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Channel estimation for single-input multiple-output (SIMO) frequency-selective time-varying channels is considered using su-
perimposed training. The time-varying channel is assumed to be described by a complex exponential basis expansion model
(CE-BEM). A periodic (nonrandom) training sequence is arithmetically added (superimposed) at a low power to the information
sequence at the transmitter before modulation and transmission. A two-step approach is adopted where in the first step we es-
timate the channel using CE-BEM and only the first-order statistics of the data. Using the estimated channel from the first step,
a Viterbi detector is used to estimate the information sequence. In the second step, a deterministic maximum-likelihood (DML)
approach is used to iteratively estimate the SIMO channel and the information sequences sequentially, based on CE-BEM. Three
illustrative computer simulation examples are presented including two where a frequency-selective channel is randomly generated
with different Doppler spreads via Jakes’ model.
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1. INTRODUCTION

Consider a time-varying SIMO (single-input multiple-out-
put) FIR (finite impulse response) linear channel withN out-
puts. Let {s(n)} denote a scalar sequence which is input to
the SIMO time-varying channel with discrete-time impulse
response {h(n; l)} (N-vector channel response at time n to a
unit input at time n−l). The vector channel may be the result
of multiple receive antennas and/or oversampling at the re-
ceiver. Then the symbol-rate, channel output vector is given
by

x(n) :=
L∑

l=0
h(n; l)s(n− l). (1)

In a complex exponential basis expansion representation [4]
it is assumed that

h(n; l) =
Q∑

q=1
hq(l)e jωqn, (2)

where N-column vectors hq(l) (for q = 1, 2, . . . ,Q) are time-
invariant. Equation (2) is a basis expansion of h(n; l) in the
time variable n onto complex exponentials with frequencies
{ωq}. The noisy measurements of x(n) are given by

y(n) = x(n) + v(n). (3)

Equation (2) is the complex-exponential basis expansion
model (CE-BEM).

A main objective in communications is to recover s(n)
given noisy {y(n)}. In several approaches this requires
knowledge of the channel impulse response [11, 19]. In
conventional training-based approaches, for time-varying
channels, one has to send a training signal frequently and
periodically to keep up with the changing channel [7]. This
wastes resources. An alternative is to estimate the channel
based solely on noisy y(n) exploiting statistical and other
properties of {s(n)} [11, 19]. This is the blind channel es-
timation approach. More recently a superimposed training-
based approach has been explored where one takes

s(n) = b(n) + c(n), (4)

where {b(n)} is the information sequence and {c(n)} is a
training (pilot) sequence added (superimposed) at a low
power to the information sequence at the transmitter before
modulation and transmission. There is no loss in informa-
tion rate. On the other hand, some useful power is wasted in
superimposed training which could have otherwise been al-
located to the information sequence. Periodic superimposed
training for channel estimation via first-order statistics for
SISO systems have been discussed in [9, 16, 21] (and ref-
erences therein) for time-invariant channels, and in [17] (a
conference version of Section 2 of this paper) for both time-
invariant and time-varying (CE-BEM based) channels.
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CE-BEM representation/approximation of doubly selec-
tive channels have been used in [1, 2, 4–7, 15], among oth-
ers. Reference [7] deals with time-multiplexed training se-
quence design for block transmissions. In this paper we only
deal with serial transmissions. In [5], a semiblind approach is
considered with time-multiplexed training with serial trans-
missions and at least two receive antennas. In this paper our
results hold even with one receive antenna. Reference [2]
deals with time-varying equalizer design given CE-BEM rep-
resentation.

Reference [3] appears to be the first to use (periodic)
superimposed training for SISO time-invariant channel es-
timation. Periodic training allows for use of the first-order
statistics (time-varying mean) of the received signal. Since
blind approaches cannot resolve a complex scaling factor am-
biguity, they require differential encoding/decoding result-
ing in an approximately 3 dB SNR loss. It was noted in [3]
that power loss in superimposed training would be typi-
cally much less than 3 dB. Furthermore, it was also noted in
[3] that identifiability conditions for superimposed training-
based methods are much less stringent than that for blind
approaches. As noted earlier periodic superimposed train-
ing for channel estimation via first-order statistics for SISO
systems has been discussed in [17] for both time-invariant
and time-varying (CE-BEM based) channels. While in prin-
ciple aperiodic superimposed training can also be used, peri-
odic training allows for a much simpler algorithm; for in-
stance, for CE-BEM channels, relation (13) leads to (19)
(see Section 2) which allows for a “decoupled” estimation
of the coefficients dmq (see (10)) from data. In the CE-BEM
model the exponential basis functions are orthogonal over
the record length. When we use periodic training with ap-
propriately selected period in relation to the record length,
the “composite” basis functions (e jωmqn in Section 2) are still
orthogonal, leading to (13). However, there does not exist
any relative advantage or disadvantage between periodic and
aperiodic superimposed training when using the iterative ap-
proach to joint channel and information sequence estima-
tion discussed in Section 3. In the simulations presented in
this paper we used an m-sequence (maximal length pseu-
dorandom binary sequence) as superimposed training se-
quence. While there exist a large class of periodic training se-
quences which are periodically white and/or optimal in some
sense (see [9]), some of them do not have a peak-to-average
power ratio of one and some of them do not have finite al-
phabet, whereas an m-sequence has finite (binary) alphabet
and unity peak-to-average power ratio.

