγb . (A.5)

An antisymmetric tensor ωab can be converted to a vector ωc and vice versa with the

help of Levi-Civita symbol,

ωab = εabcωc , ωc =
1

2
εabcω

ab . (A.6)

We use the following conventions for converting the vector and spinorial indices into each

other,

ωa = −iγaαβωαβ , ωαβ = − i
2
γαβa ωa ,

ωab = −iεabcγcαβωαβ , ωαβ = − i
4
εabcγ

αβ
c ωab . (A.7)

In particular, for the bosonic derivative we have

∂αβ = − i
2
γaαβ∂a , ∂a = −iγαβa ∂αβ , ∂αβ∂αβ =

1

2
∂a∂a . (A.8)
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B Spectra of supersymmetric operators on S3

The supersymmetric Laplacian operator on the sphere has the form (5.13) or (5.56) de-

pending on whether it acts in the space of covariantly chiral Φ or vector superfields V . As

we will show below, the supersymmetric eigenvalue problems of these operators are always

reduced to the eigenvalue problems of the component fields in Φ and V . Therefore, before

we start considering supersymmetric operators we summarize the result about the spectra

of conventional Laplacian and Dirac operators on S3. All these results are well known and

can be found e.g. in the appendices of [16].

• Laplacian operator −∂a∂a acting on scalar fields φ has the following eigenvales

− ∂a∂aφ(n) = λnφ
(n) , λn =

1

r2
n(n+ 2) , dn = (n+ 1)2 , n = 0, 1, 2, . . . (B.1)

Here (and further) dn means the degeneracy of the corresponding eigenvalue.

• Dirac operator −iγaD̂a on S3 has the spectrum

λ±n = ±1

r
(n+

1

2
) , d±n = n(n+ 1) , n = 1, 2, 3, . . . (B.2)

• The operator of square of the full angular momentum J2 = −(∂a + i
rγa)

2 acting on

spinors ψα has the spectrum

− (∂a +
i

r
γa)

2ψ(n)
α = λnψ

(n)
α , λn =

1

r2
n(n+ 2) , dn = 2(n+ 1)2 , n = 0, 1, 2, . . .

(B.3)

This spectrum coincides with the scalar spectrum (B.1), but the number of states

is doubled because the spinor ψα has two independent components. Indeed, the

operator J of the total angular momentum is given by the sum of orbital and spin

parts,

J = L + S , La = − i
2
∂a , Sa =

1

2
γa . (B.4)

All these three operators J, L and S obey the commutation relations of the su(2)

algebra,

[Ja,Jb] = iεabcJc , [La,Lb] = iεabcLc , [Sa,Sb] = iεabcSc . (B.5)

Hence, the spectrum of L2 is 1
r2
n(n+ 2) and the spectrum of J2 is similar, but with

shifted values of n as n→ n± 1,

λn =

{
1
r2

(n+ 1)(n+ 3) , dn = (n+ 2)(n+ 1)
1
r2

(n− 1)(n+ 1) , dn = n(n+ 1) , n = 0, 1, 2, . . .
(B.6)

This spectrum is equivalent to (B.3).

• The covariant Laplacian operator ∆ = −D̂aD̂a+ 2
r2

acting in the space of divergence-

less one-forms Ba on S3, ∂aBa = 0, has the spectrum

λn =
1

r2
(n+ 1)2 , dn = 2n(n+ 2) . (B.7)
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B.1 Chiral superfield Laplacian

Consider the eigenvalue problem for the operator H (5.5) in the case of vanishing gauge

superfield background,

1

2

(
0 −D̄2

−D2 0

)(
Φ

Φ̄

)
= λ

(
Φ

Φ̄

)
. (B.8)

Here Φ is a chiral superfield, D̄αΦ = 0. For any λ 6= 0 this equation implies

1

4
D̄2D2Φ = λ2Φ ,

1

4
D2D̄2Φ̄ = λ2Φ̄ , (B.9)

or (
−DaDa +M2

)
Φ = λ2Φ ,

(
−DaDa +M2

)
Φ̄ = λ2Φ̄ , (B.10)

where

M2 =
q(2− q)
r2

(RΦ = −qΦ) . (B.11)

The equations (B.10) allow one to find the eigenvalues λ up to signs.