As noted earlier, compared to periodically inserted time-
multiplexed training (as in [7]), there is no loss in data trans-
mission rate in superimposed training. However, there may
be an increase in bit-error rate (BER) because of an SNR loss
due to power allocated to superimposed training. Our sim-
ulation comparisons show that at “low” SNRs we also have
a BER advantage (see Example 3 in Section 4). In semi-blind
approaches (such as that in [5]), there is periodically inserted
time-multiplexed training but one uses the nontraining-
based data also to improve the training-based results: it uses
a combination of training and blind cost functions.While [5]

needs at least two receive antennas, in this paper our results
hold even with one receive antenna; besides, in [5] there is
still a loss in data transmission rate owing to the presence of
time-multiplexed training.

In [17] a first-order statistics-based approach for time-
invariant channel estimation using periodic superimposed
training has been presented. This approach is further ana-
lyzed and enhanced in [18] where a performance analysis
has been carried out, and issues such as frame synchroniza-
tion and training power allocation have been discussed. Both
these papers do not deal with time-varying channels; more-
over, they do not discuss any iterative approach to joint chan-
nel and information sequence estimation even in the context
of time-invariant channels.

Objectives and contributions

In this paper, we first present and extend the first-order
statistics-based approach of [17] for time-varying (CE-BEM
based) channels. Then we extend the first-order statistics-
based solution to an iterative approach to joint channel and
information sequence estimation, based on CE-BEM, using
Viterbi detectors. The first-order statistics-based approach
views the information sequence as interference whereas in
the iterative joint estimation version it is exploited to en-
hance channel estimation and information sequence detec-
tion. All results in this paper are developed for an SIMO
formulation since everything developed for an SISO system
carries over to an SIMO model in a straightforward fashion.
However, all our simulations are presented for an SISO sys-
tem (for simplicity of presentation).

Notation

Superscripts H , T , and † denote the complex conjugate
transpose, the transpose and the Moore-Penrose pseudoin-
verse operations, respectively. δ(τ) is the Kronecker delta and
IN is the N × N identity matrix. The symbol ⊗ denotes the
Kronecker product. The superscript ∗ denotes the complex
conjugation operation.

1.1. CE-BEM representation

We now briefly discuss the CE-BEM representation of time-
varying communications channels, following [4] and partic-
ularly [6], to consider practical situations where the basis
frequencies ωq’s would be known a priori. Consider a time-
varying (e.g., mobile wireless) channel with complex base-
band, continuous-time, received signal x(t) and transmitted
complex baseband, continuous-time information signal s(t)
(with symbol interval Ts seconds) related by h(t; τ) which is
the time-varying impulse response of the channel (response
at time t to a unit impulse at time t − τ). Let τd denote the
(multipath) delay-spread of the channel and let fd denote the
Doppler spread of the channel. If x(t) is sampled once every
Ts seconds (symbol rate), then by [6], for t = nTs + t0 ∈
[t0, t0 + TTs), the sampled signal x(n) := x(t)|t=nTs+t0 has the
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representation

x(n) =
L∑

l=0
h(n; l)s(n− l), (5)

where

h(n; l) =
Q∑

q=1
hq(l)e jωqn, L :=

⌊
τd
Ts

⌋
, (6)

ωq = 2π
T

(
q − 1

2
− Q

2

)
, Q := 2

⌈
fdTTs

⌉
+ 1. (7)

This is a scenario where the CE-BEM representation is ap-
propriate. The above representation is valid over a duration
of TTs seconds (T samples). Equation (1) arises if we follow
(5) and consider an SIMOmodel arising due to multiple an-
tennas at the receiver. Although discussed in the context of
OFDM, in [12] it is shown that finite-duration observation
window effects compromise the accuracy of CE-BEM, that is,
CE-BEM is “accurate” only as T → ∞. One could try to im-
prove the CE-BEM efficacy by explicitly incorporating time-
domain windowing effects (as in [12]). Such modifications
are outside the scope of this paper. We do note that in [8],
alternative models (such as polynomial bases models) cou-
pled with CE-BEM have been used to improve the modeling
results.

2. A FIRST-ORDER STATISTICS-BASED SOLUTION

It is based on CE-BEM. Assume the following:

(H1) the time-varying channel {h(n; l)} satisfies (2) where
the frequencies ωq (q = 1, 2, . . . ,Q) are distinct and
known withωq ∈ [0, 2π). AlsoN ≥ 1. For some q (1 ≤
q ≤ Q), we have ωq = 0;

(H2) the information sequence {b(n)} is zero-mean, white
with E{|b(n)|2} = 1;

(H3) the measurement noise {v(n)} is nonzero-mean
(E{v(n)} = m), white, uncorrelated with {b(n)}, with
E{[v(n+ τ)−m][v(n)−m]H} = σ2v INδ(τ). The mean
vectormmay be unknown;

(H4) the superimposed training sequence c(n) = c(n +mP)
for allm,n is a nonrandom periodic sequence with pe-
riod P.

For model (7), we have q = (Q+1)/2. Negative values of ωq’s
in (7) are to be interpreted as positive values after a modulo
2π operation, that is, in (7), for 1≤q < q, we also have ωq=
(2π/T)(q − 1/2−Q/2 + T).

In this section, we will exploit the first-order statistics
(i.e., E{y(n)}) of the received signal. (A consequence of us-
ing the first-order statistics is that the knowledge of the noise
variance σ2v in (H3) is not used here.)

By (H4), we have

c(n) =
P−1∑

m=0
cme

jαmn ∀n, (8)

where

cm := 1
P

P−1∑

n=0
c(n)e− jαmn, αm := 2πm

P
. (9)

The coefficients cm are known at the receiver since {c(n)} is
known. By (1)–(3), (8)-(9), and (H3), we have

E
{
y(n)

} =
Q∑

q=1

P−1∑

m=0

[ L∑

l=0
cmhq(l)e− jαml

]

︸ ︷︷ ︸
=:dmq

e j(ωq+αm)n +m.

(10)

Suppose that we pick P to be such that (ωq + αm)’s are all
distinct for any choice ofm and q. For instance, suppose that
the data record length T samples (see also Section 1.1) and P
are such that T = KP for some integer K > 0. In such a case,
we have

ωmq

:= ωq + αm
(11)

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2π
T

(
q − 1

2
− Q

2
+ Km

)
mod(2π) if Q≥q≥ Q + 1

2
,

2π
T

(
q − 1

2
− Q

2
+ T + Km

)
mod(2π) if 1≤q <

Q + 1
2

.

(12)

If P and K are such that K ≥ Q, then it follows from (12)
that ωm1q1 
= ωm2q2 if q1 
= q2 or m1 
= m2. Henceforth, it is
assumed that the above conditions hold true. Then we have

T−1
T−1∑

n=0
e j(2π/T)(q+Km)n = δ(q)δ(m). (13)

Note that ωmq = 0 only when m = 0 and q = q. We
rewrite (10) as

E
{
y(n)

} =
Q∑

q=1

P−1∑

m=0(q,m) 
=(q,0)
dmqe

jωmqn +
(
d0q +m

)
. (14)

Given the observation sequence y(n), 0 ≤ n ≤ T − 1, our
approach to estimating hq(l)’s using the first-order statistics
of the data is to first estimate dmq’s for 0 ≤ m ≤ P − 1,
1 ≤ q ≤ Q ((q,m) 
= (q, 0)), and then estimate hq(l)’s from
the estimated dmq’s. By (14), dmq is the coefficient of the ex-
ponential e jωmqn for (q,m) 
= (q, 0), whereas d0q + m is the
coefficient of e jω0qn = 1. Since the dc offsetm is not necessar-
ily known, we will not seek the coefficient of e jω0qn in (14). By
(1)–(3) and (14), we have

y(n) =
Q∑

q=1

P−1∑

m=0

[
dmq +mδ(q − q)δ(m)

]
e jωmqn + e(n),

(15)

where e(n) is a zero-mean random sequence. Define the cost
function

J =
T−1∑

n=0

∥∥e(n)
∥∥2. (16)
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Choose dmq’s (q = 1, 2, . . . ,Q; m = 0, 1, . . . ,P − 1, (q,m) 
=
(q, 0)) to minimize J . For optimization, we must have

∂J

∂d∗mq

∣∣∣∣∣∣dmq=d̂mq

∀q,m
= 0, (17)

where the partial derivative in (17) for given m and q is a
column vector of dimension N (the derivatives are compo-
nentwise). (17) leads to