Using the explicit expression (2.37) for the derivative Da we find

DaDaΦ = (∂a +
i

r
(γa)

α
βθ

β∂α)2Φ . (B.12)

Recall that component field decomposition for the chiral superfield reads

Φ = ϕ+ θαψα +
1

2
θ2F . (B.13)

As a result, we get the following equations for the component fields

−∂a∂aϕ+M2ϕ = λ2
(ϕ)ϕ , −∂a∂aF +M2F = λ2

(F )F , (B.14)

−(∂a +
i

r
γa)

2ψ +M2ψ = λ2
(ψ)ψ . (B.15)

The bosonic spectrum for the fields ϕ and F in (B.14) can be found from (B.1),

λ2
(ϕ)n = λ2

(F )n =
1

r2
n(n+ 2) +M2 , dn = (n+ 1)2 , n = 0, 1, 2, . . . (B.16)

Owing to (B.3), the fermions spectrum for the fields ψα in (B.15) appears to be exactly

the same,

λ2
(ψ)n =

1

r2
n(n+ 2) +M2 , dn = 2(n+ 1)2 , n = 0, 1, 2, . . . (B.17)

Hence, these eigenvalues cancel among each other and the determinant of the opera-

tor (B.10) is equal to one,

det
(
−DaDa +M2

)
=

∏
m(λ2

(ϕ)m)dm
∏
n(λ2

(F )n)dn∏
k(λ

2
(ψ)k)

dk
= 1 . (B.18)

– 51 –



J
H
E
P
0
4
(
2
0
1
4
)
1
0
2

We point out that thr operator −DaDa + M2 appears by squaring the operator H

in (5.5). However, this squaring is possible for every λ 6= 0 while the zero modes require

special considerations. Indeed, the zero modes obey the equations

D2Φ = 0 , D̄2Φ̄ = 0 , (B.19)

instead of (B.10). These two equations are equivalent and we consider the first of them.

Using the explicit form of the covariant spinor derivatives (2.37) for the components of the

chiral superfield (B.13) we find

F = 0 , (B.20)

−∂a∂aϕ+
q(2− q)
r2

ϕ = 0 , (B.21)

−i(γa)βαD̂aψβ +
2q − 1

2r
ψα = 0 , (B.22)

−(∂a +
i

r
γa)2ψα +

q(2− q)
r2

ψα = 0 . (B.23)

Here D̂a = ∂a − i
2Ma is purely bosonic covariant derivative acting on the spinor field.

Note that (B.23) is a differential consequence of (B.22), hence, it does not require separate

treatment.

Using (B.1) and (B.2) we find the eigenvalues of the operators in the equations (B.21)

and (B.22):

λ(ϕ)n =
1

r2
n(n+ 2) +

q(2− q)
r2

, dn = (n+ 1)2 , n = 0, 1, 2, . . . (B.24)

λ(ψ)n = ±1

r
(n+

1

2
) +

2q − 1

2r
, d±n = n(n+ 1) , n = 1, 2, 3, . . . (B.25)

These eigenvalues can vanish for some particular values of the charge q. In particular, the

values q = 0 and q = 2 should be investigated.

For q = 0 the equation (B.21) has one zero mode ϕ = const while the fermionic

equation (B.22) has no zero modes. Hence, for q = 0 the operator H has two bosonic zero

modes in its spectrum corresponding to ϕ = const and ϕ̄ = const (the latter appears in

the antichiral superfield Φ̄).

For q = 2 the equation (B.21) has one bosonic zero mode, but there are also two

fermionic zero modes in (B.22) as follows from (B.2). Hence, for q = 2 the operator H has

two bosonic and four fermionic zero modes (the doubling is because the antichiral superfield

Φ̄ contributes similarly as Φ).

We point out that for q = 1
2 the equations (B.21) and (B.22) do not have zero modes

and λ = 0 only for Φ = 0. Hence, for the chiral matter superfields with canonical R-charge

the operator H has no zero modes.

B.2 Vector superfield Laplacian on gauge superfield background

In this section we perform direct computation of the determinant of the vector superfield

Laplacian by calculating its spectrum. We will use chiral coordinates in which the covariant
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derivatives are given by (2.37) and the background gauge superfield has the form (5.15).

Then, the operator (5.57) can be written as

�v = −DaDa +
1

r
[Dα, D̄α] +

2i

r
σ0θ̄

αD̄α + σ2
0 −

2i

r
σ0 , (B.26)

where σ0 is a constant. We consider the eigenvalue problem

�vV = λV , (B.27)

where V is a chargeless superfield without any further constraints. It has the following

expansion over Grassmann coordinates

V (x, θ, θ̄) = w(x, θ) + θ̄αΨα(x, θ) + θ̄2F (x, θ) , (B.28)

where w, Ψα and F are chiral superfields,

w = w0(x) + θαwα(x) + θ2w(x) ,

Ψα = ψα(x) + θαϕ(x) + θβA(αβ)(x) + θ2Ψα(x) ,

F = F0(x) + θαFα(x) + θ2F(x) . (B.29)

Substituting (B.28) into (B.27) we get the following eigenvalue problems for the chiral

superfields w, Ψα and F ,

(−DaDa + σ2
0 −

2i

r
σ0)w − 2

r
∂αΨα = λw , (B.30)

−(Da +
i

2r
γa)

2Ψα + σ2
0Ψα

+
2i

r
(γa)βα∂aΨβ +

2

r2
θα∂βΨβ +

2

r2
θβ∂αΨβ − 2

r2
Ψα +

4

r
∂αF = λΨα , (B.31)

(−DaDa + σ2
0 +

2i

r
σ0)F = λF . (B.32)

Here we used the fact that the R-charges of the chiral superfields are RΨα = −Ψα, RF =

−2F . Next, we expand remaining derivatives in (B.30), (B.31) and (B.32) and arrive at

the following set of equations for the component fields

−∂a∂aw0 −
4

r
ϕ+ (σ2

0 −
2i

r
σ0)w0 = λw0 , (B.33a)

− (∂a +
i

r
γa)

2wα +
4

r
Ψα + (σ2

0 −
2i

r
σ0)wα = λwα , (B.33b)

−∂a∂aw + (σ2
0 −

2i

r
σ0)w = λw ; (B.33c)

−∂a∂aF0 + (σ2
0 +

2i

r
σ0)F0 = λF0 , (B.34a)

−∂a∂aF + (σ2
0 +

2i

r
σ0)F = λF , (B.34b)

− (∂a +
i

r
γa)

2Fα + (σ2
0 +

2i

r
σ0)Fα = λFα ; (B.34c)
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(−∂2
a +

1

r2
+ σ2

0)ψα +
4

r2
Fα = λψα , (B.35a)

(−∂2
a +

1

r2
+ σ2

0)Ψα = λΨα , (B.35b)

(−∂2
a +

4

r2
+ σ2

0)ϕ+
i

r
(γa)

αβ∂aAαβ +
8

r
F = λϕ , (B.35c)

(−∂2
a +

4

r2
+ σ2

0)Aαβ −
2i

r
γaαβ∂aϕ−

2i

r
(γa)γ(β∂aAα)γ = λAαβ . (B.35d)

The bispinor Aαβ is equivalent to a vector, Aa = −iγαβa Aαβ. Hence, the equa-

tion (B.35d) can be rewritten as

(−D̂bD̂b +
2

r2
+ σ2

0)Aa +
4

r
∂aϕ = λAa . (B.36)

where we used the fact that the covariant derivative acts on the vector by the rule D̂aAb =

∂aAb + 1
rεabcAc. Next, we decompose this vector into the divergenceless Ba and gradient

parts,

Aa = Ba + ∂ab , ∂aBa = 0 , b 6= const . (B.37)

The equation (B.36) leads to two independent equations for these components,

(−D̂2
b +

2

r2
+ σ2

0)Ba = λBa , (B.38)