T−1∑

n=0
e(n)e− jωmqn

∣∣∣∣∣∣dmq=d̂mq

∀q,m
= 0. (18)

Using (13), (15), and (18), it follows that (for (q,m) 
= (q, 0))

d̂mq = 1
T

T−1∑

n=0
y(n)e− jωmqn. (19)

It follow from (14) and (19) that

E
{
d̂mq

} = dmq, (q,m) 
= (q, 0). (20)

Now we establish that given dmq for 1 ≤ q ≤ Q and 0 ≤
m ≤ P − 1 but excluding ωq + αm = 0, we can (uniquely)
estimate hq(l)’s if P ≥ L + 2 and cm 
= 0 for allm 
= 0. Define

V :=

⎡
⎢⎢⎢⎢⎢⎣

1 e− jα1 · · · e− jα1L

1 e− jα2 · · · e− jα2L

...
...

...
...

1 e− jαP−1 · · · e− jαP−1L

⎤
⎥⎥⎥⎥⎥⎦

(P−1)×(L+1)

, (21)

Dm := [dTm1,d
T
m2, . . . ,d

T
mQ

]T
, (22)

Hl :=
[
hT1 (l),h

T
2 (l), . . . ,h

T
Q(l)

]T
, (23)

H :=
[
HH

0 HH
1 · · · HH

L

]H
, (24)

D1 :=
[
DH

1 DH
2 · · · DH

P−1
]H

, (25)

C1 :=
(
diag

{
c1, c2, . . . , cP−1

}
V
)

︸ ︷︷ ︸
=:V

⊗INQ. (26)

Omitting the termm=0 and using the definition of dmq from
(10), it follows that

C1H =D1. (27)

Notice that we have omitted all pairs (m, q) = (0, q) (q 
=
q) from (27). In order to include these omitted terms, we
further define an [N(Q − 1)]-column vector

D0 :=
[
dT01,d

T
02, . . . ,d

T
0(q−1)d

T
0(q+1), . . . ,d

T
0Q

]T
, (28)

an [N(Q− 1)]× [NQ] matrix

A :=
[
IN(q−1) 0 0

0 0 IN(Q−q)

]
, (29)

and an [N(Q − 1)]× [NQ(L + 1)] matrix

C2 :=
[
c0A c0A · · · c0A

]
. (30)

Then it follows from (10) and (28)–(30) that

C2H = D0. (31)

In order to concatenate (27) and (31), we define

C :=
[
C2

C1

]
, D :=

[
D0

D1

]
, (32)

which lead to

CH =D . (33)

Equation (33) utilizes all pairs (m, q) except (0, q).
In (21) V is a Vandermonde matrix with a rank of L+1 if

P−1 ≥ L+1 and αm’s are distinct [14, page 274]. Since cm 
= 0
for allm, by [14, Result R4, page 257], rank(V) = rank(V) =
L + 1. Finally, by [10, Property K6, page 431], rank(C1) =
rank(V) × rank(INQ) = NQ(L + 1). Therefore, we can de-
termine hq(l)’s uniquely from (27). Augmenting (27) with
additional equations to obtain (33) keeps the earlier conclu-
sions unchanged, that is, rank(C) = rank(C1) = NQ(L + 1).
Thus, if P ≥ L+2 and cm 
= 0 for allm 
= 0, (33) has a unique
solution forH (i.e., hq(l)’s).

Define D̂m as in (22) or (28) with dmq’s replaced with

d̂mq’s. Similarly, define D̂ as in (25) and (32) with Dm’s re-

placed with D̂m’s. Then from (33) we have the channel esti-
mate

Ĥ = (CHC
)−1

CHD̂ . (34)

By (20) and (33), it follows that

E{Ĥ} =H . (35)

We summarize our method in the following lemma.

Lemma 1. Under (H1)–(H4), the channel estimator (34) sat-
isfies (35) under the following (additional) sufficient condi-
tions: the periodic training sequence is such that cm 
= 0 for
all m 
= 0, P ≥ L + 2, and P and T are such that T = KP for
integer K ≥ Q.

Remark 1. A more logical approach would have been to se-
lect hq(l)’s and m jointly to minimize the cost J in (16). The
resulting solution is more complicated and it couples esti-
mates of hq(l)’s and m. Since we do not use d0q, we are dis-
carding any information about hq(l) therein.