(−D̂2
b + σ2

0)b+
4

r
ϕ = λb . (B.39)

Note also that eq. (B.35c) is equivalent to

(−∂2
a +

4

r2
+ σ2

0)ϕ− 1

r
∂2
ab+

8

r
F = λϕ . (B.40)

Our purpose now is to find the eigenvalues λ from the system of equations (B.33a)–

(B.35b) and (B.38)–(B.40). Some of these equations are entangled because of the fact that

we work in the chiral coordinates. We start with the case when the equations (B.34) have

trivial solution, F0 = Fα = F = 0. In this case (B.35) can be rewritten as

(−∂2
a +

1

r2
+ σ2

0)ψα = λψα , (B.41)

(−∂2
a +

1

r2
+ σ2

0)Ψα = λΨα , (B.42)

(−D̂2
b +

2

r2
+ σ2

0)Ba = λBa , (B.43)

(−∂2
a + σ2

0)b+
4

r
ϕ = λb , (B.44)

(−∂2
a +

4

r2
+ σ2

0)ϕ− 1

r
∂2
ab = λϕ . (B.45)

The equations (B.41) and (B.42) for the spinors ψα and Ψα have the form of the

bosonic equation (B.1), but with shifted value of λ. Hence, we find the spectrum,

λn =
1

r2
(n+ 1)2 + σ2

0 , n = 0, 1, 2, . . . , (B.46)

with altogether dn = 4(n+ 1)2 fermionic states on the corresponding level.
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The operator ∆ = −D̂2
a + 2

r2
in (B.43) is nothing but the Laplacian operator acting in

the space of divergenceless one-forms. Its spectrum is given (B.7). Thus, the equation for

the vector Ba gives eigenvalues λn = 1
r2

(n+ 1)2 + σ2
0, with degeneracies dn = 2n(n+ 2).

The equations (B.43) and (B.45) also have the spectrum (B.46) with dn = 2n2 +4n+4

states on the corresponding level. Thus, the equations (B.41)–(B.45) have non-trivial

solutions for the values of λ given by (B.46) with 4(n+ 1)2 bosonic and 4(n+ 1)2 states on

the n-th level. Finally, we point out that for every non-trivial solution of these equations

the system (B.33) has the unique solution of the form

w = 0 , wα = wα(Ψα) , w0 = w0(ϕ) . (B.47)

with some functions wα(Ψα) and w0(ϕ). Therefore, no new independent degrees of freedom

appear from (B.33).

Let us turn to the case when the system (B.34) has non-trivial solutions. Equa-

tions (B.34) are similar to (B.14) and (B.15) which correspond to the supersymmetric

Laplacian operator acting on the chiral superfield (B.10) in the case of vanishing R-charge

q. Therefore the equations (B.34) give the spectrum

λn =
1

r2
n(n+ 2) + σ2

0 +
2i

r
σ0 , n = 0, 1, 2, . . . , (B.48)

with dn = 2(n + 1)2 bosonic and dn = 2(n + 1)2 fermionic states on n-th level. One can

easily see that for every non-trivial solution of (B.34) it is possible to find unique solution

of the remaining equations (B.33) and (B.35). Hence, these equations do not give any new

degrees of freedom corresponding to the eigenvalues (B.48).

The last case to consider is when both systems (B.34) and (B.35) have trivial solutions,

F0 = F = Fα = 0, ψα = Ψα = Aαβ = ϕ = 0. In this case the set of equations (B.33) is

simply

−∂a∂aw0 + (σ2
0 −

2i

r
σ0)w0 = λw0 , (B.49)

−(∂a +
i

r
γa)

2wα + (σ2
0 −

2i

r
σ0)wα = λwα , (B.50)

−∂a∂aw + (σ2
0 −

2i

r
σ0)w = λw . (B.51)

These equations are identical to the ones (B.14), (B.15) arising from the chiral superfield

eigenvalue problem. Hence, using (B.16), we can immediately write down the spectrum,

λn =
1

r2
n(n+ 2) + σ2

0 −
2i

r
σ0 , n = 0, 1, 2, . . . . (B.52)

For any given eigenvalue there are dn = 2(n+ 1)2 bosonic and fermionic modes.