Remark 2. It should be emphasized that precise knowledge
of the channel length L is not required; an upperbound Lu
suffices. Then we estimateHl for 0 ≤ l ≤ Lu with E{Ĥl} = 0
for l ≥ L + 1. Moreover, we do not need cm 
= 0 for every m.
We need at least L + 2 nonzero cms.
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Remark 3. The cost (16) is not novel; it also occurs in [1, 15]
in the context of time-multiplexed training for doubly se-
lective channels. However, unlike these papers, as noted
in Remark 1 we do not directly estimate hq(l)’s and m
(there is no m in these papers); rather, we first estimate
dmq’s which are motivated through the time-varying mean
E{y(n)}, hence, the term first-order statistics. This aspect is
missing from [1, 15], and in this paper it is motivated by the
time-invariant results of [9, 16, 21] (among others). Choice
of periodic superimposed training is also motivated by the
results of [9, 16, 21].

3. DETERMINISTIC MAXIMUM-LIKELIHOOD
(DML) APPROACH

The first-order statistics-based approach of Section 2 views
the information sequence as interference. Since the training
and information sequences of a given user pass through an
identical channel, this fact can be exploited to enhance the
channel estimation performance via an iterative approach.
We now consider joint channel and information sequence
estimation via an iterative DML (or conditional ML) ap-
proach assuming that the noise v(n) is complex Gaussian.We
have guaranteed convergence to a local maximum. Further-
more, if we initialize with our superimposed training-based
solution, one is guaranteed the global extremum (minimum
error probability sequence estimator) if the superimposed
training-based solution is “good.”

Suppose that we have collected T − L samples of the ob-
servations. Form the vector

Y = [yT(T − 1), yT(T − 2), . . . , yT(L)
]T

(36)

and similarly define

s := [s(T − 1), s(T − 2), . . . , s(0)
]T
. (37)

Furthermore, let

ṽ(n) := v(n)−m. (38)

Using (1)–(3) we then have the following linear model:

Y = T (s)H +

⎡
⎢⎢⎣

ṽ(T − 1)
...

ṽ(L)

⎤
⎥⎥⎦

︸ ︷︷ ︸
=:Ṽ

+

⎡
⎢⎢⎣

m
...
m

⎤
⎥⎥⎦

︸ ︷︷ ︸
=:M

, (39)

where V = Ṽ +M is a column-vector consisting of samples
of noise {v(n)} in a manner similar to (36), H is defined in
(24), T (s) is a block Hankel matrix given by

T (s) :=

⎡
⎢⎢⎢⎢⎢⎣

s(T − 1)ΣT−1 · · · s(T − L− 1)ΣT−1
s(T − 2)ΣT−2 · · · s(T − L− 2)ΣT−2

...
...

...
s(L)ΣL · · · s(0)ΣL

⎤
⎥⎥⎥⎥⎥⎦
, (40)

a block Hankel matrix has identical block entries on its block
antidiagonals, and

Σn :=
[
e jω1nIN e jω2nIN · · · e jωQnIN

]
. (41)

Also using (1)–(3), an alternative linear model for Y is given
by

Y = F (H)s + Ṽ +M, (42)

where

F (H) :=

⎡
⎢⎢⎣

h(T − 1; 0) · · · h(T − 1;L)
. . .

. . .
h(L; 0) · · · h(L;L)

⎤
⎥⎥⎦

(43)

is a “filtering matrix.”
Consider (1), (3), and (39). Under the assumption of

temporally white complex Gaussian measurement noise,
consider the joint estimators

{
Ĥ , ŝ, m̂

} = arg
{
min
H ,s,m

∥∥Y − T (s)H −M
∥∥2
}
, (44)

where ŝ is the estimate of s. In the above we have followed a
DML approach assuming no statistical model for the input
sequences {s(n)}. Using (39) and (42), we have a separable
nonlinear least-squares problem that can be solved sequen-
tially as (joint optimization with respect toH ,m can be fur-
ther “separated”)

{
Ĥ , ŝ, m̂

} = argmin
s

{
min
H ,m

∥∥Y − T (s)H −M
∥∥2
}

= argmin
H ,m

{
min
s

∥∥Y −F (H)s−M
∥∥2
}
.

(45)

The finite alphabet properties of the information sequences
can also be incorporated into the DML methods. These al-
gorithms, first proposed by Seshadri [13] for time-invariant
SISO systems, iterate between estimates of the channel and
the input sequences. At iteration k, with an initial guess of the
channelH (k) and the meanm(k), the algorithm estimates the
input sequence s(k) and the channelH (k+1) and meanm(k+1)

for the next iteration by

s(k) = argmin
s∈S

∥∥Y −F
(
H (k))s−M(k)

∥∥2, (46)

H (k+1) = argmin
H

∥∥Y − T
(
s(k)

)
H −M(k)

∥∥2, (47)

m(k+1) = argmin
m

∥∥Y − T
(
s(k)

)
H (k+1) −M

∥∥2, (48)

where S is the (discrete) domain of s. The optimizations in
(47) and (48) are linear least squares problems whereas the
the optimization in (46) can be achieved by using the Viterbi
algorithm [11]. Note that (46)–(48) can be interpreted as
a constrained alternating least-squares implementation with
s ∈ S as the constraint. Since the above iterative procedure
involving (46), (47), and (48) decreases the cost at every iter-
ation, one achieves a local maximum of the DML function.
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We now summarize our DML approach in the following
steps.