To summarize, the system of equations (B.33)–(B.35) has the spectrum (B.46), (B.48)

and (B.52). The numbers of states (degeneracies) for these eigenvalues are given in table 1.

This table shows that for every eigenvalue λn there are equal numbers of bosonic and

fermionic eigenstates. Hence, they exactly cancel against each other in the determinant of

the operator �v,

det�v =

∏
λbos∏
λferm

= 1 . (B.53)

This result was used in section 5.2 when computing the SYM partition function.
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λ = 1
r2

(n+ 1)2 + σ2
0 λ = 1

r2
n(n+ 2) + σ2

0 + 2i
r σ0 λ = 1

r2
n(n+ 2) + σ2

0 − 2i
r σ0

w0 0 0 (n+ 1)2

w 0 0 (n+ 1)2

wα 0 0 2(n+ 1)2

F0 0 (n+ 1)2 0

F 0 (n+ 1)2 0

Fα 0 2(n+ 1)2 0

ψα 2(n+ 1)2 0 0

Ψα 2(n+ 1)2 0 0

Ba 2n(n+ 2) 0 0

ϕ, b 2n2 + 4n+ 4 0 0

Table 1. Degeneracies of eigenvalues of the operator �v acting on general superfield V .

C Component field calculation of the N = 2 SYM one-loop partition

function revisited

The one-loop partition function in the N = 2 SYM theory was computed in [13] by con-

sidering the spectra of operators of quadratic fluctuations for bosonic and fermionic fields

of the N = 2 gauge multiplet. Here we revisit these computations with a special attention

to zero modes of scalar fields. In contrast to [13] we use a modified Lorentz gauge which

has no zero modes and gives a mass term to the Laplacian operators of the Faddeev-Popov

ghosts and physical scalar σ making these operators invertible.

Consider the N = 2 super Yang-Mills action in the component form (3.25) and make

background-quantum splitting for the scalar field σ,

σ → σ0 + g σ , Aa → gAa , λα → gλα , D → gD , (C.1)

were g is the gauge coupling and σ0 is a constant background field which is chosen to

belong to the Cartan subalgebra of the gauge algebra. For computing the one-loop partition

function it is sufficient to consider the part of the action (3.25) which describes quadratic

fluctuations around this background,

S2 = tr

∫
d3x
√
h(Lbos + Lferm) , (C.2)

Lbos =
1

2
D̂aAbD̂aAb −

1

2
D̂aAbD̂bAa +

1

2
∂aσ∂aσ + i∂aσ[Aa, σ0]− 1

2
[Aa, σ0]2

+
1

2

(
D +

2σ

r

)2

, (C.3)

Lferm =
i

2
λα(γa)βαD̂aλ̄β −

i

2
λα[σ0, λ̄α] +

1

4r
λαλ̄α . (C.4)

Here D̂a is purely bosonic covariant derivative on S3 with standard commutation rule,

[D̂a, D̂b] = − i
4rMab.

The one-loop partition function

ZSYM[σ0] =

∫
DAaDσDλαDDe−S2 (C.5)
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requires gauge fixing since the SYM action is gauge invariant. The standard Lorentz gauge

D̂aAa = 0 (C.6)

(although admissible) is not convenient here because there is the cross-term i∂aσ[Aa, σ0]

in (C.3). It is desirable to have a propagator in the diagonal form, without mixing of the

fields Aa and σ. The simplest way to eliminate this crossing term from the action is to

impose the modified Lorentz gauge,

f = D̂aAa + i[σ0, σ] , (C.7)

where f(x) is some fixed function. In principle, one can put this function to zero, but we

keep it to represent the gauge-fixing condition in the functional integral in Gaussian form.