(1) (a) Use (34) to estimate the channel using the first-
order (cyclostationary) statistics of the obser-
vations. Denote the channel estimates by Ĥ (1)

and ĥ(1)q (l). In this method {c(n)} is known and
{b(n)} is regarded as interference.

(b) Estimate the mean m̂(1) as follows. Define (recall
(1)–(3))

m̂(1) :=
(
1
T

) T−1∑

n=0

[
y(n)−

L∑

l=0
ĥ(1)(n; l)c(n− l)

]
,

ĥ(1)(n; l) :=
Q∑

q=1
ĥ(1)q (l)e jωqn.

(49)

(c) Design a Viterbi sequence detector to estimate
{s(n)} as {s̃(n)} using the estimated channel
Ĥ (1), mean m̂(1) and cost (46) with k = 1. (Note
that knowledge of {c(n)} is used in s(n) = b(n)+
c(n), therefore, we are in essence estimating b(n)
in the Viterbi detector.)

(2) (a) Substitute s̃(n) for s(n) in (1) and use the cor-
responding formulation in (39) to estimate the
channelH as

Ĥ (2) = T †(s̃)
[
Y − M̂(1)]. (50)

Define ĥ(2)(n; l) using ĥ(2)q (l) in a manner simi-

lar to ĥ(1)(n; l). Then the meanm is estimated as
m̂(2) given by

m(2) = 1
T − L

T−1∑

n=L

[
y(n)−

L∑

l=0
s(1)(n− l)h(2)(n; l)

]
. (51)

(b) Design a Viterbi sequence detector using the esti-
mated channel Ĥ (2), mean m̂(2), and cost (46)
with k = 2, as in step (1)(c).

(3) Step (2) provides one iteration of (46)-(47). Repeat
a few times till any (relative) improvement in chan-
nel estimation over previous iteration is below a pre-
specified threshold.

4. SIMULATION EXAMPLES

We now present several computer simulation examples in
support of our proposed approach. Example 1 uses an exact
CE-BEM representation to generate data whereas Examples
2 and 3 use a 3-tap Jakes’ channel to generate data. In all ex-
amples CE-BEMs are used to process the observations; there-
fore, in Examples 2 and 3 we have approximate modeling.

Example 1. In this example we pick an arbitrary value of Q
independent of T . In (2) take N = 1, Q = 2, and

ω1 = 0, ω2 = 2π
50

. (52)

We consider a randomly generated channel in each Monte
Carlo run with random channel length L ∈ {0, 1, 2} picked
with equal probabilities and random channel coefficients
hq(l), 0 ≤ l ≤ L, taken to be mutually independent com-
plex random variables with independent real and imag-
inary parts, each uniformly distributed over the interval
[−1, 1]. Normalized mean-square error (MSE) in estimat-
ing the channel coefficients hq(l), averaged over 100 Monte
Carlo runs, was taken as the performance measure for chan-
nel identification. It is defined as (before Monte Carlo aver-
aging)

NCMSE1 :=
{∑Q

q=1
∑2

m=0
∥∥hq(m)− ĥq(m)

∥∥2
}

∑Q
q=1

∑2
m=0

∥∥hq(m)
∥∥2 (53)

The training sequence was taken to be anm-sequence (maxi-
mal length pseudorandom binary sequence) of length 7 (= P)

{
c(n)

}6
n=0 = {1,−1,−1, 1, 1, 1,−1}. (54)

The input information sequence {b(n)} is i.i.d. equiprobable
4-QAM. As in [9, 16], define a power loss factor

α = σ2b
σ2b + σ2c

(55)

and power loss −10 log(α) dB, as a measure of the informa-
tion data power loss due to the inclusion of the training se-
quence. Here

σ2b := E
{∣∣b(n)

∣∣2
}
, σ2c := 1

P

P−1∑

n=0

∣∣c(n)
∣∣2. (56)

The training sequence was scaled to achieve a desired power
loss. Complex white zero-mean Gaussian noise was added to
the received signal and scaled to achieve a desired signal-to-
noise (SNR) ratio at the receiver (relative to the contribution
of {s(n)}).