Indeed, the functional delta-function δ(D̂aAa + i[σ0, σ]− f), after averaging over f with a

suitable weight, leads to the gauge-fixing term

Sgf = tr

∫
d3x
√
hLgf , Lgf =

1

2
f2 . (C.8)

Adding this action to (C.2) we find14

Lbos + Lgf =
1

2
Aa∆A

a − 1

2
[Aa, σ0]2 − 1

2
σ∂2σ − 1

2
[σ0, σ]2 , (C.9)

where

∆ = −D̂2 +
2

r2
(C.10)

is the covariant Laplacian operator in the space on one-forms on S3. As a result, the gauge

fixed version of the functional integral (C.5) reads

ZSYM[σ0] =

∫
DAaDσDλα ∆FP e

−
∫
d3x
√
h(Lbos+Lferm+Lgf) , (C.11)

where ∆FP is the Faddeev-Popov determinant. We stress that the functional integration∫
Dσ in (C.11) runs over all configurations of the scalar field σ, including its zero mode

(i.e., the zero mode of the operator ∂2).

Consider the variation of the gauge-fixing function (C.7) under gauge transformations

with local gauge parameter λ = λ(x),

δf = i(∂a∂aλ− [σ0, [σ0, λ]] + ig∂a[Aa, λ]− g[σ0, [σ, λ]]) . (C.12)

The last two terms in (C.12) are not essential for one-loop computations as they are re-

sponsible for interactions of the ghost fields with the vector Aa and scalar σ. The quadratic

term for the ghost fields corresponds to the operator

O = −∂a∂a + [σ0, [σ0, ·]] . (C.13)

14We omit the term 1
2

(
D + 2σ

r

)2
in (C.3) since the functional integration over the auxiliary field D gives

trivial contribution to the partition function.
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Hence, the one-loop Faddeev-Popov determinant ∆FP = DetO is represented by the func-

tional integral over anticommuting Faddeev-Popov ghosts b and c,

∆FP =

∫
DbDc e−SFP , SFP = tr

∫
d3x
√
h b(−∂2c+ [σ0, [σ0, c]]) . (C.14)

Note that the functional integration in (C.14) is taken over unrestricted ghost fields b

and c, including their zero modes. Indeed, the operator (C.13) is non-degenerate owing to

the last term which is nothing but the mass parameter. This term can be also interpreted

as the interaction of the ghost fields with the background field σ0. This is the crucial

difference of our computation from the one given in [13] where the Lorentz gauge (C.6) was

imposed and the zero modes of σ did not enter the functional integral over Dσ in (C.5)

(we will comment on this case in the end of this section).

In what follows we concentrate on the gauge group SU(N). In this case all the fields

are given by Hermitian matrices. Consider, for instance, the gauge field Aa and expand it

over the basis in the Lie algebra gl(N),

Aa =

N∑
I,J=1

eIJA
IJ
a , ĀIJa = AJIa ,

N∑
I=1

AIIa = 0 , (C.15)

where the basis elements eIJ are given by the matrices

(eIJ)KL = δIKδJL (C.16)

with the orthogonality property

tr eIJeKL = δILδJK . (C.17)

The field σ0 in the Cartan subalgebra of su(N) is just the diagonal matrix,

σ0 = diag(σ1, σ2, . . . , σN ) ,
N∑
I=1

σI = 0 . (C.18)

Hence, we have the following properties

[σ0, Aa] =

N∑
I 6=J

(σI − σJ)eIJA
IJ
a , tr[σ0, Aa]

2 = −
N∑
I 6=J

(σI − σJ)2AIJa Ā
IJ
a . (C.19)

Applying these rules to all fields in the gauge multiplet we rewrite the expressions (C.4)

and (C.9) as well as the Lagrangian for the ghost fields as

tr(Lbos + Lgf) =
1

2

∑
I 6=J

[
ĀIJa (∆ + (σI − σJ)2)AIJa + σ̄IJ(−∂2 + (σI − σJ)2)σIJ

]
,(C.20)

trLferm =
1

2

∑
I 6=J

[
λIJ(iγaD̂a +

1

2r
− i(σI − σJ))λ̄IJ

]
, (C.21)

trLFP =
∑
I 6=J

bIJ(−∂2 + (σI − σJ)2)cIJ . (C.22)
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Hence, the one-loop partition function ZSYM[σ0] factorizes according to the contributions

from different fields as

ZSYM[σ0] = ZA · Zσ · Zferm · Zb,c , (C.23)

ZA = Det−
1
2 (∆ + (σI − σJ)2) , (C.24)

Zσ = Det−
1
2 (−∂2 + (σI − σJ)2) , (C.25)

Zferm = Det(iγaD̂a −
1

2r
+ i(σI − σJ)) , (C.26)

Zb,c = Det(−∂2 + (σI − σJ)2) . (C.27)

The factor ZA in (C.23) deserves special attention. The determinant in (C.24) is com-

puted in the space of unconstrained one-forms Aa on S3. This space naturally decomposes

into the divergenceless one-forms Ba, ∂
aBa = 0, and the one-forms given by the gradient

of a scalar, ∂aφ,

Aa = Ba + ∂aφ , ∂aBa = 0 . (C.28)

However, the zero mode of the scalar φ does not contribute to Aa and, hence, it should be

eliminated. Therefore ZA decomposes as

ZA = ZB · Zφ , (C.29)

ZB = Det′
− 1

2 (∆ + (σI − σJ)2) , (C.30)

Zφ = Det′
− 1

2 (−∂2 + (σI − σJ)2) , (C.31)

where the determinant in ZB is computed in the space of diverdenceless one-forms Ba and

Zφ is given by the determinant of the Laplacian in the space of scalar fields φ, with the

zero mode excluded from the spectrum.

It is straightforward to compute the partition function since the spectra of all the

operators in (C.23)–(C.27) in known (see appendix B). The part

ZB · Zferm =
∏
I>J

(
2 sinh(πr(σI − σJ))

σI − σJ

)2

(C.32)

of the partition function was computed in [13]. Therein, the determinants of the other

fields did not contribute to the partition function because they do not interact with the

background fiend σ0 in the Lorentz gauge (C.6).

In our case the modified Lorentz gauge (C.7) effectively gives the mass term for the

scalar σ and ghosts and we earn additional contribution to the partition function depending

on σ0,

Zσ · Zb,c · Zφ =
Det(−∂2 + (σI − σJ)2)

Det
1
2 (−∂2 + (σI − σJ)2)Det′

1
2 (−∂2 + (σI − σJ)2)

. (C.33)

All these determinants correspond to the same operator −∂2 + (σI − σJ)2 acting in the

space of scalar fields. Hence, all the eigenvalues in (C.33) cancel except for the zero mode

because it is absent in Det′
1
2 (−∂2 + (σI − σJ)2). Thus,

Zσ · Zb,c · Zφ =
∏
I>J

(σI − σJ)2 . (C.34)
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This expression cancels the denominator in (C.32) and we get exactly the partition func-

tion (5.70) computed in section 5.2 by superfield methods,

ZSYM =
∏
α>0

4 sinh2(πr(σI − σJ)) . (C.35)

Let us now consider the partition function Z ′SYM introduced in (6.15) and computed

in [13]. In components, this partition function is represented by the same functional in-

tegral (C.11), but with one important difference, namely, the integration over Dσ runs

over the space of scalar fields excluding their zero modes. When the zero models of σ

are dropped out, the gauge fixing function (C.7) does not have zero modes as well and,

as a consequences, the zero modes are absent in the Faddeev-Popov ghost fields b and c

in (C.14). As a result, the zero modes are now absent in all determinants entering (C.33),

Zσ · Zb,c · Zφ =
Det′(−∂2 + (σI − σJ)2)

Det′
1
2 (−∂2 + (σI − σJ)2)Det′

1
2 (−∂2 + (σI − σJ)2)

= 1 . (C.36)

So, only (C.32) contributes to Z ′SYM,

Z ′SYM =
∏
α>0

(
2 sinh(πr(σI − σJ))

σI − σJ

)2

. (C.37)

Exactly this partition function was employed in [13] in the localization formula in the

N = 2 Chern-Simons theory. The denominator of (C.37) gets cancelled in the final stage

of calculations of [13] by the Vandermonde determinant in the integration measure of the

scalar σ0.

Comparing the formulae (C.35) and (C.37) we get the proof of the identity (6.26) used

in section 6.
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