Our proposed method using L = Lu = 4 (channel length
overfit) in (34) was applied for varying power losses due to
the superimposed training sequence. Figure 1 shows the sim-
ulation results. It is seen that as α decreases (i.e., training
power increases relative to the information sequence power),
one gets better results. Moreover, the proposed method
works with overfitting. Finally, adding nonzeromean (dc off-
set) to additive noise yielded essentially identical results (dif-
ferences do not show on the plotted curves).

Example 2. Consider (1) with N = 1 and L = 2. We simu-
late a random time-and frequency-selective Rayleigh fading
channel following [20]. For different l’s, h(n; l)’s are mutually
independent and for a given l, we follow the modified Jakes’
model [20] to generate h(n; l):

h(n; l) = X(t)|t=nTs , (57)

where X(t) = (2/
√
M)

∑M
i=1 e jψi cos(2π fdt cos(αi) + φ), αi =

(2πi−π+θ)/(4M), i = 1, 2, . . . ,M, random variables θ, φ, and
ψi are mutually independent (∀i) and uniformly distributed
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Figure 1: Example 1. Normalized channel MSE (53) based on T =
140 symbols per run, 100 Monte Carlo runs, QPSK signal, P = 7.
Power loss = −10 log(α) dB where α is as in (55).

over [0, 2π), Ts denotes the symbol interval, fd denotes the
(max.) Doppler spread, and M = 25. For a fixed l, (57) gen-
erates a random process {h(n; l)}n whose power spectrum
approximates the Jakes’ spectrum as M ↑ ∞. We consider
a system with carrier frequency of 2GHz, data rate of 40 kB
(kB = kilo-Bauds), therefore, Ts = 25× 10−6 seconds, and a
varying Doppler spread fd in the range 0Hz to 200Hz (cor-
responding to a maximum mobile velocity in the range 0 to
108 km/hr). We picked a data record length of 400 symbols
(time duration of 10msec). For a given Doppler spread, we
pick Q as in Section 1.1 (T = 400, L = 2 in (7)). For the cho-
sen parameters it varies within the values {1, 3, 5}. We em-
phasize that the CE-BEM was used only for processing at the
receiver; the data were generated using (57).

We take all sequences (information and training) to
be binary. For superimposed training, we take a periodic
(scaled) binary sequence of period P = 7 with the training-
to-information sequence power ratio (TIR) of 0.3 where

TIR = σ2c
σ2b
= α−1 − 1 (58)

and σ2b and σ2c denote the average power in the information
sequence {b(n)} and training sequence {c(n)}, respectively.
Complex white zero-mean Gaussian noise was added to the
received signal and scaled to achieve a target bit SNR at the
receiver (relative to the contribution of {s(n)}).

For comparison, we consider conventional time-multi-
plexed training assuming time-invariant channels, as well as

CE-BEM-based periodically placed time-multiplexed train-
ing with and without zero-padding, following [7]. In the for-
mer, the block of data of length 400 symbols was split into
two nonoverlapping blocks of 200 symbols each. Each sub-
block had a training sequence length of 46 symbols in the
middle of the data subblock with 154 symbols for informa-
tion; this leads to a training-to-information sequence power
ratio (over the block length) of approximately 0.3. Assuming
synchronization, time-invariant channels were estimated us-
ing conventional training and used for information detection
via a Viterbi algorithm; this was done for each subblock. In
the CE-BEM set-up, following [7], we took a training block
of length 2L + 1 = 5 and a data block of length 17 bits lead-
ing to a frame of length 22 bits. This frame was repeated over
the entire record length (22× 18). Thus, we have a training-
to-information bit ratio of approximately 0.3. Two versions
of training sequences were considered. In one of them zero-
padding was used with a random bit in the middle of the
training block, as in [7]: this leads to a peak-to-average power
ratio (PAR) of 5. In the other version we had a random binary
sequence of length 5 in each training block, leading to a PAR
of 1 (an ideal choice). Assuming synchronization, CE-BEM
channel was estimated using conventional training and used
for information detection via a Viterbi algorithm. We also
considered another variation of zero-padded training with a
training block of length 2L+ 1 = 5 but a data block of length
50 bits leading to a training-to-information bit ratio of 0.1.
Thus the proposed superimposed training scheme results in a
data transmission rate that is 30% higher than the data trans-
mission rate in all of the time-multiplexed training schemes
considered in this example, except for the last scheme com-
pared to which the data transmission rate is 10% higher.

Figure 2 shows the BER (bit error rate) based on 500
Monte Carlo runs for conventional training based on time-
invariant (TI) modeling, the CE-BEM-based periodically
placed time-multiplexed training for PAR = 5 and PAR =
1, the first-order statistics and superimposed training-based
method and the proposed DML approach with two itera-
tions, under varying Doppler spreads fd and a bit SNR of
25 dB. It is seen that as Doppler spread fd increases beyond
about 60Hz (normalized Doppler Ts fd of 0.0015), superim-
posed training approach of Section 2 (step (1)) outperforms
the conventional (midamble) training with time-invariant
channel approximation, without decreasing the data trans-
mission rate. Furthermore, the proposed DML enhancement
can lead to a significant improvement with just one iteration.
On the other hand, the CE-BEM-based periodically placed
time-multiplexed training approach of [7] significantly out-
performs the superimposed training-based approaches, but
at the cost of a reduction in the data transmission rate.
Figure 3 shows the normalized channel mean-square error
(NCMSE), defined (before averaging over runs) as

NCMSE =
∑T

n=1
∑2

l=0
∣∣ĥ(n; l)− h(n; l)

∣∣2
∑T

n=1
∑2

l=0
∣∣h(n; l)

∣∣2 . (59)

It is seen that the proposed DML enhancement leads to a
significant improvement in channel estimation also with just
one iteration.
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Figure 2: Example 2. BER: circle: estimate channel using superimposed training (training-to-information symbol power ratio TIR = 0.3)
and then design a Viterbi detector; square: first iteration specified by step (2) (Section 3); up-triangle: second iteration specified by step
(2) (Section 3); dot-dashed: estimate channel using conventional time-multiplexed training of length 46 bits in the middle of a subblock of
length 200 bits and then design a Viterbi detector; cross: CE-BEM-based periodically placed time-multiplexed training with zero padding
[7], TIR = 0.3; star: CE-BEM-based periodically placed time-multiplexed training without zero padding, TIR = 0.3; down-triangle: CE-
BEM-based periodically placed time-multiplexed training with zero-padding [7], TIR = 0.1. SNR = 25 dB. Record length= 400 bits. Results
are based on 500 Monte Carlo runs.
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Figure 3: Example 2. As in Figure 2 except that NCMSE (normalized channel mean-square error) (59) is shown.
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Figure 4: Example 3. BER for varying SNR with Doppler spread fd = 120Hz: up-triangle: superimposed training, second iteration specified
by step (2) (Section 3), TIR = 0.3; cross: CE-BEM-based periodically placed time-multiplexed training with zero padding [7], TIR = 0.3;
down-triangle: CE-BEM-based periodically placed time-multiplexed training with zero padding [7], TIR = 0.1. After estimating the channel,
we design a Viterbi detector using the estimated channel. Record length = 400 bits. Results are based on 500 Monte Carlo runs.
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Figure 5: Example 3. As in Figure 4 except that corresponding NCMSE (normalized channel mean-suare error) (59) is shown.

Example 3. To further compare the relative advantages and
disadvantages of CE-BEM-based superimposed training and
periodically placed time-multiplexed training, we now repeat
Example 2 but with varying SNR; the other details remain
unchanged. Figures 4 and 5 show the simulation results for
a Doppler spread of 120Hz (normalized Doppler spread of
0.003 for bit duration of Ts = 25 μs) where we compare
the results of the second iteration of the proposed DML ap-
proach based on superimposed training with that of peri-
odically placed time-multiplexed training. There is an error
floor with increasing SNR which is attributable to modeling

errors in approximating the Jakes’ model with CE-BEM. It is
seen from Figure 4 that our proposed approach outperforms
(better BER) the CE-BEM-based periodically placed time-
multiplexed training approach of [7] for SNRs at or below
10 dB, and underperforms for SNRs at or above 20 dB. There
is also the data transmission rate advantage at all SNRs.

5. CONCLUSIONS

In this paper we first presented and extended the first-order
statistics-based approach of [17] for time-varying (CE-BEM



10 EURASIP Journal on Applied Signal Processing

based) channel estimation using superimposed training.
Then we extended the first-order statistics-based solution
to an iterative approach to joint channel and information
sequence estimation, based on CE-BEM, using Viterbi de-
tectors. The first-order statistics-based approach views the
information sequence as interference whereas in the itera-
tive joint estimation version it is exploited to enhance chan-
nel estimation and information sequence detection. The re-
sults were illustrated via several simulation examples some of
them involving time-and frequency-selective Rayleigh fading
where we compared the proposed approaches to some of the
existing approaches. Compared to the CE-BEM-based peri-
odically placed time-multiplexed training approach of [7],
one achieves a lower BER for SNRs at or below 10 dB, and
higher BER for SNRs at or above 20 dB. There is also the
data transmission rate advantage at all SNRs. Further work
is needed to compare the relative advantages and disadvan-
tages of CE-BEM-based superimposed training and periodi-
cally placed time-multiplexed training.
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